Sensor-less Three-phase Brushless DC Motor Controller, with Gate Drivers, for Automotive

LV8961HUW

Overview

The LV8961H is a high performance, AEC–Q100 qualified, sensor-less three-phase BLDC motor controller with integrated gate drivers for driving external N–MOSFETs. An on-chip two–stage charge pump provides required gate voltage for a wide range of low $R_{DS(ON)}$ type external N–MOSFETs. The device offers a rich set of system protection and diagnostic functions such as over-current, over-voltage, short-circuit, under-voltage, over-temperature and many more. It supports open–loop as well as closed-loop speed control with user configurable startup, speed setting and proportional/integral (PI) control coefficients, making it suitable for a wide range of motor and load combinations. With a built-in linear regulator for powering external circuits and a watchdog timer, the LV8961H offers a very small system solution.

The LV8961H stores system parameters in embedded one-time programmable (OTP) non-volatile memory in addition to RAM system memory. An SPI interface is provided for parameter setting and monitoring the system status. With the operating junction temperature tolerance up to 175°C and wide range (voltage and frequency) PWM input, the LV8961H is an ideal solution for stand-alone BLDC motor control systems.

Features

- AEC-Q100 Qualified and PPAP Capable
- Operating Junction Temperature up to 175°C
- Operating Voltage Range from 5.5 V to 28 V with Tolerance from 4.5 V to 40 V
- Embedded Proprietary Sensor-less Trapezoidal and Sinusoidal Commutation
- Selectable Number of BEMF Zero-cross Detection Window from 6, 3, 2, and 1 per Electrical Cycle
- Simple and Effective Lead Angle Adjustment Setting by Register
- Supports Open-loop as well as Closed-loop Speed Control
- Integrated Gate Drivers for Driving Six N-MOSFETs
- Two-stage Charge Pump for Continuous 100% Duty Cycle Operation
- 5 V / 3.3 V Regulator and Watchdog Timer Applications Using an External Microcontroller
- Configurable Speed Settings with Linear Characteristic
- PI Control Include Acceleration/Deceleration Adjustment
- Direct Access to PWM Duty and FG Cycle via SPI Interface
- Various System Protection Features Including:
 - Shoot through Protection Using Configurable Dead-time
 - Drain-source Short Detection

ON Semiconductor®

www.onsemi.com

- VVV = Work Week Number
- LV8961H = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]	
LV8961HUWR2G	SQFP48K (Pb–Free)	2,500 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- Cycle-by-cycle Current Limit and Over-current Shutdown (Threshold Value can be Selectable by Register)
- Over-voltage and Under-voltage Shutdown
- Over-temperature Warning and Shutdown
- Input PWM Fault Detection
- Abnormal FG Cycle Monitoring
- Motor Pin Open Detection

Typical Applications

- Automotive Pumps (Fuel, Oil, and Hydraulic)
- Fans (Radiator, Battery Cooling, LED Headlight Cooling)
- White Goods and Industrial BLDC Motor Control

LV8961H BLOCK DIAGRAM

APPLICATION BLOCK DIAGRAMS

Figure 2. Example of Standalone Configuration

Figure 3. Example of MCU Based Control Configuration

PIN ASSIGNMENTS

Figure 4. LV8961H Pinout

PIN DESCRIPTION

Pin Name	Pin No	TYPE	Description	Page
V3RO	1	TYPE 2	3 V regulator output pin. Connect capacitor between this pin and AGND	19
V3RI	2	TYPE 1	3 V regulator input pin (internally connected to control, and logic circuits). Connect to V3RO pin	19
NC	3, 14, 16, 20, 22, 24		No Connections	
DIAG	4	TYPE 4	Programmable open drain diagnostic output	21
VCC	5	TYPE 2	5 V or 3.3 V regulator output pin. (Selected by internal register setting) Power supply for microcontroller. Connect capacitor to AGND for stability	19
RXD	6	TYPE 4	Open drain logic level output of HVPIN received data. Use pull-up to a voltage less than or equal to VS	21
AGND	7		Analog GND pin	
CSB	8	TYPE 5	Active low SPI interface chip selection pin	26
SCLK	9	TYPE 3	SPI interface clock input pin	26
SI	10	TYPE 3	Active high SPI interface serial data input pin	26
SO	11	TYPE 4	Open drain SPI interface serial data output pin	26
FG	12	TYPE 4	Open drain back-EMF transition output pin. The frequency division ratio is selectable via register settings	21
IGND	13	TYPE 12	HV PWMIN Block GND pin. Must be connected to AGND on the PCB	
HVPIN	15	TYPE 12	High voltage PWM input with a $V_{VS}/2$ threshold	21
LVPIN	17	TYPE 3	Digital level PWM input pin for direct drive or speed register selection details. Input polarity can be programmed for either active high or active low	21
TH	18	TYPE 1	Thermistor input pin for power stage temperature detection. If the input voltage is below the threshold voltage, an error is triggered. The error threshold is programmable. To disable tie to V3RO	23
RFSENS	19	TYPE 13	Shunt resistance reference pin. Connect this pin to the GND side of the Shunt resistor with Kelvin leads	22
RF	21	TYPE 13	Output current detect pin. Connect this pin to higher terminal of the shunt resistor with Kelvin leads	22
COM	23	TYPE 9	COM input pin. Connect this pin to the motor neutral point if available. This point may be derived from a resistive network with 1 k resistors to the phases	15
SWL SVL SUL	25 29 33	TYPE 8 TYPE 8 TYPE 8	Current return path for low-side gate drive. Short circuit shutoff level is measured between this pin and its corresponding phase pin	21
WL VL UL	26 30 34	TYPE 8 TYPE 8 TYPE 8	Gate driver output pin for the low-side Nch Power FET. Use gate resistors for wave-shaping	21
WOUT VOUT UOUT	27 31 35	TYPE 7 TYPE 7 TYPE 7	Current return path for high-side gate drive and reference for high-side short circuit shut-off	21
WH VH UH	28 32 36	TYPE 7 TYPE 7 TYPE 7	Gate driver output pin for the high-side Nch Power FET. Use gate resistors for wave-shaping	21
VDH	37	TYPE 14	Sense input for supply voltage and short circuit detection of high side power Fets. Connect through 100 Ω resistor to common drain of the power bridge	21
PGND	38	TYPE 10, 11	GND pin for the charge pump	
VGL	39	TYPE 10	Power supply pin for low-side gate drive. Connect decoupling capacitor between this pin and GND	19
CHP	40	TYPE 11	Power supply pin for high-side gate drive. Connect decoupling capacitor between this pin and VS	19

PIN DESCRIPTION (continued)

Pin Name	Pin No	TYPE	Description	Page
CP1N	41	TYPE 10	Charge transfer pin of the Charge pump (1N). Connect capacitor between CP1P and CP1N	19
CP1P	42	TYPE 10	Charge transfer pin of the Charge pump (1P). Connect capacitor between CP1P and CP1N	19
CP2P	43	TYPE 11	Charge transfer pin of the Charge pump (2P). Connect capacitor between CP2P and CP2N	19
CP2N	44	TYPE 11	Charge transfer pin of the Charge pump (2N). Connect capacitor between CP2P and CP2N	19
TEST	45	TYPE 15	Factory test pin. Connect to GND	
VS	46		Power supply pin	
WAKE	47	TYPE 6	WAKE pin. "H" = Operating mode, "L" or "Open" = Sleep mode. In Sleep mode all gate drivers are high-impedance. To protect the power stage, pull-down resistors on the gate lines may be required	18
EN	48	TYPE 3	Motor stage Enable pin. "H" = Normal enabled mode; "L" or "Open" = Standby mode. In Standby mode all gate drivers driven low. Motor freewheeling	18

PIN CIRCUIT

Figure 5. Pin Circuit

PIN CIRCUIT (continued)

Figure 6. Pin Circuit (continued)

ABSOLUTE MAXIMUM RATINGS

Parameter	Pins	Ratings	Unit
Supply Voltage	VS	-0.3 to 40	V
Sense Input for Supply Voltage	VDH	-0.3 to 40	V
Charge Pump Voltage (High Side)	CHP	-0.3 to 40	V
Charge Pump Voltage (Low Side)	VGL	-0.3 to 16	V
Logic Power Supply	VR3I, VR3O	-0.3 to 3.6	V
5 V Regulator Voltage	VCC	-0.3 to 5.5	V
Digital I/O Voltage1	WAKE,EN	-0.3 to 40	V
Digital I/O Voltage2	CSB, SCLK, SI, LVPIN, TEST	-0.3 to 5.5	V
Digital Output Voltage	DIAG, FG, SO, RXD	-0.3 to 40	V
High Voltage PWMIN Voltage	HVPIN	-10 to 40	V
RF Input Voltage	RF	-3 to 3.6	V
RFSENS Input Voltage	RFSENS	–0.3 to 1.0	V
TH Input Voltage	TH	-0.3 to 3.6	V
Voltage Tolerance	UOUT, VOUT, WOUT, COM	–3 to 40	V
High-side Output	UH, VH, WH	–3 to 40	V
Low-side Output	UL, VL, WL	–3 to 16	V
Low-side Source Output Voltage	SUL, SVL, SWL	-3 to 3.6	V
Voltage between HS Gate and Phase	UH–UOUT,VH–VOUT,WH–WOUT	-0.3 to 40	V
Voltage between LS Gate and Source	UL-SUL, VL-SVL, WL-SWL	–0.3 to 16	V
Output Current	UH,VH,WH,UL,VL,WL pulsed (duty 5%)	50 400	mA
Open Drain Output Current	DIAG, FG, SO, RXD	10	mA
Thermal Resistance ($R_{\theta jA}$)	with Board (Note 1)	47	°C/W
ESD Human Body Model	AEC Q100-002	2	kV
ESD Charged Device Model	AEC Q100-011	750	V
Storage Temperature		–55 to 150	°C
Junction Temperature		-40 to 150	°C
F	(Note 2)	150 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
76.2 × 114.3 × 1.6 mm, glass epoxy board.
Operation outside the Operating Junction temperature is not guaranteed. Operation above 150°C should not be considered without a written agreement from ON Semiconductor Engineering staff.

ELECTRICAL CHARACTERISTICS

(Valid at a junction temperature range from -40° C to 150° C, for supply Voltage 6.0 V \leq VS \leq 28 V. Typical values at 25°C and VS = 12 V unless specified otherwise)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply-voltage Range	VS	Normal mode	6	12	28	V
		Device fully functional	5.5	-	28	V
		Full logic functionality, driver stage off	4.5	_	40	V
Supply Current into VS	I _{s1}	V3RO = V3RI EN = L	-	15	25	mA
	ls ₂	Sleep Mode	-	40	80	μΑ
Operational junction Temperature	Торј		-40	-	150	°C
OUTPUT BLOCK (UH, VH, WH	I, UL, VL, WL)	•		•	•	
Low-side Output On-resistance 1	RON(L1)	"L" level lo = 10mA	-	6	15	Ω
Low-side Output On-resistance 2	RON(L2)	"H" level lo = -10mA	-	12	22	Ω
High-side Output On-resistance 1	RON(H1)	"L" level lo = 10mA	-	6	15	Ω
High–side Output On–resistance 2	RON(H2)	"H" level lo = -10mA	-	12	22	Ω
DRIVE OUTPUT BLOCK (PWN	A BLOCK)					
Drive Output PWM Frequency	fPWMO		18.5	19.5	20.5	kHz
Output PWM Duty Cycle Resolution	ΔPWMDUTY	(Note 3)	-	-	0.1	%
3 V CONSTANT VOLTAGE OU	TPUT					
Output Voltage	V3RO		3.135	3.3	3.465	V
Voltage Regulation	ΔV3R1	VS = 6.0 to 28 V	-	-	50	mV
Load Regulation	ΔV3REG2	lo = 5 mA to 25 mA	-	-	50	mV
Current Limit	IV3RO	Not for external loads > 5 mA	50	-	-	mA
VCC 5 V CONSTANT VOLTAG	E OUTPUT					
Output Voltage	VC5RO	VS = 6.0 to 28 V	4.75	5.00	5.25	V
Voltage Regulation	∆VC5R1	VS = 6.0 to 28 V	-	-	50	mV
Load Regulation	ΔVC5R2	lo = 5 mA to 25 mA	-	-	50	mV
Current Limit	IVCC5V		50	-	-	mA
VCC 3 V CONSTANT VOLTAG	E OUTPUT					
Output Voltage	VC3RO		3.135	3.3	3.465	V
Voltage Regulation	∆VC3R1	VS = 6.0 to 28 V	-	-	50	mV
Load Regulation	∆VC3R2	lo = 5 mA to 25 mA	-	-	50	mV
Current Limit	IVCC3V3		50	-	-	mA
LOW-SIDE GATE VOLTAGE C	OUTPUT (VGL PI	N)				
Low-side Output Voltage1	VGLH1	$6.0 <\!\!VS \leq 8.0$ V lo = -10 mA	8.0	12.0	14.0	V
Low-side Output Voltage2	VGLH2	$8.0 < VS \le 20 V lo = -10 mA$	10.0	12.0	14.0	V
Low-side Output Voltagez	VGENZ					

ELECTRICAL CHARACTERISTICS (continued)

(Valid at a junction temperature range from -40° C to 150° C, for supply Voltage 6.0 V \leq VS \leq 28 V. Typical values at 25°C and VS = 12 V unless specified otherwise)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
HIGH-SIDE OUTPUT VOLTAGE	E (CHP PIN)					
Internal Charge Pump Oscillator frequency	FCP	SSCG = 0	49.6	52.1	54.6	kHz
Boost Voltage1	VGHH1	$6.0 \le VS \le 8.0 V$ lo = -10 mA	VS +6.0	VS +12.0	VS +14.0	V
Boost Voltage2	VGHH2	$8.0 < VS \le 20 V$ lo = -10 mA	Vs +9.0	VS +12.0	VS +14.0	V
Boost Voltage3	VGHH3	$\begin{array}{l} 20 < VS \leq 28 \ V \\ Io = -10 \ mA \end{array}$	VS +6.0	-	-	V
CHP Voltage Limit	VCHPLIM	VS = 28 V	34	36.5	38	V
PWMIN INPUT PIN IN LOW FRE	EQUENCY MOD)E				
Input PWM Frequency Range	fLPWM	PWMF = 0 Low frequency mode	5.3	-	1000	Hz
PWM Signal Timeout	TLPWMIN	PWMF = 0 Low frequency mode	-	210	220	ms
PWMIN INPUT PIN IN HIGH FR	EQUENCY MOI	DE			- -	
Input PWM Frequency Range	fHPWM	PWMF = 1 High frequency mode PWMINSEL=1 LVPIN is used for PWM input	5.3	-	18500	Hz
DIGITAL INPUT PIN (CSB)						
High-level Input Voltage	VIH1		0.8×V3RO	-	-	V
Low-level Input Voltage	VIL1		-	_	0.2×V3RO	V
Input Hysteresis Voltage	VIHYS1		0.1	0.35	0.6×V3RO	V
Pull-up Resistance	RDVI1		15	30	60	kΩ
DIGITAL INPUT PIN (SCLK, SI,	LVPIN)					
High-level Input Voltage	VIH2		0.8×V3RO	-	-	V
Low-level Input Voltage	VIL2		-	-	0.2×V3RO	V
Input Hysteresis Voltage	VIHYS2		0.1	0.35	0.6×V3RO	V
Pull-down Resistance	RDVI2		50	100	200	kΩ
WAKE INPUT PIN						
High-level Input Voltage	VIH3		2.5	-	-	V
Low-level Input Voltage	VIL3		-	-	0.6	V
Internal Pull-down Resistance	RDVI3		50	100	200	kΩ
EN INPUT PIN						
High-level Input Voltage	VIH4		0.8×V3RO	-	-	V
Low-level Input Voltage	VIL4		-	-	0.2×V3RO	V
Input Hysteresis Voltage	VIHYS4		0.1	0.35	0.6×V3RO	V
Pull-down Resistance	RDVI4		50	100	200	kΩ
TEST INPUT PIN						
High-level Input Voltage	VIH5		0.8×V3RO			V
Low-level Input Voltage	VIL5				0.2×V3RO	V
Input Hysteresis Voltage	VIHYS5		0.1	0.35	0.6×V3RO	V
Pull-down Resistance	RDVI5		37.5	75	150	kΩ

ELECTRICAL CHARACTERISTICS (continued)

(Valid at a junction temperature range from -40° C to 150°C, for supply Voltage 6.0 V \leq VS \leq 28 V. Typical values at 25°C and VS = 12 V unless specified otherwise)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
DIGITAL OUTPUT PIN (SO, FG,	DIAG, RXD)					
Output Voltage	VOL	lo = 1 mA pull-up current	-	-	0.2	V
Output Leakage Current	ILOLK		-	-	10	μA
CURRENT LIMIT / OVER-CURF	RENT PROTEC	TION (RF, RFSENS)				
Current Limit Voltage 1	VRF11	Voltage between RF and RFSENS, CLSEL = 0	40	50	60	mV
Current Limit Voltage 2	VRF12	Voltage between RF and RFSENS, CLSEL = 1	90	100	110	mV
Over-current Detection Voltage Threshold 1	VRF21	Voltage between RF and RFSENS, OCSEL = 00 The difference voltage between VRF21 and the actual current limit voltage	15	25	35	mV
Over-current Detection Voltage Threshold 2	VRF22	Voltage between RF and RFSENS, OCSEL = 01 The difference voltage between VRF22 and the actual current limit voltage	40	50	60	mV
Over-current Detection Voltage Threshold 3	VRF23	Voltage between RF and RFSENS, OCSEL = 10 The difference voltage between VRF23 and the actual current limit voltage	65	75	85	mV
Over-current Detection Voltage Threshold 4	VRF24	Voltage between RF and RFSENS, OCSEL = 11 The difference voltage between VRF24 and the actual current limit voltage	90	100	110	mV
EXTERNAL THERMAL PROTEC	CTION (TH)	•				
Threshold Voltage Falling	VTH0 VTH1 VTH2 VTH3	THTH[1:0] = 00 THTH[1:0] = 01 THTH[1:0] = 10 THTH[1:0] = 11	Тур –35	350 300 250 200	Тур +35	mV
Hysteresis Range	VTHHYS		25	50	75	mV
THERMAL PROTECTION						
Thermal Warning Temperature	TTW0 TTW1	(Junction Temperature) (Note 3) TSTS = 0 TSTS = 1	125 150	_	-	°C
Thermal Warning Temperature Hysteresis	TTWHYS	(Junction Temperature) (Note 3)	-	25	-	°C
Thermal Shutdown Temperature	TTSD0 TTSD1	(Junction Temperature) (Note 3) TSTS = 0 TSTS = 1	150 175	_	-	°C
Thermal Shutdown Temperature Hysteresis	TTSDHYS	(Junction Temperature) (Note 3)		25	-	°C
VOLTAGE MONITORING (VS, C	HP, VGL, VCC)				•	
VS Under-voltage Detection	VSLV		4.8	_	5.1	V
	1		0.1	0.25	0.4	V
VS Under-voltage Detection Hysteresis	VSLVHYS					
VS Under-voltage Detection	VSLVHYS VSHV		30.5	-	35.5	V

ELECTRICAL CHARACTERISTICS (continued)

(Valid at a junction temperature range from -40° C to 150° C, for supply Voltage 6.0 V \leq VS \leq 28 V. Typical values at 25°C and VS = 12 V unless specified otherwise)

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
VOLTAGE MONITORING (VS, C	CHP, VGL, VCC)	•				
VDH Over-voltage Detection	VDHHV		30.5	_	35.5	V
VDH Over-voltage Detection Hysteresis	VDHHVHYS		1.5	2.0	2.5	V
CHP Under-voltage Detection	CHPLV		VS+4.5	_	VS+5.5	V
CHP under-voltage Detection Hysteresis	CHPLVHYS		0.2	0.4	0.7	V
VGL Under-voltage Detection	VGLLV		4.5	_	5.5	V
VGL Under-voltage Detection Hysteresis	VGLLVHYS		0.2	0.4	0.7	V
VCC3.3 under-voltage Detection	VCLV3	REGSEL = 0, VCEN = 1, VCLVPO = 0	2.3	-	2.7	V
VCC3.3 under-voltage Detection Hysteresis	VCLVHYS3	REGSEL = 0, VCLVPO = 0	0.1	0.25	0.4	V
VCC5.0 under-voltage Detection	VCLV5	REGSEL = 1, VCEN = 1, VCLVPO = 0	3.8	-	4.2	V
VCC5.0 under-voltage Detection Hysteresis	VCLVHYS5	REGSEL = 1, VCLVPO = 0	0.1	0.25	0.4	V
hvpin pin	•	•				
Internal Pull-up Resistance	RI5		15	30	60	kΩ
High-level Input Voltage	VIH5		0.6×VS	_	VS	V
Low-level Input Voltage	VIL5		0	_	0.4×VS	V
Input Hysteresis Voltage	VIHYS5		0.05×VS	_	0.2×VS	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3. Not tested in production. Guaranteed by design.

DETAILED FUNCTIONAL DESCRIPTION

The LV8961H integrates full sensor-less brushless DC motor commutation and Proportional/Integral (PI) speed control. A robust startup algorithm combined with OTP registers for important system parameters make this IC a solution of choice for many BLDC applications which need to turn a motor in one direction only such as pumps, fans, etc. No detailed BLDC commutation knowledge is necessary.

Building a BLDC application with the LV8961H is even simpler than building a DC motor. Only a PWM pulse train is necessary to control the motor – either directly or via speed control. Switch–only applications are also possible. Speed and error information can be fed back to the control unit via FG and DIAG outputs.

If more complex operation and flexibility are required the LV8961H can be combined with a small microcontroller. The LV8961H implements motor commutation and includes all necessary support circuitry for the microcontroller such as:

- 5 V / 3.3 V Power supply
- Integrated watchdog timer
- External Temperature Sensor

In case of system errors such as a missing control signal, or a watchdog error, the LV8961H includes auto-run settings. If one of those errors occur and connection to the microcontroller is lost, the motor can continue running at a pre-defined fixed duty cycle of 25%, 50%, 75% or 100% and TAG_L or TAG_H.

Motor Commutation

Motor position is detected using the BEMF of the un-driven phase of a rotating three-phase motor relative to its neutral point connected to COM. BEMF monitoring can be detected at 2 points in each phase of U/V/WOUT, and there are 6 zero crossing signal in 3 phase in total with 6 un-driven windows. Once an adequate BEMF level has been detected voltages applied via PWM to the other two phases of the motor maintain rotation. The digital equivalent of the BEMF signal appears at FG.

Two different PWM patterns can be selected via register SLMD to match motors with trapezoidal or sinusoidal BEMF.

Figure 7. Trapezoidal vs. Sinusoidal Drive (CH1, 2 = U, V Phase Voltage, CH3 = FG, CH4 = U Phase Current)

The sinusoidal drive each phase is driven with 6 windows for BEMF monitoring. This results in sinusoidal drive current with lower total harmonic distortion, reducing both torque ripple and noise. Trapezoidal drive results in a higher voltage across the motor phases and may be preferable for high torque and high speed operation.

Rotor Position Detection

The rotor position is detected with BEMF zero cross timing. To detect the BEMF, the short window is opened by making the phase current zero or the phase float. Four types of the window mode are provided.

• 6-window mode

All zero crosses (rising and falling) for all three phases will be detected by opening 6 windows per electrical cycle. It gives best robustness to secure the all zero cross detection. However, the current waveform distortion will be higher. At the start–up, this 6–window mode is automatically selected.

• 3-window mode

One rising zero cross for each phase will be detected by opening 3 windows per electrical cycle. Balanced (or same) waveform is applied among three phases.

• 1-window mode

Rising zero cross of only phase U will be detected by opening one window per electrical cycle. Only phase U has the window, and the others (V and W) doesn't. Therefore, the current waveform distortion will be minimized for the other phases.

• 2-window mode

Rising and falling zero crosses of only phase U will be

detected by opening one window per electrical cycle. Only phase U has the windows, and the others (V and W) doesn't.

BEMF Window Timing

Figure 8 shows a timing chart of the BEMF window with simplified phase voltage and current waveform illustrations. It is the case of 3–window mode particularly as an example.

Figure 8. BEMF Window Timing Parameters

(1) MSKRSTNUM0_***

Where, *** is ONE (for 1-window mode), TWO (for 2-window mode), THR (for 3-window mode), SIX (for 6-window mode), or INI (for start-up 6-window mode).

MSKRSTNUM0 defines the time from the previous BEMF detection to the start of the Hiz window where the phase output turns off.

MSKRSTNUM0_THR[3:0] = x

$$x < 8 \rightarrow (15 + x * 3.75) \text{ deg}$$

 $x \ge 8 \rightarrow (41.25 + (x - 7) * 1.875) \text{ deg}$
Example:
 $x = 4 \rightarrow (15 + x * 3.75) \text{ deg} \rightarrow (15 + 4 * 3.75) \text{ deg} = 30 \text{ deg}$

(2) MSKRSTNUM1_***

Where, *** is ONE (for 1-window mode), TWO (for 2-window mode), THR (for 3-window mode), SIX (for 6-window mode), or INI (for start-up 6-window mode).

MSKRSTNUM1 is a blanking (or ignoring) period from the start of the Hiz window defined by MSKTRTNUM0

Table 1.

until BEMF sensing. This blanking time prevents faulty zero cross detection due to the flyback caused by the window opening.

 $MSKRSTNUM1_THR[3:0] = x$ ((x + 1) + 1.875) deg

Example:

 $x = 2 \rightarrow ((x + 1) + 1.875) \text{ deg} \rightarrow ((2 + 1) + 1.875) \text{ deg} = 5.625 \text{ deg}$

These window parameters are used commonly with the sinusoidal waveform shaping mode and trapezoidal waveform shaping mode.

	The Number		
WINDSEL	SLMD = L Trapezoidal	SLMD = H Sinusoidal	Window Timing Parameters
0	6	6	MSKRSTNUM1_SIX MSKRSTNUM0_SIX
1	6	3	MSKRSTNUM1_THR MSKRSTNUM0_THR
2	6	2	MSKRSTNUM1_TWO MSKRSTNUM0_TWO
3	6	1	MSKRSTNUM1_ONE MSKRSTNUM0_ONE

Maximum Motor Speed

The maximum physical motor speed of the application is limited by the internal clock to approximately 48000 electrical RPM. If this is exceeded the LV8961H coasts the motor until BEMF detection and drive can resume.

Lead Angle Setting

LV8961H can adjust the lead angle according to the output Duty.

Lead angle has the characteristic in Figure 8. It is set by the registers LASET_L, LASET_H and LASET_LIM.

LASET_L sets lead angle when the output duty is 0%, and LASET H sets lead angle when the output duty is 100%.

And then LASET_LIM sets the upper limit when an application requires it.

Motor Startup

BEMF is used for rotor position sensing but for BEMF generation the motor has to be rotating. A stopped motor will initially be driven open-loop until BEMF can be detected.

Open-loop operation is motor parameter dependent. The most critical parameters depend on load and motor inertia. They are initial commutation frequency and PWM duty cycle (which affects motor flux density).

In the LV8961H, the initial commutation frequency is programmed with register STOSC. Flux density is regulated by limiting startup current with a current ramp. During this ramp the current limit is increased in 16 steps from 0 to the maximum current defined by the external shunt. The ramp time from 102 ms to 6.55 s is defined in register SSTT. Register CLREFEN_STOP allows to disable the current ramp if necessary.

Fixed motor speed will be applied until either a valid BEMF has been detected in all three phases or the startup timer expires.

Motor Lock

This timer begins after the end of the current ramp and can be programmed from 400 ms to 6.4 s in register CPTM. If the timer expires a locked rotor error is flagged. In automatic retry mode, the LV8961H will restart after standby mode for time of eight times of CPTM.

Motor Connect Open Detection

When the motor cannot be started for a certain period of time and it is in the startup mode, this IC flows current to

each coil, then determines IC is in a constraint state when current flows, or an open state when no current flows. The detection time for the current to flow can be selected by OPDTM register.

Spin-up of Rotating Motors

The LV8961H can perform free–wheeling detection before applying the open loop spin–up algorithm described above. If the motor is already turning in the right direction the IC will continue with closed loop commutation. If the motor is turning in the wrong direction, the IC will wait for the motor to stop and then perform open–loop startup.

There are two scenarios where this behavior might not be desirable:

- 1. Fast Startup is required
 - Free-wheeling detection takes up to one electrical revolution of the motor, which may be inacceptable for some applications. In this case free-wheeling detection can be disabled by setting FRREN
- 2. Wind–milling backwards

Should the motor be driven by some external force as it is freewheeling in the wrong direction the LV8961H will potentially wait forever. Should start-up under these conditions be required, free-wheeling detection must be disabled as well

Chip Activation, Shutdown and System States

After power up of VS and WAKE above 2.5 V the LV8961H wakes up. Standby mode is entered after VS has exceeded 5.5 V (min.).

A high level on WAKE > 2.5 V (max.) activates the IC from sleep mode which enables the internal linear regulator at V3RO. Once the voltage on V3RO as sensed on V3RI has passed the power on reset (POR) threshold the system oscillator starts, and after 32 counts of the system clock

(1.6 µs typical) releases the internal digital reset which simultaneously starts the external regulator VCC and the charge–pump, and loads the system register contents from OTP into the internal registers. During the entire wake–up sequence of 8 ms (typ.) DIAG is masked for charge–pump and VCC under–voltage. After wake–up is complete, the IC enters Standby mode and DIAG is activated to display internal errors. During Standby mode full SPI access is possible.

A high on EN takes the LV8961H from Standby to Normal mode. Normal mode allows motor control and SPI access is limited. A low on EN disables the motor stage regardless of the PWM input and returns the part back to Standby mode.

The IC is shut down by taking WAKE below 0.6 V (min.). WAKE has priority over the state of EN, if EN hold functionality is desired; it needs to be implemented with an external diode from EN to WAKE.

System States

LV8961H has three operating modes. The operating modes are controlled by WAKE and EN.

Sleep Mode

Sleep mode is a power saving mode. All circuits are powered down, charge pump is inactive and the SPI port is unusable. Activating WAKE allows the transition from the sleep mode to either Standby or Normal mode.

Standby Mode

In Standby mode the OTP content has been transferred into the main registers. In this mode all outputs are turned off. Any internal writable register that is not locked can be configured by SPI interface.

Normal Mode

In normal mode, outputs can be controlled and all blocks are active. All registers can be read through the SPI interface.

Mode	WAKE	EN	Internal Bias	Logic	VCC	Charge Pump	Drivers
Sleep	L	х	Disable	Reset	Disable	Disable	High–Z
Standby	Н	L	Enable	Active	Enable	Enable	Low
Normal	Н	Н	Enable	Active	Enable	Enable	Enable

Supply Voltage Transients

The LV8961H is well suited to operate during typical automotive transients. It is fully functional during start–stop transients, as it maintains all specified parameters for supply voltages from 6 V < VS < 28 V. If the supply voltage falls below 5 V, for example during cold–cranking, under–voltage error is flagged, but digital functionality is maintained until the internal regulator falls below its under–voltage lockout level of 2.2 V. The VCC regulator must be configured for 3.3 V if low transient operation is desired.

If over-voltage protection is enabled in MRCONF8 an over-voltage error is indicated if the supply rises beyond 28 V(min). In both under- and over-voltage error modes,

the power stage drivers UH, VH, WH and UL, VL, and WL go low, turning the external power stage high–impedance and letting the motor freewheel. The LV8961H will re–engage the motor after conditions have returned to normal.

System Power Supplies

Three power supplies are integrated into the LV8961H:

- An internal 3.3 V regulator provides power to the digital and interface section
- The VCC regulator can be configured to provide 5 V or 3.3 V to an external processor and other loads

• A dual stage charge-pump allows 100% duty cycle operation and maintains full enhancement to the power stage at low input voltages

Internal Regulator V3RO, V3RI

The internal regulator is supplied from VS, provides 3.3 V at V3RO. V3RI is connected to the power supply inputs of the control and logic circuit blocks. V3RO and V3RI need to be connected externally and bypassed to the GND plane for stability. V3RO must not be used for external loads.

VCC Regulator

The VCC regulator may power external loads up to 50 mA (max). VCC becomes active during Standby mode and can be configured via register REGSEL to provide 5 V or 3.3 V. The wrong bit selection has a possibility to damage the microcontroller. Please make sure the appropriate selection. Under-voltage error is flagged if the output voltage drops below 4.2 V in 5 V operation, or 2.7 V in 3.3 V operation.

C_{CP1}

The VCC regulator can be enabled or disabled with register VCEN.

Charge Pump Circuit for CHP and VGL

C_{CP2}

LV8961H has an integrated charge pump circuit for low-side and high-side pre-driver supply. Low side drive voltage at VGL is 12 V(typ.) and high side drive voltage at CHP is VS + 12 V(typ.). For functionality see Figure 10.

Under-voltage protection for the low side drivers activates if VGL falls below 4.8 V in which case the output FET's will be turned off and VGL under-voltage error is flagged in register MRDIAG. Over-voltage protection for the high side drivers activates if VS becomes greater than 28 V(min). In that event the driver stage is disabled, over-voltage error is flagged in register MRDIAG, and both VGL and CHP are discharged to prevent output circuit destruction.

The charge pump circuit operates nominally at 52.1 kHz. A SSCG function is provided to add a spread–spectrum component for EMI reduction.

C_{VGL} CCHP vs Current limitation Voltage clamping CP2F CP2N CP1 CP1N VGL CHP Supply for Supply for HS Pre-Drivers LS Pre-Drivers Buf Buf Figure 10. Charge Pump Circuit VGL(V) CHP(V) VCHPLIM CHE 20⊻ ίνs 12<u>V</u> VGI VS 12V 8V VS(V) VS(V) 30.5V 20V 30.5V 5.1V 6.0V 8.0V 5.1V 6.0V 8.0V 201/ ≁ CP ON VS over CP ON VS under VS under CP ON VGL=12V CP ON VS over voltage (max) CHP=VS+VGL CHP=VS+VGL voltage (max) VGL=VS*2 voltage (min) voltage (min) Figure 11. High Side and Low Side Gate Voltages

INPUT PWM and SPEED CONTROL

The LV8961H provides three speed control methods through the input PWM signal:

- 1. Indirect PWM translation
- 2. Closed loop speed control
- 3. Direct register command

Indirect PWM Translation

This is the preferred mode for stand-alone operation. The frequency range has two modes, high and low frequency. In the high frequency mode, it corresponds to frequency input up to 18.5 kHz. In the low frequency mode, it is limited to the frequency input up to 1 kHz, and when the frequency input is above 1 kHz, it is ignored. Frequency mode can be configured in high frequency mode by setting register PWMF to 1. In both modes the input PWM signal is compared against minimum PWM frequency thresholds to allow for more robust operation. Frequencies below 5.3 Hz (typ.) are considered as 0% or 100% duty cycle (no frequency).

The duty cycle of the PWM input signal is measured with a resolution of 10 bits. There is an inherent delay to detect and utilize this duty cycle information. It is the delay time from input PWM input signal to output PWM. The delay time is determined by

T_{PWM} + 19.8 μs (max.)

Where, T_{PWM} is the period of the PWM input signal. 19.8 μ s is fixed value.

If faster start–up is necessary, see section "<u>Fast Startup</u>" below. If no frequency is detected after 210ms (typ.) the PWMPO flag is set in system warning register MRDIAG1. Even without PWM input the LV8961H can run as described below in section "<u>Fast Startup</u>".

If a valid frequency was detected, the LV8961H evaluates the input duty cycle and translates it into an output duty cycle as shown in Figure 12. The output PWM frequency is fixed to 19.5 kHz (typ.).

Figure 12. Duty Cycle Translation

Input duty cycles lower than the minimum Duty setting by DUTY_L register are considered a motor-off command and

will also reset the error registers. Input duty cycles higher than the maximum Duty setting by DUTY_H register are considered a full drive command. Input to output duty cycle translation is described by the following formula:

	0	$0 \le d_{IN} \le DUTY_L$
d _{OUT} =	$\frac{100}{\text{DUTY}_H - \text{DUTY}_L} \times (\text{d}_{\text{IN}} - \text{DUTY}_L)$	DUTY_L < d _{IN} < DUTY_H
	100	$DUTY_H \le d_{IN} \le 100$

Closed Loop Speed Control

For stand-alone operation, the LV8961H offers a PI controller for motor speed which is activated by clearing bit SCEN. Frequencies below 5.3 Hz(typ.) are considered as 0% or 100% duty cycle (no frequency). The output PWM frequency is fixed to 19.5 kHz (typ.).

LV8961H provides Linear characteristic target speed setting as shown in Figure 13.

Direct Register Command

LV8961H allows user to access the register directly, which is connected to the control logic, and set the PWM duty cycle command from the PWMDTIN register. This mode can be configured by setting register SPIINSEL to 1. Also, FG frequency information can be obtained from the STATUS register by setting register STATSEL to 0h, and It can minimize delay that occurs when the PWM frequency is low.

The Control Algorithm

The LV8961H controls the motor speed by comparing the selected target speed to the actual motor speed and incorporating a PI controller with configurable gains for the P, I and T components which are stored in register MRSPCT7, MRSPCT8 and MRSPCT9 respectively.

Ramping of Speed Control Values

While tight control is required for optimal speed tracking, it may be undesirable during large input changes as it may lead to sudden supply loading, increasing noise and motor wear. To limit the slope of the control signal, register USTEPSEL and DSTEPSEL imposes a ramp on an input step to slew the speed response of the motor.

Decreasing motor speed too fast results in energy recuperation back into the system. To limit over-voltage

during energy recuperation, the variable DWNSET allows to prevent energy recuperation entirely by the synchronous rectification off.

Figure 14. PWM Command Flow and Related Registers

Fast Startup

It may be desirable to have the motor start immediately after EN goes high and not wait for PWM input duty cycle evaluation. Two register settings enable motor operation during this evaluation time: bit PDTC determines if the motor should be running during this time at all, and PDTSEL selects a motor duty cycle of 25, 50, 75 or 100%. This is used as the initial value of the duty cycle command for the closed loop speed control mode. To guarantee smooth transition from fast startup to PWM operation it is important to apply a comparable external PWM duty cycle at startup.

Abnormal Duty Cycle Operation (100% or 0%)

For normal duty cycle controlled operation the PWM signal is expected to have a frequency between 5.3 Hz or more. If no frequency is detected, the LV8961H will flag PWMPO error and enter 0% or 100% duty cycle mode depending on the level of the PWM signal (all low or all high). Operation during this mode can be selected to be either no motor operation, or motor operation at a fixed motor duty cycle of 25, 50, 75 or 100% and TAG_L or TAG_H as defined by the variables FLSEL or ZPSEL. These PWM values do not enter into the speed control loop.

Limit the Amount of Change of Output Duty

LV8961H is possible to limit the amount of change in output duty to avoid sudden acceleration and deceleration by setting register DDUTYSEL. Limited duty can be selected from $\pm 20.3, \pm 17.8, \pm 15.2, \pm 12.7, \pm 10.2, \pm 7.6$ and $\pm 5.1\%$.

Speed Feedback FG

The motor speed is shown at open drain output FG where the transitions are direct representations of the BEMF signal transitions on the motor. The relationship between motor rotation and FG pulses is defined in register FGOF.

Fault Output DIAG

A low on open drain output DIAG indicates a system fault and a shutdown of the driver stage. Per default all system faults self-recover when the fault condition is removed. For some potentially destructive faults such as over-current, FET-short circuit and locked rotor conditions, it is possible to latch the fault condition. For more information on system diagnostics see section "System Errors and Warnings".

High Voltage PWM Interface

The PWM interface translates a VS level signal with a threshold of 50%(Typ) VS to a digital signal appearing at RXD pin. This signal can be used for input PWM translation from outside units to the microcontroller.

Gate Drive Circuit

The gate drive circuit of the LV8961H includes 3 half-bridge drivers which control external N-Channel FETs for the motor phases U, V and W. The high side drivers UH, VH, WH switch their gate connection either to CHP or the respective phase connection UOUT, VOUT and WOUT. The low-side drivers are switched from VGL to the corresponding source connection SUL, SVL, SWL. Both high and low side switches are not current controlled. Slope control has to be implemented with external components.

Current shoot-through protection of the bridge-drivers is implemented by a dead-time counter that delays the turning- on of the complementary switch. The dead-time can be programmed from 200 ns < t_{FDTI} < 6.4 µs into 5bit parameter FDTI. To protect against external shorts the drain–source voltage of the active external Power FETs is monitored as well. 4 bit register FSCDL selects a short–circuit shutoff voltage $100 \text{ mV} < V_{FSCLD} < 1.6 \text{ V}$. To suppress false triggering during the rising edge of FET activation, FSCDT selects the masking time.

Current Limit and Over-current Shutoff

An integrated current sense amplifier implements current limiting and over-current shutoff by measuring the motor phase current across a single shunt between RF and RFSENS.

Figure 15 shows a summary of the current limit and the over-current shutoff, and the descriptions for each function are in the following sections.

In Sleep mode, the Hi-side gate output and Low-side gate output of each U, V, W phase become Hi-Z.

A 100 K Ω pull-down resistor is built in between UH and UOUT of the Hi-side gate driver output so that the gate and source of the external FET do not become Hi-Z.

The low side output also has a built-in $100 \text{ k}\Omega$ pull-down resistor between the UL and SUL terminals. (V and W phases also have $100 \text{ K}\Omega$ built-in)

Table 2. SUMMARY OF POWER STAGE PROTECTIONS

As an external component of the application circuit, the resistance between the gate and source of the FET can be reduced.

Cycle-by-cycle Current Limit

If the voltage between RF and RFSENS exceeds VRF1, the active bridge is turned off until the next PWM period. VRF1 can be selectable 100 mV(Typ) or 50 mV(Typ) by register CLSEL. To suppress switching transients a current limit blanking time 0.2 μ s < t_{CLMASK} < 3.2 μ s can be programmed into register CLMASK.

During soft-start this current limit is ramped from 0 to VRF1 in 16 steps during a programmable time 102 ms $< t_{SSTT} < 6.55$ s as defined in register SSTT.

Over-current Shutoff

If the bit OCPEN is set and the voltage between RF and RFSENS exceeds VRF2, the LV8961H goes into over-current shutoff and all gate drivers are driving low turning the power FETs high–impedance. VRF2 can be selectable VRF1 + 25 mV, +50 mV, +75 mV and +100 mV by register OCSEL. To suppress switching transients an over-current shutoff blanking time 0.2 μ s < t_{OCMASK} < 3.2 μ s can be programmed into register OCMASK.

Current	Purpose	Flag	Sense point	Threshold	Turn-off	Recovery
Cycle-by-cycle	Limiter	CLDO	Sense Resistor VRF	VRF1 100 mV or 50 mV	PWM FET	Next PWM cycle
Short to VS	Protector	OCPO	Sense Resistor VRF	VRF1+25 mV, +50 mV, +75 mV and 100 mV	All FET	50 ms later
		FSPO	FET VDS MOUT-SXL	Configurable		
Short to GND	Protector	FSPO	FET VDS VDH-MOUT	Configurable	All FET	50 ms later

Figure 15. Current Limit vs. Over-current Shutoff

Temperature Sensing

The LV8961H measures internal die temperature and implements internal thermal warning and shutoff. It is also possible to protect external devices by monitoring the voltage at pin TH. Internal and external over-temperature can shut down the driver section.

Internal Over-temperature Measurement

A thermal warning is issued if the internal temperature of the device reaches approximately 25° C below the over-temperature shutoff level. The shutoff level is selected by bit TSTS as 150° C or 175° C(min).

External Over-temperature Shutoff

An analog comparator triggers external over–temperature error if the voltage at pin TH falls below the two bit programmable level 0.2 V < V_{THTH} < 0.35 V as defined by register THTH. For external temperature measurement connect a resistor between V3RO and TH and an NTC between TH and AGND. The programmed threshold voltage at V_{THTH} should be reached at the intended thermal shutdown temperature of the external component to be protected. During the over–temperature condition, the gate drivers are disabled and a flag, THPO in MRDIAG0 is set.

Figure 16. Example Circuit for External Temperature Sensing

Watchdog Operation

The LV8961H includes a watchdog timer to monitor a companion microcontroller and disable the motor if the

microcontroller stops working properly. Bit WDTEN enables and disables the watchdog timer. Access to this bit can be blocked – see section "OTP Register" for details. The enabled watchdog will issue an error whenever the watchdog time 1.6 ms < t_{WDT} < 102.4 ms expires. A write of 00h to register MRRST resets the watchdog timer.

A watchdog timeout can result in either a motor stop, or motor operation at four predefined duty cycles of 25%, 50%, 75% or 100% and TAG_L or TAG_H as defined by WDTSEL. The duty cycle is directly applied to the power stage, not through the speed selection registers. The microprocessor is not re-set.

System Errors and Warnings

All system errors and most warnings cause a transition on DIAG. The polarity of this transition can be selected in bit DIAGSEL. The ability of stand–alone applications without microcontroller to react to errors and warnings is limited. For this case various auto–retry strategies are implemented.

If a companion microcontroller exists, more complex error handling is possible and DIAG should be connected to an interrupt input of the microcontroller. Errors that may cause serious damage such as short–circuit, over–current and locked rotor can be latched by enabling the corresponding latch bit in MRCONF9. In this case the LV8961H will keep the output stage disabled until the latch is cleared by one of the following actions:

- Power on reset
- EN low
- Input the output duty 0% or 0 rpm command
- SPI write of FFh to MRRST

If bit DLTO is set ONLY latched errors will cause a transition of DIAG. To detect the other less serious errors and warnings, the diagnostic registers MRDIAG0 /MRDIAG1/MRDIAG2 have to be read regularly via SPI access.

ADDR	Bit	Error	Description	Enabled Set	Latched Set	Self-Recovery Timing
0201h	0	OCPO	Over-current Error	OCPEN	OCPLT	After 50 ms (typ.) the motor will re-start
0201h	1	VSLVPO	VS Under-voltage	N/A	N/A	Motor is re-started when voltage recovers
0201h	2	VSOVPO	VS Over-voltage	OVPEN	N/A	Motor is re-started when voltage recovers
0201h	3	CHPLVPO	CHP Under-voltage	N/A	N/A	Motor is re-started when voltage recovers
0201h	4	VGLLVPO	VGL Under-voltage	N/A	N/A	Motor is re-started when voltage recovers
0201h	5	FSPO	FET Short Circuit	FSPEN	FSPLT	After 50 ms (typ.) the motor will re-start

Table 3. ERROR AND WARNING DIAGNOSTIC REGISTER (Note 4)

ADDR	Bit	Error	Description	Enabled Set	Latched Set	Self-Recovery Timing
0201h	6	THPO	External Over-temperature	THPEN	N/A	Motor is re-started when temperature re- covers
0201h	7	CPO	Locked Rotor	CPEN	CPLT	Wait 8 t _{CPTM} periods (see " <u>Motor Lock</u> ")
0202h	0	THWPO	Chip Junction Warning	THWEN	N/A	Only warning
0202h	1	THSPO	Chip Junction Over-temperature	N/A	N/A	Motor is re-started when temperature recovers
0202h	2	WDTPO	Watchdog Timeout	WDTEN	N/A	Motor is re-started when WDT is reset
0202h	3	CLDO	Current Limit Warning	CLDOEN	N/A	Only warning
0202h	4	OOPO	Motor Open Detect	OOPOEN	N/A	Same as Motor Lock protect
0202h	5	RCSMPO	Register Checksum Error	N/A	N/A	Write MRRST = 55h or MRODL = 00h or MRODL = FFh
0202h	6	VCLVPO	VCC under-voltage	VCLVPEN	N/A	Motor is re-started when voltage recovers
0202h	7	PWMPO	PWM Input Fault	FLSEL ZPSEL PPDOSEL	N/A	Motor is re-started when PWM input recovers
0203h	0	VDHOVPO	VDH Over Voltage	VDHOVPEN	N/A	Motor is re-started when voltage recovers
0203h	1	STUPO	Startup Operation	N/A	N/A	Only warning
0203h	2	SPCO	Loss of speed lock	N/A	N/A	Only warning
0203h	3 FGERPO FG error protection output		FG error protection output	FGERACCEN FGERDECEN	N/A	Wait t _{RCVTM} periods
0203h	4	REGAZ	Register data all 0 output	N/A	N/A	Only warning
0203h	5	OTPAZ	OTP data all 0 output	N/A	N/A	Only warning

Table 3. ERROR AND WARNING DIAGNOSTIC REGISTER (Note 4) (continued)

4. See register MRCONF 7 to 12 for error and warning activation, masking and latching options.

Detection of Loss of Commutation Synchronization

The following three kinds of approach have been provided to detect the loss of commutation synchronization which is significant for sensorless motor control applications.

- 1. Open load
- 2. Abnormal rotational speed change
- 3. Locked rotor

The following sections describe the actual implementation of LV8961H for these approaches.

Open Load Detection

Block Description

LV8961H can detect that the connector is open due to disconnection for instance. This function is enabled by setting OOPOEN = 1.

When this function is enabled, the current is flowed for certain time in the order of UH–VL, VH–WL, WH–UL after detecting the motor constraint state, and holds whether or not reach to current limitation in each case. When the current is not limited in two or more of these three states, it is judged as open and OOPO = 1 is output as result. For this reason, it

is necessary to select the time set by OPDTM that the current limit is always taken.

It can be checked which U, V, W connector is open by reading the status register. One connector opening of U, V, W can be distinguished, but when two or three openings overlap, it is judged that everything is open so it cannot be distinguished what is not open. Also, if only one of UH–VL, VH–WL, WH–UL doesn't reach to current limitation, it is judged that all phases are connected.

When automatic recovery mode is set, OOPO returns to 0 when the time set in the CPTM register (the constraint protection detection time multiplied by 8) has elapsed. When latch mode is set, OOPO returns to 0 by EN = L input, PWM 0% input, or MRRST command.

Because the open load detection is performed after the constraint protection detection, CPO = 1 is output.

The detection time of the current limit set by OPDTM register indicates the upper limit, and when LV8961H reaches to current limitation, the output is turned OFF immediately.

Figure 17 shows an example where automatic recovery mode is set and phase–V is detected to be open.

Figure 17. Timing Chart of OOPO

Abnormal Rotational Speed Change Detection

Block Description

When FGERACCEN/FGERDECEN = 1, the rotation speed abnormality protection according to the FGERACC/FGERDEC register setting is valid respectively.

When the motor is accelerating, it is compared the number of times set by FGERACC with the number of consecutive times of zero cross detection immediately after the mask is opened, and it is judged to be abnormal if they match.

When the motor is decelerating, it is judged to be abnormal rotating after detection period shown in Table 4 is elapsed without zero crossing detection.

FGERDEC[2:0]	Detection Setting
0	(previous 60 electrical degrees period) $\times1.25$
1	(previous 60 electrical degrees period) \times 1.5
2	(previous 60 electrical degrees period) $\times1.75$
3	(previous 60 electrical degrees period) \times 2
4	(previous 60 electrical degrees period) \times 3
5	(previous 60 electrical degrees period) \times 4
6	(previous 60 electrical degrees period) \times 6
7	(previous 60 electrical degrees period) $\times 8$

Table 4. FGERDEC SETTING

If it is judged that the rotation speed is abnormal, LV8961H restarts from free-run detection after the time set by RCVTM has elapsed.

LV8961H output FGERACCO/FGERDECO = 1 when it detects the rotation speed abnormality, and it returns to 0 when recovery time is elapsed. The recovery time can be selected by RCVTM register.

The protection state also returns to normal state by either EN = L input, sensor-less logic reset pulse by MRRST.

When FGERACCEN/FGERDECEN = 0, although the rotation speed abnormality is detected, state transition to the protection state does not occur.

When abnormal rotation speed is detected, the all driver outputs will be turned off.

Locked Rotor Detection

Open-loop startup continues for the time programmed into CPTM (MRCONF6[6:3]). If no BEMF is detected during that time a locked rotor error is indicated.

Table 5. MRCONF6

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0106h	MRCONF6	0		CPTN	И[3:0]	ТНТН	TSTS		
CPO	: (

CPO = 0	: Normal
CPO = 1	: Detect locked rotor error

The locked rotor is detected by counting the time LV8961H is in the start-up mode without BEMF detection. If consecutive seven BEMF zero crosses are not detected within the time programmed into CPTM register, the driver outputs are turned off and the locked rotor is flagged.

In auto-recovery mode, the motor will remain off for the open loop startup timeout duration multiplied by 8, before another startup is attempted.

Detection time has maximum 1 ms error, because it is sampled by 1 ms clock.

Table 6. MRDIAG0

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0201h	MRDIAG0	CPO	THPO	FSPO	VGLLVPO	CHPLVPO	VSOVPO	VSLVPO	OCPO

CPTM[3:0	: Locked rotor (constraint) protection output
CPTM[3:0] = 0h	: Detection time 0.4 s / Restart time 3.2 s
CPTM[3:0] = x	: Detection time 0.4 * (1 + x) s / Restart time 0.4 * 8 * (1 + x) s
CPTM[3:0] = Fh	: Detection time 6.4 s / Restart time 51.2 s

No back-EMF was detected during the entire open-loop startup time as programmed in CPTM. Either the rotor is

SPI Interface

In the LV8961H the SPI interface is used to perform general communications for status reporting, control and programming. The SPI format is MODE–0 MSB first.

SPI communications with the LV8961H follows the established industry standard practices. Data is transferred MSB first, and it is captured at the rising edge of the clock which stays in logical low during idle. Figure 19 shows LV8961H SPI format. When the first SI bit "R/W" is LOW, the register data will be transferred from LV8961H to the

blocked, or startup parameters are not correct. The drivers are disabled.

master device. When "R/W" is HIGH, the register data is transferred from the master device to the LV8961H register.

The address data is composed of 16 bits and has a function of accessing from the address specified by the data Length [2:0] setting to the address of continuous 8 bytes by one communication. In addition, the LV8961H offers CRC check feature to ensure SPI communication. Therefore, Format 1 in Figure 19 requires a minimum 5 bytes data length with one access. Format 2 in Figure 19 is prepared to access with a short data length. It can be used for addresses requiring access in a short time and is set by the data BASEL[3:0].

When the repeating access to the same register access is required, a shorter bit–length alias of the target address can reduce the total length of the SPI serial communication data train. In LV8961H, the base address pointers are provided as an alias of the full–bit address. The base address can be specified with the register "BAREG[15:0]". And, BAREG[15:0] is activated as the base address pointer when the bit–field "BASEL[3:0]" value in the SPI serial data train is 15. Without BAREG setting, 14 preset base addresses, which might be read or written frequently and repeatedly, are provided. The following table shows the those addresses selected by the bit–field BASEL[3:0].

Table 7.

BASEL[3:0]	Register name	Register address	Description
0	NA	NA	Direct addressing in full-bit
1	MRACK0	0000h	55h fixed value (read only)
2	MRSPCT0	0002h	Current control parameters
3	MRSPCT1	0003h	Lead angle parameters
4	MRSPCT3	0005h	Start-up parameters
5	MRSPCT7	0009h	Speed control PI parameters
6	MRSPCT10	000Ch	Speed control parameters
7	MRSPCT11	000Dh	Speed curve parameters
8	MRSPCT19	0015h	BEMF window parameters
9	MRDIAG0	0201h	Diagnosis flags
10	MRSTAT0	0205h	Status
11	MRRST	0300h	Reset related
12	MRCTL0	0301h	PWM duty cycle input
13	MRCTL2	0303h	commutation parameter
14	MRCTL5	0306h	STATUS selection
15	Selectable	Selectable	Any register selected with the register

The base address is the first one, and the consecutive multiple address can be accessed by setting the bit-field "LENGTH[2:0]".

For example, to write the duty cycle data to the register PWMDTIN[9:0] (located in MRCTL0 0301h and MRCTL1 0302h), the following three data patters are applicable and typical.

1. Writing twice by one byte (total 64 bits)

Table 8.

1	2	3	4	5	6	7	8	9 to 16	17 to 24	25 to 32
WR		Length			BAS	SEL		Address[15:8]	Address[7:0]	Data LSB
1	0	0	0	0 0 0 0				03	01h	PWMDTIN[7:0]

Table 9.

33	34	35	36	37	38	39	40	41 to 48	49 to 56	57 to 64
WR		Length			BAS	SEL		Address[15:8]	Address[7:0]	Data MSB
1	0	0	0	0 0 0 0				03h	02h	PWMDTIN[9:8]

2. Writing once by two-byte with the full address (total 40 bits)

Table 10.

1	2	3	4	5	5 6 7 8		9 to 16	17 to 24	25 to 32	33 to 40
WR	l	_ength		BASEL		Address[15:8]	Address[7:0]	Data LSB	Data MSB	
1	0	0	1	0 0 0 0		03h	01h	PWMDTIN[7:0]	PWMDTIN[9:8]	

3. Writing once by two-byte with the base address (total 24 bits)

Table 11.

1	2	3	4	5 6 7 8		9 to 16	17 to 24		
WR		Length		BASEL				Data LSB	Data MSB
1	0	0	1	1 1 0 0		PWMDTIN[7:0]	PWMDTIN[9:8]		

Where, the bit sequence of data bytes is;

Table 12.

sequence	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
PWNDTIN LSB	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]

Table 13.

sequence	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
PWNDTIN MSB	NA	NA	NA	NA	NA	NA	[9]	[8]

There are two items to be especially careful of with the general communication scheme:

- 1. Communications must be full duplex and simultaneous. It is not allowed to send one transaction and then read data on a second transaction as the status register information will be updated on the first transaction and then be out of date for the second. Some systems break transactions into separate read and write operations which is not acceptable with the LV8961H.
- It is important the system master uses the clock and data polarities and phases as shown above. Both the clock and data on some systems can be

inverted for various reasons but must arrive at the LV8961H per the above drawing. Common errors include SCLK inversion such that the leading edge arrives as a downward transition rather than a rising edge, or having the data to clock phase incorrect. Data phase must be such that the data only changes during a clock falling edge and is completely stable during a clock rising edge. This means a good margin of one half of a bit time exists to eliminate transmission delay hazards.

The first byte returned on all transactions is always the status register, GSDAT, and contains information such as the busy flag during programming operations.

Format 2 : Short SPI access format

Figure 19. SPI Format

The header byte structure of the SPI format can be described by the following C language program.

```
enum readwrite {RD, WR};
enum regCount {cnt1, cnt2, cnt3, cnt4, cnt5, cnt6, cnt7, cnt8};
enum baseReg {na, MRACK0, MRSPCT0, MRSPCT1, MRSPCT3, MRSPCT7, MRSPCT10, MRSPCT11,\
MRSPCT19, MRDIAG0, MRSTAT0, MRRST, MRCTL0, MRCTL2, MRCTL5, BY_BAREG};
union {
    uint8_t bytewise;
    struct {
        baseReg BASEL: 4;
        regCount Length: 3;
        readwrite RW: 1;
    };
    } header;
```

The check-sum (CRC) code of the SPI data train is calculated by the following function.

```
#define CHAR BIT
                    8
                             /* number of bits in a char */
#define MSB CRC8 (0x4D)
                               /* polynominal*/
uint8 t GetCRC8 2(uint8 t seed, const void *buff, size t data size)
{
 uint8_t *p = (uint8_t *)buff;
 uint8 t crc8;
  int i;
  for (crc8 = seed; data size != 0; data size--) {
   crc8 ^= *p++;
    for (i = 0; i < CHAR BIT; i++) {</pre>
      if (crc8 & 0x80) {
       crc8 <<= 1; crc8 ^= MSB CRC8;
      }
      else{
        crc8 <<= 1;
      }
    }
  }
  return crc8;
}
```

An example SPI communication is shown below. It shows the case that the two bytes from the register MRACK0 within one transaction, using the base address scheme.

```
uint8 t SPI WR BUF[32];
uint8 t SPI RD BUF[32];
void example_main()
{
  int i;
                          /* read */
 header.RW = RD;
 header.Length = cnt2;  /* 2 bytes */
header.BASEL = MRACK0;  /* from MRACK0 */
  Serial.print("Header = ");
  Serial.print(header.bytewise, HEX);
  Serial.println("h");
  SPI WR BUF[0] = header.bytewise;
  SPI WR BUF [1] = 0;
                                    /* dummy data */
  SPI WR BUF[2] = 0;
                                    /* dummy data */
  SPI_WR_BUF[3] = GetCRC8_2((uint8_t)0, SPI_WR_BUF, 3);
  Serial.print("CRC = ");
  Serial.print(SPI WR BUF[3], HEX);
  Serial.println("h");
  digitalWrite(CSB pin, LOW);
  for (i = 0; i < 4; ++i)
  {
    SPI RD_BUF[i] = SPI.transfer(SPI_WR_BUF[i]);
    Serial.print(SPI_WR_BUF[i], HEX); Serial.print("h, ");
    Serial.print(SPI_RD_BUF[i], HEX); Serial.println("h");
  }
  digitalWrite(CSB_pin, HIGH);
}
```

This output is shown below.

Header = 11h CRC = 66h WR, RD 11h, 02h 00h, 55h 00h, AAh 66h, B3h

GSDAT Field

Global status is always output to this field. Global status contains following information.

GSDAT[7:0]

Bit 7	6	5	4	3	2	1	Bit 0	
ORBEN	SACF	DIAGS	LATCH	OBSY		SMOD[2:0]	•	
					0	0	0	Sleep mode
					0	0	1	Device start up time
					0	1	0	Standby mode
					0	1	1	N/A
					1	0	0	N/A
					1	0	1	Normal mode without FG output
					1	1	0	Normal mode with FG output
					1	1	1	Sleep mode
0	х	0	0	0	х	х	х	Normal operation
				1				OTP busy with read/write access
			1					Latched shutdown condition
		1						Failure condition
	0							Last SPI access OK
	1							Last SPI access failed*
1								OTP integrity test mode

The following SPI failures are detectable and reported collectively in GSDAT as general SPI failures:

- Any access to an address which are outside the defined address space
- The number of SCLK transitions is not 16 within one word transfer
- Any access to MRCONF, MRACS, ORCONF, ORACS while OBSY = 1 (during write operations)
- Write access to MRODL register while OBSY=1 (during write operations)

SPI Timing

- Write access to any of the main registers after setting MSAENB = 1 (Implies MRxxxx registers are locked)
- Write access to any of the OTP registers after OSAENB = 1 (Implies ORxxxx registers are locked)
- Write access attempt to a read only or locked register
- SI signal changed at positive edge of SCLK (Incorrect data/sclk phase setup)

Figure 20. SPI Timing Chart

SPI TIMING

 $(T_J = -40 \text{ to } 150^{\circ}\text{C}, \text{VS} = 4.5 \text{ to } 28 \text{ V}, \text{Pull-up resistance of SO pin} = 2.4 \text{ k}\Omega, \text{Output load of SO pin} = 30 \text{ pF})$

Symbol	Comment	Min	Тур	Max	Unit
Tfck	SCLK clock frequency			500	kHz
Tckp	SCLK high pulse width	950			ns
Tckn	SCLK low pulse width	950			ns
Tcss	CSB setup time	950			ns
Tcsh	CSB hold time	950			ns
Tcsp	CSB high pulse width	1900			ns
Tsis	SI setup time	450			ns
Tsih	SI hold time	450			ns
Tcssod	CSB fall edge to SO delay time			950	ns
Tcksod	SCLK fall edge to SO delay time			950	ns
Tcssoo	CSB fall edge to SO data out time	0			ns
Tcssoz	CSB rise edge to SO Hi-Z out time			950	ns

Register Description

SPI Register Map

The SPI interface allows read access to the entire address space of the main registers. The main registers can only be written in Standby mode and then only if the write lock bit MSAENB has never been set high.

SPEED CONTROL OVERVIEW

Write Enable	Limitation by OBSY	ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
Read Only	Read Only	-	GSDAT	ORBEN	SACF	DIAGS	LATCH	OBSY		SMOD[2:0]	
Read Only	Read	0000h	MRACK0	0	1	0	1	0	1	0	1	
	Only	0001h	MRACK1	1	0	1	0	1	0	1	0	
MSAENB=L	OBSY=L	0002h	MRSPCT0	0	0	CLSEL	CLDWN OFF	OCSE	OCSEL[1:0] CLMSPD[1:0]			
		0003h	MRSPCT1	0	0		•	SST	SSTT[5:0]			
		0004h	MRSPCT2				STOS	C[7:0]	[7:0]			
		0005h	MRSPCT3	SLMD	0	0		L	LASET_L[4:0]			
		0006h	MRSPCT4	0	0	0		L	LASET_H[4:0]			
		0007h	MRSPCT5	0	0	0		LA	SET_LIM[4	4:0]		
		0008h	MRSPCT6	М	SKRSTNU	IM0_SIX[3:	0]	М	MSKRSTNUM1_SIX[3:0]			
		0009h	MRSPCT7	0		PX[2:0]		0 PG[2:0]				
		000Ah	MRSPCT8		IX[:	3:0]		0 IG[2:0]				
		000Ch	MRSPCT10	0	DE	DUTYSEL[2	2:0]	USTEP	SEL[1:0]	DSTEF	PSEL[1:0]	
		000Dh	MRSPCT11				DUTY	_L[7:0]				
		000Eh	MRSPCT12				DUTY	_H[7:0]				
		000Fh	MRSPCT13				TAG_	L[7:0]				
		0010h	MRSPCT14	0			Т	G_L[14:8	3]			
		0011h	MRSPCT15				TAG_	H[7:0]				
		0012h	MRSPCT16	0			Т	AG_H[14:8	3]			
Always OK		0013h	MRSPCT17	0	0	0	0	0	0	0	RECALC	
MSAENB=L		0015h	MRSPCT19	0	0	0	0	0	0 0 WINDSEL[1:0]			
		0016h	MRSPCT20	M	ISKRSTNU	JM0_INI[3:	0]	N	MSKRSTNUM1_INI[3:0]			
		0017h	MRSPCT21	MS	SKRSTNU	M0_THR[3	:0]	MSKRSTNUM1_THR[3:0]				
		0018h	MRSPCT22	MS	SKRSTNU	M0_TWO[3	8:0]	MSKRSTNUM1_TWO[3:0]				
		0019h	MRSPCT23	MS	SKRSTNU	M0_ONE[3	:0]	MSKRSTNUM1_ONE[3:0]				
		001Ah	MRSPCT24	0	0	0	0	0	0	0	RBSEL	

MRACK0

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0000h	MRACK0	0	1	0	1	0	1	0	1

MRACK0[7:0]: Fixed data to check IC and SPI function MRACK0[7:0] read data is fixed to 55h This read only register is used to check IC and SPI interface. 55h is read from this register in standby and normal mode, FFh during sleep mode.

MRACK1

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0001h	MRACK1	1	0	1	0	1	0	1	0

MRACK1[7:0]: Fixed data to check IC and SPI function MRACK0[7:0] read data is fixed to AAh This read only register is used to check IC and SPI interface. AAh is read from this register in standby and normal mode, FFh during sleep mode.

MRSPCT0 (DEFAULT: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0002h	MRSPCT0	0	0	CLSEL	CLDWNOFF	OCSEL[1:0]		CLMS	PD[1:0]

CLSEL: Current limit threshold voltage setting CLSEL=0: Threshold voltage 50 mV CLSEL=1: Threshold voltage 100 mV

CLDWNOFF: Output duty limitation off setting for current limit

CLDWNOFF=0: function ON

CLDWNOFF=1: function OFF

OCSEL[1:0]: Over-current threshold voltage selection CLSEL=0

OCSEL[1:0]=0h: Threshold voltage 75 mV

OCSEL[1:0]=1h: Threshold voltage 100 mV

OCSEL[1:0]=2h: Threshold voltage 125 mV

OCSEL[1:0]=3h: Threshold voltage 150 mV CLSEL=1 OCSEL[1:0]=0h: Threshold voltage 125 mV OCSEL[1:0]=1h: Threshold voltage 150 mV OCSEL[1:0]=2h: Threshold voltage 175 mV OCSEL[1:0]=3h: Threshold voltage 200 mV

CLMSPD[1:0]: Output duty limitation speed setting for current limit

current limit voltage 100 mV (Typ) into 16 sections and

increases the value from 6.25 mV to 100 mV to switch over

the current limit value. Case of 50 mV, increases the value

CLMSPD[1:0]=0h: 0.1% CLMSPD[1:0]=1h: 1.3% CLMSPD[1:0]=2h: 2.5% CLMSPD[1:0]=3h: 5.07%

from 3.125 mV to 50 mV.

MRSPCT1 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0003h	MRSPCT1	0	0	SSTT[5:0]					

SSTT[5:0]: Soft-start time setting

SSTT[5:0]=00h: Soft-start time 0.102 s

SSTT[5:0]=x: Soft-start time 0.102 * (1 + x) s

SSTT[5:0]=3Fh: Soft-start time 6.55 s

Soft-start allows startup of motors with higher inertia by ramping the current. The soft-start algorithm divides the

MRSPCT2 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0004h	MRSPCT2				STO	SC[7:0]			

STOSC[7:0]: Startup commutation period STOSC[7:0]=00h: 1.024 ms STOSC[7:0]=x: 1.024 * (1 + x) ms STOSC[7:0]=FFh: 262.14 ms

MRSPCT3 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0005h	MRSPCT3	SLMD	0	0	LASET_L[4:0]				

SLMD: Sinusoidal vs. trapezoidal drive mode selection SLMD=0: Trapezoidal drive with 120 degrees energization.

SLMD=1: Sinusoidal drive with 6 windows BEMF detection.

This bit selects whether the motor phases are driven with a trapezoidal or sinusoidal signal.

LASET_L[4:0]: Lead angle setting at OUTPUT PWM duty0%

LASET_L[4:0]=00h: Lead angle 0 deg. LASET_L[4:0]=x: Lead angle (x * 1.875) deg LASET_L[4:0]=1Fh: Lead angle 58.125 deg.

MRSPCT4 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0006h	MRSPCT4	0	0	0	LASET_H[4:0]				

LASET_H[4:0]: Lead angle setting at OUTPUT PWM duty 100%

LASET_H[4:0]=00h: Lead angle 0 deg. LASET_H[4:0]=x: Lead angle (x * 1.875) deg LASET_H[4:0]=1Fh: Lead angle 58.125 deg. It is possible to advance the commutation point towards zero-crossing of the back-EMF signal. This helps to achieve back-EMF field-weakening for higher rotational speeds and to compensate for delays in high speed operation.

It is possible to advance the commutation point towards

zero-crossing of the back-EMF signal. This helps to

achieve back-EMF field-weakening for higher rotational

speeds and to compensate for delays in high speed operation.

MRSPCT5 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0007h	MRSPCT5	0	0	0	LASET_LIM[4:0]				

LASET_LIM[4:0]: Lead angle max limit LASET_LIM[4:0]=00h: Lead angle 0 deg. LASET_LIM[4:0]=x: Lead angle (x * 1.875) deg LASET_LIM[4:0]=1Fh: Lead angle 58.125 deg. It is possible to advance the commutation point towards zero-crossing of the back-EMF signal. This helps to achieve back-EMF field-weakening for higher rotational speeds and to compensate for delays in high speed operation.

MRSPCT6 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0008h	MRSPCT6		MSKRSTNU	M0_SIX[3:0]			MSKRSTNU	IM1_SIX[3:0]	

MSKRSTNUM0_SIX[3:0]: Energization width setting from BEMF zero–cross to Hiz window start point, for 6–window stable mode.

MSKRSTNUM0_SIX[3:0]= x: (x < 8) \rightarrow (15 + x * 3.75) deg. (x \ge 8) \rightarrow (41.25 + (x - 7) * 1.875) deg. *MSKRSTNUM1_SIX[3:0]: Mask-period setting for detecting BEMF zero-cross from Hiz window start point, for 6-window stable mode*

MSKRSTNUM1_SIX[3:0]=x: ((x + 1) * 1.875) deg.

MRSPCT7 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0009h	MRSPCT7	0	PX[2:0]		0		PG[2:0]		

PX[2:0]: Proportional gain

PX[2:0]=0h: Proportional gain 1 (through) PX[2:0]=1h: Proportional gain 2 PX[2:0]=2h: Proportional gain 4 PX[2:0]=3h: Proportional gain 8 PX[2:0]=4h: Proportional gain 16 PX[2:0]=5h: Proportional gain 32 PX[2:0]=6h: Proportional gain 64 PX[2:0]=7h: Proportional gain 0 (cut) PG[2:0]: Proportional gain

PG[2:0]=0h: Proportional gain 1 (through) PG[2:0]=1h: Proportional gain 7/8 PG[2:0]=2h: Proportional gain 6/8 PG[2:0]=3h: Proportional gain 5/8 PG[2:0]=4h: Proportional gain 4/8 PG[2:0]=5h: Proportional gain 3/8 PG[2:0]=6h: Proportional gain 2/8 PG[2:0]=7h: Proportional gain 1/8

MRSPCT8 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
000Ah	MRSPCT8		IX[3	3:0]		0		IG[2:0]	

IX[3:0]: Integral gain $IX[3:0]=0h: Integral gain 1 (through)$ $IX[3:0]=1h: Integral gain 2$ $IX[3:0]=2h: Integral gain 4$ $IX[3:0]=3h: Integral gain 8$ $IX[3:0]=4h: Integral gain 16$ $IX[3:0]=5h: Integral gain 32$ $IX[3:0]=6h: Integral gain 64$ $IX[3:0]=7h: Integral gain 0 (cut)$ $IX[3:0]=8h: Integral gain 1 (through)$ $IX[3:0]=9h: Integral gain 1/2$ $IX[3:0]=Bh: Integral gain 1/4$ $IX[3:0]=Bh: Integral gain 1/8$ $IX[3:0]=Ch: Integral gain 1/16$	IG[2:0]: Integral gain IG[2:0]=0h: Integral gain 1 (through) IG[2:0]=1h: Integral gain 7/8 IG[2:0]=2h: Integral gain 6/8 IG[2:0]=3h: Integral gain 5/8 IG[2:0]=4h: Integral gain 4/8 IG[2:0]=5h: Integral gain 3/8 IG[2:0]=6h: Integral gain 2/8 IG[2:0]=6h: Integral gain 1/8 TG[2:0]=7h: Integral gain 1/8 TG[2:0]=1h: Total gain 7/8 TG[2:0]=2h: Total gain 6/8 TG[2:0]=3h: Total gain 5/8 TG[2:0]=4h: Total gain 3/8 TG[2:0]=5h: Total gain 3/8

MRSPCT10 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
000Ch	MRSPCT10	0	DDUTYSEL[2:0]		USTEPS	SEL[1:0]	DSTEPS	SEL[1:0]	

DDUTYSEL[2:0]: Output duty difference limitation setting DDUTYSEL[2:0]=0h: No limitation. DDUTYSEL[2:0]=1h: Limit to ±20.3% (±208) DDUTYSEL[2:0]=2h: Limit to ±17.8% (±182) DDUTYSEL[2:0]=3h: Limit to ±15.2% (±156) DDUTYSEL[2:0]=4h: Limit to ±12.7% (±130) DDUTYSEL[2:0]=5h: Limit to ±10.2% (±104)

DDUTYSEL[2:0]=6h: Limit to $\pm 7.6\%$ (± 78) DDUTYSEL[2:0]=7h: Limit to $\pm 5.1\%$ (± 52)

USTEPSEL[1:0]: Ramp imposed on speed control changes. (Case of Motor is 2 poles)

USTEPSEL[1:0]=0h: max. 32766 rpm.

USTEPSEL[1:0]=1h: Upper limit is 400% of current speed and max. 32766 rpm.

USTEPSEL[1:0]=2h: Upper limit is current speed and max. 16384 rpm.

USTEPSEL[1:0]=3h: Upper limit is 25% of current speed and max. 4096 rpm.

DSTEPSEL[1:0]: Ramp imposed on speed control changes. (Case of Motor is 2 poles)

DSTEPSEL[1:0]=0h: Upper limit is current speed and max. 32766 rpm.

DSTEPSEL[1:0]=1h: Upper limit is 25% of current speed and max. 4096 rpm.

DSTEPSEL[1:0]=2h: Upper limit is 6.25% of current speed and max. 1024 rpm.

DSTEPSEL[1:0]=3h: Upper limit is 1.5625% of current speed and max. 256 rpm.

MRSPCT11 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
000Dh	MRSPCT11				DUT	/_L[7:0]			

DUTY_L[7:0]: Lower limit of input PWM duty DUTY L[7:0]=00h: Lower limit 0.098% DUTY L[7:0]=x:

Lower limit ((x * 2 + 1) * 100 / 1024) %DUTY L[7:0]=FFh: Lower Limit 49.9%
MRSPCT12 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
000Eh	MRSPCT12				DUTY	′_H[7:0]			

DUTY_H[7:0]: Upper limit of input PWM duty DUTY_H[7:0]=00h: Upper limit 50% DUTY_H[7:0]=x: Upper limit ((x * 2) * 100 / 1024 + 50) % DUTY_H[7:0]=FEh: Upper Limit 99.6% DUTY_H[7:0]=FFh: Upper Limit 99.9%

TAG L[14:0]=7FFEh: Lower Limit 40000 rpm

TAG L[14:0]=7FFFh: Lower Limit 40000 rpm

SCEN=1 (Open-loop)

0% duty output is fixed.

Ignore TAG L

MRSPCT13 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
000Fh	MRSPCT13				TAG	_L[7:0]			

MRSPCT14 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0010h	MRSPCT14	0				TAG_L[14:8]		

TAG_L[14:0]: Lower limit of target speed / output duty.

(Case of Motor is 2 poles)

SCEN=0 (Closed-loop) TAG_L[14:0]=0000h: Lower limit 0 rpm TAG_L[14:0]=0001h: Lower limit 2 rpm TAG_L[14:0]=x: $(x \ge 4E20h) \rightarrow$ Lower limit 40000 rpm

 $(x < 4E20h) \rightarrow$ Lower limit x * 2 rpm

MRSPCT15 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0011h	MRSPCT15				TAG	_H[7:0]			

MRSPCT16 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0012h	MRSPCT16	0				TAG_H[14:8	6]		

TAG_H[14:0]: Upper limit of target speed / output duty.

(Case of Motor is 2 poles)

SCEN=0 (Closed-loop) TAG_H[14:0]=0000h: Upper limit 0 rpm TAG_H[14:0]=0001h: Upper limit 2 rpm TAG_H[14:0]=x: $(x \ge 4E20h) \rightarrow$ Upper limit 40000 rpm $(x < 4E20h) \rightarrow$ Upper limit x * 2 rpm TAG_H[14:0]=7FFEh: Upper Limit 40000 rpm TAG_H[14:0]=7FFFh: Upper Limit 40000 rpm SCEN=1 (Open-loop) Ignore TAG_H 100% duty output is fixed.

MRSPCT17 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0013h	MRSPCT17	0	0	0	0	0	0	0	RECALC

RECALC: Trigger for updating target speed setting RECALC=0: No operation.

RECALC=1: Update latched values (SCEN, DUTY_L, DUTY_H, TAG_L and TAG_H) in the target speed

calculation module and RECALC will be cleared automatically.

MRSPCT19 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0015h	MRSPCT19	0	0	0	0	0	0	WINDSEL[1:0]	

WINDSEL[1:0]: selects the number of BEMF zero cross detection window per electrical cycle WINDSEL[1:0]=0h: 6-window WINDSEL[1:0]=1h: 3-window WINDSEL[1:0]=2h: 2-window WINDSEL[1:0]=3h: 1-window

MRSPCT20 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0016h	MRSPCT20		MSKRSTNU	IM0_INI[3:0]			MSKRSTNL	JM1_INI[3:0]	

MSKRSTNUM0_INI[3:0]: Energization width setting from BEMF zero-cross to Hiz window start point, for 6-window initial mode

MSKRSTNUM0_INI[3:0]=x:

 $(x < 8) \rightarrow (15 + x * 3.75) deg.$

 $(x \ge 8) \rightarrow (41.25 + (x - 7) * 1.875) \text{ deg.}$

MSKRSTNUM1_INI[3:0]: Mask-period setting for detecting BEMF zero-cross from Hiz window start point, for 6-window initial mode

 $MSKRSTNUM1_INI[3:0] = x: ((x + 1) * 1.875) deg.$

MRSPCT21 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0017h	MRSPCT21		MSKRSTNU	M0_THR[3:0]			MSKRSTNU	M1_THR[3:0]	

MSKRSTNUM0_THR[3:0]: Energization width setting from BEMF zero-cross to Hiz window start point, for 3-window mode

MSKRSTNUM0_THR[3:0]=x: (x < 8) -> (15 + x * 3.75) deg. $(x \ge 8) \rightarrow (41.25 + (x - 7) * 1.875) \text{ deg.}$

MSKRSTNUM1_THR[3:0]: Mask-period setting for detecting BEMF zero-cross from Hiz window start point, for 3-window mode

MSKRSTNUM1_THR[3:0]=x: ((x + 1) * 1.875) deg.

MRSPCT22 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0018h	MRSPCT22		MSKRSTNU	M0_TWO[3:0]			MSKRSTNU	V1_TWO[3:0]	

MSKRSTNUM0_TWO[3:0]: Energization width setting from BEMF zero-cross to Hiz window start point, for 2-window mode

MSKRSTNUM0_TWO[3:0]=x:

 $(x < 8) \rightarrow (15 + x * 3.75) deg.$

 $(x \ge 8) \rightarrow (41.25 + (x - 7) * 1.875) \text{ deg.}$

MSKRSTNUM1_TWO[3:0]: Mask-period setting for detecting BEMF zero-cross from Hiz window start point, for 2-window mode

MSKRSTNUM1_TWO[3:0]=x: ((x + 1) * 1.875) deg.

MRSPCT23 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0019h	MRSPCT23		MSKRSTNU	/10_ONE[3:0]			MSKRSTNUI	W1_ONE[3:0]	

MSKRSTNUM0_ONE[3:0]: Energization width setting from BEMF zero-cross to Hiz window start point, for 1-window mode

MSKRSTNUM0_ONE[3:0]=x:

 $(x < 8) \rightarrow (15 + x * 3.75) deg.$

 $(x \ge 8) \rightarrow (41.25 + (x - 7) * 1.875) \text{ deg.}$

MSKRSTNUM1_ONE[3:0]: Mask-period setting for detecting BEMF zero-cross from Hiz window start point, for 1-window mode

MSKRSTNUM1_ONE[3:0]=x: ((x + 1) * 1.875) deg.

MRSPCT24 (DEFAULT: 00H)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
001Ah	MRSPCT24	0	0	0	0	0	0	0	RBSEL

detected.

If RBSEL is set, short brake (all Low side FET are ON)

is done until the rotation stops after reverse rotation is

RBSEL: Short brake setting at reverse rotation

RBSEL=0: Short brake is disabled when reverse rotation is detected.

RBSEL=1: Short brake is enabled when reverse rotation is detected.

MOTOR CONFIGURATION REGISTER OVERVIEW	

Limitation Write Enable by OBSY ADDR Data Name D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] MSAENB=L OBSY=L 0100h **MRCONF0** FRMD FRREN SCEN PWMF REGSEL VCEN SPCFG **PWMIN** & SEL EN=L 0101h MRCONF1 FLSEL[2:0] PDTC PWM ZPSEL[2:0] ON 0102h MRCONF2 FGST FGOF[1:0] FDTI[4:0] BLMD **MRCONF3** 0103h CLMASK[3:0] OCMASK[3:0] MRCONF4 SROFFT[3:0] 0104h CRMASK[3:0] 0105h MRCONF5 SYNC PPDO FSCDT[1:0] FSCDL[3:0] ΕN SEL TSTS 0106h MRCONF6 0 CPTM[3:0] THTH[1:0] MRCONF7 WDTEN WDT[5:0] 0107h WDTS EL[2] 0108h MRCONF8 VCLVP CPEN THWEN THPEN **FSPEN** OVPEN OCPEN DIAGSEL ΕN RCVTM[1:0] 0109h MRCONF9 WDTSEL[1:0] CPLT FSPLT OCPLT DLTO 010Ah MRCONF10 VDHO OOPO CLDO FGERA RCSM RCSM OPDTM[1:0] VPEN CCEN PMD PEN ΕN ΕN STSYNC 010Bh MRCONF11 INIODU INITA CLREFE CLREFE ATSYN SPIIN 0 TYMD GMD N ROT N STOP COFF ΕN SEL 010Ch MRCONF12 FGERD FGERDEC[2:0] FGERACC[3:0] ECEN 010Dh MRCONF13 DWNSET OVPMASK[1:0] 0 PDTSEL[1:0] FSPDTM[1:0] RCSM[7:0] 010Eh MRCONF14 SSCG 010Fh MRCONF15 0 0 0 SSCGCN[1:0] Internal use FN

MRCONF0 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0100h	MRCONF0	FRMD	FRREN	SCEN	PWMF	REGSEL	VCEN	SPCFG	PWMINSEL

FRMD: Forward / reverse selection

FRMD=0: Forward motor rotation FRMD=1: Reverse motor rotation

FRREN: Free-run detection enable

FRREN=0: Motor will start with a BEMF detection.

FRREN=1: Motor will start open loop with startup parameters.

SCEN: Speed feedback control enable

SCEN=0: Speed feedback loop is active. RPM is selected from input duty-cycle.

SCEN=1: Power stage duty-cycle is translated from input duty-cycle.

PWMF: PWM input frequency selection

PWMF=0: Valid PWM input frequency range from 5.3 Hz to 1 kHz.

PWMF=1: Valid PWM input frequency range from 5.3 Hz to 18.5 kHz.

MRCONF1 (Default: 00h)

ADDR Data Name D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] FLSEL[2:0] 0101h MRCONF1 ZPSEL[2:0] PDTC **PWMON**

FLSEL[2:0]: 100% PWM input duty-cycle motor operation

FLSEL[2:0]=0h,7h: Motor is turned off

FLSEL[2:0]=1h: Motor duty-cycle 25%

FLSEL[2:0]=2h: Motor duty-cycle 50%

FLSEL[2:0]=3h: Motor duty-cycle 75%

FLSEL[2:0]=4h: Motor duty-cycle 100%

FLSEL[2:0]=5h: Motor duty-cycle is decided by TAG_L setting

FLSEL[2:0]=6h: Motor duty-cycle is decided by TAG_H setting

ZPSEL[2:0]: 0% PWM input duty-cycle motor operation

ZPSEL[2:0]=0h,7h: Motor is turned off

ZPSEL[2:0]=1h: Motor duty-cycle 25%

ZPSEL[2:0]=2h: Motor duty-cycle 50%

ZPSEL[2:0]=3h: Motor duty-cycle 75%

REGSEL: VCC Voltage selection (5 V / 3.3 V) REGSEL=0: VCC output set to 3.3 V. REGSEL=1: VCC output set to 5 V.

VCEN: VCC regulator enable VCEN=0: VCC is off. VCEN=1: VCC is active.

SPCFG: Speed feedback loop calculation period selection SPCFG=0: Calculate per 360 electrical degrees.

SPCFG=1: Calculate per 120 electrical degrees. (Using speed just before 360 electrical degrees)

PWMINSEL: External input system selection

PWMINSEL=0: HVPIN is used for PWM input. (High voltage)

PWMINSEL=1: LVPIN is used for PWM input. (Low voltage)

ZPSEL[2:0]=4h: Motor duty-cycle 100%

ZPSEL[2:0]=5h: Motor duty-cycle is decided by TAG_L setting

ZPSEL[2:0]=6h: Motor duty-cycle is decided by TAG_H setting

PDTC: Fast Start-up motor operation enable

PDTC=0: Fast start-up operation is disabled.

PDTC=1: Fast start-up operation is enabled.

If PDTC is set, the motor is driven with the duty-cycle programmed into PDTSEL, as soon as EN is high.

This feature is bridging the initial 200 ms of operation until a valid PWM duty-cycle can be decoded.

PWMON: PWM input signal level

PWMON=0: PWM input signal is active high. PWMON=1: PWM input signal is active low.

MRCONF2 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0102h	MRCONF2	FGSTBLMD	FGOF	=[1:0]			FDTI[4:0]		

FGSTBLMD: 6-window stable mode

FGSTBLMD=0: Disable

FGSTBLMD=1: Enable

It affects only for the 6-window mode (WINDSEL = 0). To determine the lead angle timing, the previous BEMF zero cross interval is sampled. When this function is disabled, the sampling is done every 60 degree electrical cycle. When this function is enabled, the sampling is done every 120 degree, and the previous 60 degree interval will be estimated as 1/2of 120 degree interval. It ignores the BEMF asymmetric characteristics (or waveform) between rise and fall.

FGOF[1:0]: FG signal output frequency selection

FGOF[1:0]=0h: One transition per BEMF detection (FG3)

FGOF[1:0]=1h: One transition per every two BEMF detecti

MRCC

tion (FG3/2)	and of hep-off change according to the
ONF3 (Default: 00h)	

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0103h	MRCONF3		CLMAS	SK[3:0]			OCMA	SK[3:0]	

CLMASK[3:0]: Current limit mask time setting

CLMASK[3:0]=0h: Mask Time 0.2 µs

CLMASK[1:0]=x: Mask Time $0.2 * (1 + x) \mu s$

CLMASK[3:0]=Fh: Mask Time 3.2 µs

In order to prevent noise and glitches causing from false current limiting, this mask time can be programmed.

FGOF[1:0]=2h: One pulse per electrical revolution (FG1) FGOF[1:0]=3h: One pulse per every two electrical revolutions (FG1/2)

The FG3 signal is a representation of a successfully detected back-EMF transition which occurs three times during every electrical revolution.

FDTI[4:0]: Dead time selection

FDTI[4:0]=00h: 6.4 µs FDTI[4:0]=x: (6.4 - x * 0.2) µs FDTI[4:0]=1Fh: 0.2 µs

During phase switching between supply and GND it is possible for both low- and high-side drivers to be temporarily on at the same time causing large current spikes. Register FDTI defines a dead time during which both drivers will be kept off during these transitions.

OCMASK[3:0]: Over current mask time setting OCMASK[3:0]=0h: Over current mask time 0.2 µs OCMASK[3:0]=x:

Over current mask time $0.2 * (1 + x) \mu s$

OCMASK[3:0]=Fh: Over current mask time 3.2 µs

The time to detect over-current can be programmed with OCMASK.

MRCONF4 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0104h	MRCONF4		SROFI	FT[3:0]			CRMA	SK[3:0]	

SROFFT[3:0]: Synchronous rectification off time setting for reverse current detection

SROFFT[3:0]=0h: Synchronous rectification off time 4 FG

SROFFT[3:0]=x:

Synchronous rectification off time 4 * (1 + x) FG

SROFFT[3:0]=Fh: Synchronous rectification off time 64 FG

CRMASK[3:0]: Reverse current detection mask time setting CRMASK[3:0]=0h: Mask time 3.2 µs CRMASK[3:0]=x: Mask time $0.2 * (16 - x) \mu s$ CRMASK[3:0]=Fh: Mask time 0.2 µs

MRCONF5 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0105h	MRCONF5	SYNCEN	PPDOSEL	FSCD	T[1:0]		FSCD	L[3:0]	

SYNCEN: Synchronous rectification enable

SYNCEN=0: Synchronous rectification is ON. (Synchronous rectification mode)

SYNCEN=1: Synchronous rectification is OFF. (Asynchronous rectification mode)

SYNCEN defines synchronous rectification mode for the output stage. In synchronous rectification mode, the high and low side switches are always switched in complementary mode. In asynchronous rectification mode, both complementary switches may be off and the motor current is circling through the body diodes.

PPDOSEL: DIAG output selection at PWM input abnormality

PPDOSEL=0: Abnormal PWM input detected result is reflected to DIAG pin.

PPDOSEL=1: Abnormal PWM input detected result is not reflected to DIAG pin.

FSCDT[1:0]: FET short protection detection time setting

FSCDT[1:0]=0h: Detection time 3.2 µs FSCDT[1:0]=1h: Detection time 6.4 µs

FSCDT[1:0]=11: Detection time 0.4 μ s FSCDT[1:0]=2h: Detection time 9.6 μ s

SCDT[1.0] = 2h. Detection time 9.0 μ s

FSCDT[1:0]=3h: Detection time 12.8 μs

By monitoring FET Vds, the time from FET's ON signal output until detecting shorted status can be set with FSCDT.

FSCDL[3:0]: FET short protection detection voltage setting

FSCDL[3:0]=0h: Detection voltage 0.1 V FSCDL[3:0]=x: Detection voltage 0.1 * (1 + x) V FSCDL[3:0]=Fh: Detection voltage 1.6 V

MRCONF6 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0106h	MRCONF6	0		CPTM[3:0]				H[1:0]	TSTS

CPTM[3:0]: Open-loop startup timeout setting

CPTM[3:0]=0h: Detection time 0.4 s / Restart time 3.2 s CPTM[3:0]=x: Detection time 0.4 * (1 + x) s / Restart time 0.4 * 8 * (1 + x) s

CPTM[3:0]=Fh: Detection time 6.4 s / Restart time 51.2 s

A locked rotor protection circuit is embedded in order to protect IC and Motor during locked rotor conditions. A locked rotor is detected by counting the time the IC is in Start-up mode (without BEMF detection). If no BEMF is detected for the time programmed into CPTM register, the motor is turned off and a locked rotor is flagged.

In auto-recovery mode, the motor will remain off for eight times the Open Loop Startup Timeout before another startup is attempted.

THTH[1:0]: *External FET Temperature detection voltage setting*

THTH[1:0]=0h: Detection voltage 0.35 V

THTH[1:0]=1h: Detection voltage 0.30 V

THTH[1:0]=2h: Detection voltage 0.25 V

THTH[1:0]=3h: Detection voltage 0.20 V

LV8961H has an embedded comparator to monitor the external power FET temperature via an external thermistor. If the voltage at TH exceeds the threshold shown in the table, the power stage is shut off and a THPO error is triggered.

TSTS: Junction temperature warning and shutoff levels

TSTS=0: Over temperature warning occurs at 125°C(typ), shutdown at 150°C (typ).

TSTS=1: Over temperature warning occurs at 150°C (typ), shutdown at 175°C (typ).

The LV8961H monitors its own junction temperature to protect against over-temperature damage. Two different warning and shut-off levels can be selected.

MRCONF7 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0107h	MRCONF7	WDTEN	WDTSEL[2]			WDT	[5:0]		

TAG H

TAG H registers.

WDT[5:0]: Watchdog timer setting

WDT[5:0]=00h: Detection time 1.6 ms

WDT[5:0]=x:Detection time 1.6 * (1 + x) ms

WDT[5:0]=3Fh: Detection time 102.4 ms

end detection time, a watchdog error is issued.

WDTEN: Watchdog enable

WDTEN=0: Watchdog is disabled. WDTEN=1: Watchdog is active. This bit can enable or disable the watchdog.

WDTSEL[2:0]: Operation mode selection after a watchdog timeout

1bit [2] of WDTSEL[2:0] register

WDTSEL[2:0]=0h,7h: Motor duty-cycle 0% WDTSEL[2:0]=1h: Motor duty-cycle 25% WDTSEL[2:0]=2h: Motor duty-cycle 50% WDTSEL[2:0]=3h: Motor duty-cycle 75% WDTSEL[2:0]=4h: Motor duty-cycle 100%

WDTSEL[2:0]=5h: Motor duty-cycle is indicated by TAG_L

MRCONF

ond [=]	meter any eyere	is marcarea of		
IF8 (Default: 0	00h)			

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0108h	MRCONF8	VCLVPEN	CPEN	THWEN	THPEN	FSPEN	OVPEN	OCPEN	DIAGSEL

xEN: Error and warning mask

VCLVPEN: VCC under-voltage protection enable. CPEN: Motor constraint protection enable. THWEN: Thermal warning output enable. THPEN: Thermal protection enable. FSPEN: FET short protection enable. OVPEN: Over-voltage protection enable. OCPEN: Over-current protection enable.

The higher seven bits in this register allows enabling and disabling of various errors and warnings. Setting xEN=1 masks the error, setting xEN=0 activates the error.

WDTSEL[2:0]=6h: Motor duty-cycle is indicated by

If this register is set, a watchdog timeout causes Halt mode

Writing 00h to register MRRST(Address = 0300h) resets

the watchdog timer. When the watchdog timer reaches its

(0% drive) or Drive mode. When Drive mode is selected, the motor duty-cycle is defined by this register and TAG L,

DIAGSEL: DIAG output polarity selection

DIAGSEL=0: The DIAG pin is active low. DIAGSEL=1: The DIAG pin is active high. This bit selects the polarity of the DIAG signal. The DIAG pin is OPEN drain.

MRCONF9 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0109h	MRCONF9	RCVTM	l[1:0]	WDTS	EL[1:0]	CPLT	FSPLT	OCPLT	DLTO

RCVTM[1:0]: Recovery time setting from abnormal rotation speed protection

RCVTM[1:0]=0h: Recovery time 0 s

RCVTM[1:0]=1h: Recovery time 5 s

RCVTM[1:0]=2h: Recovery time 10 s

RCVTM[1:0]=3h: Recovery time 20 s

IC will restart from free run detection when recovery time elapses since FG error detection.

WDTSEL[1:0]: Operation mode selection after a watchdog timeout

2bit [1:0] of WDTSEL[2:0] register See MRCONF7 register.

xPLT: Protection latch selection CPLT=0: Auto recover after motor constraint protection.

CPLT=1: Latch the IC off after motor constraint protection.

FSPLT=0: Auto recover after FET short protection.

FSPLT=1: Latch the IC off after FET short protection.

OCPLT=0: Auto recover after over-current protection.

OCPLT=1: Latch the IC off after over-current protection.

Motor constraint, FET short, and Over-current can cause intolerable large-current flow in the application. To prevent repeated current flow during retry attempts, it is possible to latch these errors.

DLTO: Diagnostic output mode selection

DLTO=0: Trigger DIAG for any non-masker error or warning.

DLTO=1: Trigger DIAG only for latched errors as defined by above xPLTs.

MRCONF10 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
010Ah	MRCONF10	VDHOVPEN	OOPOEN	CLDOEN	FGERACCEN	RCSMPMD	RCSMPEN	OPDT	M[1:0]

xEN: Error and warning mask

VDHOVPEN: VDH over-voltage protection enable.

OOPOEN: Open-connector protection enable.

CLDOEN: Current-limit detection output enable.

The higher three bits in this register allows enabling and disabling of various errors and warnings. Setting xEN=1 masks the error, setting xEN=0 activates the error.

RCSMPMD: Motor rotation mode after detecting register check–sum error

FGERACCEN: FG error detection at acceleration enable FGERACCEN=0: FG error detection at acceleration is disabled.

FGERACCEN=1: FG error detection at acceleration is enabled

RCSMPMD=0: Motor is still running.

RCSMPMD=1: Motor is turned off.

Register check-sum error information is always output to DIAG when RCSMEN register is set, and it is independent of RCSMPMD setting.

RCSMPEN: Register check-sum function enable at motor rotation

RCSMPEN=0: Register check–sum calculation is done at following timing.

- Device startup
- Writing OTP

• OTP download by writing MRODL=00h RCSMPEN=1: Register check-sum calculation is done at following timing

following timing.

- Device startup
- Writing OTP
- OTP download by writing MRODL=00h
- 1 ms periodically at motor running

OPDTM[1:0]: Open-connector detection time setting OPDTM[1:0]=0h: Detection time 160 μs OPDTM[1:0]=1h: Detection time 320 μs OPDTM[1:0]=2h: Detection time 640 μs

OPDTM[1:0]=3h: Detection time 1280 μ s

When the motor cannot be started for a certain period of time and it is in the startup mode, this IC flows current to each coil, then determines IC is in a constraint state when current flows, or an open state when no current flows. The detection time for the current to flow can be selected by OPDTM.

MRCONF11 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
010Bh	MRCONF11	INIODUT YMD	INITAGMD	CLREFEN _ROT	CLREFEN _STOP	ATSYNC OFF	0	STSYNCEN	SPIINSEL

INIODUTYMD: Output PWM duty during startup (soft-start function) INIODUTYMD=0: Input PWM duty

INIODUTYMD=1: Ramp up from 0%

INITAGMD: Max output PWM duty during startup INITAGMD=0: Input PWM duty INITAGMD=1: PDTSEL setting

CLREFEN_ROT: Enable/Disable current limitter operation in free-run status (soft-start function) CLREFEN_ROT=0: Disable CLREFEN_ROT=1: Enable

CLREFEN_STOP: Enable/Disable current limitter operation in stop status (soft-start function) CLREFEN_STOP=0: Disable CLREFEN_STOP=1: Enable ATSYNCOFF: Automatic synchronous rectification off disable setting

ATSYNCOFF=0: Automatic synchronous rectification off function is enabled.

ATSYNCOFF=1: Automatic synchronous rectification off function is disabled.

STSYNCEN: Synchronous rectification mode setting for soft-start

STSYNCEN=0: Synchronous rectification at soft-start depends on SYNCEN.

STSYNCEN=1: Synchronous rectification at soft-start is forced off.

SPIINSEL: Input duty source selection

SPIINSEL=0: Input duty from pin. (HVPIN/LVPIN) SPIINSEL=1: Input duty from PWMDTIN register (concatenation of MRCTL1[1:0] and MRCTL0[7:0]).

MRCONF12 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
010Ch	MRCONF12	FGERDECEN	F	GERDEC[2:0	D]		FGERA	CC[3:0]	

FGERDECEN: FG error detection at deceleration enable FGERDECEN=0: FG error detection at deceleration is disabled.

FGERDECEN=1: FG error detection at deceleration is enabled

FGERDEC[2:0]: *FG* error detection at deceleration mode setting

FGERDEC[2:0]=0h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 1.25.

FGERDEC[2:0]=1h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 1.5.

FGERDEC[2:0]=2h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 1.75.

FGERDEC[2:0]=3h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 2.

FGERDEC[2:0]=4h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 3.

FGERDEC[2:0]=5h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 4.

FGERDEC[2:0]=6h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 6.

FGERDEC[2:0]=7h: Limit of zero-cross detection time is (previous 60 electrical degrees period) * 8.

FGERACC[3:0]: *FG* error detection at acceleration mode setting

FGERACC[3:0]=0h:1 time detecting zero-cross of BEMF when the moment the Mask signal is opened.

FGERACC[3:0]=x: (1 + x) consecutive time detecting zero-cross of BEMF when the moment the Mask signal is opened.

FGERACC[3:0]=Fh: 16 consecutive time detecting zero-cross of BEMF when the moment the Mask signal is opened.

MRCONF13 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
010Dh	MRCONF13	0	DWNSET	PDTSEL[1:0]		FSPDT	M[1:0]	OVPMA	SK[1:0]

DWNSET: Mode setting at the time of speed feedback deceleration

DWNSET=0: Normal mode

DWNSET=1: Synchronous rectification OFF mode

During speed control mode, motor deceleration can lead to energy recuperation and temporary voltage spikes. DWNSET allows for various degrees of energy recuperation:

• Normal Mode

Results in a tightest control and maximum energy recuperation. The application circuit has to be able to absorb the energy generated.

• Synchronous rectification OFF Mode

The motor is essentially not driven until it has reached the target speed. This does not feed any energy back into the supply, but may take a long time if motor inertia is high and losses are low.

PDTSEL[1:0]: Fast Start-up motor operation

PDTSEL[1:0]=0h: Motor duty-cycle 25%

PDTSEL[1:0]=1h: Motor duty-cycle 50%

PDTSEL[1:0]=2h: Motor duty-cycle 75%

PDTSEL[1:0]=3h: Motor duty-cycle 100%

If PDTC is set, the motor is driven with the duty-cycle programmed into PDTSEL, as soon as EN is high.

This feature is bridging the initial 200 ms of operation until a valid PWM duty-cycle can be decoded.

FSPDTM[1:0]: FET short protection debounce time setting

FSPDTM[1:0]=0h: Debounce time 1.6 μs FSPDTM[1:0]=1h: Debounce time 3.2 μs FSPDTM[1:0]=2h: Debounce time 4.8 μs FSPDTM[1:0]=3h: Debounce time 6.4 μs

OVPMASK[1:0]: VS, VDH over-voltage detection time setting

OVPMASK[1:0]=0h: Detection time 0.8 μs OVPMASK[1:0]=1h: Detection time 1.6 μs OVPMASK[1:0]=2h: Detection time 3.2 μs OVPMASK[1:0]=3h: Detection time 6.4 μs

MRCONF14 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
010Eh	MRCONF14				RCSN	/ [7:0]			

RCSM[7:0]: Register check-sum for error detection

This register is the data downloaded from OTP memory ORCONF34. Basically, users don't need to care of it.

MRCONF15 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
010Fh	MRCONF15	0	0	0	SSCGEN	SSCG	CN[1:0]	Interna	al use

SSCGEN: Charge pump spread spectrum enable

SSCGEN=0: Spread spectrum is OFF.

SSCGEN=1: Spread spectrum is ON.

The Charge pump may have radiation noise issues due to switching at 52.1 kHz(typ). By activating SSCG it is possible to disperse frequency components of the charge pump switching frequency.

SSCGCN[1:0]: SSCG clock number setting

SSCGCN[1:0]=0h: Change CPCLK frequency every 1 clock.

SSCGCN[1:0]=1h: Change CPCLK frequency every 2 clocks.

SSCGCN[1:0]=2h: Change CPCLK frequency every 4 clocks.

SSCGCN[1:0]=3h: Change CPCLK frequency every 8 clocks.

Figure 21.

	Addoor										
Write Enable	Limitation by OBSY	ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
Read Only	Read Only	0200h	MRACS	0	0	0	0	0	RCSM EN	OSAE NB	MSAE NB
		0201h	MRDIAG0	CPO	THPO	FSPO	VGLLV PO	CHPLV PO	VSOV PO	VSLVPO	OCPO
		0202h	MRDIAG1	PWMPO	VCLVPO	RCSM PO	OOPO	CLDO	WDTPO	THSPO	THWPO
		0203h	MRDIAG2	0	0	OTPAZ	REGAZ	FGER PO	SPCO	STUPO	VDHO VPO
		0204h	MRDIAG3	0	0	0	0	0	0	CHPO VPO	CRDT O
		0205h	MRSTAT0				STATU	JS[7:0]		-	
		0206h	MRSTAT1				STATU	S[15:8]			
		0207h	MRSTAT2	2 STATUS[23:16]							
Always OK	Always OK	0300h	MRRST	Write C	00h: Reset \	NDT / Write	e 55h Rese Reset I	t Register 0 atch off	Check-sum	Error / Writ	e FFh:
		0301h	MRCTL0				PWMD	TIN[7:0]			
		0302h	MRCTL1	BRK	0	0	0	0	0	PWMD	FIN[9:8]
		0303h	MRCTL2				Intern	al use			
		0304h	MRCTL3				Intern	al use			
		0305h	MRCTL4	0	0	0	0	0	0	Intern	al use
		0306h	MRCTL5	0	0	0	0		STATS	EL[3:0]	
		0307h	MRCTL6	L6 BAREG[7:0]							
		0308h	MRCTL7				BARE	G[15:8]			
EN=L	OBSY=L	0400h	MRODL	DL Write 00h: Execute OTP data download, Write FFh: Execute register check-sum calculation							
		0401h	MRORB	0	0	0	0	0	0	ORBEN	ORBLV

SYSTEM DIAGNOSTICS AND TEST REGISTER OVERVIEW

MRACKS

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0200h	MRACS	0	0	0	0	0	RCSMEN	OSAENB	MSAENB

This data, which is a read only register, is downloaded from OTP memory ORCONF33.

$\langle BR \rangle$

RCSMEN: Register check–sum diagnostic function enable RCSMEN=0: Register check–sum diagnostic function is disabled.

RCSMEN=1: Register check-sum diagnostic function is enabled

OSAENB: OTP Register access enable OSAENB=0: Write access permitted. OSAENB=1: Write access denied. OSAENB controls write access to the OTP registers.

MSAENB: Main register access enable MSAENB=0: Write access permitted. MSAENB=1: Write access denied.

MSAENB controls write access to the main registers.

MRDIAG0

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0201h	MRDIAG0	CPO	THPO	FSPO	VGLLVPO	CHPLVPO	VSOVPO	VSLVPO	OCPO

CPO: Locked rotor (constraint) protection output CPO=0: Normal

CPO=1: Detect locked rotor error

No back–EMF was detected during the entire open–loop startup time as programmed in CPTM. Either the rotor is blocked, or startup parameters are not correct. The drivers are disabled.

THPO: FET thermal protection output THPO=0: Normal THPO=1: Detect FET thermal error

FSPO: FET short protection output

FSPO=0: Normal

FSPO=1: Detect FET short error

The drain-source voltage threshold across one of the external power FETs has been exceeded during operation. The threshold voltage is programmed in register FSCDL. Errors are suppressed for a blanking time as programmed in register FSCDT, both in register MRCONF5.

For the high-side FETs this voltage is measured between pin VS and the corresponding phase connection UOUT, VOUT, WOUT. For the low-side FETs it is measured between the phase connection and the pins SUL, SVL and SWL. Make sure to minimize potential voltage drops in the sense paths.

VGLLVPO: VGL low voltage protection output

VGLLVPO=0: Normal

VGLLVPO=1: Detect VGL under voltage error

The voltage at VGL has dropped below 5.5 V (max). The drivers are disabled to protect against low gate enhancement.

CHPLVPO: CHP low voltage protection output CHPLVPO=0: Normal

CHPLVPO=0: Normal

CHPLVPO=1: Detect CHP low voltage error

The voltage between VS and VCP has dropped below 5.5 V (max). The drivers are disabled to protect against low gate enhancement.

VSOVPO: VS over-voltage protection output

VSOVPO=0: Normal

VSOVPO=1: Detect VS over voltage error

The voltage at VS has exceeded 28 V (min). The driver stage and the charge pump are disabled to protect against overvoltage at the charge–pump.

VSLVPO: VS low voltage protection output

VSLVPO=0: Normal

VSLVPO=1: Detect VS under voltage error

The voltage at VS has fallen below 5.1 V (max). The driver stage is disabled to protect against internal threshold issues.

OCPO: Over-current protection output

OCPO=0: Normal

OCPO=1: Detect over current error

The voltage between current sense pins RFSENS and RF has exceeded over-current threshold voltage for longer than the overcurrent limit mask time programmed in register OCMASK in MRCONF3. The driver stage is disabled to protect against damage.

MRDIAG1

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0202h	MRDIAG1	PWMPO	VCLVPO	RCSMPO	OOPO	CLDO	WDTPO	THSPO	THWPO

PWMPO: PWM input abnormal protection output PWMPO=0: Normal

PWMPO=0: Normal

PWMPO=1: Detect PWM input error

The PWM input does not oscillate with the appropriate frequency or is steady high (100%) or low (0%). Depending on the settings FLSEL, ZPSEL in MRCONF1, the driver stage will turn off, or operate at a predefined duty-cycle (emergency mode).

VCLVPO: VCC under-voltage protection output

VCLVPO=0: Normal

VCLVPO=1: Detect VCC under-voltage error

VCC under-voltage error. Depending on the setting of REGSEL in MRCONF0, VCC is either 5 V (typ) or 3.3 V (typ). Under-voltage is flagged if VCC falls below 4.2 V (max) or 2.7 V (max) respectively.

RCSMPO: Register check–sum error protection output RCSMPO=0: Normal

RCSMPO=1: Detect register check-sum error

RCSMPO is set when EN=1, RCSMEN=1, RCSMPEN=1 and register check-sum error is detected. If RCSMPMD is set, the driver stage will be off.

RCSMPO is cleared by writing 55h to register MRRST.

OOPO: Open connector detection protection output OOPO=0: Normal

OOPO=1: Detect open connector

CLDO: Current limitation detection output

CLDO=0: Normal

CLDO=1: Detect current limitation

WDTPO: Watchdog timer protection output WDTPO=0: Normal

WDTPO=1: Detect WDT error

The watchdog has timed out. This flag will be high if the watchdog was not re-set during the time defined by register WDT in MRCONF7. If the watchdog is enabled the driver stage will either be off or run in emergency mode with the settings defined by register WDTSEL in MRCONF7, MRCONF9.

Flag WDTPO is high even if the watchdog is disabled.

THSPO: Thermal shut down error protection output

THSPO=0: Normal

THSPO=1: Detect thermal shut down error

The IC temperature is too high and the drivers are shut off. The over-temperature shutoff level is defined by TSTS in MRCONF6 to be either 150°C (min.) or 175°C (min.).

THWPO: Thermal warning protection output THWPO=0: Normal THWPO=1: Detect thermal warning error

MRDIAG2

Α	DDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
02	203h	MRDIAG2	0	0	OTPAZ	REGAZ	FGERPO	SPCO	STUPO	VDHOVPO

OTPAZ: OTP data all 0 output

OTPAZ=0: OTP contains at least one zapped bit. OTPAZ=1: Detect that OTP output is all 0.

REGAZ: Register data all 0 output

REGAZ=0: Registers which data is downloaded from OTP contains at least 1-bit one.

REGAZ=1: Detect that registers which data is downloaded from OTP is all 0.

FGERPO: FG error protection output

FGERPO=0: The absolute value of the speed error is not detected under FGERACC/FGERRDEC conditions.

FGERPO=1: The absolute value of the speed error is detected under FGERACC/FGERRDEC conditions.

MRDIAG3

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0204h	MRDIAG3	0	0	0	0	0	0	CHPOVPO	CRDTO

CHPOVPO:Charge-pumpover-voltage protection output CHPOVPO=0:Normal CHPOVPO=1: Detect charge-pump over voltage error

CRDTO: Reverse current protection output CRDTO=0: Normal CRDTO=1: Detect reverse current

SPCO: Speed error out of the range

or less than target * 1/16.

STUPO: Start-up status output

VDHOVPO=0: Normal

STUPO=0: Back EMF has been detected.

STUPO=1: No back EMF has been detected, yet. This flag indicates open-loop startup operation.

VDHOVPO: VDH over-voltage protection output

VDHOVPO=1: Detect VDH over voltage error

than target * 1/16.

The IC temperature has exceeded the warning level. The

SPCO=0: The absolute value of the speed error is equal to

SPCO=1: The absolute value of the speed error is greater

over-temperature warning level is defined by TSTS in

MRCONF6 to be either 125°C (min.) or 150°C (min.).

MRSTAT0 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0205h	MRSTAT0				STATU	JS[7:0]			

MRSTAT1 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0206h	MRSTAT1				STATU	S[15:8]			

MRSTAT2 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0207h	MRSTAT2				STATUS	S[23:16]			

STATUS[23:0]: Internal status output

Output of STATUS register is selected by STATSEL register in MRCTL5.

2nd and 3rd bytes are hold at temporary register when 1st byte is read to keep simultaneity of status data.

MRCSMSD

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0208h	MRCSMSD				RCSMS	SD[7:0]			

RCSMSD[7:0]: Register Check-sum calculation seed for user

This register gives check-sum code of the hidden registers whose data are downloaded from OTP memory. This register value will be used as a calculation seed of check–sum (ORCONF34) for user area of OTP memory, to include both hidden and user area of the OTP memory. How to activate the register check–sum feature as well as the usage of this register RCSMSD is described in the section "<u>Register Check–sum Feature</u>".

MRRST

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0300h	MRRST	Write 0	00h: Reset WI	DT / Write 55h	n Reset regist	er check-sum	n error / Write	FFh: Reset la	tch off

MRRST[7:0]: Reset for WDT and latch off by protection Write MRRST[7:0]=00h: Reset WDT

Write MRRST[7:0]=55h: Reset driver off by register check-sum error

MRCTL0 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0301h	MRCTL0				PWMD	FIN[7:0]			

MRCTL1 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0302h	MRCTL1	BRK	0	0	0	0	0	PWMD1	FIN[9:8]

BRK: Short brake enable

BRK=0: Short brake is disabled.

BRK=1: Short brake is enabled.

Note that when short brake is executed, an over current flows due to the electromotive force generated when the motor rotates. PWMDTIN[9:0]: PWM duty input register PWMDTIN[9:0]=000h: Duty-cycle 0% to 0.098% PWMDTIN[9:0]=x: Duty-cycle (x * 100 / 1024) % to ((x+1) * 100 / 1024) % PWMDTIN[9:0]=3FFh: Duty-cycle 99.9% to 100%

Write MRRST[7:0]=FFh: Reset latch off

Write MRRST[7:0]=others: No operation

MRCTL5 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0306h	MRCTL5	0	0	0	0		STATS	EL[3:0]	

STATSEL[3:0]: Status data selection

STATSEL selects status data output to STATUS[23:0] (concatenation of MRSTAT2[7:0], MRSTAT1[7:0] and MRSTAT0[7:0]).

STATUS[23:8] are latched when STATUS[7:0] is read.

If STATSEL is changed before reading STATUS[23:8], they hold value which is indicated by previous STATSEL until STATUS[7:0] will be read.

If STATUS[23:8] is read soon after reset, they returns 0000h.

STATUS Register Description

Users can know various operation status, such as rotation period/frequency, input duty cycle, PWM output period, lead angle control etc. by reading out the register STATUS[23:0] which is divided into three bytes and stored in the address 0205h to 0207h. The register STATSEL[3:0] stored in the address 0306h determines which status

parameter is allocated to the STATUS register. When read access to the address 0205h (first byte of STATUS [23:0]) was initiated, the register data in the following address 0206h and 0207h will not change during the sequential read access to these addresses so that the simultaneity of three bytes which form STATSEL[23:0] is secured.

STATUS REGISTER DESCRIPTION

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0205h	MRSTAT0				STATU	JS[7:0]			
0206h	MRSTAT1				STATU	S[15:8]			
0207h	MRSTAT2				STATUS	6[23:16]			
0306h	MRCTL5	0	0	0	0		STATS	EL[3:0]	

STATUS Register Map

All data which can be read from STATUS register are assigned as following table.

STATUS REGISTER DESCRIPTION

STA	ATSEL[3:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
0h	MRSTAT0			•	PROT			•		
	MRSTAT1				PROT	_T[15:8]				
	MRSTAT2	0	0	0	0		PROT_T	[19:16]		
1h	MRSTAT0			•	PROT	F[7:0]				
	MRSTAT1	0				PROT_F[14:8]				
2h	MRSTAT0				IDUTY_I	DUTY[7:0]				
	MRSTAT1	0	0	0	0	0	0	IDUTY_I	DUTY[9:8]	
3h	MRSTAT0				PWMPC	NT_LT[7:0]				
	MRSTAT1				PWMPCN	NT_LT[15:8]				
	MRSTAT2	0	0			PWMPCNT	_LT[21:16]			
4h	MRSTAT0				PWMHC	NT_LT[7:0]				
	MRSTAT1				PWMHCN	NT_LT[15:8]				
	MRSTAT2	0	0		PWMHCNT_LT[21:16]					
5h	MRSTAT0			•	TAG1[7:0]					
	MRSTAT1	0				TAG1[14:8]				
6h	MRSTAT0				PIDO	LT[7:0]				
	MRSTAT1	0	0	0	0	0	0	PIDOI	_T[9:8]	
7h	MRSTAT0		<u>.</u>	-	LACTL_	EPOS[7:0]		-		
8h	MRSTAT0	0	0	0	0	NO_OPEN	OPEN_W	OPEN_V	OPEN_U	
9h	MRSTAT0		L		REGCRC	_RSLT[7:0]	1		1	
Ah	MRSTAT0				ODUTYMAX[7:0]					
	MRSTAT1	0	0	0	0 0 0 0 0DUTYMAX[9:8]					
Bh	MRSTAT0	0	0	0			_ANUM0[4:0]	•		
Ch	MRSTAT0	0	0	0			_ANUM1[4:0]			

STATUS REGISTER DESCRIPTION

STA	TSEL[3:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
Dh	MRSTAT0	0	0	0	0	0	MST04_ WNDCH NG_EN	MST02_ BEMFEN	MST02_ HIZON
Eh	MRSTAT0				TAG	0[7:0]			
	MRSTAT1	OPENLX 0				TAG0[14:8]			

STATSEL = 0h

STATUS	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0				PROT	_T[7:0]			
[15:8]: MRSTAT1				PROT_	T[15:8]			
[23:16]: MRSTAT2	0	0	0	0		PROT_	Г[19:16]	

STATSEL = 1h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
[7:0]: MRSTAT0			PROT_F[7:0]						
[15:8]: MRSTAT1	0		PROT_F[14:8]						
[23:16]: MRSTAT2	0	0 0 0 0 0 0 0					0		

PROT_T[19:0]: Rotation period output for speed feedback loop control

Example 1)

PROT_T = $625 \rightarrow PROT_F = 24000$ (RPM, upper limit) Example 2)

 $PROT_T = 768432 \rightarrow PROT_F = 19 (RPM)$

PROT_F[15:0]: Rotation frequency output for speed feedback loop control (4 pole rpm)

Rotation Period T (sec) = PROT_T
$$\times \frac{1}{500 \text{ kHz}} \times 2 =$$

= $\frac{60}{\text{PROT}_F (\text{Hz})}$

STATSEL = 2h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0		IDUTY_IDUTY[7:0]						
[15:8]: MRSTAT1	0	0	0	0	0	0	IDUTY_IC	DUTY[9:8]
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

IDUTY_IDUTY[9:0]: Input duty cycle IDUTY_IDUTY[9:0] = 000h: Input duty cycle = 1/1024 IDUTY_IDUTY[9:0] = 3FFh: Input duty cycle = 1024/1024 (100%)

STATSEL = 3h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
[7:0]: MRSTAT0		PWMPCNT_LT[7:0]							
[15:8]: MRSTAT1		PWMPCNT_LT[15:8]							
[23:16]: MRSTAT2	0	0	PWMPCNT_LT[21:16]						

STATSEL = 4h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0		PWMHCNT_LT[7:0]						
[15:8]: MRSTAT1		PWMHCNT_LT[15:8]						
[23:16]: MRSTAT2	0	0	PWMHCNT_LT[21:16]					

PWMHCNT_LT[21:0]: PWM input high-period count

PWMPCNT_LT[21:0]: PWM input whole-period count

 $IDUTY_IDUTY = \frac{PWMHCNT_LT}{PWMPCNT_LT} \times 1024$

STATSEL = 5h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
[7:0]: MRSTAT0		TAG1[7:0]							
[15:8]: MRSTAT1	0		TAG1[14:8]						
[23:16]: MRSTAT2	0	0 0 0 0 0 0					0		

speed limit)

TAG1[14:0]: Target speed/output duty cycle for driving (Selected)

TAG1[14:0] = 0000h: Output duty cycle = 0% (Target speed = 0 RPM)

STATSEL = 6h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0		PIDOLT[7:0]						
[15:8]: MRSTAT1	0	0	0	0	0	0	PIDOLT[9:8]	
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

PIDOLT[9:0]: PI feedback calculation result of Output PWM duty

PIDOLT[9:0] = 3FFh: Output PWM duty cycle = 100%

TAG1[14:0] = 7FFFh: Output duty cycle = MAX (Target

PIDOLT[9:0] = 000h: Output PWM duty cycle = 0%

STATSEL = 7h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
[7:0]: MRSTAT0		LACTL_EPOS[7:0]							
[15:8]: MRSTAT1	0	0	0	0	0	0	0	0	
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0	

LACTL_EPOS[7:0]: Energizing position (Exciting phase position)

 $(00h \leq REG_EPOS[7:0] \leq BFh)$

REG_EPOS[7:0] = 00h: Energizing position = 0 deg

REG_EPOS[7:0] = x: Energizing position = (x * 1.875) deg

REG_EPOS[7:0] = BFh: Energizing position = 358.125 deg

STATSEL = 8h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0	0	0	0	0	NO_OPEN	OPEN_W	OPEN_V	OPEN_U
[15:8]: MRSTAT1	0	0	0	0	0	0	0	0
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

NO_OPEN: All phase connector connected output (High Active)

NO_OPEN = 0: Any of phase connecter is open

NO_OPEN = 1: All phase connectors are connected

OPEN_W: W phase connector open detection output (High Active)

OPEN_W = 0: W phase connecter is open

OPEN_W = 1: W phase connecter is connected

OPEN_V: V phase connector open detection output (High Active)

OPEN_V = 0: V phase connecter is open

OPEN_V = 1: V phase connecter is connected

OPEN_U: U phase connector open detection output (High Active)

OPEN_U = 0: U phase connecter is open

OPEN_U = 1: U phase connecter is connected

STATSEL = 9h

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0		REGCRC_RSLT[7:0]						
[15:8]: MRSTAT1	0	0	0	0	0	0	0	0
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

REGCRC_RSLT: Register CRC (Cyclic Redundancy Check) Result

The remainder of CRC calculation performed on the OTP registers is stored in REGCRC_RSLT [7:0].

STATSEL = Ah

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0		ODUTYMAX[7:0]						
[15:8]: MRSTAT1	0	0	0	0	0	0	ODUTYN	/AX[9:8]
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

ODUTYMAX[9:0]: Maximum output duty data

ODUTYMAX[9:0] = 000h: Duty = 0 %

ODUTYMAX[9:0] = x: Maximum output duty = 0.09766 * x %

ODUTYMAX[9:0] = 3FFh: Maximum output duty = 99.902 %

ODUTYMAX limits the duty range of U/V/W output.

STATSEL = Bh

x deg

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0	0	0	0	LANUM0[4:0]				
[15:8]: MRSTAT1	0	0	0	0	0	0	0	0
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

LANUM0[4:0]: Lead angle number for monitoring LANUM0[4:0] = 00h: Duty = 0 deg LANUM0[4:0] = x: Maximum output duty = 1.875 * LANUM0[4:0] = 1Fh: Maximum output duty = 58.125 deg

LANUM0 is the lead angle target determined based on the output duty cycle.

STATSEL = Ch

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0	0	0	0	LANUM1[4:0]				
[15:8]: MRSTAT1	0	0	0	0	0	0	0	0
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

LANUM1[4:0]: Lead angle number for driving

LANUM0[4:0] = 00h: Duty = 0 deg

LANUM0[4:0] = x: Maximum output duty = 1.875 * x deg

LANUM0[4:0] = 1Fh: Maximum output duty = 58.125 deg

STATSEL = Dh

LANUM1 is the actual lead angle value which characteristics are determined based on the output duty cycle and the setting of LASEL_L, LASEL_H, and LASEL_LIM.

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
[7:0]: MRSTAT0	0	0	0	0	0	MST04_WNDCHNG_EN	MST02_BEMFEN	MST02_HIZON
[15:8]: MRSTAT1	0	0	0	0	0	0	0	0
[23:16]: MRSTAT2	0	0	0	0	0	0	0	0

MST04_WNDCHNG_EN: Window number change enable state (6-window stable, 3-window, 2-window or

1-window mode)

MST04_WNDCHNG_EN = 0: Window selection according to WINDSEL is disabled

MST04_WNDCHNG_EN = 1: Window selection according to WINDSEL is enabled

MST04_WNDCHNG_EN is the internal state monitor which indicates whether window number change is enabled or not.

MST02_BEMFEN: BEMF zero-cross detection enable MST02_BEMFEN = 0: BEMF zero-cross detection is disabled MST02_BEMFEN = 1: BEMF zero-cross detection is enabled

MST02_BEMFEN is the internal state monitor which indicates whether BEMF zero-cross detection is enabled or not.

MST02_HIZON: In Hi-z window state

MST02_HIZON = 0: Not in Hi–z window MST02_HIZON = 1: In Hi–z window

MST02_HIZON is the internal state monitor which indicates whether now in the Hi–z state or not.

STATSEL = Eh

STATUS[23:0]	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
[7:0]: MRSTAT0				TAGO	D[7:0]				
[15:8]: MRSTAT1	OPENLX0		TAG0[14:8]						
[23:16] : MRSTAT2	0	0	0	0	0	0	0	0	

TAG0[7:0]: Target speed / output duty for monitor

TAG1[14:0] = 0000h: Output duty = 0% (Target speed = 0 RPM)

TAG1[14:0] = 7FFFh: Output duty = MAX (Target speed limit)

OPENLX0: Open-loop signal for TAG0 (Low Active) OPENLX0 = 0: TAG0 is generated under Open-loop

condition

OPENLX0 = 1: TAG0 is generated under Closed-loop condition

MRCTL6 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0307h	MRCTL6				BARE	G[7:0]			

MRCTL7 (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0308h	MRCTL7				BARE	G[15:8]			

BAREG[15:0]: Base address register for SPI short format access

This register value is used as register address when BASEL[3:0] field of SPI format is set to Fh.

MRODL

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0400h	MRODL	ODL[7:0] V	Vrite 00h: Exe	cute OTP dat	a download, V	Write FFh: Exe	ecute Registe	r check-sum	calculation

ODL[7:0]: *OTP* data download, register check-sum calculation trigger

Write ODL[7:0]=00h: Execute OTP data download

Write ODL[7:0]=FFh: Execute register check-sum calculation

Write ODL[7:0]=others: No operation

A write access of 00h to this register initiates a copy operation of OTP data to the main register. This register is blocked if OBSY is high.

The OTP Registers contain the default values of the

system registers. These registers are always readable via SPI

MRORB (Default: 00h)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
0401h	MRORB	0	0	0	0	0	0	ORBEN	ORBLV

ORBEN: Margin read mode enable

ORBEN=0: Normal mode

ORBEN=1: OTP bias read mode (Margin read mode)

ORBLV: OTP readout threshold selection

ORBLV=0: OTP low bias read mode (low level margin check) at ORBEN=1

ORBLV=1: OTP high bias read mode (high level margin check) at ORBEN=1

This register modifies the OTP readout threshold. After programming the OTP registers should be verified by reading them with the readout thresholds set low and high to detect false zeros and ones

OTP Register

in either Standby or Normal modes. During device startup these default values are copied from the OTP bank (SPI addresses 1000h to 1022h) to the main register bank (SPI addresses 0000h to 0401h). The OTP registers should only be programmed once during IC initialization, during normal operation only the main registers are accessed and modified. It is possible to block programming of the OTP section by setting the OSAENB bit in the ORCONF33 Register of the OTP. For detailed information on the content of the OTP, see the corresponding main register descriptions in the previous section.

		-							
ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
1000h	ORCONF0	FRMD	FRREN	SCEN	PWMF	REGSEL	VCEN	SPCFG	PWMINSEL
1001h	ORCONF1		FLSEL[2:0]			ZPSEL[2:0]		PDTC	PWMON
1002h	ORCONF2	FGSTBLMD	FGO	=[1:0]			FDTI[4:0]		
1003h	ORCONF3		CLMAS	K[3:0]			OCMA	\SK[3:0]	
1004h	ORCONF4		SROFF	T[3:0]			CRMA	SK[3:0]	

ORCONF0 - ORCONF4 (assigned to OTP bank 0)

OTP write is start when ORCONF4 is written. Other register value are hold by temporary registers. These temporary registers are common for all banks. When ORCONF* register is read, OTP read data without internal DFF is directly output to SPI read data.

		- (
ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]		
1005h	ORCONF5	SYNCEN	PPDOSEL	FSCD	T[1:0]		FSCD	L[3:0]			
1006h	ORCONF6	SSCGEN		CPTM	l[3:0]		THTH[1:0] TS				
1007h	ORCONF7	WDTEN	WDTSEL[2]			WDT	[5:0]				
1008h	ORCONF8	VCLVPEN	CPEN	CPEN THWEN THPEN			OVPEN	OCPEN	DIAGSEL		
1009h	ORCONF9	RCVT	M[1:0] WDTSEL[1:0]			CPLT	FSPLT	OCPLT	DLTO		

ORCONF5 – ORCONF9 (assigned to OTP bank 1)

OTP write is start when ORCONF9 is written.

ORCONF10 - ORCONF14 (assigned to OTP bank 2)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
100Ah	ORCONF10	VDHOVP EN	OOPOEN	CLDOEN	FGERAC CEN	RCSMPMD	RCSMPEN	OPDT	M[1:0]
100Bh	ORCONF11	INIODUT YMD	INITAGMD	CLREFEN _ROT	CLREFEN _STOP	ATSYNC OFF	Internal use	STSYNC EN	SPIINSEL
100Ch	ORCONF12	FGERDE CEN	F	FGERDEC[2:0]			FGERA	CC[3:0]	
100Dh	ORCONF13	0	DWNSET PDTSEL[1:0]		EL[1:0]	FSPDT	M[1:0]	OVPMA	\SK[1:0]
100Eh	ORCONF14	LASET_	LIM[4:3]			SSTI	[5:0]		

OTP write is start when ORCONF14 is written.

ORCONF15 – ORCONF19 (assigned to OTP bank 3)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
100Fh	ORCONF15				STOS	SC[7:0]			
1010h	ORCONF16	LAS	SET_LIM[2:0]			LA	ASET_L[4:0]		
1011h	ORCONF17	Ν	ISKRSTNUM	10_SIX[3:0]		Ν	ISKRSTNUN	11_SIX[3:0]	
1012h	ORCONF18	CLMSPD[0]		PX[2:0]		Internal use			
1013h	ORCONF19		IX[3:	0]		SSCGCN[0]		IG[2:0]	

OTP write is start when ORCONF19 is written.

ORCONF20 – ORCONF24 (assigned to OTP bank 4)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
1014h	ORCONF20	CLMSPD[1]	CLSEL	0	0	SSCGCN[1]	0	0	0	
1015h	ORCONF21	OCSEL[0]	D	DUTYSEL[2:0	0]	USTEPSE	EL[1:0]	DSTEPS	SEL[1:0]	
1016h	ORCONF22		DUTY_L[7:0]							
1017h	ORCONF23				DUTY	_H[7:0]				
1018h	ORCONF24		TAG_L[7:0]							

OTP write is start when ORCONF24 is written. SSCGCN

[1], [0] are separated by ADDR 1013h, 1014h.

ORCONF25 – ORCONF29 (assigned to OTP bank 5)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
1019h	ORCONF25	OCSEL[1]	TAG_L[14:8]							
101Ah	ORCONF26		TAG_H[7:0]							

•												
ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]			
101Bh	ORCONF27	SLMD	TAG_H[14:8]									
101Ch	ORCONF28	WINDS	EL[1:0] CLDWNOFF			LASET_H[4:0]						
101Dh	ORCONF29		MSKRSTN	IUM0_INI[3:0]			MSKRSTNU	JM1_INI[3:0]				

ORCONF25 – ORCONF29 (assigned to OTP bank 5)

OTP write is start when ORCONF29 is written. OCSEL[1], [0] are separated by ADDR 1015h, 1019h.

ORCONF30 – ORCONF34 (assigned to OTP bank 6)

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
101Eh	ORCONF30		MSKRSTNU	M0_THR[3:0]			MSKRSTNU	M1_THR[3:0]	
101Fh	ORCONF31		MSKRSTNUM0_TWO[3:0] MSKRSTNUM1_TWO[3:0]						
1020h	ORCONF32	MSKRSTNUM0_ONE[3:0] MSKRSTNUM1_ONE[3:0]							
1021h	ORCONF33		ORCONF33[7:4] RBSEL RCS			RCSMEN	OSAENB	MSAENB	
1022h	ORCONF34	RCSM[7:0]							

OTP write is start when ORCONF34 is written.

ORCONF33[7:4] has no register to download, but OTP output is used for check-sum calculation.

OTP Data Download

The OTP register data is typically transferred into the main registers at device startup (From sleep to standby transition). This operation takes up to 340 μ s. A high OBSY flag in the first returned byte during a SPI transaction indicates this.

Figure 22. OTP Data Download Timing at Startup

An OTP download can also actively be initiated by writing 00h to register MRODL. This command requires monitoring the OBSY flag. Don't perform specific register access (MRCONF, MRSPCT, ORCONF) until the OBSY flag is cleared.

Figure 23. OTP Data Download Timing after an MRODL Commnad

OTP Programming Overall

Figure 24 shows overall of the OTP memory write and verify flow. It consists of preparation, write and three times of data integrity verification.

OTP Programming

The OTP registers can be programmed in Standby mode only while the write lock bit OSAENB is set 0. And, the supply voltage at pin VS must be more than 14 V. The actual write operation to the OTP memory will be done, when the state change from 0 to 1 is commanded. Once the bit state is changed to 1, it cannot be change back to 0. The number of writing is limited to one per bit.

The OTP memory consists of five memory banks. The bank contains five register bytes. The bank is filled by five SPI write transactions. When the last address register in each bank is received, the busy–flag OBSY will be set and those five bytes will be programmed permanently into the corresponding OTP bank. The OBSY flag will be reset at the end of the write cycle. OBSY is in GSDAT register. To get GSDAT, SPI accesses to the register MRACK is recommended. MRACK doesn't interfere with the programming operation. MRCONF, MRSPCT, ORCONF registers cannot be accessed during an OTP write cycle.

MRCONF, MRSPCT, ORCONF, ORSPCT, ORACS registers cannot be accessed during an OTP write cycle.

The programming takes 20 ms maximum. To simplify operation, a waiting for 20 ms plus margin can be applicable instead of a polling of the flag OBSY. (Figure 26)

Figure 26. OTP Memory Write Operation

OTP Data Integrity Verification

In order to verify that the OTP programming operation was successful. It is strongly recommended to do an OTP margin check: To do this, the OTP registers are downloaded into the main register bank with minimum and maximum readout thresholds. This OTP download is forced by writing 00h to register MRODL. The readout threshold is set in register MRORB.

OTP Margin read check sequence after programmed:

- 1. Set OTP readout threshold "low" by setting ORBEN = 1 and ORBLV = 0 in register MRORB
- 2. Execute OTP download command by writing 00h to MRODL
- 3. Verify that the main register contents are consistent with the programmed OTP data
- 4. Set OTP readout threshold "high" by setting ORBEN = 1 and ORBLV = 1 in register MRORB
- 5. Execute OTP download command by writing 00h to MRODL

- 6. Verify that the main register contents are consistent with the programmed OTP data
- 7. Return OTP threshold to normal by setting ORBEN = 0 and ORBLV = 0
- 8. Execute OTP download command
- 9. Verify that the main register contents are consistent with the programmed OTP data

Locking OTP Register Contents

MSAENB bit and OSAENB bit of ORCONF33 register are used in order to prevent write-access of the main registers and the OTP registers respectively.

CAUTION: Inadvertent writing of these bits will permanently lock the corresponding register blocks from any further write access. Should only be set at end of development cycles.

ORCONF33

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
1021h	ORCONF33	0	0	0	0	RBSEL	RCSMEN	OSAENB	MSAENB

RBSEL: Short brake setting at reverse rotation

RBSEL=0: Short brake is disabled when reverse rotation is detected.

RBSEL=1: Short brake is enabled when reverse rotation is detected.

If RBSEL is set, short brake (all Low side FET are ON) is done until the rotation stops after reverse rotation is detected.

RCSMEN: Register check–sum diagnostic function enable RCSMEN=0: Register check–sum diagnostic function is disabled.

RCSMEN=1: Register check-sum diagnostic function is enabled.

This register is used in order to permanently prevent write access to the OTP and/or the main registers. This register data is transferred into MRACS register.

OSAENB: OTP Register access enable

- OSAENB = 0: Write access permitted
- OSAENB = 1: Write access denied OSAENB controls write access to the OTP registers.

MSAENB: Main register access enable

- MSAENB = 0: Write access permitted
- MSAENB = 1: Write access denied MSAENB controls write access to the main registers.

ORCONF34

ADDR	Data Name	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
1022h	ORCONF34	RCSM[7:0]							

RCSM: Register Check-sum

 $x^8 + x^6 + x^3 + x^2 + 1$

The check–sum of whole OTP memory data except this register ORCONF34 needs to be written when the data integrity diagnostic function is enabled. This check–sum is a cyclic redundancy check (CRC) which is calculated by the following generator polynomial.

The read out value of the register RCSMSD must be applied to the CRC calculation as a seed. An example CRC calculation program in C language is shown below.

```
// x^8 + x^6 + x^3 + x^2 + 1
#define MSB CRC8
                     (0x4D)
unsigned char crc table[256];
unsigned char crc_seed;
static unsigned char GetCRC8 2( unsigned char seed, const void *buff, size t size )
{
    unsigned char *p = (unsigned char *)buff;
    unsigned char crc8;
    int i;
    for ( crc8 = seed ; size != 0 ; size-- ) {
        crc8 ^= *p++;
        for ( i = 0 ; i < CHAR BIT ; i++ ) {
            if ( crc8 & 0x80 ) {
                crc8 <<= 1; crc8 ^= MSB CRC8;
            }
            else{
                crc8 <<= 1;
            }
        }
    }
    return crc8;
```

This program is used in the following procedure.

- 1. Set ORCONF0 through 33 to crc_table
- 2. Set CRC code read from the register RCSMSD to crc_seed
- 3. Call GetCRC8_2(crc_seed, crc_table, 34)
- 4. Use return value for ORCONF34

Register Check-sum Feature

To activate the register check-sum feature, the following register bits must be provided before OTP programming operation.

1. Determine the periodical check-sum verify function to be enabled or not, which is specified by the bit RCSMPEN

- 2. Determine the operation at the check-sum error detection: A motor is kept running or stopped, which is specified by the bit RCSMPMD
- 3. The bit RCSMEN must be set 1 to enable this feature
- 4. Read out the check–sum code (CRC) of the OTP memory reserved area from the register RCSMSD[7:0] whose value may be different by part
- 5. Letting the RCSMSD be a seed for the CRC calculation, prepare the total check–sum (CRC) from ORCON0 to ORCON33, which will be used for the register RCSM[7:0] at ORCONF34

The following table shows related register bits to this check–sum feature.

Register Name	Data Name	Address	Description
RCSMPEN	ORCONF10	100Ah	Enable the periodical check-sum verification while a motor is running
RCSMPMD	ORCONF10	100Ah	Selection of motor running or stop when the check-sum error is detected
RCSMEN	ORCON33	1021h	Enable the register check-sum function
RCSM	ORCONF34	1022h	Check-sum to be written with OTP memory data together, which must be calculated by user, applying the code of RCSMSD as a seed of CRC
RCSMSD	MRCSMSD	0208h	Seed of the register check-sum
RCSM	MRCONF14	010Eh	Calculated check-sum which is automatically calculated on this device Code of this register will be compared with the preprogrammed check-sum code in the register RCSM at ORCONF34 OTP memory.
RCSMPO	MRDIAG1	0202h	Check-sum error flag
RCSMPEN	MRCONF10	010Ah	Enable the periodical check-sum verification while a motor is running. This value will be copied from OTP memory at the device reset or the download operation.
RCSMPMD	MRCONF10	010Ah	Selection of motor running or stop when the check-sum error is detected This value will be copied from OTP memory at the device reset or the download operation.

DOCUMENT NUMBER:	98AON78439F	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SPQFP48 7X7 / SQFP48K		PAGE 1 OF 1					
ON Semiconductor and a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent to hot nor the								

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative