

PART NUMBER

74LS794N

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

8-Bit Latch/Register with Readback

SN54/74LS794 SN54/74LS793

Features/Benefits

- I/O port configuration enables output data back onto input bus
- 8-bit data path matches byte boundaries
- · Ideal for microprocessor interface

Description

These 8-bit latches/registers are useful for I/O operations on a microprocessor bus. An image of the output data can be read back by the CPU. This operation is important in control algorithms which make decisions based on the previous status of output controls. Rather than storing a redundant copy of the output data in memory, simply reading the register as an I/O port allows the data to be retrieved from where it has been stored in an 'LS793/4, for verification and/or updating.

The data is loaded in the registers on the low-to-high transition of the clock (CK), for the LS794. The data is passed through the 'LS793 when the gate, (G), is High, and it is "latched" when G changes to Low. The output enable, OE is used to enable data on D7-D0. When \overline{OE} is low the output of the latches/registers is enabled on D0-D7, enabling D as an output bus so that the host can perform a read operation. When \overline{OE} is High, D7-D0 are inputs to the latches/registers configuring D as an input bus.

The output drive of these commercial parts for any output pin is IOI = 24 mA.

'LS793 Function Table

G	ŌĒ	Q	D
L	L	Q0 ^{**}	Output, Q
L	H	Q0 ^{**}	Input
H [†]	L	D [*]	Output, Q*
H	H	D	Input

" In this case the output of the latch feeds the input, and a "race" condition results.

Q₀ represents the previous "latched" state.

† This transition is not a normal mode of operation and may produce hazards.

Ordering Information

PART NUMBER	PKG TEMP POLARI		POLARITY	ТҮРЕ	POWER		
SN54LS793 SN74LS793	J,W,L, N,J,NL	Mil Com	Non-	Latch	LS		
SN54LS794 SN74LS794	J,W,L, N,J,NL		invert	Register			

Logic Symbols

'LS794 Function Table

СК	ŌĒ	Q	D		
Lor Hor ↓ Lor Hor ↓ 1	L H L H	Q ₀ Q ₀ Q ₀ D	Output, Q Input Output, Q* Input		

In this case the output of the register is clocked to the inputs and the overall Q output is unchanged at Q₀

TWX: 910-338-2376

Pin Configurations

IEEE Symbols

Absolute Maximum Ratings -0.5 V to 7 V Supply voltage V_{CC} -1.5 V to 7 V Input voltage -0.5 V to 5.5 V Off-state output voltage -65°C to +150°C Storage temperature -65°C to +150°C

Т

Operating Conditions

SYMBOL	PAR	ARAMETER		MILITARY MIN TYP MAX			COMMERCIAL MIN TYP MAX			UNIT
STRIBUL					5	5.5	4.75	5	5.25	V
Vcc	Supply voltage	Supply voltage				125	0		75	°C
TA	Operating free air temperatu	Operating free air temperature					15			<u>+</u>
		High		15	10					ns
tw	Width of Clock/Gate	Low ('LS794 d	only)	15			15			+
			'LS793	15↓			10			_
t _{su}	Setup time		'LS794	151			151			- ns
			'LS793	101			101			
t _h	Hold time		'LS794	ot			ot			

The arrow indicates the transition of the clock/gate input used for reference. for the low-to-high transitions, for the high-to-low transitions.

SYMBOL	PARAMET	PARAMETER		TEST CONDITIONS		MILITARY MIN TYP MAX		COMMERCIAL MIN TYP MAX	
	Low-level input vol	tage				0.7		0.8	V
					2		2		V
	High-level input vo			1 = -18 mA		-1.5		-1.5	V
VIC	Input clamp voltag	e	V _{CC} = MIN V _{CC} = MAX	· · · · · · · · · · · · · · · · · · ·		-250		-250	μA
ЧL	Low-level input cu	Low-level input current		V ₁ = 0.4 V				40	μΑ
<u></u> - Чн	High-level input current		V _{CC} = MAX	V ₁ = 2.7 V	40			40	μ
<u>'IH</u>	Maximum input	D or Q		V ₁ = 5.5 V	0.1		0.1		mA
4	current	All others	V _{CC} = MAX	V ₁ = 7 V					<u> </u>
			V _{CC} = MIN	loL = 12 mA	0.25	0.4	0.2	5 0.4	- v
VOL	Low-level output voltage		V _{IL} = MAX V _{IH} = 2 V	I _{OL} = 24 mA			0.3	5 0.5	
	High-level output voltage		V _{CC} = MIN	1 _{OH} = -1 mA	2.4 3.4				- v
Vон			V _{IL} = MAX V _{IH} = 2 V	l _{OH} = −2.6 mA			2.4 3.		
	Off-state output current		Vcc = MAX	V _O = 0.4 V		-250		-250	μΑ
^I OZL			$ V_{II} = MAX$			40	1	40	μ ^μ ,
^I OZH			V _{IH} = = 2 V		-30	-130	-30	-130	mA
los	Output short-circuit current*		V _{CC} = MAX		-30		+	120	
			V _{CC} = MAX	'LS793		120			mA
lcc	Supply current		Outputs open	'LS794		120		120	

Electrical Characteristics Over Operating Conditions

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com