

PART NUMBER CA3262AQ96-G-ROCA

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

CA3262A, CA3262

November 1995

Quad-Gated Inverting Power Drivers

Features

- Independent Over-Current Limiting On Each Output
- Independent Over-Temperature Limiting On Each Output
- Output Drivers Capable of Switching 700mA Load
- Inputs Compatible With TTL or 5V CMOS Logic
- · Suitable For Resistive, Lamp or Inductive Loads
- Power-Frame Package Construction For Good Heat Dissipation
- Operating Temperature Ranges
 - CA3262A -40°C to +125°C - CA3262 -40°C to +85°C

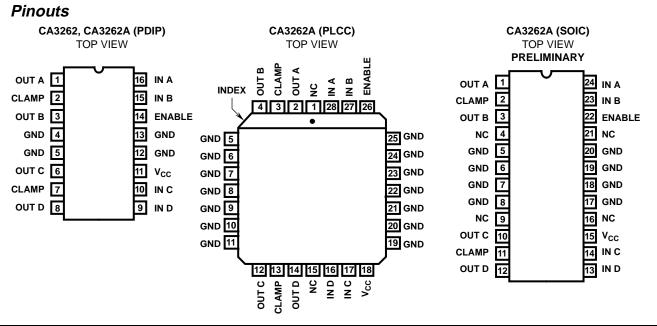
Applications

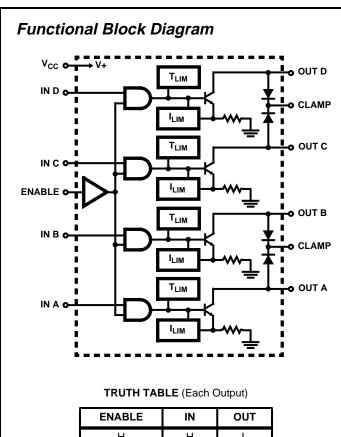
System Applications

- Solenoids
- Relays
- Lamps
- Lamps
- SteppersSmall Motors
- Displays

- Automotive
- Appliances
- Industrial Controls
- Robotics

Ordering Information


PART NUMBER	TEMPERATURE RANGE	PACKAGE
CA3262E	-40°C to +85°C	16 Lead Plastic DIP
CA3262AE	-40°C to +125°C	16 Lead Plastic DIP
CA3262AQ	-40°C to +125°C	28 Lead PLCC
CA3262AM	-40°C to +125°C	24 Lead Plastic SOIC (W)


Description

The CA3262 and CA3262A are used to interface low-level logic to high current loads. Each Power Driver has four inverting switches consisting of a non-inverting logic input stage and an inverting low-side driver output stage. All inputs are 5V TTL/CMOS logic compatible and have a common Enable input. Each output device has independent current limiting (I_{LIM}) and thermal limiting (T_{LIM}) for protection from over-load conditions. Steering diodes connected from each output (in pairs) to the Clamp pins may be used in conjunction with external zener diodes to protect the IC against over-voltage transients that result from inductive load switching.

To allow for maximum heat transfer from the chip, all ground pins on the DIP, PLCC and SOIC packages are directly connected to the mounting pad of the chip. Integral heat spreading lead frames directly connect the bond pads and ground leads to conduct heat from the chip junction to the PC Board for good heat dissipation.

The CA3262 and CA3262A can drive four incandescent lamp loads without modulating their brilliance when the "cold" lamps are energized. Outputs may be parallel connected to drive high current loads. The maximum output current of each output is determined by the over-current limiting threshold which is typically 1.2A but may be as low as 0.7A.

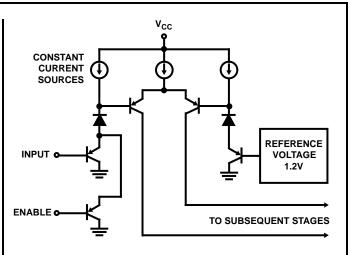
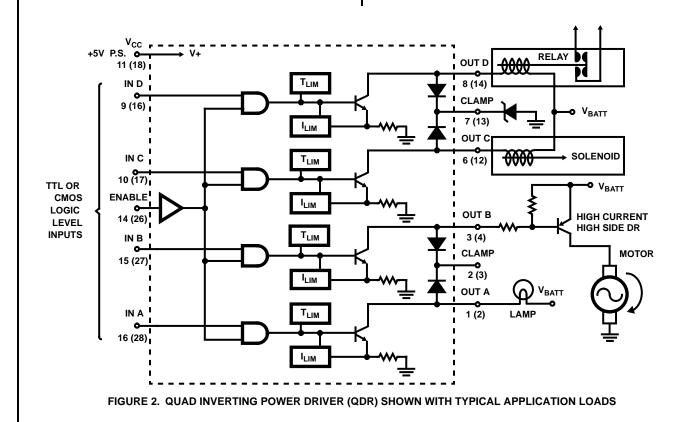



FIGURE 1. CA3262A EQUIVALENT SCHEMATIC OF ONE INPUT STAGE

ENABLE	IN	OUT
Н	Н	L
Н	L	Н
L	Х	Н

H = High, L = Low, X = Don't Care

Specifications CA3262A, CA3262

Thermal Information (Typical) **Absolute Maximum Ratings** Logic Supply Voltage, V_{CC}......7.0V Thermal Resistance (Note 3) CA3262AQ 45°C/W Output Voltage, V_{CEX} 60V CA3262E, CA3262AE, CA3262AM 60°C/W Power Dissipation, PD Output Sustaining Voltage, V_{CE(SUS)} 40V Output Transient Current (Note 1) CA3262E, CA3262AE (PDIP) Output Load Current. (Note 2) Storage Temperature Range -65°C to +150°C Above +60°C Derate Linearly at 16.6mW/°C Operating Temperature Range Up to +85°C with PC Board Heat Sink 1.625W CA3262AE, CA3262AQ, CA3262AM -40°C to +125°C Above +85°C Derate Linearly at 25 mW/°C CA3262E.....-40°C to +85°C CA3262AQ (PLCC) Maximum Junction Temperature +150°C Up to +85°C (Free Air)......1.44W Lead Temperature (Soldering 10s).....+265°C Above +85°C Derate Linearly at 22 mW/°C Above +105°C Derate Linearly at 33 mW/°C CA3262AM (SOIC) Above +60°C Derate Linearly at 16.6 mW/°C Up to +85°C with PC Board Heat Sink 1.80W

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Above +85°C..... Derate Linearly at 27.7 mW/°C

Electrical Specifications $V_{CC} = 5.5V$, $T_{A} = -40^{\circ}$ C to $+125^{\circ}$ C for CA3262A and $V_{CC} = 5.5V$, $T_{A} = -40^{\circ}$ C to $+85^{\circ}$ C for CA3262 Unless Otherwise Specified

			CA3262			CA3262A			
PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Output Leakage Current	I _{CEX}	$V_{CE} = 60V, V_{ENABLE} = 0.8V$	-	-	100	-	0.6	50	μΑ
Output Sustaining Voltage	V _{CE(SUS)}	Note 5	40	-	-	40	-	-	V
Collector Emitter Saturation Voltage (See Figures 4B and 5B)	V _{CE(SAT)}	$V_{IN} = 2V, V_{CC} = 4.75V$ $I_{C} = 100mA$	-	-	0.25	-	0.05	0.15	V
(See Figures 4D and 3D)		I _C = 200mA	-	-	-	-	-	0.2	V
		I _C = 300mA	-	-	-	-	-	0.25	V
		I _C = 400mA	-	-	0.4	-	0.2	0.3	V
		I _C = 500mA	-	-	-	-	-	0.4	V
		I _C = 600mA	-	-	0.6	-	-	0.5	V
		$I_C = 700 \text{mA}, T_A = -40^{\circ} \text{C}$	-	-	0.6	-	-	0.5	V
Input Low Voltage	V_{IL}		-	-	0.8	-	-	0.8	V
Input High Voltage	V_{IH}		2	-	-	2	-	-	V
Input Low Current	I _{IL}	$V_{IN} = 0.8V$	-	-	10	-	0.75	10	μΑ
Input High Current	I _{IH}	$V_{IN} = V_{ENABLE} = 5.5V,$ $I_C = 600$ mA	-	-	10	-	-	10	μΑ
Supply Current, All Outputs ON, (See Figures 4A and 5A)	I _{CC(ON)}	V _{IN} = 2V, V _{ENABLE} = 5.5V, I _{OUTA} = 250mA, I _{OUTB} = 250mA, I _{OUTC} = 250mA, I _{OUTD} = 250mA	-	-	70	-	(Note 4)	55	mA
Supply Current, All Outputs OFF, (See Figures 4A and 5A)	I _{CC(OFF)}	V _{IN} = 0V	-	-	5	-	(Note 4)	5	mA
Clamp Diode Leakage Current	I _R	V _R = 60V	-	-	100	-	-	50	μА
Clamp Diode Forward	V_{F}	$I_F = 1A$, $V_{IN} = 0V$	-	-	1.7	-	-	1.7	V
Voltage, (See Figures 4D and 5D)		I _F = 1.5A, V _{IN} = 0V	-		2.1	-	-	2.1	V
Turn-On Delay, (See Figures 4C and 5C)	t _{PHL} , t _{PLH}	I _{OUT} = 500mA	-	-	8	-	-	8	μs
Over Current Limiting	I _{LIM}	$V_{OUT} = 2V, V_{IN} = 5.5V, V_{ENABLE} = 5.5V$	0.7	-	(Note 1)	0.7	-	(Note 1)	А

Specifications CA3262A, CA3262

Electrical Specifications

 V_{CC} = 5.5V, T_{A} = -40°C to +125°C for CA3262A and V_{CC} = 5.5V, T_{A} = -40°C to +85°C for CA3262 Unless Otherwise Specified **(Continued)**

			CA3262		CA3262A				
PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DESIGN PARAMETERS									
Over Temperature Limiting (Junction Temperature)	T _{LIM}		-	155	-	-	155	-	°C
Input Capacitance, Input	C _{IN}		-	-	-	-	3	-	pF
Enable Capacitance	C _{EN}		-	-	-	-	4.4	-	pF

NOTES:

- 1. The CA3262 and CA3262A have on-chip limiting for transient peak currents. Under short-circuit conditions with voltage applied to the collector of the output transistor and with the output transistor turned ON, the current will increase to 1.2A, typical. Over-Current Limiting protects a short circuit condition for a normal operating range of output supply voltage. During a short circuit condition, the output driver will shortly thereafter (approx. 5ms) go into Over-Temperature Limiting. While Over-Current Limiting may range to peak currents greater than 2A, each output will typically withstand a direct short circuit up to supply voltage levels of 16V. Excessive dissipation before thermal limiting occurs may cause damage to the chip for supply voltages greater than 18V. The CA3262 and CA3262A are rated to withstand peak current, cold turn-on conditions of #168 or #194 lamp loads.
- 2. The total DC current for the CA3262 and CA3262A with all 4 outputs ON should not exceed the total of (4 x 0.7A + Max. $\[\downarrow \]_C \]$ ~ 2.85A. This level of current will significantly increase the chip temperature due to increased dissipation and may cause thermal shutdown in high ambient temperature conditions (See Absolute Maximum Ratings for Dissipation). Any one output may be allowed to exceed 0.7A but may be subject to Over-Current Limiting above the $\[\]_{LIM} \]$ min. limit of 0.7A. As a practical limit, no single output should be loaded to more than 1A max.
- 3. Normal applications require a surface mount of the 28 lead PLCC and 24 lead SOIC packages on a PC Board. The PLCC, SOIC and PDIP packages have power lead frame construction through the ground pins to conduct heat from the frame to the PC Board. With 2 square inches of surface copper area adjacent to the ground pins, the thermal resistance of each package may be as low as 30°C/W for the PLCC, 36°C/W for the 24 lead SOIC and 40°C/W for the 16 lead PDIP.
- 4. I_{CC} varies with temperature. Typically, I_{CC(ON)} is 18mA at +125°C and 41mA at -40°C. Typically, I_{CC(OFF)} is 2.2mA at +125°C and 1.2mA at -40°C.
- Tested with a switched-off 500mA Load (24Ω series resistance), V_{BATT} = 12V and the outputs (V_{CE}) clamped to +40V maximum with an external zener diode.

Applications

Typical circuit configurations for applying the CA3262 and CA3262A are shown in the application circuit of Figure 2. To their rated capabilities, both circuits can be used to drive inductive, resistive and lamp loads. The CA3262A has a lower V_{SAT} than the CA3262 and is rated for +125°C ambient temperature applications. The CA3262 data sheet rating is +85°C. Otherwise, the protection features described apply to both the CA3262 and CA3262A.

The maximum voltage for full load current switching is the output sustaining voltage, $V_{CE(SUS)}$ which should not exceed 40V. To provide a means of over-voltage protection, on-chip steering diodes are connected from each output to one of two CLAMP pins. Over-voltage pulses may be generated from inductive load switching and must be clamped or limited to a peak voltage less than $V_{CE(SUS)}$. To limit an inductive voltage pulse, a zener diode should be connected to the appropriate CLAMP pin. When the voltage pulse exceeds the zener threshold, the excess energy is dumped to ground via the on-chip steering diode and the external zener diode.

The on-chip diodes may be used in a free-wheeling mode by connecting the CLAMP pins to an external clamp supply voltage. Zener diode clamp protection is preferred over the power supply clamp option, primarily because the power supplies may be subject to large transient changes; including turn-ON and turn-OFF conditions where non-tracking conditions between supplies could allow forward conduction through the steering diodes. For all transient conditions of either method, the clamp voltage should greater than the maximum supply voltage of the switching outputs and less than V_{CE(SUS)}.

Note that the rate of change of the output current during load switching is fast. Therefore, even small values of inductance, including the inductance of a few meters of hook-up wire to the load circuit, can generate voltage spikes of considerable amplitude at the output terminals and may require clamping to protect the device ratings.

Current-limiting is provided as protection for shorted or overloaded output conditions. Voltage is sampled across a small metal resistor in the emitter of each output stage. When the voltage exceeds a preset comparator level, drive is reduced to the output. Current limiting is sustained unless thermal conditions exceed the preset thermal shutdown temperature of +155°C.

If an output is shorted, the remaining three outputs will continue to function normally unless the continued heat spreading is sufficient to raise the junction temperature at any other output to a level greater than +155°C. High ambient temperature conditions may allow this to happen. The degree of interaction is minimized at chip layout design by separating the output devices, each to a separate corner of the chip.

As noted, the thermal resistance values of the PDIP, PLCC and SOIC packages are improved by direct connection of the leads to the chip mounting pad. For a normal PC Board application, the thermal resistance coefficient for each package can be significantly lowered by increasing ground copper area on the PC board next to the ground pins of the IC.

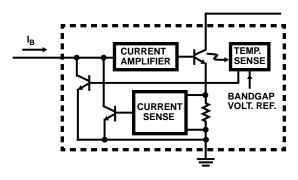


FIGURE 3. EACH OUTPUT POWER DRIVER IS A COMPOSITE CIRCUIT WITH OVER-TEMPERATURE SENSE FOR THERMAL LIMITING AND OVER-CURRENT SENSE TO PROVIDE CURRENT LIMITING

Typical Performance Curves

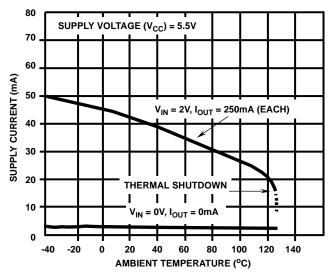


FIGURE 4A. TYPICAL SUPPLY CURRENT (PIN 11)
CHARACTERISTICS

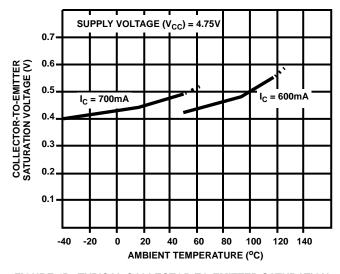


FIGURE 4B. TYPICAL COLLECTOR-TO-EMITTER SATURATION VOLTAGE CHARACTERISTICS IN QUAD-GATED INVERTING POWER DRIVER OUTPUT

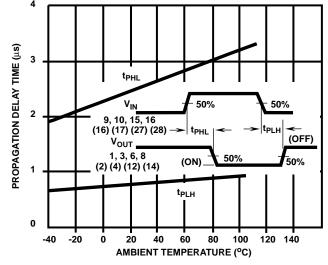


FIGURE 4C. TYPICAL PROPAGATION DELAY TIME CHARACTERISTICS

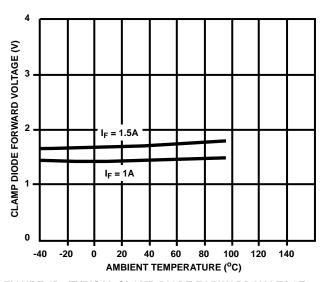


FIGURE 4D. TYPICAL CLAMP-DIODE FORWARD VOLTAGE CHARACTERISTICS

FIGURE 4. TYPICAL CHARACTERISTICS OF THE CA3262E

Typical Performance Curves (Continued) SUPPLY VOLTAGE (V_{CC}) = 5.5V 70 60 SUPPLY CURRENT (mA) 50 V_{IN} HIGH 40 $I_{OUT} = 500mA (EACH)$ 30 20 V_{IN} LOW 10 $I_{OUT} = 0mA$ 0 -40 -20 20 40 60 80 100 120 140 AMBIENT TEMPERATURE (°C) FIGURE 5A. TYPICAL SUPPLY CURRENT (PIN 11) **CHARACTERISTICS** 4

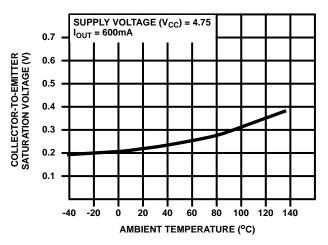
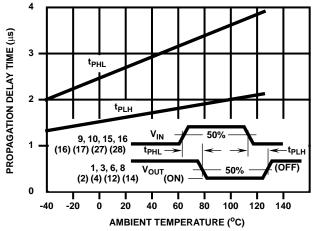



FIGURE 5B. TYPICAL COLLECTOR-TO-EMITTER SATURATION
VOLTAGE CHARACTERISTICS IN QUAD-GATED
INVERTING POWER DRIVER OUTPUTS

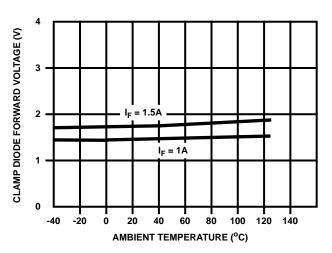
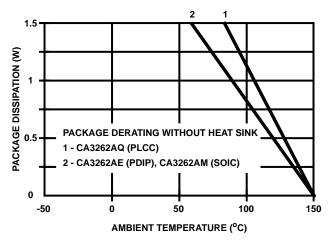



FIGURE 5C. TYPICAL PROPAGATION DELAY TIME CHARACTERISTICS

FIGURE 5D. TYPICAL CLAMP-DIODE FORWARD VOLTAGE CHARACTERISTICS

FIGURE 5. TYPICAL CHARACTERISTICS OF THE CA3262AE AND CA3262AQ

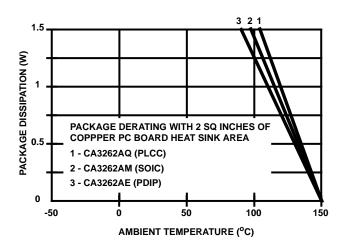
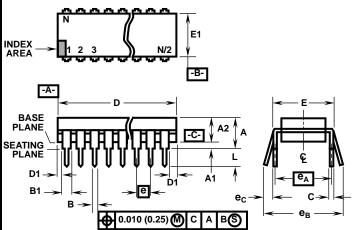
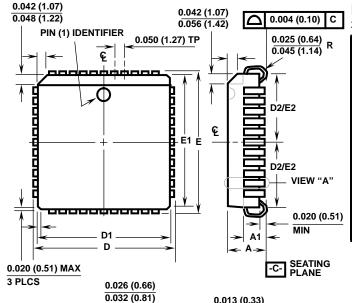



FIGURE 6A. DISSIPATION RATING CHART FOR PLCC, PDIP
AND SOIC PACKAGES WITHOUT ADDITIONAL
HEAT SINKS

FIGURE 6B. DISSIPATION RATING CHART FOR PLCC, PDIP AND SOIC PACKAGES WITH 2 SQ. IN. OF COPPER PC BOARD HEAT SINKING

Dual-In-Line Plastic Packages (PDIP)

NOTES:


- Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- 6. E and $\boxed{e_A}$ are measured with the leads constrained to be perpendicular to datum $\boxed{-C_-}$.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- B1 maximum dimensions do not include dambar protrusions.
 Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
Е	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54 BSC		-
e _A	0.300	BSC	7.62 BSC		6
e _B	-	0.430	- 10.92		7
L	0.115	0.150	2.93	3.81	4
N	1	6	1	9	

Rev. 0 12/93

Plastic Leaded Chip Carrier Packages (PLCC)

N28.45 (JEDEC MS-018AB ISSUE A)
28 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE

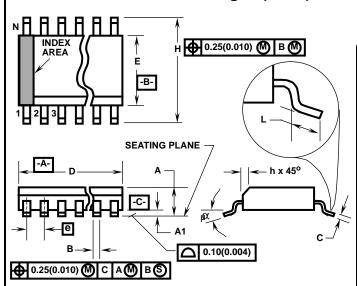
	INC	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α	0.165	0.180	4.20	4.57	-	
A1	0.090	0.120	2.29	3.04	-	
D	0.485	0.495	12.32	12.57	-	
D1	0.450	0.456	11.43	11.58	3	
D2	0.191	0.219	4.86	5.56	4, 5	
Е	0.485	0.495	12.32	12.57	-	
E1	0.450	0.456	11.43	11.58	3	
E2	0.191	0.219	4.86	5.56	4, 5	
N	2	8	28		6	

Rev. 1 3/95

NOTES:

 Controlling dimension: INCH. Converted millimeter dimensions are not necessarily exact.

VIEW "A" TYP.


0.013 (0.33) 0.021 (0.53)

0.025 (0.64)

- 2. Dimensions and tolerancing per ANSI Y14.5M-1982.
- 3. Dimensions D1 and E1 do not include mold protrusions. Allowable mold protrusion is 0.010 inch (0.25mm) per side.
- 4. To be measured at seating plane -C- contact point.
- 5. Centerline to be determined where center leads exit plastic body.
- 6. "N" is the number of terminal positions.

0.045 (1.14) MIN

Small Outline Plastic Packages (SOIC)

M24.3 (JEDEC MS-013-AD ISSUE C) 24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
В	0.013	0.020	0.33	0.51	9
С	0.0091	0.0125	0.23	0.32	-
D	0.5985	0.6141	15.20	15.60	3
E	0.2914	0.2992	7.40	7.60	4
е	0.05	BSC	1.27	BSC	-
Н	0.394	0.419	10.00	10.65	-
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	2	4	24		7
α	0°	8°	0°	8°	-

Rev. 0 12/93

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch)
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747

(407) 729-4984 FAX: (407) 729-5321

EUROPE

Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200 FAX: (65) 748-0400

