

PART NUMBER 54L164DMB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54L164

8-Bit Parallel-Out Serial Shift Registers

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup-time requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

TYPES SN54164, SN54L164, SN54LS164, SN74164, SN74LS164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

MARCH 1974-REVISED DECEMBER 1983

- **Gated Serial Inputs**
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'164	36 MHz	21 mW per bit
'L164	18 MHz	11 mW per bit
'LS164	36 MHz	10 mW per bit

description

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup-time requirements will be entered. Clocking occurs on the lowto-high-level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

The SN54164, SN54L164 and SN54LS164 are characterized for operation over the full military temperature range of - 55°C to 125°C. The SN74164 and SN74LS164 are characterized for operation from 0°C to 70°C

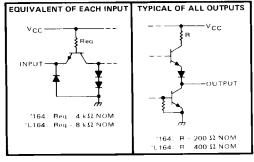
FUNCTION TABLE

	INPUTS			OUTPUTS						
CLEAR	CLOCK	Α	В	α_{A}	σB	QH				
L	×	X	Х	L.	L	L				
н	L	×	Х	QAO	$\sigma_{\rm B0}$	Q _{H0}				
н	1	н	Н	н	Q_{An}	Q_{Gn}				
н	1	L	X	L	Q_{An}	α_{Gn}				
н	†	×	L	L.	Q _{An}	a_{Gn}				

SN54164, SN54LS164 . . . J OR W PACKAGE SN54L164 ... J PACKAGE SN74164 . . . J OR N PACKAGE SN74LS164 ... D, J OR N PACKAGE (TOP VIEW)

> ΔŪ 13 QH в□ **Q**_A □3 12 Dag 11|Δ**Q**F ов Д₄ ос□⁵ 10 0E **σ**D [[6 9 CLR 8 CLK GND ☐ 7

SN54LS164 ... FK PACKAGE SN74LS164 ... FN PACKAGE (TOP VIEW)


NC - No internal connection

- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- t = transition from low to high level. Q_{A0}, Q_{B0}, Q_{H0} = the level of Q_A, Q_B , or Q_H , respectively, before the indicated
- Steady-state input conditions were established.

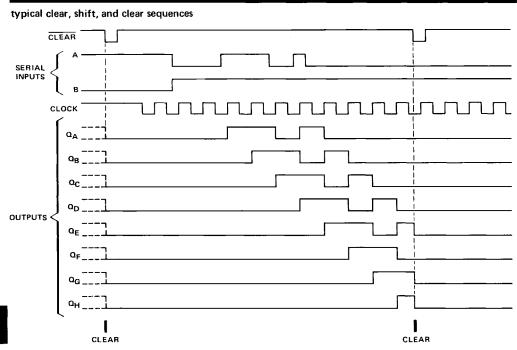
 QAn, QGn = the level of QA or QG before the most-recent † transition of the clock; indicates a one-bit shift.

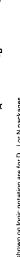
schematics of inputs and outputs

'164, 'L164

TYPICAL OF ALL OUTPUTS EQUIVALENT OF EACH INPUT ۷cc 120 Ω NOM Req INPUT Clear, clock: 17 kΩ NOM Serial in: 25 kΩ NOM

'LS164


PRODUCTION DATA
This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

3-621

L DEVICES

3

TTL DEVICES

CLEAR R GB

6 8

CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 	 					/ V
Input voltage		 	 	 			 		5.5 V
Operating free-air temperature range:	SN54164		 	 . ,			 		-55°C to 125°C
	SN74164	 		 			 		. $0^{\circ}C$ to $70^{\circ}C$
Storage temperature range									

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5416	4	SN74164			UNIT
	MIN	MOM	MAX	MIN	NOM	MAX	יואט
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			~400	μА
Low-level output current, IOL			8			8	mΑ
Clock frequency, fclock	0		25	0		25	MHz
Width of clock or clear input pulse, tw	20			20			ns
Data setup time, t _{su} (see Figure 1)	15			15			ns
Data hold time, th (see Figure 1)	5			5			ns
Operating free-air temperature, TA	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN5416	4		4	UNIT	
	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	וואטן
ViH	High-level input voltage		2			2			$\overline{}$
VIL	Low-level input voltage				0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5			-1.5	ΙV
VOH	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -400 μA	2.4	3 2		24	3 2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 8 mA		0.2	0.4		0.2	0.4	٧
l _j	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V,			1			1	mA
ΊН	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V			40			40	μА
li L	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	-10		-27.5	-9		-27.5	mA
Icc	Supply current	V _{CC} = MAX, V _{1(clock)} = 0.4 V See Note 2 V _{1(clock)} = 2.4 V		30 37	54		30 37	54	mA

switching characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CONDIT	MIN	TYP	MAX	UNIT	
f _{max}	Maximum clock frequency		C _L = 15 pF	25	36		MHz
•	Propagation delay time, high-to-low-level		C _L = 15 pF		24	36	
PH L	Q outputs from clear input	B - 900 O	C _L = 50 pF		28	42	ns
	Propagation delay time, low-to-high-level	R _L = 800 Ω,	C _L = 15 pF	8	17	27	
tPLH	Q outputs from clock input	See Figure 1	C _L = 50 pF	10	20	30	ns
	Propagation delay time, high-to-low-level		C _L = 15 pF	10	21	32	
tPHL.	Q outputs from the clock input		C _L = 50 pF	10	25	37	ns

[†] For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than two outputs should be shorted at a time. NOTE 2: I_{CC} is measured with outputs open, serial inputs grounded, and a momentary ground, then 4.5 V, applied to clear.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage	5.5 V
Operating free-air temperature range: SN54L164	- 55°C to 125°C
Storage temperature range	-65° C to 150° C
NOTE 1. Voltage values are with respect to personal argued towning.	

recommended operating conditions

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			٧
VIL	Low-level input voltage			0.8	V
ЮН	High-level output current			- 0.2	mA
loL	Low-level output current	<u> </u>		4	mA
fclock	Clock frequency	0		12	MHz
tw	Width of clock or clear input pulse	40			ns
t _{su}	Data setup time (See Figure 1)	30			ns
t _{th}	Data hold time (See Figure 1)	10			ns
TA	Operating free-air temperature	- 55		125	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS†	MIN	TYP ‡	MAX	UNIT
٧ıĸ	V _{CC} = MIN, I _I = -12 mA			- 1.5	٧
∨он	$V_{CC} = MIN$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = -0.2 \text{ mA}$	2.4	3,2		V
VOL	$V_{CC} = MIN$, $V_{1H} = 2 V$, $V_{1L} = 0.8 V$, $I_{OL} = 4 mA$		0.2	0.4	V
I _I	V _{CC} = MAX, V ₁ = 5.5 V			1	mA
ΉΗ	$V_{CC} = MAX$, $V_1 = 2.4 V$			20	μА
I _{IL}	$V_{CC} = MAX$, $V_1 = 0.4 V$			- 0.8	mA
I _{OS} §	V _{CC} = MAX	- 5		- 20	mA
Icc	V _{CC} = MAX, See Note 3)		19	27	mA

 $[\]dagger$ For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with outputs open, serial inputs grounded, the clock input at 2.4 V, and a momentary ground, then 4.5 V, applied to clear.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
fmax	Maximum clock frequency		C _L = 15 pF	12	18		MHz
•=	Propagation delay time, high-to-low-level Q		C _L = 15 pF		48	72	
tPH L	outputs from clear input	R ₁ = 800 Ω,	C _L = 50 pF		56	84	ns
	Propagation delay time, low-to-high-level Q	-	CL = 15 pF	8	34	54	
tPLH.	outputs from clock input	See Figure 1	C _L = 50 pF	10	20	60	ns
	Propagation delay time, high-to-low-level Q		C _L = 15 pF	10	42	64	
tPHL.	outputs from the clock input		C _L = 50 pF	10	50	74	ns

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C § Not more than two outputs should be shorted at a time.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		 7 V
Input voltage		 7 V
Operating free-air temperature range	: SN54LS164	 25°C
Storage temperature range		 o°C

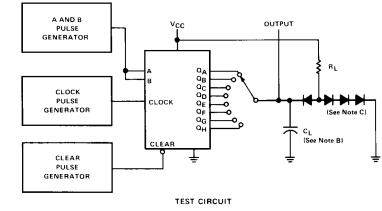
NOTE 1: Voltage values are with respect to network ground terminal.

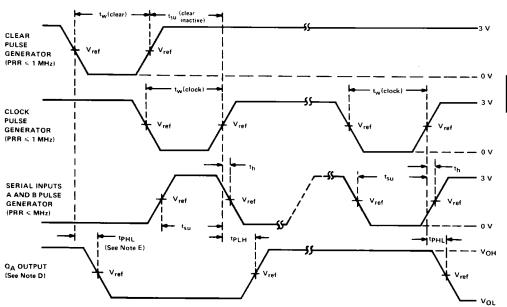
recommended operating conditions

		S	N54LS1	64	S	N74LS1	64	UNIT
ļ		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage		_	0.7			0.8	٧
Юн	High-level output current			0.4			- 0.4	mA
lor	Low-level output current			4			8	mA
fclock	Clock frequency	0		25	0		25	MHz
tw	Width of clock or clear input pulse	20			20			ns
t _{su}	Data setup time (See Figure 1)	15			15			ns
t _{su}	Clear inactive setup time (See Figure 1)	15			15			ns
th	Data hold time (See Figure 1)	5			5			ns
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †	SN54LS164	SN74LS164	UNIT
		MIN TYP# MAX	MIN TYP\$ MAX	
VIK	V _{CC} = MIN, I _I = - 18 mA	- 1.5	- 1.5	V
V _{OH}	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX I _{OH} = -0.4 µA	2.5 3.5	2.7 3.5	V.
VOL	VCC = MIN, V1H = 2 V, IQL = 4 mA V1L = MAX IQL = 8 mA		0.25 0.4 0.35 0.5	v
- II	V _{CC} = MAX, V _I = 7 V	0.1	0.1	mA
¹ IH	V _{CC} = MAX, V _I = 2.7 V	20	20	μΑ
HL	VCC = MAX, V1 = 0.4 V	- 0.4	- 0.4	mA
los	V _{CC} = MAX	- 20 - 100	- 20 - 100	mA
Icc	V _{CC} = MAX, See Note 3	16 27	16 27	mΑ


- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
- NOTE 3: I_{CC} is measured with outputs open, serial inputs grounded, the clock input at 2.4 V, and a momentary ground, then 4.5 V applied to clear.


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		25	36		MHz
tPHL.	Propagation delay time, high-to-low-level Q outputs from clear	D - 010 0 - 45 - 5		24	36	
	input	$R_L = 2 k\Omega$, $C_L = 15 pF$,		24	30	ns
^t PLH	Propagation delay time, low-to-high-level Q outputs from clock	See Figure 1		47	27	
	input	See Figure 1		17	21	ns
^t PHL	Propagation delay time, high-to-low-level Q outputs from clock			21	32	
	input			21	32	ns

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The pulse generators have the following characteristics: duty cycle \le 50%, $Z_{out} \approx$ 50 Ω , for '164 and 'L164, $t_r \le$ 10 ns, $t_f \le$ 10 ns, and for 'LS164, $t_r \le$ 15 ns, $t_f \le$ 6 ns.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.
 D. Q_A output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.
- E. Outputs are set to the high level prior to the measurement of t_{PHL} from the clear input. F. For '164 and 'L164, V_{ref} = 1.5 V; for 'LS164, V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

