MSKSEMI 美森科

ESD

15

TSS

MOV

GDT

PLED

AO3402MI-MS

Product specification

Features

- 30V, 4.0 A, RDS(ON) = $47m\Omega$ @VGS = 4.5V
- Improved dv/dt capability
- Fast switching
- Green Device

Applications

- Notebook
- Load Switch
- LED applications

BVDSS	RDSON	ID
30V	47mΩ	4.0A

Reference News

PACKAGE OUTLINE	PIN Configuration	Marking
SOT-23-3L	Go	A2 ** ĕ

Absolute Maximum Ratings Tc=25℃ unless otherwise noted

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	30	V
Vgs	Gate-Source Voltage	±12	V
l _D	Drain Current - Continuous (Tc=25°C)	4.0	А
	Drain Current - Continuous (Tc=100°C)	3.0	А
Ірм	Drain Current - Pulsed¹	16	Α
D	Power Dissipation (Tc=25°C)	1.4	W
P _D	Power Dissipation - Derate above 25°C	0.012	W/°C
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
RеJA	Thermal Resistance Junction to ambient		80	°C/W

Electrical Characteristics (TJ=25 ℃, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _G s=0V , I _D =250uA	30			V
△BV _{DSS} /△T _J	BV _{DSS} Temperature Coefficient	Reference to 25℃, l _D =1mA		0.06		V/°C
I	Drain-Source Leakage Current	Vbs=30V , Vgs=0V , TJ=25℃			1	uA
IDSS	Diam-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =125℃			10	uA
Igss	Gate-Source Leakage Current	V _G s=±12V , V _D s=0V			±100	nA

On Characteristics

Rds(on)	Static Drain-Source On-Resistance	Vgs=4.5V , ID=4A		47	60	mΩ
TADS(ON)	Statio Brain Godice on Resistance	Vgs=2.5V , ID=3A		60	85	11122
V _{GS(th)}	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	0.5	0.9	1.4	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VG5-VD5 , ID -230UA		-3		mV/℃
gfs	Forward Transconductance	V _{DS} =10V , I _S =3A		7		S

Dynamic and switching Characteristics

Total Gate Charge ^{2, 3}			8.4		
Gate-Source Charge ^{2, 3}	V _{DS} =10V , V _{GS} =4.5V , I _D =3A		1		nC
Gate-Drain Charge ^{2, 3}			2.2		
Turn-On Delay Time ^{2, 3}			4.5		
Rise Time ^{2, 3}	V _{DD} =10V , V _{GS} =4.5V ,		13		20
Turn-Off Delay Time ^{2, 3}	R _G =25Ω l _D =1A		27		nS
Fall Time ^{2, 3}			8.3		
Input Capacitance			695		
Output Capacitance	V _{DS} =10V , V _{GS} =0V , F=1MHz		45		pF
Reverse Transfer Capacitance			36		
Gate resistance	Vgs=0V, Vps=0V, F=1MHz		1.5		Ω
	Gate-Source Charge ^{2,3} Gate-Drain Charge ^{2,3} Turn-On Delay Time ^{2,3} Rise Time ^{2,3} Turn-Off Delay Time ^{2,3} Fall Time ^{2,3} Input Capacitance Output Capacitance Reverse Transfer Capacitance	Gate-Source Charge ^{2 , 3} $V_{DS}=10V$, $V_{GS}=4.5V$, $I_{D}=3A$ $V_{DS}=10V$, $V_{GS}=4.5V$, $I_{D}=3A$ $V_{DS}=10V$, $V_{GS}=4.5V$, $I_{D}=3A$ $V_{DD}=10V$, $V_{DS}=4.5V$, $I_{D}=10V$,	Gate-Source Charge ^{2 , 3} Gate-Drain Charge ^{2 , 3} Turn-On Delay Time ^{2 , 3} Rise Time ^{2 , 3} Turn-Off Delay Time ^{2 , 3} Fall Time ^{2 , 3} Input Capacitance Output Capacitance Output Capacitance Reverse Transfer Capacitance VDS=10V , VGS=4.5V , ID=3A Re=25Ω ID=10V , VGS=4.5V , ID=3A LD=3A Fall Time ^{2 , 3} LD=3A LD=3A	Gate-Source Charge² · ³ VDS=10V , VGS=4.5V , ID=3A 1 Gate-Drain Charge² · ³ 2.2 Turn-On Delay Time² · ³	Gate-Source Charge²,³ Vbs=10V, Vgs=4.5V, Ib=3A 1 2.2 Turn-On Delay Time²,³ 4.5 4.5 Rise Time²,³ Vbb=10V, Vgs=4.5V, 13 Turn-Off Delay Time²,³ Rg=25Ω Ib=1A 27 Fall Time²,³ 8.3 Input Capacitance Vbs=10V, Vgs=0V, F=1MHz 45 Reverse Transfer Capacitance 36

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current	V _G =V _D =0V,Force Current			4.0	Α
lsм	Pulsed Source Current	VG-VD-OV , I OIGE Culterit	I	I	8.0	Α
VsD	Diode Forward Voltage	V _G s=0V , I _S =1A , T _J =25°C	-		1.2	V

Note:

- 1. Repetitive Rating : Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 3. Essentially independent of operating temperature.

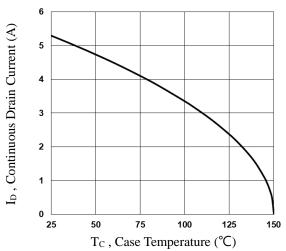


Fig.1 Continuous Drain Current vs. Tc

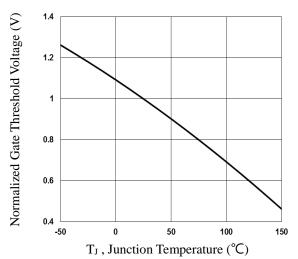


Fig.3 Normalized V_{th} vs. T_J

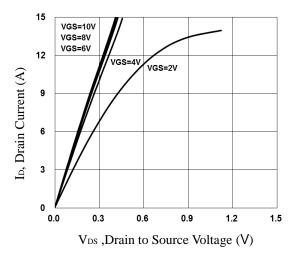


Fig.5 Typical Output Characteristics

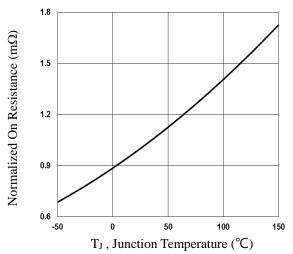


Fig.2 Normalized RDSON vs. T_J

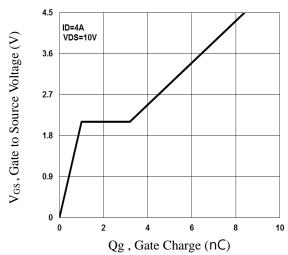


Fig.4 Gate Charge Waveform

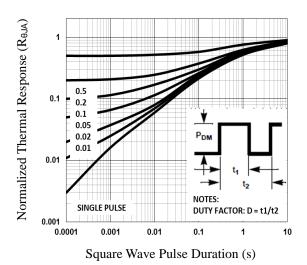


Fig.6 Normalized Transient Impedance

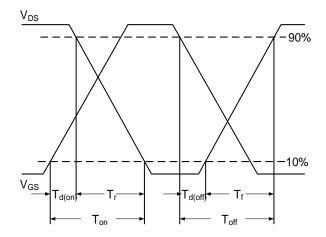


Fig.8 Switching Time Waveform

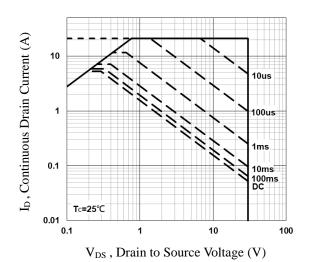


Fig.7 Maximum Safe Operation Area

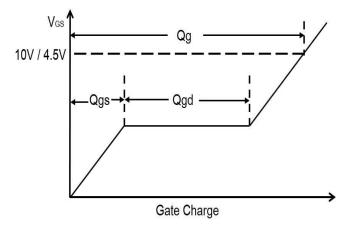
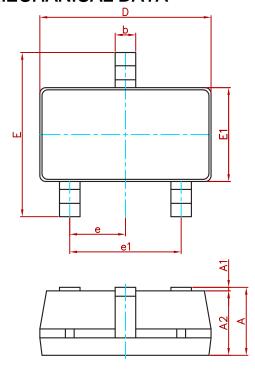
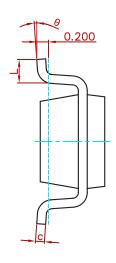
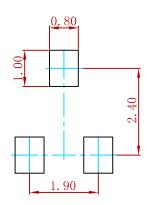




Fig.9 Gate Charge Waveform


PACKAGE MECHANICAL DATA

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037((BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Suugested Pad Layout

Note:

- 1.Controlling dimension:in millimeters. 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

REELSPECIFICATION

P/N	PKG	QTY
AO3414MI-MS	SOT-23-3L	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents—or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.