ISO808A, ISO808A-1

Datasheet

Galvanic isolated octal high-side power solid state relay with SPI interface for high inductive loads

PowerSO-36

Product status link
ISO808A
ISO808A-1
100000

Features

- V_{CC(AMR)} = 45 V
- Wide process side op. range V_{CC} = 9.2 to 36 V
- $R_{DS}(on) = 0.125 \Omega \text{ per channel (TYP)}$
- Fast demagnetization of inductive loads V_{DEMAG(TYP)} = V_{CC} 54 V
 - Per channel process side op. current
 - ISO808A I_{OUT} < 0.7 A
 - ISO808A-1 I_{OUT} < 1 A
 - Low process and logic sides supply current
- Under-voltage shut down with auto restart and hysteresis
- Logic side 5 V and 3.3 V TTL/CMOS and MCU compatible I/Os
- Logic side SPI interface
- Common output enable/disable pin
- Reset function for IC outputs disable
- High common mode transient immunity
- Short circuit protection on output channels
 - ISO808A I_{LIM(MIN)} = 0.7 A
 - ISO808A I_{LIM(MIN)} = 1 A
- Per-channel over-temperature protection with thermal independence of separate channels
- Case over-temperature protection
- Over-voltage protection (V_{CC} clamping)
- Loss of GND and V_{CC} protections
- Common fault open drain diagnostic
- V_{CC} Power Good open drain diagnostic
- Designed to meet IEC 61000-4-2, IEC 61000- 4-4, IEC 61000-4-5 and IEC 61000-4-8
- UL1577 and UL508 certified
- PowerSO-36 Package

Applications

- Programmable logic control
- Industrial PC peripheral input/output
- Numerical control machines
- Drivers for all type of loads (resistive, capacitive, inductive)

Description

The ISO808A, ISO808A-1, are galvanic isolated 8-channel drivers featuring a low supply current. Each driver contains 2 independent galvanic isolated voltage domains (V_{CC} and V_{DD} for the Process and Control Logic stages, respectively). The ICs are intended for driving any kind of load with one side connected to ground.

The Control Logic Stage features an 8-bit Output Status Register (where the MCU sets the ON/OFF status of the output channels in the Process Stage), daisy chaining is allowed. The two stages communicate through the galvanic isolation channel by an ST proprietary protocol.

Active channel current limitation (OVL) combined with thermal shutdown (OVT), independent for each channel, protects the device against overload.

Built-in thermal shut down protects each channel from over-temperature and overload: each overheated channel automatically turns OFF after its junction temperature triggers the protection threshold (T_{JSD}). The channel turns back ON if its junction temperature decreases lower than restart threshold (T_{JR}).

An additional case temperature sensor protects the whole chip against over-temperature (OVC event): if the case temperature triggers the T_{CSD} threshold then overloaded channels are turned OFF and will restart only when case temperature decreased down to the reset threshold (T_{CR}). Non overloaded channels continue to operate normally.

Other embedded functions are loss of ground protection, V_{CC} and V_{DD} UVLOs (with hysteresis), watchdog and V_{CC} Power GOOD.

An internal circuit provides an OR-wired not latched common \overline{FAULT} indicator signaling the channel OVT. The PGOOD diagnostic pin is activated if V_{CC} goes below the power good threshold. Both FAULT and PGOOD pins are open drain, active low, fault indication pins.

1 Block diagram

57

2 Pin connection

Table 1. Pin description

Pin	Name	Description
1	N.C.	Not connected
2	V _{DD}	Positive Control Logic Stage supply
3	OUT_EN	Output enable
4	SS	Chip select
5	CLK	Serial Clock Digital Input
6	SDI	SPI device Input (MOSI)
7	PGOOD	Power Good diagnostic pin - active low
8	NC	Not connected
9	NC	Not connected
10	NC	Not connected
11	NC	Not connected
12	NC	Not connected
13	SDO	SPI device Output (MOSI)
14	FAULT	Common fault (OVT and Communication Error) diagnostic pin - active low
15	GND _{DD}	Input logic ground, negative logic supply
16	NC	Not connected
17	NC	Not connected
18	NC	Not connected
19	GND _{CC}	Output power ground
20	NC	Not connected
21	OUT8	Channel & neuror output
22	0018	Channel 8 power output
23	OUT7	Channel 7 power output
24	0017	
25	OUT6	Channel 6 power output
26	0010	
27	OUT5	Channel 5 power output
28		
29	OUT4	Channel 4 power output
30		
31	OUT3	Channel 3 power output
32		
33	OUT2	Channel 2 power output
34		
35	OUT1	Channel 1 power output
36		
TAB	V _{CC}	Exposed tab internally connected to V_{CC} positive Process Stage supply voltage

3 Absolute maximum ratings

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Process Stage supply Voltage	-0.3	+45	V
V _{DD}	Control Logic Stage supply Voltage		+6	V
V _{IN}	DC Input pins (SS, CLK, SDI and OUT_EN) Voltage	-0.3	V _{DD}	V
V _{SDO}	DC SDO pin Voltage	-0.3	V _{DD}	V
V _{FAULT} , V _{PGOOD}	FAULT and PGOOD pins Voltage	-0.3	+6.0	V
I _{GNDdd}	DC digital ground Reverse Current		-25	mA
I _{OUT}	Channel Output Current (continuous)		Internally limited	А
I _{GNDcc}	DC Power Ground Reverse Current		-250	mA
I _{RX}	Single pin Reverse Output Current (from OUTx pins to $V_{CC})$		-2	Α
I _{RT}	Total Reverse Output Current (from OUTx pins to $V_{CC})$ @ $T_{AMB}25\ ^\circ C$		-24	Α
I _{IN}	DC Input pins (SS, CLK, SDI and OUT_EN) current	-10	+10	mA
I _{FAULT} , I _{PGODD}	FAULT and PGOOD pins Current	-10	+10	mA
V _{ESD}	Electrostatic discharge with Human Body Model (R = 1.5 K Ω ; C = 100 pF)		2000	V
V _{IO}	Isolation voltage applied between GND_{DD} and GND_{CC} pins		180	V _{PEAK}
EAS	Single pulse avalanche energy per channel, all channels driven simultaneously $@T_{AMB}$ = 125 °C, I _{OUT} = 0.6 A (PowerSO-36)		2.11	J
P _{TOT}	Power dissipation		Internally limited (1)	W
TJ	Junction operating temperature		Internally limited (1)	°C
T _{STG}	Storage Temperature		-40 to 150	°C

Table 2. Absolute maximum ratings

1. Protection functions are intended to avoid IC damage in fault conditions and are not intended for continuous operation. Continuous or repetitive operation of protection functions may reduce the IC lifetime.

4 Thermal data

Table 3. Thermal data

Symbol	Parameter	Max. value	Unit
Symbol		PowerSO-36	Unit
R _{th j-case}	Thermal resistance, junction-to-case (1)	0.8	°C/W
R _{th j- amb}	Thermal resistance, junction-to-ambient (2)	16.9	C/VV

1. Rth between the die and the bottom case surface measured by cold plate as per JESD51-12.

2. JESD51-7.

5 Electrical characteristics

9.2 V \leq V_{CC} \leq 36 V; 2.75 V \leq V_{DD} \leq 5.5 V; -40 °C < T_J < 125 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating voltage range		9.2		36	V
V _{CC(THON)}	V _{CC} under-voltage turn-on threshold	V_{DD} = 3.3 V, V_{CC} increasing		8.4	9.2	V
V _{CC(THOFF)}	V _{CC} under-voltage turn-off threshold	V_{DD} = 3.3 V, V_{CC} decreasing	7.7	8.1		V
V _{CC(HYS)}	V _{CC} under-voltage hysteresis			0.15		V
V _{CCclamp}	Clamp on VCC pin	I _{clamp} = 20 mA	47	52	57	V
V _{CC(PGON)}	V _{CC} Power Good turn-on threshold	V _{DD} = 3.3 V, VCC increasing		16.6	18.7	V
V _{CC(PGOFF)}	V _{CC} Power Good turn-off threshold	V _{DD} = 3.3 V, VCC decreasing	14.5	16.1		V
V _{CC(PG-HYS)}	V _{CC} Power Good hysteresis			0.5		V
P	ON state resistance (see Figure 3)	I _{OUT} = 0.5 A, T _J = 25 °C		0.125	0.16	
R _{DS(ON)}		I _{OUT} = 0.5 A, T _J = 125 °C			0.26	Ω
	Deventerent	All channels in OFF state, V_{CC} = 36 V		5.5		
I _{CC}	Power supply current	All channels in ON state, V_{CC} = 36 V		16		mA
I _{LGND}	Ground disconnection output current	$V_{CC} = V_{GND} = 0 \vee V_{OUT} = -24 \vee$			500	μA
V _{OUT(OFF)}	OFF state output voltage	Channel OFF and I _{OUT} = 0 A			3	V
I _{OUT(OFF)}	OFF state output current	Channel OFF and V _{OUT} = 0 V			5	μA

Table 4. Power section

Table 5. Digital supply voltage

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating voltage range		2.75		5.5	V
V _{DD(THON)}	V _{DD} under-voltage turn-on threshold	V _{CC} = 24 V, V _{DD} increasing	2.55		2.75	V
V _{DD(THOFF)}	V _{DD} under-voltage turn-off threshold	V_{CC} = 24 V, V_{DD} decreasing	2.45		2.65	V
V _{DD(HYS)}	V _{DD} under-voltage hysteresis		0.04	0.1		V
1	V _{DD} supply current	V_{DD} = 5 V and SPI not transmitting		4.5	6	mA
I _{DD}		V_{DD} = 3.3 V and SPI not transmitting		4.4	5.9	mA

Symbol	Parameter		Test conditions	Min.	Тур.	Max.	Unit
VFAULT	FAULT pin open drain voltage output low		I _{FAULT} = 5 mA			0.4	V
I _{LFAULT}	FAULT output leakage current		V _{FAULT} = 5 V			1	μA
V _{PGOOD}	PGOOD pin open drain voltage o	utput low	I _{PGOOD} = 5 mA			0.4	V
I _{LPGOOD}	PGOOD output leakage current		V _{PGOOD} = 5 V			1	μA
I _{PEAK}	Maximum DC output current before limitation					2.3	Α
I _{LIM}	Short circuit current limitation	ISO808A	V _{CC} = 24 V R _{LOAD} = 0 Ω	0.7		1.9	^
		ISO808A-1		1		1.9	A
Hyst	I _{LIM} tracking limits				0.3		А
T _{JSD}	Junction shutdown temperature			150	175	200	°C
T _{JR}	Junction reset temperature				150		°C
T _{JHYST}	Junction thermal hysteresis				15		°C
T _{CSD}	Case shutdown temperature			125	130	135	°C
T _{CR}	Case reset temperature				115		°C
T _{CHYST}	Case thermal hysteresis				15		°C
V _{DEMAG}	Output voltage at turn-off		I _{OUT} = 0.5 A; I _{LOAD} ≥ 1 mH	V _{CC} -50	V _{CC} -54	V _{CC} -58	V

Table 6. Diagnostic pin and output protection function

Table 7. Power switching characteristics (V_{CC} = 24 V; R_{LOAD} = 48 Ω ; -40 °C < T_J < 125 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
dV/dt(ON)	Turn-on voltage slope			0.7		V/µs
tr	Rise time			19	32	μs
dV/dt(OFF)	Turn-off voltage slope	(see Figure 4)		1.5		V/µs
tf	Fall time			7	23	μs
td(ON)	Turn-ON delay time			15	24	μs
td(OFF)	Turn-OFF delay time	(see Figure 5)		43	80	μs
t _{w(OUT_EN)}	OUT_EN pulse width	(and Figure 10, Figure 11)	150			ns
t _{p(OUT_EN)}	OUT_EN propagation delay	(see Figure 10, Figure 11)		40	80	μs

← tr

Figure 3. R_{DS(on)} measurement

10%

t

←→ tf

Table 8. Logic inputs and output

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VIL	SS, CLK, SDI and OUT_EN low level voltage		-0.3		0.3 x V _{DD}	V
V _{IH}	SS, CLK, SDI and OUT_EN high level voltage		0.7 x V _{DD}		V _{DD} +0.3	V
V _{I(HYST)}	SS, CLK, SDI and OUT_EN hysteresis	V_{DD} = 5 V		100		mV
I _{IN}	SS, CLK, SDI and OUT_EN current	V _{IN} = 5 V	10	55	90	μA
V _{SDOH}	SDO high level voltage	I _{SDO} = -1 mA	V _{DD} -0.2			V
V _{SDOL}	SDO low level voltage	I _{SDO} = +2 mA			0.2	V

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f _{CLK}	SPI clock frequency				20	MHz
T _{CLK}	SPI clock period		50			ns
tr(CLK) tf(CLK)	SPI clock rise/fall time (see Figure 7, Figure 8)				5	ns
tsu(SS)	SS setup time (see Figure 7, Figure 8)		80			ns
th(SS)	SS hold time (see Figure 7, Figure 8)		80			ns
tc(SS)	SS disable time (see Figure 7, Figure 8)		20			μs
tw(CLK)	CLK high time (see Figure 7, Figure 8)		15			ns
tsu(SDI)	Data input setup time (see Figure 7, Figure 8)		6			ns
th(SDI)	Data input hold time (see Figure 7, Figure 8)		6			ns
ta(SDO)	Data output access time (see Figure 7, Figure 8)	R _{PULL-DOWN} = 300 Ω			25	ns
tdis(SDO)	Data output disable time (see Figure 7, Figure 8)	$C_{LOAD} = 50 \text{ pF}$			20	ns
tv(SDO)	Data output valid time (see Figure 7, Figure 8)	OLUAD - 30 pr			20	ns
	Jitter on single channel $t_{CYCLE (SS)}$ = 20 µs				6	μs
^t JITTER	Jitter on single channel $t_{CYCLE (SS)}$ < 20 µs				20	

Table 9. Serial interface timings (V_{DD} = 5 V; V_{CC} = 24 V; -40 °C < T_J < 125 °C)

Table 10. Internal communication timings (V_{DD} = 5 V; V_{CC} = 24 V; -40 °C < T_J < 125 °C)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
f _{refresh}	Refresh delay			15		kHz
t _{WD}	Watchdog time		272	320	400	μs

Table 11. Insulation and safety-related specifications

Symbol	Parameter	Test conditions	Value	Unit
CLR ⁽¹⁾	Clearance (minimum external air gap)	Measured from input terminals to output terminals, shortest distance through air	2.6	mm
CPG ⁽¹⁾	Creepage (minimum external tracking)	Measured from input terminals to output terminals, shortest distance path along body	2.6	mm
CTI ⁽²⁾	Comparative tracking index (tracking resistance)		≥400	V
-	Isolation group	Material group	П	-

1. Creepage and clearance requirements should be applied according to the specific equipment isolation standard of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the PCB do not reduce this distance.

2. When high voltage is applied across the isolator, electric discharges on or close to the surface of the package, can cause localized deterioration in the mold compound, resulting in a partially conducting path from one side of the isolator to the other. This phenomenon is called tracking. The ability of a material to withstand tracking is quantified by a comparative tracking index (CTI). Using a mold compound with a higher CTI allows the use of smaller packages and saves board space.

Symbol	Parameter	Test condition	Val	ue	Unit	
Symbol	Falameter			TFQFPN32		
In accord	ance with IEC 60747-17					
V _{PR}		Method a, type test, tm = 10 s partial discharge < 5 pC	1500	1500	V _{PEAK}	
	Input-to-output test voltage	Method b, 100% production test, tm = 1 s partial discharge < 5 pC	1758	1758	V _{PEAK}	
VIOTM	Transient over-voltage	Type test; t _{ini} = 60 s	3537	4245	V _{PEAK}	
VIOSM	Maximum surge insulation voltage	Type test	3537	4245	V _{PEAK}	
R _{IO}	Insulation resistance	Type test V _{IO} = 500 V, T _{STG} = 60 s	>10 ⁹	>10 ⁹	Ω	
UL1577						
V _{ISO}	Insulation withstand voltage	1 min. type test	2000/2830	2500/3536	V _{RMS} /V _{PEAK}	
V _{ISO} test	Insulation withstand test	1 s 100% production	2500/3537	3000/4245	V _{RMS} /V _{PEAK}	
Common	Common Mode Transient Immunity					
dV _{ISO} /dt	CMTI	Type test at V _{CM} = 500 V	±25	±25	V/ns	

Table 12. Insulation characteristics

Table 13. Safety limits

Symbol	Parameter	Test conditions		Unit
Input saf	ety, Logic side			
T _{SI}	Safety temperature of Logic side	-	150	°C
P _{SI}	Safety power of Logic side ⁽¹⁾	$V_{DD} \le 6.0 \text{ V}, V_{LOGIC(x)} \le 6.0 \text{ V}, I_{LOGIC(x)} \le 10 \text{ mA}, T_J \le T_{SI}$	0.9	W
Output s	afety, Process side			
T _{SO}	Safety temperature of Process side	-	150	°C
P _{SO}	Safety power of Process side ⁽¹⁾	$V_{CC} \le 36 \text{ V}, \text{ I}_{OUT(x)} \le 1.5 \text{ A}, \text{ T}_{J} \le \text{T}_{SO}$	5	W

 Respecting the above limits prevents potential damage to the isolation barrier upon failure on logic or process side circuitry. The user should apply these values to protect the IC and ensure the safety of the embedded isolation barrier. LOGIC(x) stands for any pin on the logic side; OUT(x) stands for any of the 8 output pins on the process side.

6 Functional description

6.1 Serial interface

An integrated SPI peripheral provides a fast communication interface between an external micro-controller and the IC purposing to drive ON/OFF the Power Stage outputs. Daisy chaining is allowed.

It follows the timing requirement established by the synchronous serial communication standard and works up to 20 MHz communication speed.

The communication implemented expects 8-bit data communication; the frame sent by the micro-controller only contains the status of the channels (ON or OFF), while the frame received by the micro-controller is all "0" if no fault event is triggered or all "1" if at least one fault has been triggered on the output stage.

Tab	le 1	4.	SDI	frame
-----	------	----	-----	-------

MSB							LSB
IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

Table 15. SDO frame

MSB							LSB
0	0	0	0	0	0	0	0

6.2 Serial data in (SDI)

This pin is the IC input of the serial command frame (MOSI). SDI is reading on CLK rising edges and , thus, the micro-controller must change SDI state during the CLK falling edges.

The bits sent through the SDI line are shifted in the internal Output Status Register. In daisy chaining communication, the micro-controller keeps the \overline{SS} low after the 8th bit to allow the shift of the Output Status Register to the SDO line. The bits in the Output Status Register are frozen by the internal logic when the \overline{SS} goes high.

6.3 Serial data out (SDO)

This pin is the IC output of the serial fault frame (MISO). The information on SDO is updated on CLK falling edges, whereas the micro-controller reads the SDO frame on CLK rising edges, as established by standard. At communication start-up, when the \overline{SS} falling edge is coming, only the first bit of the frame is just available. SDO pin is tri-stated when the \overline{SS} signal is high.

In daisy chaining communication the SDO line will transfer the content of the internal Output Status Register after the 8th CLK pulse.

6.4 Serial data clock (CLK)

The CLK line is the IC input clock for serial data sampling. SDO is updated on CLK falling edges, and then sampled on the rising edge. The SDI line is sampled on SCK rising edges.

When the \overline{SS} signal is high (slave not selected), the micro-controller should drive the CLK low (settings for MCU SPI port are CPHA = 0 and CPOL = 0).

6.5 Slave select (SS)

The slave select \overline{SS} signal is used to enable the serial communication shift register. Data is flushed in through the SDI pin and out from the SDO pin only when the \overline{SS} pin is low. On the \overline{SS} pin falling edge, the Fault Register (containing IC fault conditions) is frozen, so any changing on the channel status will be latched until the next \overline{SS} falling edge event, the SDO is enabled and the internal refresh is disabled too. On the \overline{SS} pin rising edge event, the 8 bits in the Output Status Register are frozen and the outputs of the Process Stage are driven accordingly. If more than 8 bits are flushed into the IC, only the last 8 are evaluated, the other ones are flushed out from the SDO pin after fault condition bits. In this way a proper communication is granted in a daisy chain configuration.

Figure 7. SPI input timing diagram

Figure 8. SPI output timing diagram

6.5.1 Watchdog

The IC is composed by two chips (Logic Stage and Process Stage) supplied by two independent and galvanic isolated sources (V_{DD}/GND_{DD} and V_{CC}/GND_{CC} pins, respectively).

The IC provides a watchdog function in order to guarantee a safe condition for the Process Stage when V_{DD} (or GND_{DD}) supply voltage is missing. At the end of each SPI communication, the channel status register is transferred to the Process Stage that both reset an internal timeout counter and turns ON/OFF the outputs accordingly. If the Logic Stage does not update the output status within t_{WD} , all the outputs of the Process Stage are disabled until a new update request is received (this also happens if \overline{SS} stays low for longer than t_{WD}).

Independently of the SPI communication, the Logic Stage chip periodically sends a refresh signal to the Process Stage chip. The refresh signal is also considered a valid update signal to reset the timeout counter on the Process Stage, so the isolated side watchdog does not protect the system from a failure of the host controller (e.g., MCU freezing).

Figure 9. Watchdog behavior

6.5.2 Output enable (OUT_EN)

This pin provides a fast way to disable all the outputs simultaneously. When the OUT_EN pin is driven low for at least $t_{W(OUT_EN)}$, all eight outputs are disabled. This timing execution is compatible with an external reset push from the operator, safety requirements, and permits, in a PLC system, a micro-controller polling for obtain all internal information during a reset procedure.

Note that the OUT_EN signal acts as a reset for the internal data register driving the output switches: when the OUT_EN is low, SDO is pulled down and the output stage is forced OFF. To re-enable SDO, it is necessary to raise the OUT_EN pin; to enable the output stage again, it is then necessary to raise the OUT_EN pin and send the desired output configuration by an SPI command.

6.6 FAULT and PGOOD indications

The FAULT pin is an active low open drain output indicating fault conditions. This pin is activated when at least one of the following conditions occurs:

- Junction over-temperature ($T_{JX} > T_{JSD}$) of one or more channels of the Process Stage.
- No module-8 SPI communication (the number of bits sent through the SDI is not a multiple of 8)
- Internal communication error. In fact, the IC is able to identify (and report to the micro-controller) if any errors occur in the data transmission between isolation. When it occurs, the output stage maintains the previous ON/OFF status.

The PGOOD pin is an active low open drain output indicating if the supply voltage of the Process Stage chip is lower than the internal threshold (see Figure 12).

Note: When \overline{SS} signal is low the transmission between Control Logic Stage and Process Stage is inhibited and the status of \overline{PGOOD} is not refreshed (\overline{PGOOD} refresh time < 120 μ s).

Figure 12. Power GOOD pin behavior

6.7 Truth table

Condition	Status register BIT _x	OUTx	Fault register BIT _x	FAULT	PGOOD	
Normal aparation	1	ON	0	LL (not optive)	LL (pot optivo	
Normal operation	0	OFF	0	H (not active)	H (not active	
Thermal Junction (T _{JX} > T _{JSD})	1	OFF	1	L (active)	Don't coro	
	0	OFF 1		H (not active)	Don't care	
Thermal Case $T_C > T_{CSD}$ Set		e Figure 2	20	Don't care	Don't care	
V _{CC} UVLO FAULT	0	OFF	Х	х	L (active)	
(Figure 12)	1	UFF		Λ		
POWER GOOD FAULT	1	ON	Don't care	Don't care	L (active)	
(Figure 12)	0	OFF	Dontcale	Dont care	L (active)	
V _{DD} UVLO (Watchdog)	X	OFF	Х	H (not active)	H (not active	
SPI FAULT (module-8 violation)	X	x	Don't care	L (active)	Don't care	
Internal communication error	Х	Х	Х	L (active)	Don't care	

Table 16. Truth table

6.7.1 Junction over-temperature

The thermal status of the device is updated during each transmission sequence between the two isolated stages.

When \overline{SS} is low, the communication between the two stages is disabled. In this case, the thermal status of the device cannot be updated, and the FAULT indication could be different to the actual status. In any case, the thermal protections of the channel outputs in the Process Stage are always operative.

Figure 13. Thermal status update

7 Power section

7.1 Current limitation

The current limitation process is activated when the current sense connected on the output stage measures a current value higher than a fixed threshold. When this condition is verified, the gate voltage is modulated to avoid output current increasing over the limitation value.

The following figures (where BIT_X is intended as Xth bit of the Output Status Register) show typical output current waveforms with different load conditions.

7.2 Thermal protection

57/

The device is protected against overheating due to overload conditions. During driving period, if the output is overloaded, the device suffers two different thermal stresses, the first one related to the junction, and the second related to the case.

The two faults have different trigger thresholds: the junction protection threshold (T_{JSD}) is higher than that of the case protection (T_{CSD}) . Generally, the first protection that is activated in thermal stress conditions is the junction thermal shutdown. The output is turned off when the temperature is higher than the related threshold and turned back on when it falls below the reset threshold (T_{JR}) . This behavior continues while the fault on the output is present.

If the thermal protection is active and the temperature of the package increases over the fixed case protection threshold, the case protection is activated, and the output is switched off and back on when the junction temperature of each channel in fault and case temperature are below the respective reset thresholds.

Figure 20. Thermal protection flowchart

8 Reverse polarity protection

Reverse polarity protection can be implemented on board using two different solutions (or both, which is recommended):

- 1. Placing a resistor (R_{GND}) between IC GND pin and load GND
- 2. Placing a diode in parallel to a resistor between IC GND pin and load GND

If option 1 is selected, the minimum resistance value must be selected according to the following equation:

$$R_{GND} \ge \frac{V_{CC}}{I_{GND}_{CC}} \tag{1}$$

where I_{GNDCC} is the DC reverse ground pin current and can be found in Table 2.

The power dissipated by R_{GND} during reverse polarity is:

$$P_D = \frac{\left(V_{CC}\right)^2}{R_{GND}} \tag{2}$$

If option 2 is selected, the diode has to be chosen by taking into account $V_{RRM} > |V_{CC}|$ and its power dissipation capability:

$$P_D \ge I_S \times V_F \tag{3}$$

Note: In normal operation (no reverse polarity), there is a voltage drop (ΔV) between GND of the device and GND of the system. Using option 1, $\Delta V = Rgnd * Icc$. Using option 2, $\Delta V = VF@(IF)$.

Figure 23. Reverse polarity protection

Note:

Input(i) is intended as any input pin on logic side. This schematic can be used with any type of load.

(4)

9 Reverse polarity on VDD

The reverse polarity on V_{DD} can be implemented on board by placing a diode between the GND_{DD} pin and GND digital ground.

The diode must be chosen by taking into account V_{RRM} >| V_{DD} | and its power dissipation capability:

$$P_D \ge I_{DD} \times V_F$$

Note: In normal operation (no reverse polarity), there is a voltage drop ($\Delta V = VF@(Idd)$) between GND_{DD} of the device and digital ground of the system. In order to guarantee to proper triggering of the input signal, $\Delta V(max.)$ must result lower than $V_{IH(MIN)}$.

Figure 24. V_{DD} reverse polarity protection

Note: Input(i) is intended as any input pin on logic side.

Demagnetization energy 10

Figure 25. Single pulse demagnetization energy vs. load current (Typical values at T_{AMB} = 125 °C)

57

11 Conventions

11.1 Supply voltage and power output conventions

(1): intended as any input pin on logic side(2): intended as any open drain pin on logic side

12 Thermal information

12.1 Thermal impedance

57

13 Daisy chaining

The ISO808A can be daisy-chained by connecting the MOSI port of the microcontroller to the SDI pin of the first IC of the chain; the SDO pin of the first IC of the chain to the SDI pin of the second (and similarly for the next ICs of chain); the SDO pin of the last IC of the chain to the MISO port of the microcontroller.

The $t_{cycle(SS)}$ (see Figure 7) must take into account the internal communication timing ($f_{refresh}$ and t_{WD}): it is recommended $t_{cycle(SS)}$ (max.) < 136 µs. The maximum number of ICs that can be daisy chained depends on the SPI clock frequency set by the microcontroller.

Figure 28. Example of daisy-chaining connection

14 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

14.1 PowerSO-36 package information

Figure 29. PowerSO-36 package outline

11.10

2.90

6.20

0.10

15.90 1.10

1.10

10°

8°

E1¹

E2

E3

е

e3 G

Н

h

L N

S

Dim.	mm						
Dini.	Min.	Тур.	Max.				
А			3.6				
a1	0.10		0.30				
a2			3.30				
b	0.22		0.38				
С	0.23		0.32				
D ¹	15.80		16.00				
D1	9.40		9.80				
E	13.90		14.50				

10.90

5.80

0

15.50

0.80

0°

Table 17. PowerSO-36 package mechanical data

1. "D" and "E1" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm (0.006"). Critical dimensions are "a3", "E" and "G"

0.65

11.05

Table 18. PowerSO-36 footprint data

Dim	mm
A	9.5
В	14.7-15.0
С	12.5-12.7
D	6.3
E	0.42
G	0.65

57

15 Packing information

15.1 PowerSO-36 packing information

Figure 31. PowerSO-36 carrier tape

NOTE:

1) Cumulative tolerance of 10 sprocket holes: 0.2nm 2) Camber: Inn/100nm nax

Figure 32. PowerSO-36 shipping tube

16 Ordering information

Table 19. Ordering information

Part number	Package	Packaging
ISO808A	PowerSO-36	Tube
ISO808A-1	PowerSO-36	Tube
ISO808ATR	PowerSO-36	Tape and reel
ISO808ATR-1	PowerSO-36	Tape and reel

Revision history

Table 20. Document revision history

Date	Revision	Changes
21-Dec-2022	1	Initial release.

Contents

1	Block	k diagram	3
2	Pin c	connection	4
3	Abso	olute maximum ratings	6
4	Ther	mal data	7
5	Elect	trical characteristics	8
6	Func	ctional description	14
	6.1	Serial interface	14
	6.2	Serial data in (SDI)	14
	6.3	Serial data out (SDO)	14
	6.4	Serial data clock (CLK)	14
	6.5	Slave select (SS)	14
		6.5.1 Watchdog	16
		6.5.2 Output enable (OUT_EN)	17
	6.6	FAULT and PGOOD indications	17
	6.7	Truth table	
		6.7.1 Junction over-temperature	
7	Powe	er section	
	7.1	Current limitation	20
	7.2	Thermal protection	21
8	Reve	erse polarity protection	
9	Reve	erse polarity on VDD	
10	Dema	agnetization energy	
11	Conv	ventions	
	11.1	Supply voltage and power output conventions	26
12	Ther	mal information	
	12.1	Thermal impedance	27
13	Daisy	y chaining	
14		age information	
	14.1	PowerSO-36 package information	29
15	Pack	king information	
	15.1	PowerSO-36 packing information	
16	Orde	ering information	
Revi	ision ł	history	34

List of figures

Figure 1.	Block diagram	
Figure 2.	Pin connection PowerSO-36 (top through view)	. 4
Figure 3.	R _{DS(on)} measurement	10
Figure 4.	dV/dT definition	10
Figure 5.	td(ON)-td(OFF) definition	11
Figure 6.	SPI mode diagram	15
Figure 7.	SPI input timing diagram	15
Figure 8.	SPI output timing diagram	16
Figure 9.	Watchdog behavior	16
Figure 10.	OUT_EN without effect on output	17
Figure 11.	OUT_EN effective on output channel.	
Figure 12.	Power GOOD pin behavior.	
Figure 13.	Thermal status update	19
Figure 14.	Switching on resistive load	20
Figure 15.	Switching on bulb lamp	
Figure 16.	Switching on light inductive load	
Figure 17.	Switching on heavy inductive load	
Figure 18.	Short-circuit (with OVT) during ON state	
Figure 19.	Switching on short-circuit (with OVT)	
Figure 20.	Thermal protection flowchart	
Figure 21.	Thermal protection and fault behavior (T_{JSD} triggered before T_{CSD}).	
Figure 22.	Thermal protection and fault behavior (T _{CSD} triggered before T _{JSD}).	22
Figure 23.	Reverse polarity protection.	23
Figure 24.	V _{DD} reverse polarity protection	24
Figure 25.	Single pulse demagnetization energy vs. load current (Typical values at T _{AMB} = 125 °C)	25
Figure 26.	Supply voltage and power output conventions	26
Figure 27.	Simplified thermal model of the process stage	27
Figure 28.	Example of daisy-chaining connection	28
Figure 29.	PowerSO-36 package outline	29
Figure 30.	PowerSO-36 suggested footprint	31
Figure 31.	PowerSO-36 carrier tape	32
Figure 32.	PowerSO-36 shipping tube.	32

List of tables

Pin description.	. 5
Absolute maximum ratings	. 6
Thermal data	. 7
Power section	. 8
Digital supply voltage	. 8
Diagnostic pin and output protection function	. 9
Power switching characteristics (V _{CC} = 24 V; R_{LOAD} = 48 Ω ; -40 °C < T _J < 125 °C)	. 9
Logic inputs and output.	11
Serial interface timings (V _{DD} = 5 V; V _{CC} = 24 V; -40 °C < T_J < 125 °C)	12
Internal communication timings (V _{DD} = 5 V; V _{CC} = 24 V; -40 °C < T _J < 125 °C)	12
Insulation and safety-related specifications	12
Insulation characteristics.	13
Safety limits	13
SDI frame	14
SDO frame	14
Truth table	18
PowerSO-36 package mechanical data	30
PowerSO-36 footprint data	31
Ordering information.	33
Document revision history	34
	Pin description. Absolute maximum ratings Thermal data. Power section Digital supply voltage Diagnostic pin and output protection function. Power switching characteristics ($V_{CC} = 24 \text{ V}$; $R_{LOAD} = 48 \Omega$; $-40 ^{\circ}\text{C} < T_J < 125 ^{\circ}\text{C}$) Logic inputs and output. Serial interface timings ($V_{DD} = 5 \text{ V}$; $V_{CC} = 24 \text{ V}$; $-40 ^{\circ}\text{C} < T_J < 125 ^{\circ}\text{C}$) Internal communication timings ($V_{DD} = 5 \text{ V}$; $V_{CC} = 24 \text{ V}$; $-40 ^{\circ}\text{C} < T_J < 125 ^{\circ}\text{C}$) Insulation and safety-related specifications Insulation characteristics. Safety limits SDI frame. SDO frame Truth table PowerSO-36 package mechanical data PowerSO-36 footprint data Ordering information. Document revision history.

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved