RFbeam Microwave GmbH

K-LC3 RADAR TRANSCEIVER

Datasheet

Features

- 24 GHz K-band miniature transceiver
- Dual 1 patch circular polarized antenna
- Wide beam aperture 138°/132°
- 10dBm EIRP output power
- 25x25mm² surface, <6mm thickness
- Low cost design
- 3.3V or 5V variant

Applications

- Lowcost general purpose movement detectors
- Security systems
- Ceiling and wall mount surveillance system
- Industrial sensors

Description

K-LC3 is a 2 patch Doppler module with a nearly symmetrical wide beam for low cost short distance applications.

Its typical applications are movement sensors for security, lighting and building automation applications This module may be an alternative or a complementary sensor for infrared PIR or AIR systems thanks to its outstanding performance/cost ratio. The module is extremely small and lightweight. With its wide IF bandwidth it opens many new applications.

The unique RFbeam circular polarized antenna forms allows much wider acquisition fields than the traditional linear polarized patch antenna. A powerful starterkit with signal conditioning and visualization is available from RFbeam. Find more informations on www.rfbeam.ch.

Blockdiagram

Fig. 1: Block diagram

K-LC3 RADAR TRANSCEIVER

Datasheet

Characteristics

Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Unit
Operating conditions						
Supply voltage	For K-LC3 variant	V _{cc}	4.75	5.0	5.25	V
	For K-LC3_V2 variant	V _{cc}	3.0	3.3	3.6	V
Supply current		Icc		35	65	mA
Operating temperature		Top	-20		+85	°C
Storage temperature		T _{st}	-20		+105	°C
Fransmitter						
Transmitter frequency	T _{amb} =-20°C +85°C	f _{TX}	24.150	24.200	24.250	GHz
Frequency drift vs temperature	V _{cc} =5.0V, -20°C +85°C ^{Note 1}	Δf_{TX}		-0.9	_	MHz/°
Output power	EIRP	Ρτχ		+10		dBm
Spurious emission		P _{spur}		-30	_	dBm
Turn-on time	Until oscillator stable, $\Delta f_{TX} < 5MHz$	t _{on}	1	1	6	μs
Receiver						
Mixer Conversion loss	$f_{IF} = 1 \text{kHz}, \text{IF load} = 1 \text{k}\Omega$	D _{mixer1}		-6		dB
	f _{IF} = 20MHz, IF load = 50Ω	D _{mixer2}		-11	_	dB
Antenna Gain	F _{TX} =24.125GHz Note 2	G _{Ant}		4.8		dB
Receiver sensitivity	f _i =500Hz,B=1kHz,R _i =1kΩ,S/N=6dB	P _{RX1}		-95		dBm
-	f _{IF} =1MHz,B=20MHz,R _{IF} =50Ω,S/N=6dB	P _{RX1}		-83	_	dBm
Overall sensitivity	f _{IF} =500Hz,B=1kHz,R _{IF} =1kΩ,S/N=6dB	D _{system}		-105		dBc
F output						
IF resistance		R⊮		50		Ω
IF frequency range	-3dB Bandwidth, IF load = 50Ω	f _{IF}	0	10	50	MHz
IF noise power	f_{IF} =500Hz, IF load = 50 Ω	P _{IFnoise1}		-137		dBm/⊦
	f_{IF} =1MHz, IF load = 50 Ω	PIFnoise2		-164	-	dBm/⊦
IF noise voltage	f _{IF} =500Hz, IF load = 1kΩ	U _{IFnoise1}		-150		dBV/H
	f_{IF} =500Hz, IF load = 1k Ω	U _{IFnoise1}		31		nV/√H:
IF output offset voltage	no object in range	UIF	10		200	mV
Supply rejection	Rejection supply pins to IF output	D _{supply}		26		dB
Antenna						
Antenna type	Right hand circular polarized	RHCP				
Horizontal -3dB beamwidth	E-Plane	W_{ϕ}		138		•
Vertical -3dB beamwidth	H-Plane	W _θ		132		0
Horiz. sidelobe suppression		D _φ		-12		dB
Vertical sidelobe suppression		D _θ	<u> </u>	-12		dB
Body						
Outline Dimensions				25*25*6		mm ³
Weight				4.5		g
Connector	3pin single row jumper					
ESD Rating				-	_	
Electrostatic Discharge	Human body model class 0	V _{ESD}			250	V
	,					

 Note 1
 Transmit frequency stays within 24.150 to 24.250GHz over the specified temperature range

 Note 2
 Theoretical value, given by Design

RFbeam Microwave GmbH

K-LC3 RADAR TRANSCEIVER

Datasheet

Antenna System Diagram

This diagram shows module sensitivity in both azimuth and elevation directions. It incorporates both transmitter and receiver antenna characteristics.

Fig. 2: System diagram

Pin Configuration

Pin	Description	Typical Value		
1	VCC	DC supply		
2	IF output	load 1kOhm		
3	GND	ground		

Outline Dimensions

All Dimensions in mm

All values given are typical unless otherwise specified.

K-LC3 RADAR TRANSCEIVER

Datasheet

Application Notes

Sensitivity and Maximum Range

The values indicated here are intended to give you a 'feeling' of the attainable detection range with this module. It is not possible to define an exact RCS (radar cross section) value of real objects because reflectivity depends on many parameters. The RCS variations however influence the maximum range only by $\sqrt[4]{\sigma}$.

Maximum range for Doppler movement depends mainly on:

- Module sensitivityS:
- 105dBc (@0.5kHz IF Bandwidth)
 f_0 :-105dBc (@0.5kHz IF Bandwidth)
24.125GHz- Radar cross section RCS ("reflectivity") of the object σ^{1} :1m² approx. for a moving person

>50m² for a moving car

note ¹⁾ RCS indications are very inaccurate and may vary by factors of 10 and more.

The famous "Radar Equation" may be reduced for our K-band module to the following relation:

 $r = 0.0167 \cdot 10^{\frac{-s}{40}} \cdot \sqrt[4]{\sigma}$

Using this formula, you get an indicative detection range of

- 7 meters for a moving person.

- > 15 meters for a moving car

Please note, that range values also highly depend on the performance of signal processing, environment conditions (i.e. rain, fog), housing of the module and other factors.

For simple detection purposes (security applications e.g.) without the need of speed measurements, range may be enhanced by further reducing the IF bandwidth. With 250Hz bandwidth and a simple comparator, we get already a 12m frontal detection range.

Ordering Information

Ordering number	Supply voltage		
K-LC3	5V		
K-LC3_V2	3.3V		

Datasheet

Datasheet Revision History

Version	Date	Changes
0.1	Apr-2009	initial release
1.0	Mar-2011	Typical transmit frequency = 24.200; range 24.150 24.250 over temp.
1.1	Nov-2018	Changed footer to new address
1.2	Mar-2020	Added ESD information, changed operating temperature and spurious, added ordering informations

RFbeam does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and RFbeam reserves the right at any time without notice to change said circuitry and specifications.