

PART NUMBER

54LS691FKB-ROCV

Rochester Electronics

Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

PART NUMBER

54LS691FK

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

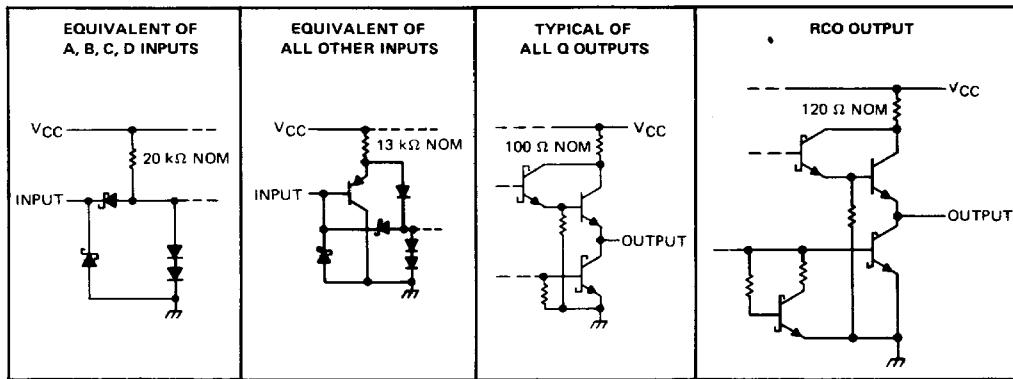
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

TYPES SN54LS690 THRU SN54LS693, SN74LS690 THRU SN74LS693 SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

D2423, JANUARY 1981

- 4-Bit Counters/Registers
- Multiplexed Outputs for Counter or Latched Data
- 3-State Outputs Drive Bus Lines Directly
- 'LS690 . . Decade Counter, Direct Clear
- 'LS691 . . Binary Counter, Direct Clear
- 'LS692 . . Decade Counter, Synchronous Clear
- 'LS693 . . Binary Counter, Synchronous Clear

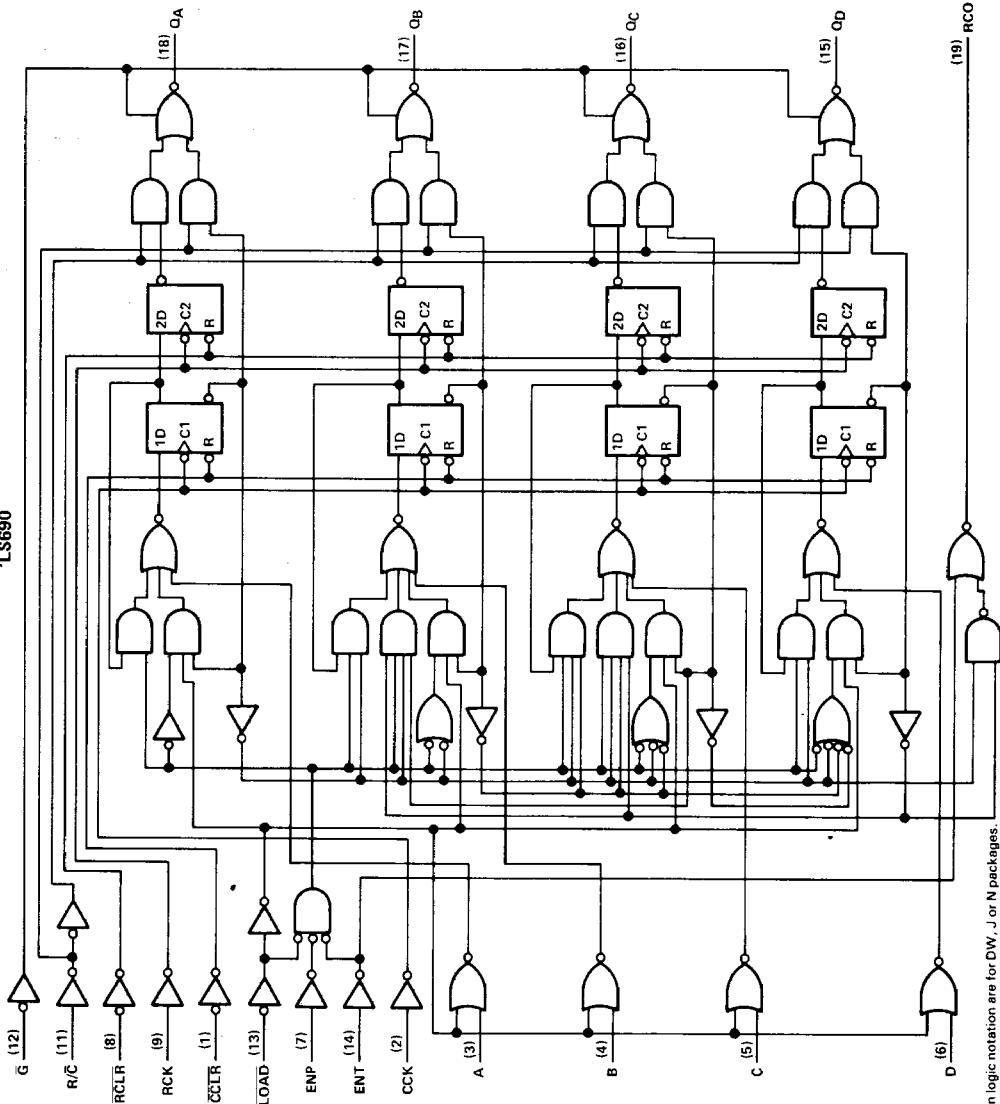

description

These low-power Schottky LSI devices incorporate synchronous counters, four-bit D-type registers, and quadruple two-line to one-line multiplexers with three-state outputs in a single 20-pin package. The counters can be programmed from the data inputs and have enable P inputs and enable T inputs and a ripple-carry output for easy expansion. The register/counter select input, R/C, selects the counter when low or the register when high for the three-state outputs, Q_A, Q_B, Q_C, and Q_D. These outputs are rated at 12 and 24 milliamperes (54LS/74LS) for good bus-driving performance.

Individual clock and clear inputs are provided for both the counter and the register. Both clock inputs are positive-edge triggered: The clear line is active low and is asynchronous on the 'LS690 and 'LS691, synchronous on the 'LS692 and 'LS693. Loading of the counter is accomplished when LOAD is taken low and a positive-transition occurs on the counter clock CCK.

Expansion is easily accomplished by connecting RCO of the first stage to ENT of the second stage, etc. All ENP inputs can be tied common and used as a master enable or disable control.

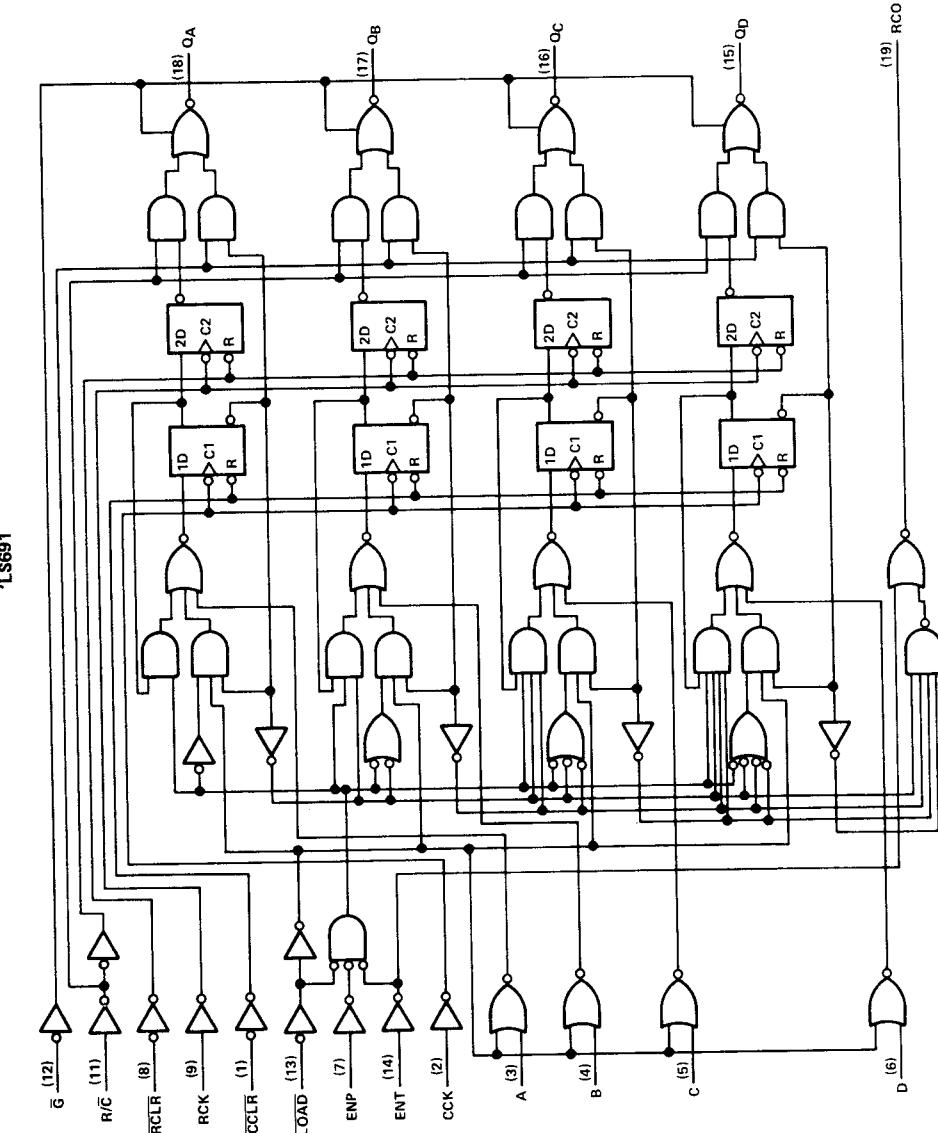
schematics of inputs and outputs


PRODUCTION DATA

This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TYPE SN54LS690, SN74LS690
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS

logic diagrams


3 TTL DEVICES

**TYPE SN54LS691, SN74LS691
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS**

logic diagrams (continued)

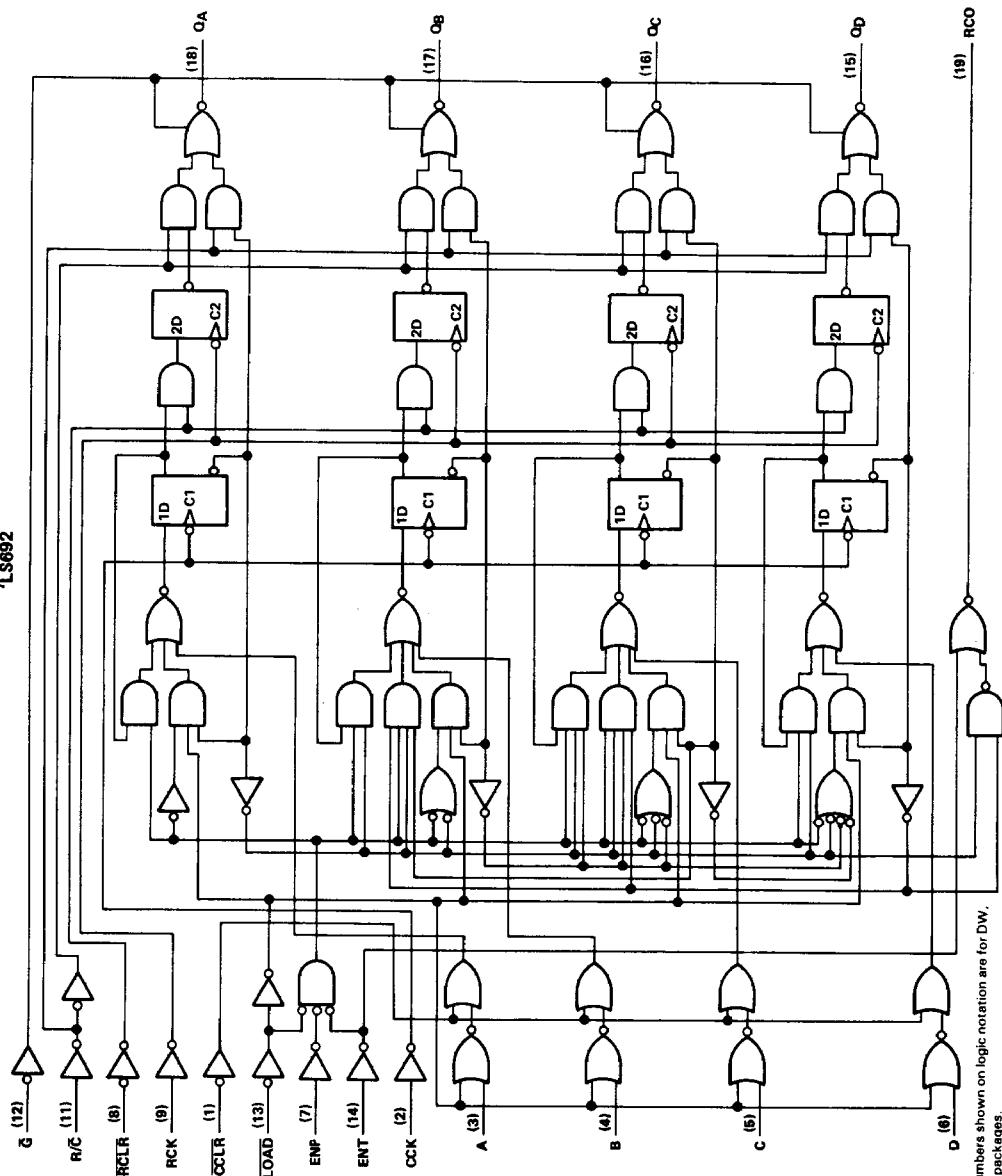
LS691

Pin numbers shown on logic notation are for DW, J or N packages.

TTL DEVICES

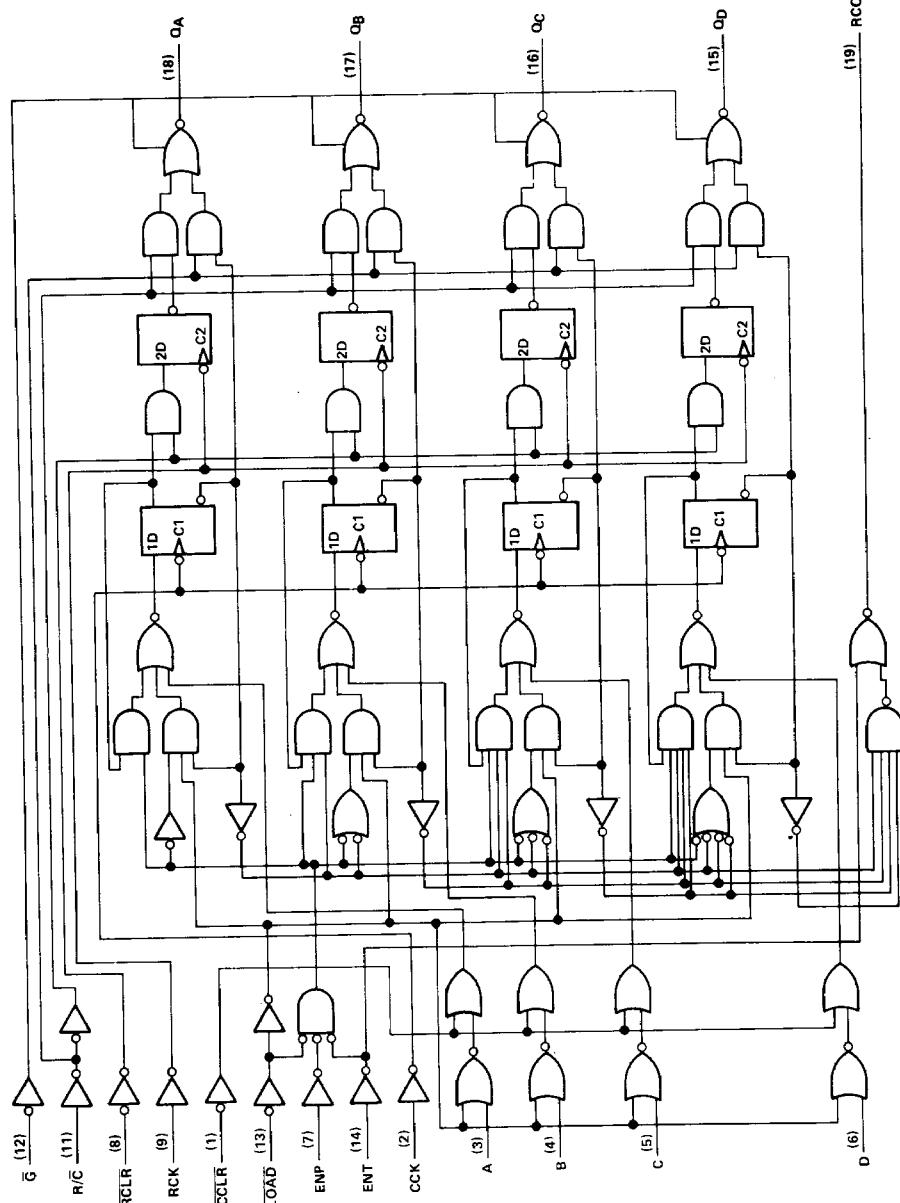
3

**TEXAS
INSTRUMENTS**


POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

3-1305

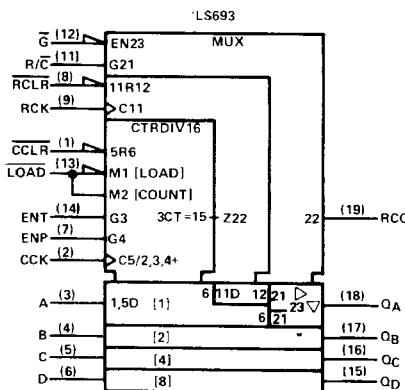
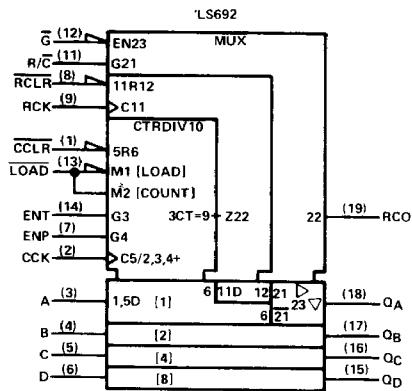
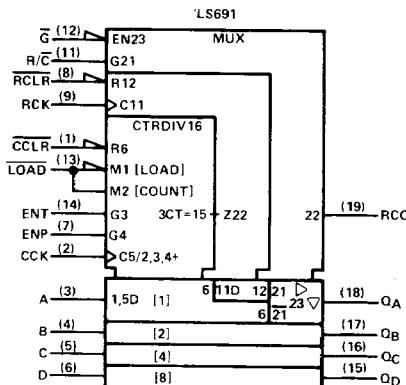
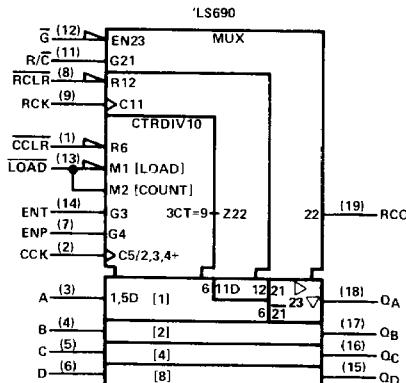
**TYPE SN54LS692, SN74LS692
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS**


logic diagrams (continued)

3
TTL DEVICES

TYPE SN54LS693, SN74LS693
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS

logic diagrams (continued)





Pin numbers shown on logic notation are for DW, J or N packages

3

TTL DEVICES

TYPES SN54LS690 THRU SN54LS693, SN74LS690 THRU SN74LS693 SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS AND MULTIPLEXED 3-STATE OUTPUTS

logic symbols

Pin numbers shown on logic notation are for DW, J or N packages.

**TYPES SN54LS690 THRU SN54LS693, SN74LS690 THRU SN74LS693
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage	7 V
Off-state output voltage	5.5 V
Operating free-air temperature range: SN54LS690 thru SN54LS693	-55°C to 125°C
SN74LS690 thru SN74LS693	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS'			SN74LS'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2	2	V
V_{IL}	Low-level input voltage	0.7	0.8	V
I_{OH}	High-level output current	O	-1	-2.6	mA
		RCO	-0.4	-0.4	mA
I_{OL}	Low-level output current	O	12	24	mA
		RCO	4	8	mA
f_{clock}	Clock frequency	CCK	0	20	0	20	MHz
		RCK	0	20	0	20	MHz
t_w	Pulse duration	CCK high or low	25	25	ns
		RCK high or low	25	25	
		RCLR low	20	20	
		CCLR low	20	20	
t_{su}	Setup time before CCK \uparrow	A thru D	30	30	ns
		ENP or ENT	30	30	
		LOAD \downarrow	30	30	
		CCLR \downarrow	40	40	
t_{su}	Setup time before RCK \uparrow	'LS692, 'LS693	CCLR \uparrow inactive	25	25	ns
		'LS690, 'LS691	CCLR \uparrow inactive	25	25	
		CCK \uparrow (see Note 2)	30	30	ns
		'LS690, 'LS691	RCLR \uparrow inactive	25	25	
		'LS692, 'LS693	RCLR \downarrow	20	20	
t_h	Hold time	Any input from CCK \uparrow or RCK \uparrow	0	0	0	ns
T_A	Operating free-air temperature	-55	125	0	70	°C

NOTE 2: This set up time ensures the register will see stable data from the counter outputs. The clocks may be tied together in which case the register state will be one clock pulse behind the counter.

**TYPES SN54LS690 THRU SN54LS693, SN74LS690 THRU SN74LS693
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54LS'			SN74LS'			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V_{IK}	$V_{CC} = \text{MIN}$, $I_I = -18 \text{ mA}$			-1.5			-1.5	V
V_{OH}	Any Q	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = \text{MAX}$	$I_{OH} = -1 \text{ mA}$	2.4	3.1			V
	Any Q		$I_{OH} = -2.6 \text{ mA}$			2.4	3.1	
	RCO		$I_{OH} = -0.4 \text{ mA}$	2.5	3.2	2.7	3.2	
V_{OL}	Any Q	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = \text{MAX}$	$I_{OL} = 12 \text{ mA}$	0.25	0.4	0.25	0.4	V
	Any Q		$I_{OL} = 24 \text{ mA}$			0.35	0.5	
	RCO		$I_{OL} = 4 \text{ mA}$	0.25	0.4	0.25	0.4	
	RCO		$I_{OL} = 8 \text{ mA}$			0.35	0.5	
I_{OZH}	Any Q	$V_{CC} = \text{MAX}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = \text{MAX}$, $V_O = 2.7 \text{ V}$			20		20	μA
I_{OZL}	Any Q	$V_{CC} = \text{MAX}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = \text{MAX}$, $V_O = 0.4 \text{ V}$			-20		-20	μA
I_I		$V_{CC} = \text{MAX}$, $V_I = 7 \text{ V}$			0.1		0.1	mA
I_{IH}		$V_{CC} = \text{MAX}$, $V_I = 2.7 \text{ V}$			20		20	μA
I_{IL}	A thru D	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$			-0.4		-0.4	mA
	All others				-0.2		-0.2	
$I_{OS\$}$	Any Q	$V_{CC} = \text{MAX}$, $V_O = 0 \text{ V}$		-30	-130	-30	-130	mA
	RCO			-20	-100	-20	-100	
I_{CCH}		$V_{CC} = \text{MAX}$, All outputs open	See Note 3		46	65	46	mA
I_{CCL}			See Note 4		48	70	48	
I_{CCZ}			See Note 5		48	70	48	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

$\$$ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

NOTES: 3. I_{CCH} is measured after two 4.5 V to 0-V to 4.5-V pulses have been applied to CCK and RCK while \bar{G} is grounded and all other inputs are at 4.5 V.

4. I_{CCL} is measured after two 0-V to 4.5-V to 0-V pulses have been applied to CCK and RCK while all other inputs are grounded.

5. I_{CCZ} is measured after two 0-V to 4.5-V to 0-V pulses have been applied to CCK and RCK while \bar{G} is at 4.5 V and all other inputs are grounded.

**TYPES SN54LS690 THRU SN54LS693, SN74LS690 THRU SN74LS693
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS**

switching characteristics, $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$ (see note 6)

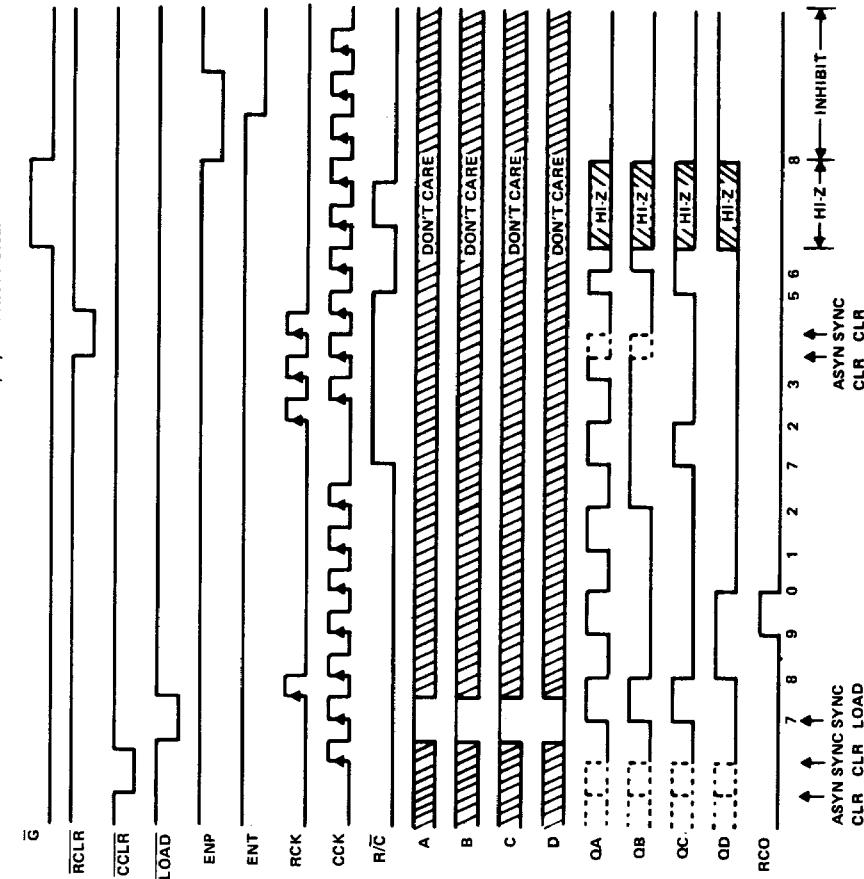
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS690, 'LS691			'LS692, 'LS693			UNIT	
				MIN	TYP	MAX	MIN	TYP	MAX		
t_{PLH}	CCK1	RCO	$R_L = 2 \text{ k}\Omega, C_L = 15 \text{ pF}$	23	40	23	40			ns	
t_{PHL}				23	40	23	40				
t_{PLH}				13	20	13	20				
t_{PHL}				13	20	13	20				
t_{PLH}	CCK \uparrow	Q	$R_L = 667 \Omega, C_L = 45 \text{ pF}$	12	20	12	20			ns	
t_{PHL}				17	25	17	25				
t_{PLH}	RCK \uparrow	Q		12	20	12	20			ns	
t_{PHL}				17	25	17	25				
t_{PLH}	$\overline{CCLR}\downarrow$	Q		23	40					ns	
t_{PHL}				20	30						
t_{PLH}	$\overline{RCLR}\downarrow$	Q		16	25	16	25			ns	
t_{PHL}				16	25	16	25				
t_{PZH}	$\overline{G}\downarrow$	Q		19	30	19	30			ns	
t_{PZL}				19	30	19	30				
t_{PHZ}	$\overline{G}\downarrow$	Q	$R_L = 667 \Omega, C_L = 5 \text{ pF}$	17	30	17	30			ns	
t_{PLZ}			17	30	17	30					

NOTE 6: See General Information Section for load circuits and voltage waveforms.

t_{PLH} \equiv Propagation delay time, low-to-high-level output

t_{PHL} \equiv Propagation delay time, high-to-low-level output

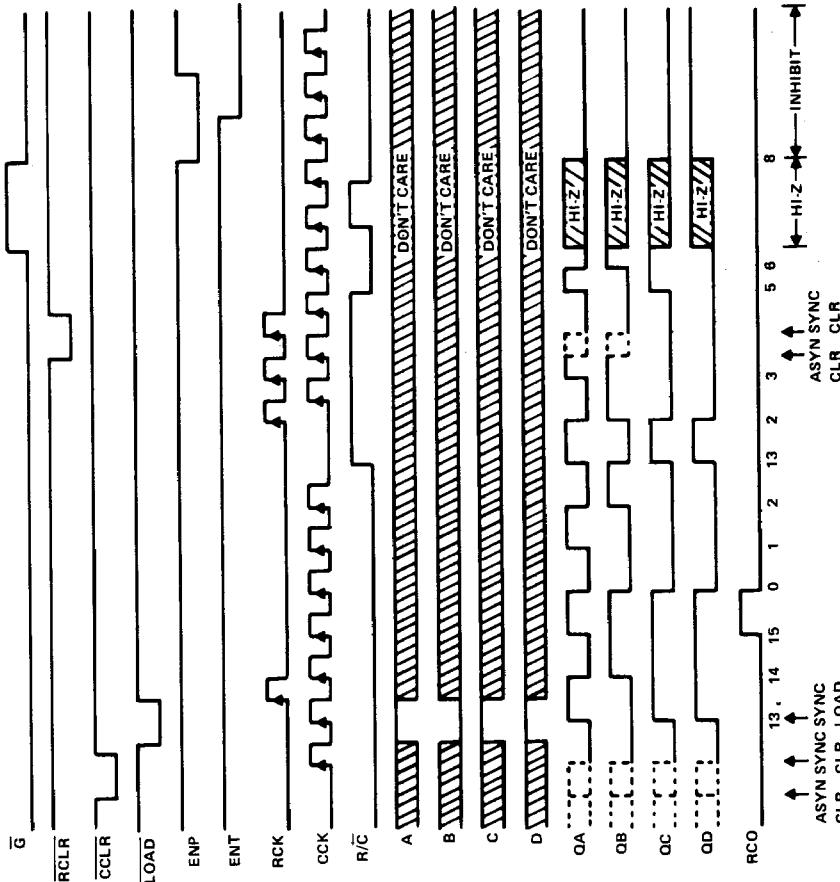
t_{PZH} \equiv Output enable time to high level


t_{PZL} \equiv Output enable time to low level

t_{PHZ} \equiv Output disable time from high level

t_{PLZ} \equiv Output disable time from low level

TYPES SN54LS690, SN54LS692, SN74LS690, SN74LS692
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS


typical operating sequences

**TYPES SN54LS691, SN54LS693, SN74LS691, SN74LS693
SYNCHRONOUS COUNTERS WITH OUTPUT REGISTERS
AND MULTIPLEXED 3-STATE OUTPUTS**

typical operating sequences (continued)

'LS691 BINARY COUNTER, Asynchronous Clear
'LS693 BINARY COUNTER, Synchronous Clear

TTL DEVICES

3-1313