

TLE9183QK

Bridge Driver IC

Features

- High Power 3 Phase Bridge Driver for low RDSON N-channel FETs
- 0...100% duty cycle, adjustable without restrictions
- Specified supply voltage range of 5.5 V to 40 V
- Logic operation down to 3 V supply voltage
- High robustness of motor connection pins of -15 V to 40 V
- Extended protection and supervision functionality
- Serial Peripheral Interface (SPI), control of supervision
- Supervision read out by SPI
- Reverse diode measurement of external FET for temperature detection
- Limp-home functionality of diagnostic and failure behavior with SPI configurable content
- 3 current sense amplifiers for shunt signal conditioning
- 2 switch off paths by pins ENA and SOFF
- Low quiescent current mode by pin INH
- Compatible to 3.3 V μCs and TTL logic
- Phase voltage feedback with SPI programmable voltage thresholds
- Output for phase cut off circuit activation
- Green Product (RoHS compliant)
- AEC Qualified

PRO-SIL[™] features

- According to ISO26262 ASIL-D workflow
- Safety Manual and Safety Analysis Summary Report up to $V_{VS} \le 28 \text{ V}$ and V_{VDHP} , $V_{VDHx} \le 28 \text{ V}$ available
- Safety Barrier to μ C interface up to $V_{VS} \le 28$ V and V_{VDHP} , $V_{VDHx} \le 28$ V
- High voltage rated digital input and output pins
- Fast and functional independent disable functionality via pin SOFF
- Functional redundant disable paths via pin SOFF and ENA
- Monitoring of system relevant voltages and dedicated self-test functionality
- Secure SPI interface with CRC check over data and address
- Integrated window watchdog for μC supervision
- Functional independent current sense amplifier
- Functional independent phase feedback with SPI programmable threshold
- Passive clamping of external FETs

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

Description

The TLE9183QK is an advanced gate driver IC dedicated to control 6 external N-channel MOSFETs forming an inverter for high current 3 phase motor drives application in the automotive sector.

A sophisticated high voltage technology allows the TLE9183QK to support applications for 12 V battery systems even within tough automotive environments in combination with high motor currents. Therefore bridge, motor and supply related pins can withstand voltages of up to 40 V. Motor related pins can even withstand negative voltage transients down to - 15 V without damage.

All low- and high-side output stages are based on a floating concept and its driver strength allows to drive lowest RDSON MOSFETs common on the market.

An integrated SPI interface is used to configure the TLE9183QK for the application after power-up. After successful power-up parameters can be adjusted by SPI, monitoring data, configuration and error registers can be read. Cyclic redundancy check over data and address bits ensures safe communication and data integrity.

GND related bridge currents can be measured with 3 integrated current sense amplifiers. The outputs of the current sense amplifiers support 5 V ADCs and the robust inputs can withstand negative transients down to -10 V without damage. Gain and zero current voltage offset can be adjusted by SPI. The offset can be calibrated.

Diagnostic coverage and redundancy have increased steadily in recent years in automotive drive applications. Therefore the TLE9183QK offers a wide range of diagnostic features, like monitoring of power supply voltages as well as system parameters. A testability of safety relevant supervision functions has been integrated. Failure behavior, threshold voltages and filter times of the supervisions of the device are adjustable via SPI.

The TLE9183QK is integrated in a LQFP64 package with an exposed pad. Due to its exposed pad the gate driver IC provides an excellent thermal characteristic.

Device Marking Table 1

Product Type	Package	Marking		
TLE9183QK	LQFP-64	TLE9183QK		

Table of contents

Table of contents

	Features	1
	Product validation	1
	Description	2
	Table of contents	3
1	Block Diagram	7
2	Pin Configuration	8
2.1	Pin Assignment	8
2.2	Pin Definitions and Functions	8
3	General Product Characteristics	11
3.1	Absolute Maximum Ratings	11
3.2	Thermal Resistance	13
3.3	Functional Range	13
3.4	Typical Behavior Figures	14
4	Input and Output Characteristics	15
4.1	Digital Inputs	
4.2	General Inputs	16
4.3	VCC - I/O Supply and μC Supply Monitoring	16
4.4	Digital Outputs	16
4.5	General Output	17
4.6	SPI Interface	17
4.7	Electrical Characteristics IOs	17
5	Serial Peripheral Interface - SPI	20
5.1	IO-Buffer	20
5.2	Shift Registers	20
5.3	Address and Command Decoder	20
5.4	Cyclic Redundancy Check - CRC Generation and Detection	21
5.5	Electrical Characteristics SPI	21
6	Clock	23
6.1	Clock Programming	23
6.2	Electrical Characteristics Clock	23
7	Power Supply	24
7.1	Output Stage Supply Concept	24
7.2	Internal Supply Voltages	25
7.3	Electrical Characteristics Power Supply	25
7.4	Typical Behavior Figures	29
8	Floating MOSFET Driver	31

infineon

Table of contents

8.1	Driver Output Stage	31
8.2	Input to Output Information	31
8.3	Shoot Through Protection and Dead Time Generation	31
8.4	Electrical Characteristics Floating MOSFET Driver	32
8.5	Typical Timings and Behavior Figures	34
9	Shunt Signal Conditioning	35
9.1	Gain Programming	35
9.2	Setting VRO Voltage and VOx Voltage for Zero SSC Differential Input Voltage	36
9.3	Auto Calibration	36
9.4	Overcurrent Detection	37
9.5	Self-tests of Shunt Signal Conditioning	38
9.5.1	Gain Test	38
9.5.2	Power Supply Monitoring of SSC	38
9.6	Electrical Parameter Shunt Signal Conditioning (SSC)	38
10	Protection and Diagnostics	43
10.1	Supervision Overview	43
10.1.1	Diagnosis in Configuration Mode	46
10.1.2	Disabled Functions in Reduced Operation Mode	46
10.1.3	Disabled Functions in Safe Off Mode	46
10.2	Failure Detection Handling	46
10.2.1	Failure Flags	46
10.2.2	Failure Behavior Configuration	47
10.2.3	Parallel Failure Occurrence	49
10.3	Diagnostic Test Functions	49
10.4	LIMP Functionality	51
10.5	Detailed Supervision Description	51
10.5.1	Vs Voltage Monitoring	51
10.5.1.1	SPI Register Reference for VS Supervision	51
10.5.2	VDHP Voltage Monitoring	52
10.5.2.1	SPI Register Reference for VDHP Supervision	53
10.5.3	Charge Pump Monitoring	53
10.5.3.1	SPI Register Reference for CB Undervoltage Supervision	54
10.5.3.2	Overload and Overvoltage of Charge Pumps	54
10.5.4	High-side Buffer Capacitor Voltage Monitoring	55
10.5.4.1	Overvoltage Detection of High-side Buffer Capacitor at High Negative Voltage at the	
	Pins SHx	55
10.5.4.2	SPI Register Reference for High-side Buffer Capacitor UV Monitoring	55
10.5.5	VCC Monitoring	
10.5.5.1	SPI Register Reference for VCC Supervision	56
10.5.6	Internal Power Supply Monitoring	56
10.5.7	Internal CLK Supervision	56

infineon

Table of contents

10.5.8	Temperature Detection and Shutdown	56
10.5.8.1	SPI Register Reference for Overtemperature Detection	57
10.5.8.2	Temperature Read Out	57
10.5.9	Output Stage Status Feedback	57
10.5.10	Digital Driving Path Monitoring	57
10.5.11	Short Circuit Detection - SCD	57
10.5.11.1	SPI Register Reference for SCD Voltage Threshold	58
10.5.12	FET Drain Source Voltage Read Out	59
10.5.13	FET Reverse Diode Forward Voltage Read Out	59
10.5.14	Drain Source Voltage Measurement of External FETs	60
10.5.15	Input Pattern Violation Monitoring	60
10.5.16	Overload Digital Output Pins	60
10.5.17	Configuration Errors	60
10.5.17.1	Configuration Signature Invalid	60
10.5.17.2	Configuration Time-out	61
10.5.18	Control Register Error Monitoring	61
10.5.19	State Machine Error Monitoring	61
10.5.20	SPI Communication Errors	61
10.5.20.1	SPI Frame Error	61
10.5.20.2	SPI Frame Time-out	62
10.5.20.3	SPI Window Watchdog	62
10.5.20.3.1	SPI Register Reference for Window Watchdog	62
10.5.20.4	CRC Error	63
10.5.20.5	Invalid Address Access Monitoring	63
10.6	Electrical Characteristics Protection and Diagnostic Functions	64
10.7	Typical Behavior Figures	72
11	Digital Phase Voltage Feedback	73
11.1	Phase Voltage Feedback Programming	73
11.2	Electrical Parameter Phase Feedback	
12	Phase Cut Off Activation	74
13	Operation Modes	75
13.1	Normal Operation Mode	
13.1.1	Driving Mode	75
13.1.2	Limp Mode	75
13.2	Reduced Operation Mode	76
13.3	Sleep Mode	
13.4	Idle Mode	
13.5	Configuration Mode	
13.6	Configuration Lock Mode	
13.7	Safe-Off Mode	
13.8	Error Mode	

Table of contents

13.9	Overview of Operation Modes and Transition States	77
13.10	Power-up Diagram	79
14	Application Information	82
14.1	Layout Guide Lines	82
14.2	Additional Application Hints	83
14.2.1	High Level Output Voltage of Digital Output Pins	83
14.2.2	Quiescent Current Consumption at Pin Vs	83
14.2.3	Minimum Input Pulses at Pins IHx and ILx	83
14.2.4	CSA Cross Talk	83
14.2.5	Overload CP1	
14.2.6	Digital Output Pin Overload Detection	84
14.2.7	FET Reverse Diode Forward Voltage Read Out - Short Dead Time	84
14.2.8	FET Reverse Diode Forward Voltage Read Out - No Dead time Generation in μC	84
14.2.9	Minimum INH Pulse Length at Power Up Sequence	84
15	Package Outlines	85
16	Revision History	87
	Disclaimer	99

6

1 Block Diagram

1 Block Diagram

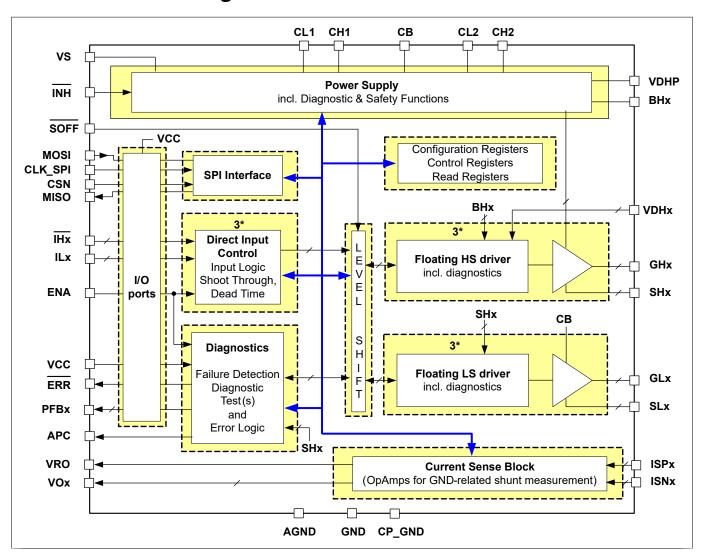


Figure 1 Block Diagram

2 Pin Configuration

2 **Pin Configuration**

Pin Assignment 2.1

Figure 2 **Pin Configuration**

Pin Definitions and Functions 2.2

Pin	Symbol	Function
1	GND	Ground
2	APC	Activation Phase Cut off Circuit
3	ERR	Error Not
4	ĪH1	Input High-side 1 Not
5	IL1	Input Low-side 1
6	IL2	Input Low-side 2
7	ĪH2	Input High-side 2 Not
8	ĪH3	Input High-side 3 Not
9	IL3	Input Low-side 3
10	MISO	Master In Slave Out

2 Pin Configuration

Symbol	Function
MOSI	Master Out Slave In
CSN	Chip Select Not
CLK_SPI	Clock Serial Peripheral Interface
VCC	VCC Supply Voltage
VO3	Voltage Output of CSA 3
SOFF	Safe Off Not
ISN3	Input Shunt Negative of CSA 3
ISP3	Input Shunt Positive of CSA 3
N.C.	Not Connected
VDHP	Voltage Drain High-side Power
CH2	Charge Pump 2 High
CL2	Charge Pump 2 Low
N.C.	Not Connected
ĪNH	Inhibit Not
Vs	Voltage Supply
N.C.	Not Connected
CH1	Charge Pump 1 High
CL1	Charge Pump 1 Low
CP_GND	Charge Pump Ground
СВ	Charge Pump Buffer
GL1	Gate Low-side 1
SL1	Source Low-side 1
BH1	Bootstrap High-side 1
SH1	Source High-side 1
GH1	Gate High-side 1
VDH1	Voltage Drain High-side 1
SL2	Source Low-side 2
GL2	Gate Low-side 2
N.C.	Not Connected
VDH2	Voltage Drain High-side 2
BH2	Bootstrap High-side 2
SH2	Source High-side 2
GH2	Gate High-side 2
N.C.	Not Connected
VDH3	Voltage Drain High-side 3
	MOSI CSN CLK_SPI VCC VO3 SOFF ISN3 ISP3 N.C. VDHP CH2 CL2 N.C. INH Vs N.C. CH1 CL1 CP_GND CB GL1 SL1 BH1 SH1 SH1 GH1 VDH1 SL2 GL2 N.C. VDH2 BH2 SH2 SH2 GH2 N.C.

9

2 Pin Configuration

Pin	Symbol	Function
46	ВН3	Bootstrap High-side 3
47	SH3	Source High-side 3
48	GH3	Gate High-side 3
49	SL3	Source Low-side 3
50	GL3	Gate Low-side 3
51	GND	Ground
52	N.C.	Not Connected
53	PFB3	Phase Voltage Feedback 3
54	PFB2	Phase Voltage Feedback 2
55	PFB1	Phase Voltage Feedback 1
56	ISN2	Input Shunt Negative of CSA 2
57	ISP2	Input Shunt Positive of CSA 2
58	VO2	Voltage Output of CSA 2
59	VRO	Voltage Reference Output
60	VO1	Voltage Output of CSA 1
61	ISP1	Input Shunt Positive of CSA 1
62	ISN1	Input Shunt Negative of CSA 1
63	AGND	Analog Ground
64	ENA	Enable
Cooling Tab	GND	Cooling Tab

Bridge Driver IC

3 General Product Characteristics

General Product Characteristics 3

Absolute Maximum Ratings 3.1

Table 2 **Absolute Maximum Ratings**

 T_i = -40°C to +150°C; all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number	
		Min.	Тур.	Max.		Condition		
Power Supply	-			-				
Supply Voltage	V _{Vs1}	-0.3	_	40	V	_	P_4.1.1	
Supply Voltage ¹⁾	V _{Vs2}	-5	_	_	V	Reverse polarity $R_{VS} \ge 10 \Omega^{2}$	P_4.1.2	
Voltage Range VDHP	V _{VDHP1}	-5	_	50	V	3)	P_4.1.3	
Voltage Range VDH1, VDH2, VDH3	V _{VDHx1}	-5	-	50	V	_	P_4.1.6	
Voltage Range CL1	V _{CL1}	-0.3	-	40	V	_	P_4.1.9	
Voltage Range CH1	V _{CH1}	-0.3	_	28	V	_	P_4.1.10	
Voltage Range CB	V _{CB}	-0.3	_	28	V	_	P_4.1.11	
Voltage Range CL2, CH2	V _{CHL2}	-0.3	_	60	V	_	P_4.1.12	
Voltage Difference CH2-CL2	$V_{\rm dCH2CL2}$	-0.3	_	28	V	_	P_4.1.62	
Floating Driver Stages								
Voltage Range SLx	V _{SLx1}	-7	-	10	V	_	P_4.1.13	
Voltage Range SLx ¹⁾	V _{SLx3}	-15	-	_	V	4)	P_4.1.15	
Voltage Range GLx	V_{GLx1}	-7	_	28	V	_	P_4.1.16	
Voltage Range GLx ¹⁾	$V_{\rm GLx3}$	-15	_	_	V	4)	P_4.1.18	
Voltage Range SHx	V _{SHx1}	-7	_	50	V	_	P_4.1.19	
Voltage Range SHx ¹	V _{SHx3}	-15	_	_	V	4)5)	P_4.1.21	
Max. Voltage Transients at SHx	V _{fSH_tr1}	_	-	20	V	Slew rate ≤ 1 V/ns ⁶⁾¹⁾	P_4.3.31	
Voltage Difference SHx-SLx ¹⁾	$V_{\rm dSHxSLx}$	-10	-	-	V	-	P_4.1.67	
Voltage Range GHx	V _{GHx1}	-7	_	60	V	_	P_4.1.22	
Voltage Range GHx ¹⁾	V _{GHx3}	-15	-	_	V	4)	P_4.1.24	
Voltage Range BHx	V_{BH}	-0.3	-	60	V	_	P_4.1.25	

Not subject to production test, specified by design

² Voltage drop via resistor has be to taken into account for applications operating at low battery voltage

³ Minimum limit of -5 V valid only for a limited time frame

For a duration of t_on = 250ns; t_on/t_off = 0.5% per 20 kHz PWM frequency

Negative transients at pin SHx could charge the high-side buffer supply capacitor additionally and may cause an overvoltage high-side buffer capacitor BHx-SHx. For details please refer to Chapter 10.5.4.1

Exceeding specified slew rate in combination with the maximum specified voltage transient may set the affected output stage in an undefined state for typically 1 µs

Bridge Driver IC

3 General Product Characteristics

Table 2 (continued) Absolute Maximum Ratings

 T_i = -40°C to +150°C; all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Voltage Difference Gxx-Sxx, BHx-SHx, CB-SLx	V _{MR_flos}	-0.3	_	28	V	7)	P_4.1.26
Inputs and Outputs							
Voltage Range IHx, ILx, ENA, VCC, INH, SOFF, PFBx, ERR, APC, CLK_SPI, CSN, MOSI, MISO	V _{MR_IO}	-0.3	_	40	V	8)	P_4.1.34
Shunt Signal Conditioning							·
Voltage Range ISPx, ISNx ¹⁾	V _{ISx2}	-10	_	10	V	$R_{\rm ISP} \ge 18 \ \Omega$ $R_{\rm ISN} \ge 18 \ \Omega^{9)}$	P_4.1.43
Voltage Difference ISPx-ISNx	V_{dISx}	-5.0	-	5.0	V	_	P_4.1.44
Voltage Range VOx ¹⁾ , VRO	V _{VOx3}	-0.3	_	5.5	V	INH = High; Vs supplied	P_4.1.46
Voltage Range VOx, VRO	V _{VOx2}	-0.3	-	18	V	1 kΩ in series	P_4.1.47
Current Range VOx ¹⁾ , VRO	I _{VOx}	-10	_	18	mA	_	P_4.1.48
GND		•					
Voltage Range CP_GND, AGND, GND, EPAD	V _{ISx}	-0.3	_	0.3	V	-	P_4.1.53
Temperatures		•					·
Storage Temperature	$T_{\rm stg}$	-55	-	150	°C	_	P_4.1.54
Junction Temperature	$T_{\rm J1}$	-40	-	150	°C	_	P_4.1.55
ESD Susceptibility							
ESD Resistivity HBM all Pins ¹⁰⁾	V _{ESDHBM2}	-1.5	_	1.5	kV	_	P_4.1.58
ESD Resistivity all Pins (charged device model) ¹¹⁾	V _{ESDCDM}	_	_	500	V	-	P_4.1.59
ESD Resistivity Corner Pins (charged device model) ¹¹⁾	V _{ESDCDMc}	-	-	750	V	-	P_4.1.60
Notos						1	

Notes:

For a duration of t = 50 µs with 400 mA

⁸ A short circuit at APC for > 10 hours might damage the device

¹ Not subject to production test, specified by design

⁹ For a duration of t_on = 500 ns; t_on/t_off = 1% per 20 kHz PWM frequency

¹⁰ ESD robustness according to Human Body Model (HBM) ANSI/ESDA/JEDEC JS-001

ESD robustness according to Charged Device Model (CDM) JESD22-C101

TLE9183QK

Bridge Driver IC

3 General Product Characteristics

- 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Integrated protection functions are designed to prevent IC destruction under fault conditions described in 2. the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

3.2 **Thermal Resistance**

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Table 3 **Thermal Resistance**

Parameter	Symbol		Values			Note or Test	Number
		Min.	Тур.	Max.		Condition	
Junction to Case ¹²⁾	R _{thJC}	-	5	-	K/W	$V_{\rm VS} = V_{\rm VDH} = 14 \rm V;$ $T_a = 85^{\circ} \rm C;$ $6 \rm FETs toggling:$ $Q_{\rm gTOT} = 200 \rm nC;$ $f_{\rm PWM} = 20 \rm kHz;$ inhomogeneous power distribution	P_4.2.1

3.3 **Functional Range**

Table 4 Functional Range¹³⁾

 $T_i = -40$ °C to +150°C; all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values			Note or Test	Number
		Min.	Тур.	Max.		Condition	
Supply Voltage	V _{Vs3}	5.5	_	40	V	Thermally limited	P_4.3.1
Supply Voltage for Startup	V _{Vs4}	V_{VsWU}	_	_	V	Startup	P_4.3.2
Voltage Range VCC	V _{VCC4}	V_{VCCROP}	_	$V_{VCCxOVx}$	V	-	P_4.3.4
Voltage Range VDHP, VDH1, VDH2, VDH3	V _{VDH3}	4.0	-	$V_{\rm VDHOVSD}$	V	14)15) PFBx- operational	P_4.3.27
Voltage Range VDHP, VDH1, VDH2, VDH3	V_{VDH4}	2.0	-	$V_{\rm VDHOVSD}$	V	VDHP readout- operational	P_4.3.28
Voltage Range VDHP, VDH1, VDH2, VDH3	V _{VDH5}	0.0	_	V_{VDHOVSD}	V	CP2 and SCD- operational ¹⁶⁾¹⁷⁾	P_4.3.29

¹² Not subject to production test, specified by design

¹³ Not subject to production test, specified by design

¹⁴ For details please refer to Chapter 11

Below V_{VDHP} < 4 V the PFBx output pins might oscillate. In the case of oscillation overload of the digital output pins might occur, for fault reaction please refer to Chapter 10.5.16

3 General Product Characteristics

Table 4 (continued) Functional Range¹³⁾

 T_j = -40°C to +150°C; all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Valu			alues U		Note or Test	Number
		Min.	Тур.	Max.		Condition	
Duty Cycle Range Output Stages	D.C.	0	-	100	%	_	P_4.3.12
Voltage Range INH ¹⁸⁾ , SOFF ¹⁸⁾ , IHx, ILx, ENA, CLK_SPI, CSN, MOSI	V _{FR_IO}	-0.3	-	V _{VCCxOVx}	V	-	P_4.3.13

Note:

Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

3.4 Typical Behavior Figures

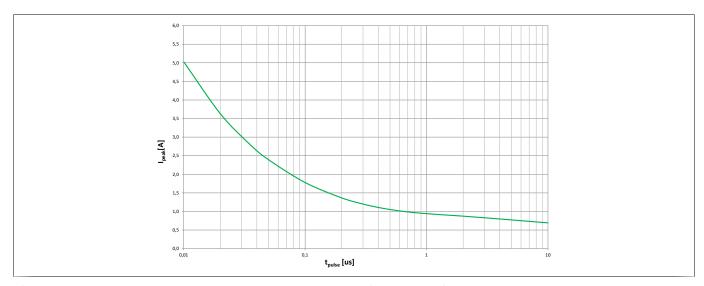


Figure 3 Max. Peak Pulse Currents between Pin CB and Pins BHx

Notes:

- 1. Characteristic is valid for rectangular pulse shapes at a PWM frequency up to 20 kHz.
- **2.** Please refer to Figure 7 for further current limitation with external components. If pulse currents has been observed higher than the maximum peak pulse currents please contact Infineon.

Not subject to production test, specified by design

At minimum limit charge pumps are operational even if freewheeling current flows via the reverse diode of the external high-side FET

Negative voltages applied to VDHP might end up into a transition to idle mode with loss of configuration data

Functional range up to its maximum ratings possible but specified by design, not subject to production test

Bridge Driver IC

4 Input and Output Characteristics

Input and Output Characteristics 4

The input and output pins of the TLE9183QK drive the output stages and give feedback to the µC about the state of the gate driver IC, the µC and the state of the inverter stage. Digital in- and outputs are supplied out of VCC and refer to the VCC voltage, general in- and outputs have fixed input threshold and fixed output high levels. Every output stage driving an external FET has its own input pin. Additionally there are 3 different pins to activate or deactivate the output stages. The impact of the 3 pins ENA, INH and SOFF differs from each other regarding to the gate driver IC's reaction. With the SPI interface the TLE9183QK can be configured and diagnostics can be read out by the µC. The ERR pin indicates a failure of the TLE9183OK or the system.

I/Os functionality Table 5

Name of I/O	Definition	Functionality	Default State
ĪNH	General Input	Sleep Mode	Internal pull-down, FETs off passive clamping, Power up/down of device
SOFF	General Input	Safe switch off	Internal pull-down, FETs off without reset of error registers, SOFF mode
ILx	Digital Input	Driver input for LS FETs	Internal pull-down, Affected FET off
ĪHx	Digital Input	Driver input for HS FETs	Internal pull-up to VCC, Affected FET off
ENA	Digital Input	Enable and Reset	Internal pull-down, All FETs off
CLK_SPI	Digital Input	SPI	Internal pull-down
MOSI	Digital Input	SPI	Internal pull-down
CSN	Digital Input	SPI	Internal pull-up to VCC
MISO	Digital Output	SPI	Push-pull stage to VCC, Tri-state (Hi-Z) in case of no supply or if deactivated
PFBx	Digital Output	Phase Feedback	Push-pull stage to VCC with internal pull-down
APC	General Output	Driving Phase Cut Off Circuit	Push-pull stage to 5 V with internal pull-down
ERR	Digital Output	Diagnostic Output	Push-pull stage to VCC with internal pull-down

4.1 **Digital Inputs**

This chapter describes the basic functions of the digital input pins, which control the output stages. Due to safety requirements the robustness of the input pins is 40 V.

IHx, ILx

The TLE9183OK uses the active-low inputs IHx to drive the high-side output stages and the active-high input pins ILx for the low-side output stages. In combination with a configurable internal dead time it is possible to drive six external FETs with only three µC outputs.

ENA

If the ENA pin is set to high the output stages of the gate driver IC will be enabled. It is also used to clear latched errors. Clearing the latched errors is falling edge driven. If ENA is set to high after a low phase, the output stages are activated again. As long as ENA is set to low all FETs are off. Error bits of the error registers are not cleared by ENA but by SPI readout only.

An ENA reset can be performed by applying a falling edge at the pin ENA and keeping the input level low for minimum tclear.

TLE9183QK

Bridge Driver IC

4 Input and Output Characteristics

MOSI, CLK_SPI, CSN

For detailed description please refer to Chapter 4.6.

4.2 **General Inputs**

The chapter describes the basic functions of the general input pins. General input pins are not referred to VCC voltage.

INH - Inhibit Switch

If the INH pin is set to low the internal power down sequence will be initiated and the gate driver IC will enter sleep mode after undervoltage shutdown at pin CB has been detected. If the pin is set to low the output stages will turn off the external MOSFETs actively. The power supplies will be deactivated too so after a power down sequence the entire driver IC is discharged completely. Then the external FETs are kept off by the passive clamping. Every time the $\overline{\text{INH}}$ is set to low the gate driver IC has to be reconfigured at next power-up cycle.

SOFF - Safe Off Switch

The TLE9183QK has a safety switch off path included. This path is intended to switch off the external MOSFETs via the SOFF input pin by the μC or an alternative monitoring IC in case a failure has been detected during operation. Power Supply, Logic, Current Measurement and SPI communication is not affected. Additionally the safe state switch off path is designed completely redundant to the logic and the ENA disable path. Hence if the device is in safe off state it will be possible to read out the failure registers to determine the root cause of the failure.

4.3 VCC - I/O Supply and μC Supply Monitoring

The VCC is the supply pin for the I/O ports. Additionally the VCC voltage is monitored. Under- and overvoltage can be detected for 5 V and 3.3 V systems. The threshold levels can be set at configuration mode. If the VCC under- and overvoltage detection is not required it can be deactivated during configuration.

4.4 **Digital Outputs**

The digital outputs are push-pull stages and supplied out of VCC, so the output levels are referred to VCC. The digital output ports are protected against shorts to GND and shorts to voltages higher or equal to the pin VCC. If an output is shorted the affected output pad will be disconnected and a dedicated error register bit will be set.

ERR

The $\overline{\text{ERR}}$ pin indicates a fault detected by the gate driver IC to the μ C. The output has an integrated pull-down resistor. In the case of a tri-stated ERR pin cross coupling from neighboured pins occur and in the case voltage lower than 4.0 V at pin VDHP please refer to Chapter 11.

PFB1, PFB2, PFB3

The PFB1, PFB2 and PFB3 pins indicate the transition point of each half bridge to the µC. The analog voltage of the pins SH1, SH2 and SH3 will be converted into a digital signal by PFB1, PFB2 and PFB3 respectively. The output has an integrated pull-down resistor.

MISO

For detailed description please refer to Chapter 4.6.

Bridge Driver IC

4 Input and Output Characteristics

4.5 **General Output**

The general output pin is not supplied out of VCC and do not refer to VCC. But if VCC voltage is below 1.0 V pin APC will not work as specified. The high level output voltage is typically 5 V. The output port is short circuit robust.

APC - Activation of Phase Cut OFF Circuit

The TLE9183QK has an integrated control logic which can be used to drive a phase cut off circuit in case of an emergency shutdown is required. The pin APC is the output of this control logic. For detailed information regarding the APC functionality please refer to Chapter 12. The output has an integrated pull-down resistor. If the APC function is not used, the pin shall be kept open.

4.6 SPI Interface

This chapter describes the basic functions of the SPI interface pins. All SPI pins are digital I/O pins. For detailed information regarding the SPI interface please refer to .

MOSI - Master-Out Slave-In

The MOSI input is the serial data input into the SPI shift register.

MISO - Master-In Slave-Out

The MISO pin is the serial data slave output of the SPI shift register. The output is tri-state in case of no supply or if CSN is high or the port is deactivated, e.g. an overload of the pin has been detected. It is recommended to apply a pull-down resistor either externally or configured at the µC port to avoid a floating node caused by the tri-stated MISO output.

CLK_SPI

The Clock input CLK SPI is the shift clock for the shift register as well as the clock to read data from the data stream. After a negative edge of CSN a positive edge of CLK SPI is expected as shown in Chapter 5.5.

CSN - Chip Select Not

The device acts as a slave and can be selected by the CSN input pin. With a negative edge of CSN the shift function is enabled. The incoming data will be processed with CSN rising edge.

Electrical Characteristics IOs 4.7

Table 6 **Electrical Characteristics IOs**

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40^{\circ}\text{C}$ to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values			Note or Test	Number
		Min.	Тур.	Max.		Condition	
Digital Input Pins with Pull-L	Jp – ĪHx, CSN						'
Low Level Input Voltage	V _{IL1}	-	_	0.7	V		P_5.7.1
High Level Input Voltage	V _{IH1}	2.5	_	_	V		P_5.7.2
Input Hysteresis	dV_{11}	150	270	_	mV		P_5.7.3
Pull-up Resistor	R _{IPU}	-	50	_	kΩ	_	P_5.7.7

Bridge Driver IC

4 Input and Output Characteristics

Table 6 (continued) Electrical Characteristics IOs

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	1	Unit		Number
		Min.	Тур.	Max.		Condition	
Input Capacitance ¹⁹⁾	C _{IP1}	_	_	10	pF		P_5.7.8
Digital Input Pins with Pull-Down	– ILx, ENA,	, MOSI, C	LK_SPI				
Low Level Input Voltage	V _{IL3}	_	_	0.7	V		P_5.7.9
High Level Input Voltage	V _{IH3}	2.5	_	_	V		P_5.7.10
Input Hysteresis	dV _{I3}	150	270	_	mV		P_5.7.11
Input Pull-down Resistor	R _{IPD1}	-	50	_	kΩ	-	P_5.7.15
Input Capacitance ¹⁹⁾	C_{IPD1}	_	_	10	pF		P_5.7.16
General Input Pin – INH, SOFF							
INH, SOFF Low Level Input Voltage	V _{GIP_LL}	_	_	0.7	V	_	P_5.7.18
INH, SOFF High Level Input Voltage ¹⁹⁾	V _{GIP_HL}	2.1	_	_	V	-	P_5.7.19
INH, SOFF Input Hysteresis ¹⁹⁾	dV _{GIP}	100	200	-	mV	V _{VS} = 5.5 V; Slew rate = 250 mV/μs	P_5.7.20
INH, SOFF Pull-down Resistor	R _{GIP}	30	100	250	kΩ	_	P_5.7.21
INH, SOFF Analog Input Filter Time ¹⁹⁾	t _{GIP_FIL_f}	0.6	_	2.5	μs	-	P_5.7.23
Minimum INH High Pulse Length at Power-up ¹⁹⁾²⁰⁾	t _{INH_minp}	5	_	-	ms	$\overline{\text{INH}}$ Low to High; $C_{\text{CPx}} = 1.0 \ \mu\text{F};$ $C_{\text{CB}} = 4.7 \ \mu\text{F}$	P_5.7.25
Wake-up Time - Ready for Configuration ²¹⁾	t _{INH_cfg}	-	-	2.5	ms	$\overline{\text{INH}}$ Low to High; $V_{\text{VDHP}} = V_{\text{Vs}} > V_{\text{VsWU}};$ $V_{\text{VCC}} > V_{\text{VCCROP}}$	P_5.7.26
Wake-up Time - Ready for Operation ¹⁹⁾²²⁾	t _{INH_Pen1}	-	-	5	ms	$\overline{\text{INH}}$ Low to High; $V_{\text{VDHP}} = V_{\text{Vs}};$ $V_{\text{BS}} > V_{\text{BSUV}};$ $V_{\text{CB}} > V_{\text{CBUVSD}};$ $C_{\text{BHx}} = 330 \text{ nF};$ $C_{\text{CPx}} = 1.0 \mu\text{F};$ $C_{\text{CB}} = 4.7 \mu\text{F}$	P_5.7.27

¹⁹ Not subject to production test, specified by design

²⁰ For details please refer to Chapter 14.2.9

²¹ Digital core and I/O ports operational, device in idle mode

All blocks operational (indicated by $V_{BS} > V_{BSUV}$ and $V_{CB} > V_{CBUVSD}$) in t_{INH_Pen1}

4 Input and Output Characteristics

Table 6 (continued) Electrical Characteristics IOs

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
INH, SOFF Propagation Time External FETs Active OFF	t _{GIP_FEToff}	-	_	3.0	μs	$R_{\text{Load}} = 2 \text{ k}\Omega$	P_5.7.28
Digital Output Pins with Pull-D	own ERR, PFB	x, Tri-st	ate MIS	0	•		
High Level Output Voltage	V _{DOP_HL_3}	V _{VCC} - 0.3 V	_	V _{VCC}	V	$V_{VCC} = 3.3 \text{ V};$ $I_{load} = -0.2 \text{ mA}$	P_5.7.37
High Level Output Voltage ²³⁾	V _{DOP_HL_5}	3.35	_	V _{vcc}	V	$V_{VCC} = 5.0 \text{ V};$ $I_{load} = -0.2 \text{ mA};$ All Digital I/Os = static	P_5.7.38
Low Level Output Voltage	V_{DOP_LL}	-0.1	_	0.4	V	$I_{Load} = 0.2 \text{ mA}$	P_5.7.39
Output Pull-down Resistor	R_{DOP}	60	100	140	kΩ	_	P_5.7.40
Output Rise Time / Fall Time	t _{DOP_RIFA}	_	_	20	ns	C _{Load} = 20 pF; 10 to 90%	P_5.7.41
Output Impedance PFBx, ERR	R _{DOP}	_	50	_	Ω	_	P_4.3.17
Output Impedance MISO	R _{DOPMISO}	_	130	_	Ω	_	P_3.3.1
General Output Pin – APC		<u>'</u>					
High Level Output Voltage	V _{AOPH1}	3.9	5.0	6.0	V	I _{load} = -1 mA	P_5.7.47
High Level Output Voltage	V _{AOPH2}	_	V _{Vs} - 0.2	_	V	$I_{load} = -1 \text{ mA};$ $V_{Vs} < 5.5 \text{ V}$	P_5.7.48
Low Level Output Voltage	V _{AOPL}	-0.1	_	0.4	V	I _{Load} = 1 mA	P_5.7.49
Pull-down Resistor	R _{AOPPD2}	120	200	280	kΩ	_	P_5.7.50
Output Rise Time / Fall Time	t _{GOP_RIFA}	_	-	60	ns	C _{Load} = 20 pF; 20 to 80%	P_5.7.51
Current Range APC	I _{AOP2}	-1	_	1	mA	_	P_4.3.19

For details please refer to Chapter 14.2.1

5 Serial Peripheral Interface - SPI

5 Serial Peripheral Interface - SPI

The 24-bit Serial Peripheral Interface (SPI) enables a communication link of the μ C as SPI-master and the TLE9183QK. The SPI interface is used to configure and to control the gate driver IC and to read out of the status registers.

The SPI interface in the TLE9183QK is a SPI-Slave. It always requires a SPI-Master. This is usually a μ C. The master generates the CLK_SPI and CSN signals used for data transfer and its synchronization.

The SPI interface can operate in bus application mode with additional SPI-Slave devices. Daisy Chain is not possible, as incoming data is not passed directly to the output port. The transmission format of incoming and outcoming SPI frames differ. The SPI frame format is shown the TLE9183QK user manual.

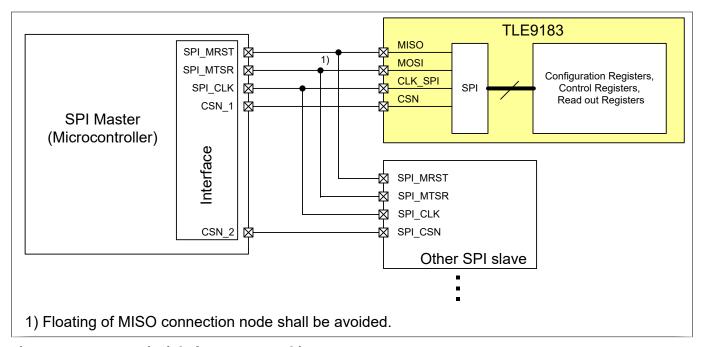


Figure 4 Principle for SPI-Bus Architecture

The SPI Block contains different sub-blocks and functions as described below.

5.1 IO-Buffer

The input buffer characteristics for CSN, MOSI, CLK_SPI and the tri-state output buffer MISO are described in Chapter 4.

5.2 Shift Registers

The SPI interface consists of two independent 24 bit shift registers. These two independent shift registers are used, one for received data and one for the data to be transmitted. MSB is shifted in/out first. Received data are shifted in with the rising edge of CLK_SPI, and the transmit shift register bits are shifted with the falling edge of CLK_SPI.

5.3 Address and Command Decoder

The incoming data is read after the rising edge of CSN and if there is no SPI communication error detected the data is decoded according to the tables in the document "TLE9183 Registers".

Status flags shows always the current status.

5 Serial Peripheral Interface - SPI

5.4 Cyclic Redundancy Check - CRC Generation and Detection

The CRC is added to any data transmitted. It is calculated for the whole SPI frame, CRC bits excluded. The CRC check for incoming data is performed over the complete SPI frame. In case of a CRC3 Error Detection on the MISO line by the μ C, the message should be discarded and the register access should be repeated.

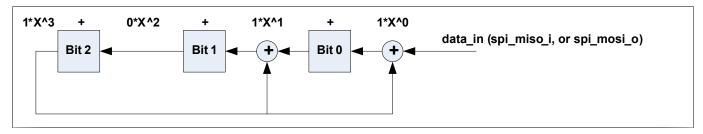


Figure 5 CRC Shift Registers

The CRC generator polynomial is x^3+x^1+1 . The seed value is '101', hence the start value results in '100'.

5.5 Electrical Characteristics SPI

DC Parameters are described in Chapter 4.

All timings are related to the timing information shown in Figure 6 below.

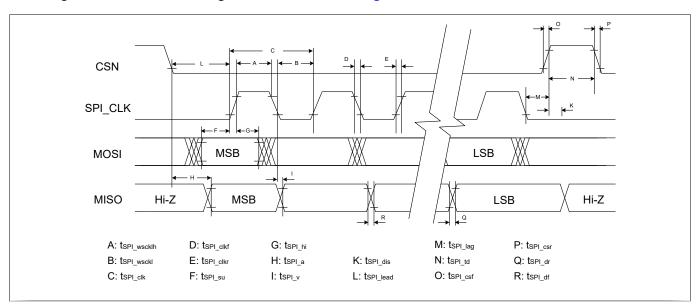


Figure 6 SPI Timing Parameters

Table 7 Electrical Characteristics: Timing

 $T_{\rm j}$ = -40°C to +150°C, $V_{\rm S}$ = 5.5 V to 40 V, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified). Timings valid for 10 MHz operation.

Parameter	Symbol	Values			Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
SPI Operating Frequency	f _{SPI_clk}	_24)	_	10	MHz	25)	P_6.5.1
CLK_SPI Operating Period	t _{SPI_clk}	100	_	_	ns	²⁵⁾ Figure 6, C	P_6.5.2

²⁴ For calculation of minimum SPI operating frequency and maximum SPI clk period tSPI-timeout has to be taken into account

Not subject to production test; verified by design or characterization; measured between 10% and 90%

TLE9183QK

Bridge Driver IC

Datasheet

5 Serial Peripheral Interface - SPI

Table 7 (continued) Electrical Characteristics: Timing

 $T_i = -40$ °C to +150°C, $V_S = 5.5$ V to 40 V, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified). Timings valid for 10 MHz operation.

Parameter	Symbol		Values		Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
CLK_SPI High Time	t _{SPI_wscklh}	37	_	_	ns	²⁵⁾ Figure 6, A	P_6.5.3
CLK_SPI Low Time	t _{SPI_wsckll}	37	_	_	ns	²⁵⁾ Figure 6, B	P_6.5.4
CLK_SPI Fall Time	t _{SPI_clkf}	_	_	13	ns	²⁵⁾ Figure 6, D	P_6.5.5
CLK_SPI Rise Time	t _{SPI_clkr}	_	_	13	ns	²⁵⁾ Figure 6, E	P_6.5.6
SPI Data Output (MISO) Rise Time	t _{SPI_dr}	_	_	20	ns	²⁶⁾ Figure 6, Q	P_6.5.7
SPI Data Output (MISO) Fall Time	t _{SPI_df}	-	-	20	ns	²⁶⁾ Figure 6, R	P_6.5.8
SPI Chip Select (CS) Rise Time	t _{SPI_csr}	_	_	50	ns	²⁵⁾ Figure 6, P	P_6.5.9
SPI Chip Select (CS) Fall Time	t _{SPI_csf}	_	_	50	ns	²⁵⁾ Figure 6, O	P_6.5.10
SPI Data Input (MOSI) Setup	t _{SPI_su}	20	-	_	ns	²⁵⁾ Figure 6, F	P_6.5.11
SPI Data Input (MOSI) Hold time	t _{SPI_hi}	20	-	_	ns	²⁵⁾ Figure 6, G	P_6.5.12
SPI Data Output (MISO) Valid after CLK_SPI	t _{SPI_v}	0	_	30	ns	²⁶⁾ Figure 6, I	P_6.5.13
SPI Data Output (MISO) Access	t _{SPI_a}	0	-	50	ns	²⁶⁾ Figure 6, H	P_6.5.14
Enable (SS) Lag Time	t _{SPI_lag}	25	_	_	ns	²⁵⁾ Figure 6, M	P_6.5.15
SPI Data Output (MISO) Disable Time	t _{SPI_dis}	_	_	100	ns	²⁵⁾ Figure 6, K	P_6.5.16
Enable (SS) Lead Time	t_{SPI_lead}	35	_	_	ns	²⁵⁾ Figure 6, L	P_6.5.17
Sequential Transfer Delay ²⁷⁾	t _{SPI_td}	330	_	_	ns	²⁵⁾ Figure 6, N	P_6.5.19

²⁵ Not subject to production test; verified by design or characterization; measured between 10% and 90%

²⁶ Not subject to production test; verified by design or characterization; measured between 10% and 80%; output load capacitance on MISO pin is ≤ 25 pF

Sequential Transfer Delay at transition from configuration to normal operation increases to 1.2 µs. Please refer to Chapter 13.5

6 Clock

6 Clock

The TLE9183QK uses an internally generated system clock of 28 MHz. The digital filter times of the diagnostic functions, charge pump clock and the dead time are referenced to the internal clock. The internal clock is monitored.

6.1 Clock Programming

Following bits are related the clock supervision.

Table 8 Clock related Bits

Bit Name	Bit Value	Description
sd_clk_fail	0	Normal internal clock operation
	1	Fault detection by clock monitoring

6.2 Electrical Characteristics Clock

Table 9 Electrical Characteristics Clock

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Internal CLK							
Clock Frequency	f_{CLKint}	_	28	_	MHz	_	P_7.2.1
Clock Frequency Accuracy including Product Deviation and Temperature Drift	f_{CLKacc}	-23	_	+23	%	-	P_7.2.2
Clock Frequency Temperature Drift ²⁸⁾	$f_{dCLKacc}$	-7	-	+7	%	-	P_7.2.3

Not subject to production test, specified by design

7 Power Supply

7 Power Supply

Power to the TLE9183QK is supplied by pins Vs and VCC. The VCC supplies the digital I/O ports. All other supply voltages for the low- and high-side output stages, the digital and analog circuits and the gate voltage to drive the external MOSFETs are generated internally.

Additionally the TLE9183QK is designed to operate with different supply voltages for the gate driver IC pin Vs and the power inverter stage at pin VDHP. Functional limitation of supply voltage differences between pin VDHP and the Vs supply is only their respective maximum ratings. Next to single supply systems typical environment is a boosted system for the power inverter while the gate driver is running with single battery supply voltage or a regulated supply voltage.

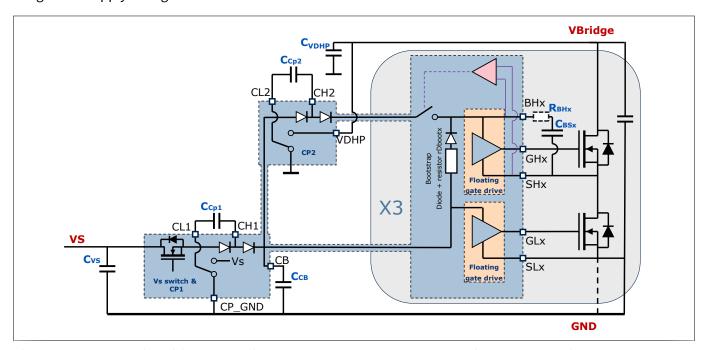


Figure 7 Simplified Block Diagram of Charge Pumps and Floating MOSFET Driver

7.1 Output Stage Supply Concept

The power supply of the TLE9183QK provides a combination of a dual charge pump principle with a bootstrap based supply concept, please refer to Figure 7. This combines the lower power consumption of the bootstrap principle with the possibility to adjust the complete duty cycle range from 0 to 100% without any restriction regarding to the recharging pulses in between 95 to 100% duty cycle at 20 kHz PWM frequency for the external high-side MOSFET.

The first charge pump power stage supplies the current sense operational amplifier, the low-side driver stages and also provides the charge CP1 for the external N-channel low-side MOSFETs. In case of the low-side MOSFET is turned on charge pump 1 also supplies the complementary high-side driver stage and its high-side buffer capacitors through bootstrap principle. At low supply voltages at pin Vs charge pump 1 almost doubles the supply voltage and therefore the TLE9183QK provides an extended specified voltage range at pin Vs down to 5.5 V. The output voltage of charge pump 1 at pin CB is limited. At higher supply voltages charge pump 1 functions as a voltage regulator and limits its output voltage to 11.5 V (typ.). If the supply voltage exceeds 14 V the CB voltage will be limited to typ. 12.0 V.

The second charge pump stage charges the high-side buffer capacitor. The charge of the buffer capacitor provides the power for the high-side driver stage and the charge required to turn on the external high-side FET. Besides to the second charge pump the high-side buffer capacitor can be charged from charge pump 1 output CB via bootstrap diode. The transition between charging out of CB via bootstrap diode or CP2 is self controlled and depends on supply voltage V_s , load condition of the output stage and the applied duty cycle. This concept does not only compensate the supply currents of the driver stage and the leakage current of the external

(infineon

7 Power Supply

N-channel FET but is also powerful enough to recharge the high-side buffer capacitor. So the TLE9183QK fulfills the requirement to drive the external FETs within a PWM specific duty cycle range of 95% to 100% at 20 kHz PWM frequency.

The charge pumps will be deactivated if the pin $\overline{\text{INH}}$ is set to low or a charge pump related error is detected. For details please check the supervision descriptions.

7.2 Internal Supply Voltages

The TLE9183QK uses various internal supply voltages which are generated out of Vs or CB voltage. Safety relevant power supplies are monitored. For monitoring details please refer to Chapter 10.5.6.

7.3 Electrical Characteristics Power Supply

Table 10 Electrical Characteristics: Power Supply

 $V_S = 5.5 \text{ V}$ to 40 V, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	i	Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Charge Pump 1	-						
Charge Pump External DC Load Current no V _{CBUVSD} Detection	I _{CBext}	-	_	36	mA	$C_{CP1} = 1.0 \ \mu\text{F};$ $C_{CB} = 4.7 \ \mu\text{F}^{30};$ $C_{CB} > V_{CBUVSD}$	P_8.3.1
Charge Pump Voltage CB	V_{CBa}	8	-	11	V	$V_{VS} = 5.5 \text{ V};$ $I_{CBext} = 024 \text{ mA}^{29}$	P_8.3.2
Charge Pump Voltage CB	V _{CBc}	10.5	-	13	V	$7 \text{ V} \le V_{\text{VS}};$ $I_{\text{CBext}} = 24 \text{ mA}^{29}$	P_8.3.4
Charge Pump Frequency CP1 ³¹⁾	f_{CP1}	_	55	_	kHz	_	P_8.3.7
Charge Pump 2							
Total Charge Pump 2 External Load Current for no V _{BSUV} Detection	I _{ВНхН}	_	_	8	mA	$V_{VS} = V_{VDHP} = 5.5 \text{ V};$ $V_{BHSHxx} > V_{BSUV};$ $V_{SHx} = V_{VDHP};$ $V_{CBext} = 12 \text{ mA}^{29}$ $V_{CSAS} = 0.0000000000000000000000000000000000$	P_7.3.1

 I_{CBext} is total external current out of the CB pin which is equivalent to the gate charge load: I_{CBext} = number of switching MOSFETs* f_{PWM} * Q_{gTOT} including additional application dependent currents. E.g.: I_{CBext} = 24 mA = 6*20 kHz*200nC

³⁰ CCB defined by tolerable voltage ripple at pin CB $U_{\text{CBripple}} = I_{\text{CB}}/(C_{\text{CB}} * f_{\text{CP1}}/2)$, e.g.: $U_{\text{CBripple}} = 0.186 \text{ V} = 24 \text{ mA}/(4.7 \text{ }\mu\text{F}^*55 \text{ kHz/2})$

Internal clock frequency accuracy has to be added to the specified values, please see Table 9

Parameter is not application relevant, parameter refers to charging via CP2 only, without bootstrap charging

7 Power Supply

Table 10 (continued) Electrical Characteristics: Power Supply

 $V_S = 5.5 \text{ V}$ to 40 V, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Total Charge Pump 2 External Load Current for no V _{BSUV} Detection ³³⁾	I _{BHxL}	-	-	12	mA	$^{34)}V_{VS} = V_{VDHP} = 5.5 \text{ V};$ $V_{BHSHxx} > V_{BSUV};$ $V_{SHx} = \text{GND};$ $I_{CBext} = 12 \text{ mA}^{29)}$ 3 CSAs enabled	P_7.3.2
Charge Pump Voltage at BHx to SHx at PWM operation ³⁵⁾	V _{BHSHxDC1}	-	8.5	-	V	$V_{VS} = 5.5 \text{ V};$ D.C.:5% ³⁶ ; $I_{CBext} = 12 \text{ mA}^{29};$ $I_{BHext} = 12 \text{ mA}^{33}$	P_8.3.12
Charge Pump Voltage at BHx to SHx at PWM operation ³⁵⁾	V _{BHSHxDC2}	_	9.9	-	V	$V_{VS} = 5.5 \text{ V};$ D.C.: $\geq 50\%^{36}$; $I_{CBext} = 12 \text{ mA}^{29}$; $I_{BHext} = 12 \text{ mA}^{33}$	P_8.3.13
High-side Buffer Supply Limitation Voltage BHx to SHx at CP2 Charging	V _{BHSHxlim}	10	11	12	V	37)	P_8.3.15
Hysteresis of High-side Buffer Supply Limitation Voltage BHx to SHx at CP2 Charging	V _{BHSHxlimhys}	_	1.2	_	V	38)	P_8.3.16
Charge Pump Frequency CP2 ³¹⁾	f_{CP2}	_	55	-	kHz	-	P_8.3.17
Bootstrap Diodes							
Bootstrap Diode Forward Resistance	r _{Dbootx}	4.5			Ω	$r_{\text{Dboot}} = (V_{\text{Dboot@250 mA}} - V_{\text{Dboot@200 mA}}) / 50 \text{ m}$ A	P_8.3.18

Total charge pump 2 output external current defined by $I_{BHext} = I_{BH1ext} + I_{BH2ext} + I_{BH3ext}$; I_{BHXext} defined by $f_{PWM} * Q_{gTOT}$, e.g.: $I_{BHXext} = 4 \text{ mA} = 20 \text{ kHz} * 200 \text{ nC}$

Parameter is not application relevant, parameter refers to charging via CP2 including full bootstrap charging

 I_{CBext} is total external current out of the CB pin which is equivalent to the gate charge load: I_{CBext} = number of switching MOSFETs* f_{PWM} * Q_{gTOT} including additional application dependent currents. E.g.: I_{CBext} = 24 mA = 6*20 kHz*200nC

Not subject to production test; specified by design

Specified duty cycle referred to input ILx for low-side output stage on at f_{PWM} = 20 kHz, e.g.: turn on time for ILx at 5% D.C. = 5%*1/20 kHz = 2.5 µs

Automatic charging of the high-side buffer supply capacitor (BHx-SHx) with charge pump 2 will be stopped if voltage level V_{BHSHlim} has been reached.

Charging of the high-side buffer supply capacitor (BHx-SHx) with charge pump 2 will be started if voltage level is below VBHSHlim - VBHSHlimhys.

Internal clock frequency accuracy has to be added to the specified values, please see Table 9

External R_{BHx} might be required. Details shown in Figure 3

7 Power Supply

Table 10 (continued) Electrical Characteristics: Power Supply

 $V_S = 5.5 \text{ V}$ to 40 V, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Approximated Bootstrap Diode Threshold Voltage	$V_{ m thbootx}$	0.8	_	-	V	$r_{\text{Dboot}} = (V_{\text{Dboot@250 mA}} - V_{\text{Dboot@200 mA}}) / 50 \text{ m}$ A	P_7.3.4
Supply Current in Normal Mode							
Supply Current Vs	I _{Vs(o)1}	-	_	68	mA	ENA = Low; $V_{VSROP} \le V_{VS} < 14 \text{ V};$ $V_{SHx} = 0 \text{ V}$	P_8.3.19
Supply Current Vs	I _{Vs(o)2}	_	_	40	mA	ENA = Low; $14 \text{ V} \le V_{\text{VS}} \le 60 \text{ V};$ $V_{\text{SHx}} = 0 \text{ V}$	P_8.3.20
Supply Current Vs	I _{Vs(L)1}	_	_	130	mA	ENA = High; $I_{CBext} = 24 \text{ mA}^{29}$; $V_{VsROP} \le V_{VS} < 14 \text{ V}$; $V_{SHx} = 0 \text{ V}$	P_8.3.21
Supply Current Vs	I _{Vs(L)2}	-	-	72	mA	ENA = High; $I_{CBext} = 24 \text{ mA}^{29}$; $14 \text{ V} \le V_{VS} \le 60 \text{ V}$; $V_{SHx} = 0 \text{ V}$	P_8.3.22
Supply Current Limitation at Vs ³⁵⁾	I _{Vs(max)}	_	-	2.3	А	$C_{CB} = 4.7 \mu F;$ $V_{CB} = 0 V;$ $I_{CBext} = 0 \text{ mA}^{29}$	P_8.3.23
Supply Current Limitation at Vs ³⁵⁾	I _{Vs(max)hot}	_	_	2.0	A	$T_{\rm j} = 150^{\circ}\text{C};$ $C_{\rm CB} = 4.7 \mu\text{F};$ $V_{\rm CB} = 0 \text{V};$ $I_{\rm CBext} = 0 \text{mA}^{29}$	P_7.3.3
Supply Current in Sleep Mode							
Quiescent current Vs ⁴⁰⁾	I _{QVS1}	-	_	15	μА	$V_{VS} \le 14 \text{ V};$ $T_j = 25^{\circ}\text{C};$ $V_{INH} = V_{SOFF} = \text{GND}^{41};$ $V_{SHx} = \text{GND}$	P_8.3.27

External *R*_{BHx} might be required. Details shown in Figure 3

 I_{CBext} is total external current out of the CB pin which is equivalent to the gate charge load: I_{CBext} = number of switching MOSFETs* f_{PWM} * Q_{gTOT} including additional application dependent currents. E.g.: I_{CBext} = 24 mA = 6*20 kHz*200nC

Not subject to production test; specified by design

For details please refer to Chapter 14.2.2

For details please refer to Figure 10

7 Power Supply

Table 10 (continued) Electrical Characteristics: Power Supply

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test	Number
		Min.	. Typ. Max.			Condition	
Quiescent Current VDHP	I _{QVDH2}	_	-	6	μА	$V_{VDHP} \le 14 \text{ V};$ $T_{j} \le 150^{\circ}\text{C};$ $V_{INH} = V_{SOFF} = \text{GND}^{41};$ $V_{SHx} = \text{GND}$	P_8.3.29
Quiescent Current VDHx	I _{QVDHx2}	-	50	200	nA	$V_{VDHP} \le 14 \text{ V};$ $V_{VDHx} \le 14 \text{ V};$ $T_a \le 25^{\circ}\text{C};$ $V_{INH} = V_{SOFF} = \text{GND}^{41};$ $V_{SHx} = \text{GND}$	P_8.3.31
Total Quiescent Current Vs and VDHP	I _{Q1}	-	-	17	μА	$V_{VS} = V_{VDHP} \le 14 \text{ V};$ $T_j = 25^{\circ}\text{C};$ $V_{INH} = V_{SOFF} = \text{GND}^{41};$ $V_{SHx} = \text{GND}$	P_8.3.49
Power Up/Down							
Voltage Vs for ensured Power-up of Charge Pumps	V _{VsWU}	6.0	_	-	V	-	P_8.3.38

28

For details please refer to Figure 10

7 Power Supply

7.4 Typical Behavior Figures

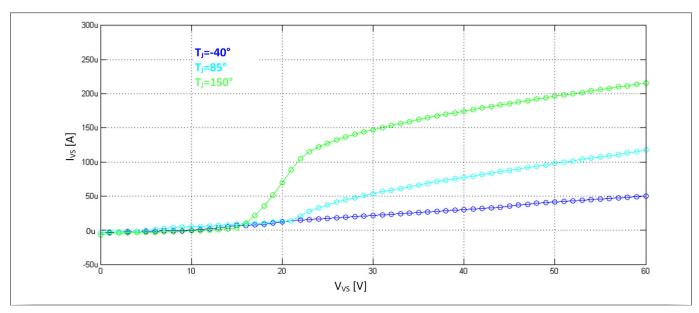


Figure 8 Typical Quiescent Current Vs vs. V_{Vs} at 3 different T_i at $V_{INH} = 0$ V and $V_{SOFF} = 0$ V

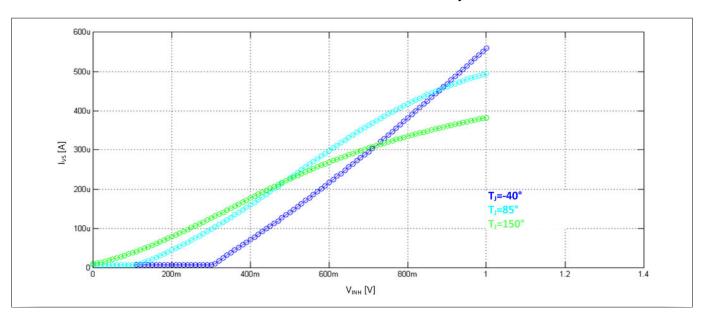


Figure 9 Typical Quiescent Current Vs vs. V_{INH} at 3 different T_j at V_{SOFF} = 0 V and V_{Vs} = 14 V (same characteristic for V_{SOFF} at Pin \overline{SOFF})

Note: Quiescent current doubles in the case of $V_{INH} = V_{SOFF}$

7 Power Supply

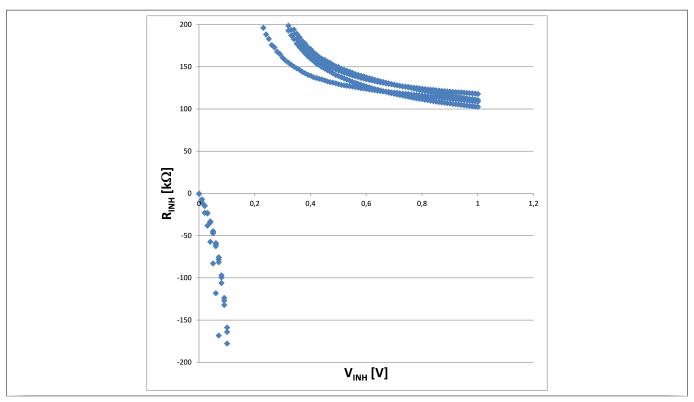


Figure 10 Typical Input Impedance R_{INH} vs. V_{INH} (same characteristic for R_{SOFF} vs. V_{SOFF} at Pin \overline{SOFF})

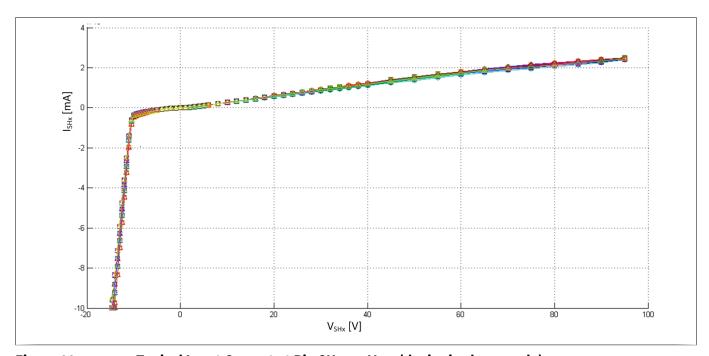


Figure 11 Typical Input Current at Pin SHx vs. V_{SHx} (device in sleep mode)

8 Floating MOSFET Driver

Floating MOSFET Driver 8

The TLE9183QK provides 6 identical output stages to drive external N-channel MOSFETs in a brushless DC motor configuration. The driving signal for each FET given by the μC will be referenced to the source of every single FET by the integrated level shifters. The pins SLx/SHx are the reference for the floating gate driver output stages. A shoot through protection and dead time control is integrated into the logic. Violation of the input patterns and the correct conversion of the GND related input signal into floating signal by the level shifter will be monitored. Additionally the design and layout of the 6 internal signal paths for gate driving are integrated similar to each other to minimize switching and propagation delay time differences.

8.1 **Driver Output Stage**

As mentioned above the 6 output stages are identical. They are configured as three low-side and three high-side floating driver stages, every stage with its own external MOSFET source connection. So the switching transition behavior among every output stage to each other is optimized inside the TLE9183QK. External measures regarding to layout and identical wire length have to be considered as well to enable an adjustment of duty cycles ranges higher than 95% to ensure highest motor performance.

The six driver stages are designed to drive low on-resistance N-channel MOSFETs. They are able to supply high currents which are required for fast charging and discharging of the gate of the external FETs to minimize the power dissipation caused by switching. The high current capability also allows to increase the PWM frequency or to adjust high duty cycle ranges. Applying higher PWM frequency will lead to higher current consumption.

8.2 **Input to Output Information**

The electrical characteristics of ILx, IHx and ENA are described in Chapter 4.

8.3 **Shoot Through Protection and Dead Time Generation**

In bridge applications it has to be assured that the external high-side and low-side MOSFETs are not "on" at the same time, connecting directly the battery voltage to GND.

The implemented locking mechanism, (i.e. shoot through protection) avoids that the external low-side and high-side MOSFETs of a half bridge can be turned on at the same time. So a short circuit of the bridge due to faulty input signals or faulty input driving sequences will not occur.

An additional cross conduction protection is offered by the dead time protection. The dead time defines the time frame between one MOSFET is turned off and the complementary MOSFET of the half bridge is turned on. The dead time generated by TLE9183QK can be programmed. Two dead times can be set, one for each transition, high-side off to low-side on and low-side off to high-side on. For high-side off to low-side on please refer to register Dt ls and for low-side off to high-side on please refer to register Dt ls. So short circuit of the bridge will not occur which would be caused by long propagation delay times or long switching on/off times of external FETs. There is always a minimum dead time ensured, independent of the programmed value.

A supervision function has been integrated to check if the output pattern of the µC will violate the shoot through restriction and the adjusted dead time. The input pattern violation bit is set indicating the affected output stage. During configuration the failure behavior is adjustable via SPI. If low-side and high-side input pins are connected together to drive the FETs only with 3 μC output pins it is recommended to deactivate this supervision feature.

8 Floating MOSFET Driver

Table 11 Programming of Dead Time tDTprog⁴²⁾

Bit Name	Bit Value (8 bit)	Program tdt Value [ns]	Overall tdt [ns]	Overall tdt [ns]@ fclk = 28MHz
dtXs	0x00	0	0+3* tclk	107 (min. dead time)
	0x01	1* tclk	(1+3)* tclk	143
	tdtprog _n = tdtprog _{n-1} +1	n* tclk	(tdtprog _n +3)* tclk	(tdtprog _n +3)*35.7
	0x0E (default)	14* tclk	(14+3)* tclk	607
	0xA5	165* tclk	(165+3)* tclk	5998 (max. dead time)

8.4 Electrical Characteristics Floating MOSFET Driver

Table 12 Electrical Characteristics MOSFET drivers

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Values		;	Unit	Note or Test	Number	
		Min.	Тур.	Max.		Condition	
DC Characteristics		-					
Low Level Output Voltage Gxx-Sxx	V _{GS_LL}	_	_	0.2	V	0 mA ≤ I _{DCLoadOS} ≤ 2 mA;	P_9.4.1
High Level Output Voltage Gxx-Sxx	V _{G_HL1}	8	_	13.5	V	$C_{CPx} = 1.0 \mu F;$ $C_{CB} = 4.7 \mu F;$ $I_{DCLoadOS} = -2 mA;$ $V_{SLx} = V_{SHx} = 0 V$	P_9.4.3
High Level Output Voltage Difference between Low-side Output Stages GLx-SLx	dV_{G_HLS}	_	_	0.5	V	-2 mA ≤ $I_{DCLoadOS} \le 0$ mA; $V_{SLx} = 0$ V	P_9.4.5
High Level Output Voltage Difference between High-side Output Stages GHx-SHx	dV _{G_HHS}	-	-	0.5	V	$-2 \text{ mA} \le$ $I_{\text{DCLoadOS}} \le 0 \text{ mA};$ $V_{\text{SHx}} = 0 \text{ V}$	P_9.4.6
Gate Drive Output Voltage T _j = -40°C	$V_{\rm GS3}$	-	-	1.7	V	Passive clamping; Pin Vs = open;	P_9.4.7
T _j = 25°C				1.5		$V_{\text{INH}} = \text{Low};$ $I_{\text{Load}} = 1 \text{ mA}$	
Dynamic Characteristics							
Turn On Gate Current	I _{G(on)1}	-	-2.0	-0.75	A	$V_{\text{BS}} \ge V_{\text{BSUV}};$ $V_{\text{Gxx}} - V_{\text{Sxx}} = 0 \text{ V}$	P_9.4.14
Turn Off Gate Current	I _{G(off)1}	0.75	2.2	-	A	$V_{BS} \ge V_{BSUV};$ $V_{Gxx} - V_{Sxx} = 10 \text{ V}$	P_9.4.15

¹² Commands to adjust dead time values higher than 0xA5 are invalid and 0xA5 will be written into the registers instead

8 Floating MOSFET Driver

Table 12 (continued) Electrical Characteristics MOSFET drivers

 $V_S = 5.5 \text{ V}$ to 40 V, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test	Number
	Min. Typ. Max.			Condition			
Rise Time of Output Stage	t_{G_rise}	-	90	145	ns	$V_{VS} = 14 \text{ V};$ $V_{GS} = 1.0 \text{ V to } 7.0 \text{ V};$ $C_{Load} = 33 \text{ nF};$ $V_{Sxx} = 0 \text{ V}$	P_9.4.16
Fall Time of Output Stage	t _{G_fall}	-	80	140	ns	$V_{VS} = 14 \text{ V};$ $V_{GS} = 7.0 \text{ V to } 1.0 \text{ V};$ $C_{Load} = 33 \text{ nF};$ $V_{Sxx} = 0 \text{ V}$	P_9.4.17
Propagation Delay Time (all FETs on)	t _{P(an)}	20	35	60	ns	$R_{\text{Load}} = 2 \text{ k}\Omega^{43}$; $V_{\text{Sxx}} = 0 \text{ V}$	P_9.4.18
Propagation Delay Time (all FETs off)	$t_{P(af)}$	25	35	70	ns	$R_{\text{Load}} = 2 \text{ k}\Omega^{43}$; $V_{\text{Sxx}} = 0 \text{ V}$	P_9.4.19
Propagation Delay Time Mismatch	t _{P_match}	-	_	20	ns	$R_{\text{Load}} = 2 \text{ k}\Omega^{43}$; $V_{\text{Sxx}} = 0 \text{ V}$	P_9.4.22
Recommended Minimum Input Pulse Length ⁴⁴⁾⁴⁵⁾	t _{Pulse_in}	50	_	_	ns	IHx and ILx	P_8.4.1
Dead Time ⁴⁶⁾⁴⁷⁾		•					•
Programmable Dead Time Range ⁴⁸⁾	t_{DTr}	0.1	_	6	μs	166 steps programmable	P_9.4.30

33

Datasheet

 $R_{Load} = 2 \text{ k}\Omega$, indicates an open load condition

Not subject to production test, specified by design

⁴⁵ Pulses shorter than 50ns might cause the output stage to turn on the external FET for maximum 1 μs. For details please refer to Chapter 14.2.3

Dead time details please refer to Table 11

Internal clock frequency accuracy has to be added to the specified values, please see Table 9

Dead time can additionally take up to one internal clock cycle for synchronization

8 Floating MOSFET Driver

8.5 Typical Timings and Behavior Figures

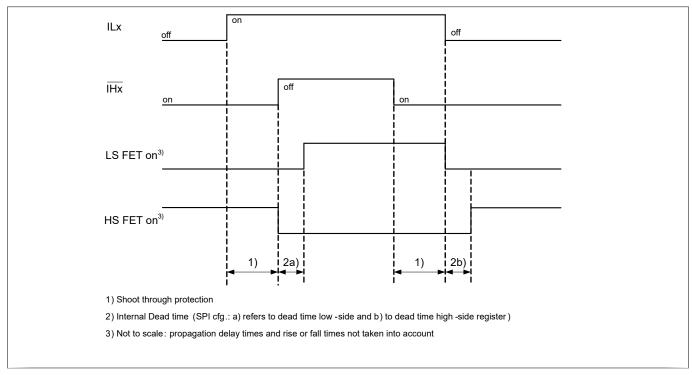


Figure 12 Shoot Through Protection and Dead Time Generation in Normal Operation Mode

9 Shunt Signal Conditioning

9 Shunt Signal Conditioning

The shunt signal conditioning (SSC) incorporates 3 precise current sense amplifiers (CSAs) to amplify the voltage drop at the shunt resistors caused by the motor currents and a voltage reference output buffer (RB), see Figure 13.

The signal conditioning refers to GND. Due to high common mode input voltage range (see VISx2) it is robust against sense voltage ringing caused by stray inductances during fast PWM current switching. Due to high common mode functional input voltage range (see VSSC_CM) it is robust against high common mode shifts between the GNDs of the shunts and the common GND of the ECU.

High equivalent input resistances (see RSSC_iCM and RSSC_iDIFF), low input offset voltages (see VSSC_Oofscal) and low gain error (see ASSC_diff) provide an excellent DC performance of the CSAs and therefore minimizes the total error of the shunt signal conditioning.

Additionally, high common mode rejection ratio (see CMRRSSC_CSA), high power supply rejection ratio (see PSRRSSC_CSA_CB, PSRRSSC_CSA_Vs, PSRRSCC_RB_CB and PSRRSSC_RB_Vs) and a low noise figure (see VSSC_ONsd) of the CSAs contribute to minimize the total error of the SSC.

In order to optimize the shunt signal conditioning - especially in systems designed for a wide motor current range with high accuracy requirements at high and low motor currents - different gains can be programmed, see Table 13.

The DC output voltage at the outputs of the CSAs (VOx) for zero differential input voltage is defined by the output of the reference buffer at pin VRO. Therefore, positive and negative currents through the shunt resistor can be amplified by the CSAs and thus measured by the ADC of μ C. Two different VRO voltages can be set at the reference buffer RB, see Table 14. Each of the two VRO voltage settings can be fine tuned, see Table 15.

CSA 1 + RB, CSA 2 and CSA 3 can be deactivated at configuration. Therefore if CSA 2 and/or CSA 3 is required CSA 1 + RB shall stay activated. In the case of deactivation of CSAs it is not recommended to deactivate CSA2 alone. If the CSA is not used the input pins ISPx and ISNx of the CSA shall be connected to GND and the output pins VRO and VOx shall be left open. Additionally, the supplies of the not used CSA shall be turned off via SPI.

If the third current sense amplifier is activated at configuration overcurrent CSA3 can be detected once after normal operation mode has been entered although overcurrent condition is not applied.

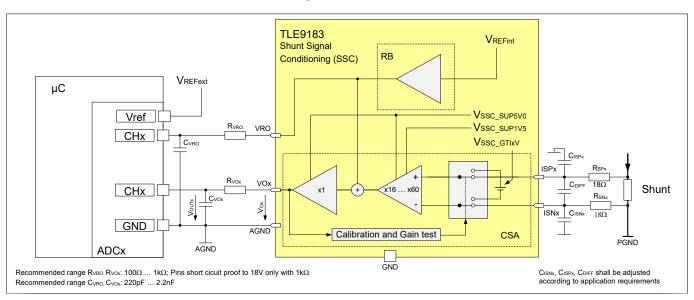


Figure 13 Simplified Block- and Application Diagram of the Shunt Signal Conditioning

9.1 Gain Programming

The gain of the CSAs is configurable to 8 different settings, please refer to Table 13. In applications with high requirements to the dynamic range of shunt current it makes sense to configure higher gain settings at low

9 Shunt Signal Conditioning

shunt currents compared to higher shunt currents to utilise the full range of the ADC in the μ C. So it is possible to re-configure the gain registers of all CSAs in run-time, but the altered gain setting is not calibrated.

Table 13 Gain Definition

Field	Bit Value	ASSC_diff, typ	Bit Value	ASSC_diff, typ
opX_gainY ⁴⁹⁾	ninY ⁴⁹⁾ 000 15.71		001	19.56
	010	23.35	011	26.90
	100	30.81	101	34.45
	110	38.13	111	83.19

9.2 Setting VRO Voltage and VOx Voltage for Zero SSC Differential Input Voltage

The VRO output voltage VSSC_OVRO can be programmed with 2 bits, see Table 14. The VOx voltages with respect to AGND at zero (ISPx - ISNx = 0 V, VSSC_CM_{, min} \leq ISPx = ISNx \leq VSSC_CM_{, max}) SSC differential input voltage follow VSSC_OVRO.

Table 14 VRO Output Voltage Level

Field	Bit Value	VSSC_OVRO, typ	Bit Value	VSSC_OVRO, typ
zcl	00	Reserved	10	2.5 V
	01 (default)	1.65 V	11	Reserved

Additionally, VSSC OVRO can be trimmed with 6 bits, see Table 15.

Table 15 Trim Range of VRO Output Voltage Level VSSC_OVRO

Field	Bit Value (6bit)	VRO Output Voltage	Description
ofs	0x00	VSSC_OVRO + VSSC_OVRO_TRN	Most negative offset adjustment
	0x1F (default)	VSSC_OVRO	Default value
	0x3F	VSSC_OVRO + VSSC_OVRO_TRP	Most positive offset adjustment

Note:

Example: The field 'zcl' is set to 0b10 (VSSC_OVRO, typ = 2.5 V). μ C ADC measures voltage at pin VRO of 2.475 V ($V_{OVROmeasured}$). The typical trim step VSSC_OVRO_LSB, typ for 'zcl' = 0b10 is 2.66 mV. The difference between VSSC_OVRO, typ = 2.5 V and $V_{OVROmeasured}$ = 2.475 V is 25 mV. The typical trim step of 2.66 mV times 9 results in a delta of 23.94 mV. The default VRO trimming has to be increased by 9, resulting in 0x1F + 9 = 0x28. After writing 0x28 into the field 'ofs' μ C ADC should measure 2.475 V + 9 × 2,66 mV = 2,4989 V at pin VRO.

9.3 Auto Calibration

An auto calibration can be triggered via SPI to compensate the output voltage offset of the current sense amplifiers at pin VOx with respect to VSSC_OVRO. The calibration takes maximum tSSC_ofscal for each CSA. Calibration can be selected separately for each CSA, e.g., CSA 1 is in calibration mode, CSA 2 is normal operation. If the calibration fails an error will be reported. It is recommended to perform an auto calibration after power-up. Auto calibration shall only be performed with gain register 1. Auto calibration is deactivated in configuration mode. If the auto calibration is aborted or fails calibration stops and the last valid calibration

⁴⁹ X defines the affected CSA and Y defines gain register 1 or gain register 2

9 Shunt Signal Conditioning

value will be used. If more than one current sense amplifier has been selected for calibration, the calibration will prioritize CSA 1 first, then 2 and 3.

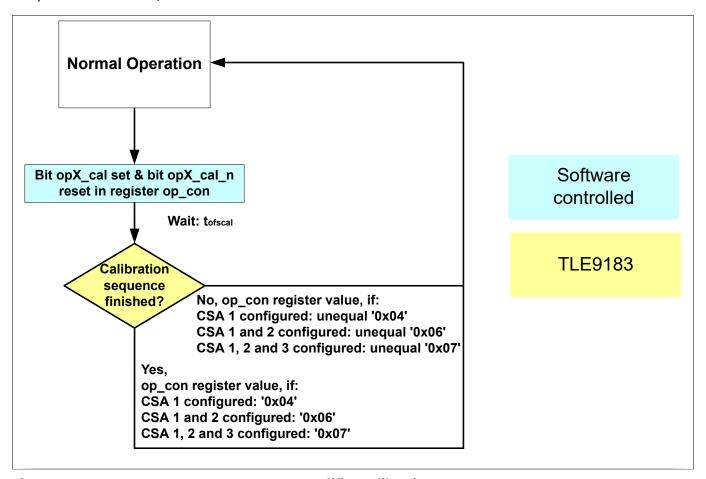


Figure 14 **Sequence: Current Sense Amplifier Calibration**

9.4 **Overcurrent Detection**

Overcurrent will be detected if the output voltage of the current sense amplifier exceeds a positive maximum threshold for longer than the configured filter time. The overcurrent threshold is configurable to match the fullscale ADC input range of the µC, see Table 16. The filter time is programmable with 2 bits, see Table 17. The overcurrent threshold and the filter time are valid for all current sense amplifiers. The handling of a detected overcurrent is described in Chapter 10.3, especially Table 25.

Table 16 **Overcurrent Threshold Selection**

Field	Bit Value	Typical Overcurrent Threshold
tl_oc_op	0 (default)	VSSC_OC5V0 _{, typ}
	1	VSSC_OC3V3 _{, typ}

Table 17 **Overcurrent Filter Time Selection**

Field	Bit Value	Typical Filter Time	Bit Value	Typical Filter Time
f_oc_op	00	1.5 μs	10 (default)	5 µs
	01	3 µs	11	10 µs

9 Shunt Signal Conditioning

9.5 **Self-tests of Shunt Signal Conditioning**

The CSAs have two different self-test mechanisms. (1) gain test with two different differential input voltages and (2) over- and undervoltage test of the internal power supplies for the current sense amplifiers. For details see Chapter 9.5.1, Chapter 9.5.2.

9.5.1 **Gain Test**

Gain test can only be activated in self-test mode, for details see Table 30. Two different internal generated self-test voltages VSSC GTILV and VSSC GTIHV for gain test can be selected at the inputs of the CSAs. The input voltage VSSC_GTILV is always applied to gain register 1 of the CSAs. The input voltage VSSC_GTIHV is always applied to gain register 2 of the CSAs. By changing a dedicated bit sh_op_gain the gain of the CSA toggles between both gain register settings. Reading the bit will indicate which gain is selected. Toggling shop gain will affect always all CSAs. The resulting output voltage shall be measured by the ADC of the μC and compared to the configured gain. The µC can rate if the CSA output voltage matches the programmed gain. Thereby, the accuracy of the gain, see ASSC_diff AND GSSC_Gdacc, the input offset voltage, see VSSC_Oofscal or VSSC_Oofs the accuracy of the self-test, see VSSC_GTILV and VSSC_GTIHV and the accuracy of the VRO output voltage, see VSSC OVRO have to be taken into account. Amplification of differential input voltage ISP - ISN is not possible for the CSA which is selected for gain test.

Table 18 **Gain Tests Availability**

CSA	CSA 1		CSA 2		CSA 3		
Gain Register enabled	op1_gain1	op1_gain2	op2_gain1	op2_gain2	op3_gain1	op3_gain2	
Gain Test enabled	en_opX_gt1 (gain test with 20 mV)	en_opX_gt2 (gain test with 100 mV)	en_opX_gt1 (gain test with 20 mV)	en_opX_gt2 (gain test with 100 mV)	en_opX_gt1 (gain test with 20 mV)	en_opX_gt2 (gain test with 100 mV)	

9.5.2 **Power Supply Monitoring of SSC**

The power supply monitoring of the SSC detects over- or undervoltage of the 1.5 V and 5 V supply voltage of the CSAs and the VRO if activated in self-test mode or after leaving configuration mode. Register Err_op_12 bit 6, 5, 2 and bit 1 and register Err_op_3 bit 2 and 1 indicates the reult of the power supply monitoring test. Under- or overvoltage does not provide any further failure behavior except setting the specific bits into the register, hence it is the responsibility of the μ C to react accordingly. In normal operation mode it is recommended that the μ C triggers the power supply monitoring (via SPI).

Automatic temperature read out is deactivated during power supply voltage monitoring. In this case temperature read out register temp ls1, temp ls2, temp ls3, temp hs1, temp hs2 and temp hs3 will not be updated. Details for temperature readout see Chapter 10.5.8.2.

9.6 **Electrical Parameter Shunt Signal Conditioning (SSC)**

Table 19 **Electrical Characteristics - Current Sense Amplifier**

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or Test Condition	Number
		Min. Typ. Max.				

Current Sense Amplifier - Input

9 Shunt Signal Conditioning

(continued) Electrical Characteristics - Current Sense Amplifier Table 19

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Common Mode Input Voltage Range	V _{SSC_CM}	-1.7	_	1.7	V	$(V_{\rm ISPx} + V_{\rm ISNx})/2$	P_9.6.1
Differential Input Voltage Range	V _{SSC_Idiff}	-200	_	200	mV	V _{ISPx} -V _{ISNx}	P_9.6.2
Equivalent Common Mode Input Resistance	R _{SSC_iCM}	1.0	-	-	ΜΩ	51) CSAx = enabled; $C_{\text{ISPx}} = C_{\text{ISNx}} = 1.0 \mu\text{F};$ $-1.7 \text{V} \le (V_{\text{ISPx}} = V_{\text{ISNx}})$ $\le +1.7 \text{V}$	P_9.6.5
Equivalent Differential Mode Input Resistance	R _{SSC_iDIFF}	17	28	39	kΩ	CSAx = enabled; $C_{DIFFx} = 1.0 \mu F;$ $-0.2 \text{ V} \le (V_{ISPx} - V_{ISNx})$ $\le +0.2 \text{ V};$ $-1.7 \text{ V} \le (V_{ISPx} + V_{ISNx})/2$ $\le +1.7 \text{ V}$	P_9.6.6
Current Sense Amplifier - Ga	ain						
Differential Gain ⁵³⁾	A _{SSC_diff}	15.39	15.71	16.02	V/V	opX_gainY ⁵⁰⁾ = '0x0'; zcl = '0b10'	P_9.6.7
		19.17	19.56	19.96	V/V	opX_gainY ⁵⁰⁾ = '0x1'; zcl = '0b10'	
		22.89	23.35	23.82	V/V	opX_gainY ⁵⁰⁾ = '0x2'; zcl = '0b10'	
		26.37	26.90	27.44	V/V	opX_gainY ⁵⁰⁾ = '0x3'; zcl = '0b10'	
		30.19	30.81	31.42	V/V	opX_gainY ⁵⁰⁾ = '0x4'	
		33.59	34.45	35.31	V/V	opX_gainY ⁵⁰⁾ = '0x5'; zcl = '0b10'	
		37.18	38.13	39.08	V/V	opX_gainY ⁵⁰⁾ = '0x6'	
		80.28	83.19	86.10	V/V	opX_gainY ⁵⁰⁾ = '0x7'	

⁵¹ Not subject to production test, specified by design

⁵³ Including initial spread and temperature dependency

X defines the affected CSA and Y defines gain register 1 or gain register 2

9 Shunt Signal Conditioning

Table 19 (continued) Electrical Characteristics - Current Sense Amplifier

 $V_S = 5.5 \text{ V}$ to 40 V, $T_j = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Gain Accuracy Temperature Drift	G _{SSC_Gdacc}	-	-12	-	ppm/ K	⁵¹⁾ T _j = -40°C to +25°C; zcl = '0b10' opX_gainY = '0x0 0x5'	P_9.6.9
		-	-50	-	ppm/ K	⁵¹⁾ T _j = +25°C to +150°C; zcl = '0b10' opX_gainY = '0x0 0x5'	
Current Sense Amplifier - Ga	ain Test						
Reference Voltage Source 1 - Low Voltage	V _{SSC_GTILV}	17	22.5	28	mV	Refers to CSAx gain test Low Voltage en_opX_gt1	P_9.6.11
Reference Voltage Source 2 - High Voltage	V _{SSC_GTIHV}	85	110	135	mV	Refers to CSAx gain test High Voltage en_opX_gt2	P_9.6.12
Current Sense Amplifier - Ou	utput						
Output Voltage Range	V _{SSC_OVR}	-0.1	_	5.3	V	-100 μA ≤ I _{VOx} ≤ 100 μA	P_9.6.13
Output Voltage Range within Specified Gain and Offset Accuracy	V _{SSC_LOVR}	0.15	_	4.7	V	51) zcl = '0b10' $R_{VOx} = 100 \Omega$; $C_{VOx} = 2.2 \text{ nF}$	P_9.6.14
		0.15	-	4.0	V	$S_{VOx} = 100 \Omega;$ $C_{VOx} = 2.2 \text{nF}$	
Common Mode Rejection Ratio	CMRR _{SSC_CS}	60	-	-	dB	⁵²⁾ D.C.	P_9.6.16
Output Offset Voltage without Auto Calibration	V _{SSC_Oofs}	-100	0	100	mV	⁵³⁾ all gain settings	P_9.6.17
Output Offset Voltage with Auto Calibration	V _{SSC_Oofscal}	-10	0	10	mV	⁵³⁾ all gain settings	P_9.6.18
Output Offset Voltage Temperature Drift	V _{SSC_Odofs}	-25	_	25	μV/K	⁵¹⁾ T _j = -40°C 150°C	P_9.6.19
Offset Voltage Auto Calibration Duration	t _{SSC_ofscal}	_	100	_	μs	51)54)	P_9.6.20

Current Sense Amplifier - Output - Dynamic Characteristics

(table continues...)

Datasheet

40

Not subject to production test, specified by design

opX_gainY = '0x2'; D.C.; zcl = '0b10'; $CMRR = A_{DIFF}/A_{CM}$; $A_{DIFF} = [VOx(V_{ISPx}-V_{ISNx} = 50 \text{ mV})-VOx(V_{ISPx}-V_{ISNx} = 0 \text{ mV})]/50 \text{ mV}$ at $V_{ISPx}+V_{ISNx} = 0 \text{ V}$; $A_{CM} = [VOx(V_{ISPx}=V_{ISNx} = 1 \text{ V})-VOx(V_{ISPx}=V_{ISNx} = 0 \text{ V})]/1 \text{ V}$

Including initial spread and temperature dependency

Internal clock frequency accuracy has to be added to the specified values, please see Table 9

9 Shunt Signal Conditioning

Table 19 (continued) Electrical Characteristics - Current Sense Amplifier

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	5	Unit	Note or Test Condition	Number	
		Min.	Тур.	Max.				
Output Settling Time	t _{SSC_s}	_	-	2.5	μs	51)Input step response VOx 0.5 V to 4.6 V +/- 20 mV after output filter C_{VOx} = 2.2 nF and R_{VOx} = 100 Ω	P_9.6.58	
	\	D 6				opX_gainY = '0x0 0x6'		
Current Sense Amplifier - O Output Voltage Noise, Standard Deviation	V _{SSC_ONsd}	-	0.6	-	mV	$^{51)}$ ISNx = ISPx = 0 V; $T_{\rm j}$ = 25°C; opX_gainY = '0x2'; zcl = '0b10'; After Filter ($R_{\rm VOx}$ = 100 Ω ; $C_{\rm VOx}$ = 2.2 nF) VOx referred to GND	P_9.6.26	
Current Sense Amplifier - O	utput - Over	urrent	Detecti	on				
Overcurrent Detection Threshold in % Referred to VSSC_SUP5V0	V _{SSC_OC5V0}	93.75	94.75	95.75	%	tl_oc_op = '0'	P_9.6.34	
Overcurrent Detection Threshold in % Referred to VSSC_SUP5V0	V _{SSC_OC3V3}	61	62	63	%	tl_oc_op = '1'	P_9.6.35	
Hysteresis of Overcurrent Detection	$V_{\rm SCC_OChys}$	_	25	_	mV	-	P_9.6.36	
Typical Overcurrent Filter Time Range	t _{SSC_OCf}	1.5	5.0	10	μs	⁵⁴⁾ 4 steps programmable f_oc_op = '0x0 0x3'	P_9.6.37	
Current Sense Amplifier - P	ower Supply	_	_	_			_	
Internal Power Supply 5V	V _{SSC_SUP5V0}	4.8	5.0	5.2	V	-	P_9.6.38	
Power Supply Rejection Ratio Vs	PSRR _{SSC_CS} A_Vs	_	60	_	dB	$^{51)}f = 1 \text{ kHz};$ $11V \le V_{CBx} \le 14 \text{ V}$	P_9.6.40	
Power Supply Rejection Ratio CB	PSRR _{SSC_CS}	-	60	-	dB	51)f = 1 kHz; $11V \le V_{CBx} \le 14 \text{ V}$	P_9.6.41	
Duration of Over- and Undervoltage Self Test sequence	t _{SSC_STUVOVr}	_	-	200	μs		P_9.6.48	

Not subject to production test, specified by design

Internal clock frequency accuracy has to be added to the specified values, please see Table 9

TLE9183QK

Bridge Driver IC

9 Shunt Signal Conditioning

Table 20 **Electrical Characteristics - Reference Buffer**

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Output Voltage VRO	V _{SSC_OVRO}	1.613 2.426	1.65 2.5	1.687 2.574	V	zcl = '0b01'; zcl = '0b10'; @ ofs = '0x20'	P_9.6.49
Trim Step VRO	V _{SSC_OVRO_LSB}	-	1.33 2.66	-	mV	zcl = '0b01'; zcl = '0b10'	P_9.6.51
Negative Trim Range VRO	V _{SSC_OVRO_TRN}	-2.8 -3.7	_	-2.3 -3.1	% of V _{OVRO@} ofs = '0x2 0'	zcl = '0b01'; zcl = '0b10'; @ ofs = '0x00'	P_9.6.52
Positive Trim Range VRO	V _{SSC_OVRO_TRP}	2.2 3.0	-	2.7 3.6	% of V _{OVRO@} ofs = '0x2 0'	zcl = '0b01'; zcl = '0b10'; @ ofs = '0x3F'	P_9.6.53
Output Voltage VRO Temperature Drift	V _{SCC_OVRO_dT}	-1.0	_	+1.0	% of VOVRO@ ofs = '0x2 0' & Tj=25°C	zcl = '0b01' and '0b10';	P_9.6.54
Power Supply Rejection Ratio Vs	PSRR _{SSC_RB_V}	_	60	-	dB	$^{55)}f = 1 \text{ kHz};$ $11V \le V_{CBx} \le 14 \text{ V}$	P_9.6.56
Power Supply Rejection Ratio CB	PSRR _{SCC_RB_C}	-	60	-	dB	$^{55)}f = 1kHz;$ $11V \le V_{CBx} \le 14 V$	P_9.6.57

⁵⁵ Not subject to production test, specified by design

10 Protection and Diagnostics

Protection and Diagnostics 10

The TLE9183QK provides extended protection and monitoring functions. All detected errors and warnings can be read by SPI, most of the thresholds are selectable by SPI configuration or SPI command. Safety relevant diagnostics can be tested during operation in a dedicated self-test mode.

Supervision Overview 10.1

The following diagnostics and read out functions are available. Details are provided in Chapter 10.5.

Table 21 **Diagnostic overview**

Diagnostic	Availability in Configuration ⁵⁶	Availability in reduced operation 56	Availability with SOFF=low	Test of Diagnosis Function	Failure Behavior	Reference
Power Supply Supe	rvision and Diagn	ostics				
Overvoltage VS (Programmable Threshold)	yes (default value)	no ⁵⁷⁾	yes	no	Table 25	Chapter 10.5.1
Undervoltage VS (Programmable Threshold)	yes (default value)	no ⁵⁷⁾	yes	no	Table 25	Chapter 10.5.1
VS Read Out	yes	no	yes	no	read out	Chapter 10.5.1
Overvoltage VDHP (Programmable Threshold)	yes (default value)	no ⁵⁷⁾	yes	no	Table 28	Chapter 10.5.2
Undervoltage VDHP (Programmable Threshold)	yes (default value)	no ⁵⁷⁾	yes	no	Table 25	Chapter 10.5.2
VDHP Read Out	yes	no	yes	no	read out	Chapter 10.5.2
VCC Under- and Over Monitoring	yes	no ⁵⁷⁾	yes	yes	Table 25 ⁵⁸⁾⁵⁹⁾	Chapter 10.5.5
VCC Read Out	yes	no	yes	no	read out	Chapter 10.5.5
Output Stage Powe	r Supply Supervis	sion				
Undervoltage Charge Pump CB Shutdown	yes	no ⁵⁷⁾	yes	no	Table 24	Chapter 10.5.3
Undervoltage Charge Pump CB (prog. threshold)	yes (default value)	no ⁵⁷⁾	yes	no	Table 25	Chapter 10.5.3
CB Read Out	yes	no	yes	no	read out	Chapter 10.5.3
	7		7	1		

⁵⁶ Not subject to production test, specified by design

⁵⁷ Detector may work, but readout via SPI or pin ERR is not possible; due to reduced operation mode I/O ports are off.

⁵⁸ Failure behavior can be linked to APC activation

Supervision function can be disabled at configuration

10 Protection and Diagnostics

(continued) Diagnostic overview Table 21

Diagnostic	Availability in Configuration ⁵⁶	Availability in reduced operation ⁵⁶	Availability with SOFF=low	Test of Diagnosis Function	Failure Behavior	Reference
Overvoltage Charge Pump 1	yes	no ⁵⁷⁾	yes	no	Table 24	Chapter 10.5.3.2
Overvoltage Charge Pump 2 CH2-CL2	yes	no ⁵⁷⁾	yes	no	Table 24	Chapter 10.5.3.2
Overload Vs	yes	no ⁵⁷⁾	yes	no	Table 24 ⁶⁰⁾	Chapter 10.5.3.2
Overload Charge Pump 1 ⁶¹⁾	yes	no ⁵⁷⁾	yes	no	LE ⁶⁰⁾	Chapter 10.5.3.2
Overload Charge Pump 2	yes	no ⁵⁷⁾	yes	no	LE ⁶²⁾	Chapter 10.5.3.2
Undervoltage High- side Buffer Capacitor BHx-SHx	yes	no ⁵⁷⁾	yes	no	Table 27	Chapter 10.5.4
Overvoltage High- side Buffer Capacitor BHx-SHx	yes	no ⁵⁷⁾	yes	no	LE ⁶³⁾⁵⁹⁾	Chapter 10.5.4
Gate Driver Interna	l Supervisions		1		1	
Internal Power Supply Monitoring	yes	no ⁵⁷⁾	yes	no	ARE, LE	Chapter 10.5.6
Clock Supervision (internal clock)	yes	no ⁵⁷⁾	yes	no	Table 24	Chapter 10.5.7
Overtemperature Shutdown	yes	no ⁵⁷⁾	yes	no	Table 24	Chapter 10.5.8
Overtemperature Detection (Programmable Threshold)	yes (default value)	no ⁵⁷⁾	yes	no	Table 25	Chapter 10.5.8
Temperature Read out	yes	no ⁵⁷⁾	yes	no	read out	Chapter 10.5.8
CSA Diagnostics	no	no	no	n.a.	read out	
Output Stage Status Feedback Information	no	no	yes	no	Table 25	Chapter 10.5.9

⁵⁶ Not subject to production test, specified by design

⁵⁷ Detector may work, but readout via SPI or pin ERR is not possible; due to reduced operation mode I/O ports are off.

⁶⁰ In addition to fault reaction shown in Table 24, Vs switch is on in case of OL_CP1 and off for OL_VS

⁶¹ Monitoring function limited, for details please refer to Chapter 14.2.5

⁶² Charge pump 2 turned off in latched condition. Failure behavior of output stages is configurable

⁶³ Charge pump 2 turned off in latched error condition. Output stages remain active

Supervision function can be disabled at configuration

TLE9183QK

Bridge Driver IC

10 Protection and Diagnostics

(continued) Diagnostic overview Table 21

Diagnostic	Availability in Configuration ⁵⁶	Availability in reduced operation ⁵⁶	Availability with SOFF=low	Test of Diagnosis Function	Failure Behavior	Reference
Digital Driving Path Monitoring	yes	no ⁵⁷⁾	yes	no	Table 24	Chapter 10.5.10
Latent Fault Warning Monitoring	yes	no ⁵⁷⁾	yes	no	sets bit in SER reg.	-
Bridge and FET Diag	nostics and Prote	ection				
Shoot Through Protection	n.a.	n.a.	n.a.	n.a.	Influences Driver State	Chapter 8.3
SCD Failure	no	no	no	yes	Table 26	Chapter 10.5.11
FET Drain Source Voltage Read out	n.a.	n.a.	n.a.	n.a.	read out	Chapter 10.5.12
FET Reverse Diode Forward Voltage Read out	n.a.	n.a.	n.a.	n.a.	read out	Chapter 10.5.13
Overcurrent Detection	yes	no ⁵⁷⁾	yes	no	Table 25	
Drain Source Measurement	no	no	no	n.a.	read out	Chapter 10.5.14
Interface to µC Sup	ervision					
Input Pattern Violation Monitoring	n.a.	n.a.	n.a.	no	Table 25 ⁵⁹⁾	Chapter 8.3
Overload Digital Output Pins	yes	no ⁵⁷⁾	yes	no	Table 29 ⁶⁴⁾	Chapter 10.5.16
Configuration Signature Invalid	yes	yes	yes	no	LE Config Flag	Chapter 10.5.17
Configuration Time- out	yes	no		no	Lock ⁶⁵⁾	Chapter 10.5.17
SPI Frame Error	yes	n.a.	yes	no	W ⁶⁶⁾	Chapter 10.5.20
SPI Frame Time-out	yes	n.a.	yes	no	W ⁶⁶⁾	Chapter 10.5.20
SPI Window Watchdog Time-out	no	no	yes	n.a.	Table 25 ⁵⁸⁾⁵⁹⁾	Chapter 10.5.20

⁵⁶ Not subject to production test, specified by design

⁵⁷ Detector may work, but readout via SPI or pin ERR is not possible; due to reduced operation mode I/O ports are off.

⁵⁹ Supervision function can be disabled at configuration

⁶⁴ In addition to fault reaction shown in Table 29 affected digital output pin turned to a latched tri-sate condition

⁶⁵ To unlock restart with pin INH required

⁶⁶ SPI-Error status flag set in status register

Failure behavior can be linked to APC activation

10 Protection and Diagnostics

Table 21 (continued) Diagnostic overview

Diagnostic	Availability in Configuration ⁵⁶	Availability in reduced operation ⁵⁶	Availability with SOFF=low	Test of Diagnosis Function	Failure Behavior	Reference
CRC error (incoming data)	yes	n.a.	yes	no	W ⁶⁶⁾	Chapter 10.5.20
Invalid Address Access	yes	n.a.	yes	no	W ⁶⁶⁾	Chapter 10.5.20

10.1.1 **Diagnosis in Configuration Mode**

All diagnostics and protection features with a configurable failure behavior are in the default state after the INH pin is set to High and configuration mode is entered. The ERR pin does not respond to error messages until normal operation mode has been entered. The configured failure behavior is activated and the error registers are cleared after configuration has been completed successfully. To read out failures that have occurred in configuration mode, error registers should be read before sending the configuration signature byte.

Disabled Functions in Reduced Operation Mode 10.1.2

In reduced operation mode some diagnostics are disabled. Hence most of the detectors of the diagnosis are functional, but readout capability is limited due to deactivated I/O ports.

Disabled Functions in Safe Off Mode 10.1.3

In safe off mode most diagnostics are active. The register content of disabled diagnostics will remain unchanged, until the device enters normal mode again.

Failure Detection Handling 10.2

The TLE9183QK provides high flexibility according to the error handling to support the approach of a performance optimized ECU. So most of the diagnosis has the option to be handled either as internal or external safety mechanism.

10.2.1 **Failure Flags**

An ERR pin and two failure flags are available to differentiate failure behavior according to the system requirements. Additional flags are available for special operation modes and SPI communication errors. For details please refer to "TLE9183 Registers".

Warning Flag

The warning flag information is the summary of all detected failures for which failure behavior has been configured as a warning. All conditions are logically ORed. The warning flag is cleared if the failure has disappeared and the dedicated error register has been read out by the µC.

Not subject to production test, specified by design

⁶⁶ SPI-Error status flag set in status register

10 Protection and Diagnostics

Table 22 **Warning Truth Table**

Status Bit Name Warning Flag		Description		
Warning 0		No failure detected		
	1	Warning (failure detection configured as Warning)		

Error Flag

The error flag information is the summary of all detected failures. Their behavior has been configured as error, auto restart or latched error. All conditions are logically ORed. The error flag will be cleared if the failure is gone and the dedicated error register has been read out by the µC.

Error Truth Table Table 23

Status Bit Name	Error Flag	Description
Error	0	No failure detected
	1	Error (failure detection configured as error, auto restart or latched error)

Error Pin

The ERR pin will be set to Low if a failure is detected when failure behavior has been configured as "error", "auto Restart" or "latched error". If failure behavior is set to "auto Restart" or "error", the pin will be set to High if the failure disappears and the failure extension timer has expired. A reset with the ENA pin must be performed to set ERR to High if failure behavior is programmed as "latched error". The electrical characteristics of the ERR output pin are described in Chapter 4.7.

10.2.2 **Failure Behavior Configuration**

The TLE9183QK provides two kind of supervision functionality, shutdowns and detections.

Shutdowns are protection features and should prevent actions, like max. rating violations, which may lead directly to a destruction of the TLE9183QK. The fault behavior of the shutdowns is not configurable. All external FETs are turned off. A dedicated read out register indicates shutdowns.

Table 24 Shutdown Error Overview⁶⁷⁾

Bit Position	Bit Name	Description	Output Stages	Charge Pumps	ERR Pin
7	sd_ot	Overtemperature Shutdown	LE	Off (LE)	Low (LE)
6	Res	Reserved	_	_	_
5	Res	Reserved	_	_	_
4	sd_uv_cb	Undervoltage CB Shutdown	ARE	Active	Low (ARE)
3	sd_clk_fail	Internal Clock Supervision Shutdown ⁶⁸⁾	ARE or LE	Active	Low (ARE or LE)
2	sd_ov_cp	Overvoltage Charge Pump Shutdown ⁶⁹⁾			
		Overvoltage at pin CB	LE	Off (LE)	Low (LE)
		Overvoltage CH2-CL2	active	CP2 off (LE)	Low (LE)

⁶⁷ For fault reaction in combination with reduced operation mode occurrence please refer to Chapter 13.2

⁶⁸ Failure reaction can be ARE or LE dependent on type of internal fault

Bit will be set by overvoltage at pin CB or overvoltage CH2-CL2 detection

10 Protection and Diagnostics

Table 24 (continued) Shutdown Error Overview⁶⁷⁾

Bit Position	Bit Name	Description	Output Stages	Charge Pumps	ERR Pin
1	sd_cp1	Overload at Path Vs Charge Pump Input	LE	Off (LE)	Low (LE)
0	sd_ddp_stuck	Digital Driving Path Output Violation	LE	Active	Low (LE)

The detection features are provided with configurable failure behaviors. At configuration mode the μ C is able to program a preferred behavior. In general four different failure behavior can be configured. The detection thresholds should be adapted to the system restrictions which shall be below the gate driver IC max. ratings.

Table 25 Failure Behavior Configuration

Bit Value	Failure Behavior	Failure Register	Status Bit in SPI Frame	ERR Pin	Output Stages
00	W: Warning	Set	Warning flag	High	Not affected
01	ERR: Error	Set	Error flag	Low	Not affected
10	ARE: Auto Restart Error	Set	Error flag	Low	All external FETs off
11	LE: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	All external FETs off

The short circuit detection of the external FETs have two more possibilities to configure. Failure behavior latched error is divided into three alternative reactions, either latch and all external MOSFETs will be turned off, latch and the affected half bridge will be turned off or latch and only the affected output stage will be turned off. It is not recommended to adjust auto restart failure behavior for the short circuit detection.

Table 26 Failure Behavior Configuration for Short Circuit Detection

Bit Value	Failure Behavior	Failure Register	Status Bit in SPI Frame	ERR Pin	Output Stages
000	W: Warning	Set	Warning flag	High	Not affected
001	ERR: Error	Set	Error flag	Low	Not affected
010	ARE: Auto Restart Error	Set	Error flag	Low	All external FETs off
011	LE: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	All external FETs off
110	LE1: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	Affected 2 FETs off
111	LE2: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	Affected FET off

The failure reaction auto restart and latched error of the high-side buffer capacitor undervoltage monitoring differs from the standard failure reaction. If ARE or LE occurs only the affected high-side output stage will turn off the external FET.

Table 27 Failure Behavior Configuration for High-side Buffer Capacitor Undervoltage Monitoring

Bit Value	Failure Behavior	Failure Register	Status Bit in SPI Frame	ERR Pin	Output Stages
00	W: Warning	Set	Warning flag	High	Not affected
01	ERR: Error	Set	Error flag	Low	Not affected

For fault reaction in combination with reduced operation mode occurrence please refer to Chapter 13.2

(inf

10 Protection and Diagnostics

Table 27 (continued) Failure Behavior Configuration for High-side Buffer Capacitor Undervoltage Monitoring

Bit Value	Failure Behavior	Failure Register	Status Bit in SPI Frame	ERR Pin	Output Stages
10	ARE: Auto Restart Error	Set	Error flag	Low	Affected high-side FET off
11	LE: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	Affected high-side FET off

The failure reaction of overvoltage detection at pin VDHP has some particular failure behavior concerning the low-side FET failure reaction.

Table 28 Failure Behavior Configuration for VDHP Overvoltage detection

Bit Value	Failure Behavior	Failure Register	Status Bit in SPI Frame	ERR Pin	Output Stages
000	W: Warning	Set	Warning flag	High	Not affected
001	ERR: Error	Set	Error flag	Low	Not affected
010	ARE: Auto Restart Error	Set	Error flag	Low	All external FETs off
110	ARE1: Auto Restart Error	Set	Error flag	Low	All high-side FETs off
011	LE: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	All external FETs off
111	LE1: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	All high-side FETs off

Table 29 Failure Behavior Configuration for Overload Digital Output Pin Detection

Bit Value	Failure Behavior	Failure Register	Status Bit in SPI Frame	ERR Pin	Output Stages
0	ERR: Error	Set	Error flag	Low	Not affected
1	LE: Latched Error ⁶⁷⁾	Set	Error flag	Low (LE)	All external FETs off

10.2.3 Parallel Failure Occurrence

Error priority does not exist. All errors will be processed independently and in parallel to each other.

10.3 Diagnostic Test Functions

Diagnostic functions which are important for the safety concept or relevant for system integrity are integrated with a self-test functionality. In general the functionality of system supervisions, e.g. short circuit detection or power supply monitoring shall be testable. Details of the self-test functionality of each supervision are described in its dedicated chapter. Self-tests can only be performed in the self-test mode. For safety reasons several dedicated SPI commands are required to start the self-test mode. Details of the entry and exit sequence are described at Self-test documentation. Only one self-test shall be activated at once. Avoid activating two or more self-tests at the same time. The highest priority is 1.

For fault reaction in combination with reduced operation mode occurrence please refer to Chapter 13.2

TLE9183QK Bridge Driver IC

infineon

10 Protection and Diagnostics

Table 30 Self-test Functionality and SPI Register Reference

Reg.	Bit	Bit Name	Self-test Description	Priority	Reference
1	7	st_uv_vcc	Self-test of VCC check will be initiated	1	Refer to Self-test documentation
1	6	st_scd_hs	Self-test of SCD at high-side will be initiated	2	Refer to Self-test documentation
1	5	st_scd_ls	Self-test of SCD at low-side will be initiated	3	Refer to Self-test documentation
1	4	Res	Reserved	-	-
1	3	Res	Reserved	-	-
1	2	st_hs	Drain source voltage measurement of external high-side FETs	5	Chapter 10.5.14
1	1	st_ls	Drain source voltage measurement of external low- side FETs	6	Chapter 10.5.14
1	0	Res	Reserved	-	-
2	7	Res	Reserved	-	-
2	6	en_op3_gt2	Self-test of CSA3 gain test high voltage VSSC_GTIHV with gain register op3gain2	1	Chapter 9.5.1
2	5	en_op3_gt1	Self-test of CSA3 gain test low voltage VSSC_GTILV with gain register op3gain1	2	Chapter 9.5.1
2	4	en_op2_gt2	Self-test of CSA2 gain test high voltage VSSC_GTIHV with gain register op2gain2	3	Chapter 9.5.1
2	3	en_op2_gt1	Self-test of CSA2 gain test low voltage VSSC_GTILV with gain register op2gain1	4	Chapter 9.5.1
2	2	en_op1_gt2	Self-test of CSA1 gain test high voltage VSSC_GTIHV with gain register op1gain2	5	Chapter 9.5.1
2	1	en_op1_gt1	Self-test of CSA1 gain test low voltage VSSC_GTILV with gain register op1gain1	6	Chapter 9.5.1
2	0	en_vreg_op	Self-test of CSA and VRO power supplies	7	Chapter 9.5.2

Table 31 Self-test Functionality and Device Behavior

Bit Name	Description	Output Stages	Charge Pumps	CSAs
st_uv_vcc	Self-test of VCC	Active	Active	Active
st_scd_hs	Self-test of SCD at high-side	Active	Active	Active
st_scd_ls	Self-test of SCD at low-side	Active	Active	Active
st_hs	Drain source voltage measurement of external high-side FETs	Active	Active	Active
st_ls	Drain source voltage measurement of external low-side FETs	Active	Active	Active
en_op3_gt2	Self-test of CSA3 gain test high voltage VSSC_GTIHV with gain register op3gain2	Active	Active	Affected CSA Off

10 Protection and Diagnostics

Table 31 (continued) Self-test Functionality and Device Behavior

Bit Name	Description	Output Stages	Charge Pumps	CSAs
en_op3_gt1	Self-test of CSA3 gain test low voltage VSSC_GTILV with gain register op3gain1	Active	Active	Affected CSA Off
en_op2_gt2	Self-test of CSA2 gain test high voltage VSSC_GTIHV with gain register op2gain2	Active	Active	Affected CSA Off
en_op2_gt1	Self-test of CSA2 gain test low voltage VSSC_GTILV with gain register op2gain1	Active	Active	Affected CSA Off
en_op1_gt2	Self-test of CSA1 gain test high voltage VSSC_GTIHV with gain register op1gain2	Active	Active	Affected CSA Off
en_op1_st1	Self-test of CSA1 gain test low voltage VSSC_GTILV with gain register op1gain1	Active	Active	Affected CSA Off
en_vreg_op	Self-test of CSA and VRO power supplies	Active	Active	Active

10.4 LIMP Functionality

Under certain circumstances it is important to keep the possibility to drive the motor for a short time frame even a failure has been occurred and detected at the power inverter stage. The limp functionality offers the possibility to deactivate the faulty half bridge. The μ C has to decide to set the TLE9183QK in limp mode. It is recommended to set the gate driver IC in limp mode only if μ C assures that only one half bridge has a defect. In limp home mode selected diagnosis will change their failure reaction behavior. Failure registers of the affected half bridge will be deactivated and the input signal at the pins ILx and $\overline{\text{IHx}}$ according to the affected half bridge will be ignored. The short circuit detection, the high-side buffer capacitor undervoltage monitoring and output stage feedback will be ignored.

10.5 Detailed Supervision Description

This chapter describes in detail the diagnostics and the protection features of the TLE9183QK.

10.5.1 Vs Voltage Monitoring

The Vs supply voltage is monitored (under- and overvoltage detection). The threshold, the error reaction and the filter time can be adjusted via SPI.

Register Err_sd bit 6 indicates overvoltage Vs shutdown and register Err_e bit 3 and bit 2 for undervoltage and overvoltage detection at pin Vs.

Additionally the VS voltage is stored in register res_vs and can be read out via SPI.

10.5.1.1 SPI Register Reference for VS Supervision

The overvoltage threshold can be adjusted.

Table 32 VS Overvoltage Threshold Program

Bit Name	Bit Value	Overvoltage Threshold Vs	Bit Value	Overvoltage Threshold Vs
tl_ov_vs	0000 (default)	18.00 V	1000	Reserved
	0001	20.13 V	1001	Reserved
	0010	24.09 V	1010	Reserved

TLE9183QK Bridge Driver IC

10 Protection and Diagnostics

Table 32 (continued) VS Overvoltage Threshold Program

Bit Name	Bit Value	Overvoltage Threshold Vs	Bit Value	Overvoltage Threshold Vs
	0011	28.05 V	1011	Reserved
	0100	32.02 V	1100	Reserved
	0101	34.15 V	1101	Reserved
	0110	35.98 V	1110	Reserved
	0111	39.95 V	1111	Reserved

The undervoltage threshold can be adjusted.

Table 33 VS Undervoltage Threshold Program

Bit Name	Bit Value	Undervoltage Threshold Vs	Bit Value	Undervoltage Threshold Vs
tl_uv_vs	0000	4.88 V	1000	7.32 V
	0001	5.18 V	1001	7.62 V
	0010	5.49 V	1010	7.93 V
	0011	5.79 V	1011	8.23 V
	0100	6.10 V	1100	8.54 V
	0101	6.40 V	1101	8.84 V
	0110	6.71 V	1110	9.15 V
	0111 (default)	7.01 V	1111	9.45 V

The under- and overvoltage filter times can be adjusted.

Table 34 VS UV/OV Filter Time Program

Bit Name	Bit Value	Filter Time	Bit Value	Filter Time
f_uv_vs &	00 (default OV)	10 μs	10	50 μs
f_ov_vs	01 (default UV)	25 μs	11	100 µs

10.5.2 VDHP Voltage Monitoring

In bridge application monitoring of the supply voltage of the power inverter is indispensable. The voltage at pin VDHP is monitored (under- and overvoltage detection). The threshold, the error reaction and the filter times can be adjusted via SPI. Two additional failure behaviors for VDHP overvoltage detection can be adjusted, for details please refer to Table 28.

Additionally to the overvoltage detection a maximum overvoltage threshold, the so called overvoltage shutdown, is set to signalize the μ C that a maximum rating violation might has been occurred at the pin VDHP. The failure behavior and the threshold of the shutdown are not adjustable. The shutdown is configured fix as a latched error. The charge pumps will be deactivated as long as the error is present. In specific applications the overvoltage shutdown at pin VDHP is not beneficial. In this case the overvoltage shutdown VDHP can be deactivated via SPI in configuration mode.

Register Err_e bit 1 and bit 0 indicates undervoltage and overvoltage detection at pin VDHP. Additionally the VDHP voltage is stored in register res_vdh and can be read out via SPI.

10 Protection and Diagnostics

10.5.2.1 SPI Register Reference for VDHP Supervision

The overvoltage threshold can be adjusted.

Table 35 VDHP Overvoltage Threshold Program Table

Bit Name	Bit Value	OV Threshold VDHP	Bit Value	OV Threshold VDHP
tl_ov_vdh	0000	18.00 V	1000	Reserved
	0001	20.13 V	1001	Reserved
	0010	24.09 V	1010 (default)	56.11 V
	0011	28.05 V	1011	Reserved
	0100	32.02 V	1100	Reserved
	0101	35.98 V	1101	Reserved
	0110	39.95 V	1110	Reserved
	0111	48.18 V	1111	Reserved

The undervoltage threshold can be adjusted.

Table 36 VDHP Undervoltage Threshold Program Table

Bit Name	Bit Value	UV Threshold VDHP	Bit Value	UV Threshold VDHP
tl_uv_vdh	0000 (default)	3.96 V	1000	Reserved
	0001	4.88 V	1001	Reserved
	0010	5.49 V	1010	Reserved
	0011	6.10 V	1011	Reserved
	0100	7.01 V	1100	Reserved
	0101	7.93 V	1101	Reserved
	0110	9.15 V	1110	Reserved
	0111	10.06 V	1111	Reserved

The under- and overvoltage filter times can be adjusted.

Table 37 VDHP UV/OV Filter Time Program Table

Bit Name	Bit Value	Filter Time	Bit Value	Filter Time
f_uv_vdh &	00 (default OV)	10 μs	10	50 μs
f_ov_vdh	01 (default UV)	25 μs	11	100 μs

10.5.3 Charge Pump Monitoring

The output voltage of the charge pump 1 is monitored at pin CB, the buffer capacitor connection. The voltage regulators for the CSAs and all output stages are connected to the buffer capacitor at the pin CB. Monitoring the CB supply voltage for undervoltage events indicates correct behavior of the TLE9183QK supervisions and correct control of the external FETs. The detection is operational unless reduced operation mode has been entered. The threshold, the error reaction and the filter times of the undervoltage CB detection is adjustable via SPI.

Additionally an undervoltage, overvoltage and overload shutdown is implemented to avoid destructive voltages or currents at the gates of the external FETs. The failure behavior and the threshold of the shutdowns

TLE9183QK Bridge Driver IC

infine

10 Protection and Diagnostics

are not adjustable. The undervoltage shutdown is configured fix as an auto restart error and the overvoltage shutdown as latched error.

Register Err_sd bit 4 indicates undervoltage CB shutdown and register Err_i_1 bit 6 for undervoltage detection at pin CB.

Additionally the CB voltage is stored in register res_cb and can be read out via SPI.

TLE9183QK provides an overvoltage and overload shutdown detection of charge pump 2. The thresholds of the shutdowns are not adjustable. For details please refer to Chapter 10.5.3.2.

10.5.3.1 SPI Register Reference for CB Undervoltage Supervision

The undervoltage threshold can be adjusted.

Table 38 CB Undervoltage Threshold Program Table

Bit Name	Bit Value	Undervoltage Threshold CB	Bit Value	Undervoltage Threshold CB
tl_uv_cb	0000	7.01 V	1000	8.84 V
	0001	7.24 V	1001 (default)	9.07 V
	0010	7.47 V	1010	9.30 V
	0011	7.70 V	1011	9.53 V
	0100	7.93 V	1100	9.76 V
	0101	8.16 V	1101	9.99 V
	0110	8.39 V	1110	10.22 V
	0111	8.61 V	1111	10.44 V

The undervoltage filter times can be adjusted.

Table 39 CB UV Filter Time Program Table

Bit Name	Bit Value	Filter Time	Bit Value	Filter Time
f_uv_cb	00 (default)	10 μs	10	50 μs
	01	25 µs	11	100 µs

10.5.3.2 Overload and Overvoltage of Charge Pumps

Both Charge Pumps are overload protected. Overload Vs and Overload CP1 switches off both charge pumps and the output stages as latched error.

Overload CP2 shuts down CP2 but output stage failure behavior is configurable. A reset via ENA is necessary for reactivation of charge pump 2. If overload CP2 has been detected duty cycle operation higher than typically 95% is not recommended and might end up in undervoltage high-side buffer capacitor detection. If charge pumps are deactivated the overload detections are not operative.

All overload detectors are specified to a supply voltage range of $V_{VS} \le 28 \text{ V}$ and $V_{VDHP}, V_{VDHx} \le 28 \text{ V}$.

Diagnosis overload CP1 functions is limited, for details please refer to Chapter 14.2.5.

Register Err_sd bit 1 indicates overload Vs (charge pump input) fault detected, register Err_i_2 bit 4 and bit 3 indicates overload CP1 and overload CP2.

Overvoltage at pin CB and at the pins (CH2 - CL2) will be detected. Overvoltage at pin CB switches off both charge pumps and the output stages as latched error.

TLE9183QK

Bridge Driver IC

10 Protection and Diagnostics

Overvoltage CH2-CL2 shuts down CP2 but output stages remains active. A reset via ENA is necessary for reactivation of charge pump 2. If overvoltage CP2 has been detected duty cycle operation higher than typically 95% is not recommended and might end up in undervoltage high-side buffer capacitor detection.

Register Err_sd bit 2 indicates overvoltage at pin CB and/or at the pins (CH2 - CL2).

High-side Buffer Capacitor Voltage Monitoring 10.5.4

An integrated undervoltage monitoring for the external high-side buffer capacitor ensures a sufficient supply for the high-side output stages. Additionally the external high-side FETs are protected not to turn on into linear mode if failure behavior is configured either as latched or auto restart error. The high-side buffer capacitor voltage will be monitored at pin BHx referred to pin SHx. If the voltage of the high-side buffer capacitor is below a certain threshold undervoltage will be detected at the affected output stage. The high-side buffer undervoltage threshold is not programmable. The detection is operational unless reduced operation mode has been entered.

An overvoltage monitoring for the external high-side buffer capacitor detects too high gate source voltages for the external FET. The failure behavior and filter time are not configurable. In case of an overvoltage detection, the ERR pin is set low and the dedicated error bit in the register is set. The 2nd charge pump is deactivated and all output stages remain active. A reset via ENA is necessary for the reactivation of the 2nd charge pump. If the 2nd charge pump is deactivated, an undervoltage high-side buffer detection might occur mainly at operation with high duty cycles. The overvoltage monitoring for the external high-side buffer capacitor can be deactivated at configuration.

Overvoltage detection in limp mode behaves different for the selected phase. In case of overvoltage detection in limp mode, ERR pin will be set to low and charge pump 2 will be deactivated in latched condition, but the dedicated error bit will not be set.

Register Err_i_2 bit 7, bit 6 and bit 5 indicate an overvoltage condition detected, bit 2, bit 1 and bit 0 indicate an undervoltage detection.

10.5.4.1 Overvoltage Detection of High-side Buffer Capacitor at High **Negative Voltage at the Pins SHx**

At high negative repetitive transients at pin SHx it may happen that the high-side buffer capacitor will be charged repetitively. This repetitive charging may charge the buffer capacitor above the regular output voltage of the charge pump 1 or charge pump 2. The charge pump 1 output voltage corresponds to the voltage at pin CB. The charge pump 2 output voltage corresponds to the differential voltage between pin CH2 and pin CL2. If the charging of the high-side buffer capacitor via the negative transients reaches the overvoltage high-side buffer capacitor threshold, overvoltage high-side buffer capacitor will be detected. The voltage level of the high-side buffer capacitor in the case of negative transient is defined by the output voltages of the charge pumps, the voltage at the high-side buffer supply capacitor, the min. voltage and the duration of the negative SHx transients and the internal as well as the external resistance of the high-side buffer capacitor charging path. For more details please contact Infineon.

SPI Register Reference for High-side Buffer Capacitor UV Monitoring 10.5.4.2

The undervoltage filter times can be adjusted.

Table 40 High-side Buffer Capacitor UV Filter Time Program Table

Bit Name	Bit Value	Filter Time	Bit Value	Filter Time
f_uv_bs	00	1 µs	10 (default)	5 µs
	01	3 µs	11	10 µs

10 Protection and Diagnostics

10.5.5 VCC Monitoring

To assure a high level of system integrity, the TLE9183QK provides a VCC check. The VCC voltage is monitored for under- and overvoltage. The threshold are configurable and it can be applied to a 3.3 V or as well to a 5 V system supply. If system supply monitoring is not required it can be deactivated. The failure behavior of the VCC monitoring is configurable.

The failure behavior of the VCC Monitoring can be configured as warning, error, auto-restart and latch. Next to the standard failure behavior the VCC monitoring can activate the APC pin. For details of the activation of phase cut off function please see Chapter 12.

Register Err_e bit 5 and bit 4 indicate an overvoltage and undervoltage at pin VCC.

Additionally the VCC voltage is stored in register res_vcc and can be read out via SPI.

10.5.5.1 SPI Register Reference for VCC Supervision

The under- and overvoltage filter times can be adjusted.

Table 41 VCC Filter Time Program Table

Bit Name	Bit Value	Filter Time	Bit Value	Filter Time
f_uv_vcc &	00	10 μs	10	50 μs
f_ov_vcc	01 (default)	25 μs	11	100 μs

The under- and overvoltage threshold can be adjusted.

Table 42 VCC Threshold Level Accuracy Program Table

Bit Name	Bit Value	Threshold Level	Bit Value	Threshold Level
tl_uv_vcc &	00	Reserved	10	10% of initialized sys. supply
tl_ov_vcc	01 (default)	4% of initialized sys. supply	11	Reserved

10.5.6 Internal Power Supply Monitoring

Internal power supplies will be monitored and are indicated via the register Err_i_1 bit 5 to bit 0. Bit 5 or bit 1 indicates a reduced operation mode event either at pin VCC or at pin Vs. If reduced operation mode occurs caused by too low Vs voltage bit 5 and bit 1 are set. Reduced operation mode by too low VCC voltage sets bit 1 only. The failure behavior is auto restart. Bit 4, bit 3 and bit 2 indicate an internal failure with an auto restart failure behavior. The failure behavior of bit 0 is latched error, a reset via pin $\overline{\text{INH}}$ has to be performed and re-configuration is required, in this case a reset via pin ENA is not recommended.

10.5.7 Internal CLK Supervision

The internal clock frequency will be monitored. An error bit will be set and the external FETs are turned off as long as the fault is present. The error bit triggers the status flag error and warning.

Register Err_sd bit 3 indicates an internal clk fault.

10.5.8 Temperature Detection and Shutdown

The TLE9183QK is equipped with temperature monitoring. If the temperature rises above the configurable temperature threshold a failure condition is set. The reaction of the overtemperature detection is configurable as well. However if the temperature exceeds the overtemperature shutdown threshold all output stages and the charge pumps will be switched off independent on the input signals and pin ERR is set to low. The overtemperature shutdown threshold is fix.

TLE9183QK

Bridge Driver IC

10 Protection and Diagnostics

Register Err_sd bit 7 indicates an overtemperature shutdown, register Ser bit 7 an overtemperature detection. The SPI status flag Special Event will be set and dependent on the configured fault behavior either SPI status flag Error or the SPI status flag Warning.

In case of overtemperature shutdown detection fast discharging path at pin CB is not activated.

10.5.8.1 SPI Register Reference for Overtemperature Detection

The overtemperature detection threshold and the failure behavior are configurable.

Table 43 Overtemperature Detection Threshold Level

Bit Name	Bit Value	Overtemperature Threshold	Bit Value	Overtemperature Threshold
tl_ot_w	000	160°C	100 (default)	140°C
	001	155°C	101	135°C
	010	150°C	110	130°C
	011	145°C	111	125°C

10.5.8.2 Temperature Read Out

The absolute temperature can be read in the related SPI register in steps of TTread_step per LSB.

Six sensors are integrated monitoring all output stages. So the temperature of every output stage can be read out. The signal is filtered with a moving average filter. After transition from configuration mode to normal operation mode it is required to wait 1 ms before first temperature readout will be performed. A significant higher temperature at one output stage with a regular PWM pattern applied will indicate some irregularities at the affected output stage, either internally or caused by external circuit. The six temperature sensors are independent to the sensor used for temperature detection and shutdown.

Measurement results are stored in the registers called temp_ls1, temp_ls2, temp_ls3, temp_hs1, temp_hs2 and temp_hs3.

10.5.9 Output Stage Status Feedback

The driver output stage feedback function provides information that each floating output stage is functional and signal path between the input pin and the output of the output stage is not corrupted. This function compares the level of the input pin to the switching condition of its dedicated output stage. If the levels do not correspond a failure will be detected.

Register Err osf bit 7 to bit 2 indicate an output stage feedback fault has occurred.

10.5.10 Digital Driving Path Monitoring

The digital driving path monitoring tracks the output signals of the digital core which will drive the output stages. Monitoring the digital output signals will detect in the digital core stucked signal wires or shorts between the signals of each half bridge.

Register Err_sd bit 0 indicates a shutdown of the digital driving paths.

10.5.11 Short Circuit Detection - SCD

The external FETs controlled by the driver IC are supervised for short circuit. The short circuit detection SCD measures the drain source voltage of the external MOSFETs by detecting the voltage difference VDHxVDHP-SHx and SHx-SLx compared to the programmed voltage level. The short circuit detection can be configured in

10 Protection and Diagnostics

a wide range. The threshold levels, the filter-, blanking times and the failure behavior are adjustable. Two additional failure behaviors can be adjusted, for details please refer to Table 26. Short circuit will not be detected if a duty cycle range at the external FET is applied which is shorter than the SCD filter- and the SCD blank time⁷⁰⁾. Short circuit detection is operational as long as no undervoltage of the high-side buffer capacitors is detected.

Register Err_scd bit 7 to bit 2 indicate a short circuit at the external FET has occurred.

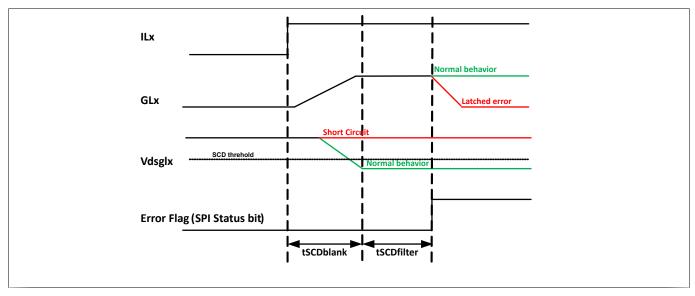


Figure 15 Timing Diagram Short Circuit Detection at Low-side Output Stage

10.5.11.1 SPI Register Reference for SCD Voltage Threshold

The SCD voltage threshold is configurable for each output stage. Configuration of negative thresholds levels shall be avoided under normal operation condition. Applying the threshold 0xEE will activate the short circuit detection if the affected output stage is turned on, the blank- and filter time has expired and no current is freewheeling via the affected FET. Thus it is recommended to apply only positive values for short circuit threshold levels. Configuration with the maximum positive threshold will deactivate the short circuit detection.

The voltage must be higher than the adjusted threshold level for short circuit detection. Max. level of 0x7F will deactivate short circuit detection.

Table 44 SCD Threshold level

Bit Name	Bit Value	Short Circuit Threshold Level
sc_Xs_X	0x01	11.7 mV
	0x02	23.4 mV
	0xXX	11.7 mV*X
	0x1A (default)	304 mV
	0x7E	1.472 V
	0x7F	> 1.472 V ⁷¹⁾

The SCD filter- and blank time can be adjusted.

E.g.: tSCDf = 2.0 μs; tSCDb = 1.0 μs; fPWM = 20 kHz; tFETonw/oSCD < tSCDx; D.C.FETonw/oSC < tFETonw/oSCD/tPWM = 3.0 μs/(1/(20 kHz) = 6.0%

applying 0x7F will deactivate the short circuit detection

TLE9183QK

Bridge Driver IC

10 Protection and Diagnostics

Table 45 **SCD Filter Time**

Bit Name	Bit Value	Filter Time
f_fi_scd	00	1.25 μs
	01	2.0 μs
	10 (default)	3.8 µs
	11	5.8 µs

Table 46 **SCD Blank Time**

Bit Name	Bit Value	Blank Time
f_bl_scd	000	0.7 μs
	001	1.0 μs
	010	1.5 μs
	011 (default)	2 μs
	100	3.5 μs
	101	5 μs
	110	10 μs
	111	15 μs

10.5.12 **FET Drain Source Voltage Read Out**

The drain source voltage of the external FETs can be read out. A dedicated SPI command has to be sent to detect voltage drop across the FET. If FET is marked the voltage drop will be stored into a register at the next turn on cycle of the dedicated FET. If turn on cycle is too short or the read-out via SPI was too early to detect the voltage drop 0x80 will be written into the register. High-side and low-side FET can not be marked at the same time. High-side measurement will have priority.

FET drain source voltage read out shall only be performed if the dead time configured by the μC is higher as the internal dead time.

Measurement results are stored in the registers called dsm_ls1, dsm_ls2, dsm_ls3, dsm_hs1, dsm_hs2 and dsm_hs3.

10.5.13 **FET Reverse Diode Forward Voltage Read Out**

The FET diode forward voltage of the external FETs can be read out. A dedicated SPI command has to be sent to detect voltage drop across the reverse diode of the FET. The FET has to be marked via SPI. At the next turn off cycle of the complementary FET of the same half bridge the dead time will be extended until the end of measurement and the voltage drop will be detected and stored into a register. If turn on cycle is too short or the read-out via SPI was too early to detect the voltage drop 0x7F will be written into the register. The accuracy of the measurement can be programmed. The sample time of high accuracy measurement is longer than the low accuracy measurement. High-side and low-side FET can not be marked at the same time. High-side measurement will have priority.

FET reverse diode voltage read out is limited and shall only be performed if the dead time configured by the μC or the internal dead time is higher than 800 ns (typ. 400 ns), please refer to Chapter 14.2.7 and Chapter 14.2.8. Measurement results are stored in the registers called Rdm_ls1, Rdm_ls2, Rdm_ls3, Rdm_hs1, Rdm_hs2 and Rdm_hs3.

10 Protection and Diagnostics

10.5.14 Drain Source Voltage Measurement of External FETs

In self-test mode the drain source voltage of the external FETs can be measured. Two dedicated bits have to be set one for all high-side FETs measurements and the other for all low-sides. All high-side voltages or all low-side voltages are detected at the same time. It is recommended to keep the external FEts off if self-test is activated. After the drain source voltage has been detected the self-test bits will be self-cleared.

Measurement results are stored in the registers called dsm_ls1, dsm_ls2, dsm_ls3, dsm_hs1, dsm_hs2 and dsm_hs3.

10.5.15 Input Pattern Violation Monitoring

A monitoring of the PWM input pins has been integrated to check if the output pattern of the μ C violates the shoot through restriction or the adjusted dead time for a minimum filter time. A dedicated failure bit is set indicating the affected output stage. Failure behavior is adjustable via SPI during configuration. If not needed the input pattern monitoring can be deactivated in the configuration mode. Additionally the supervision should be deactivated if the input pins between low- and high-side \overline{IHx} to ILx are connected together and internal dead time is used for dead time generation.

Register Err_indiag bit 7 to bit 2 indicate a shoot through or a dead time violation has been occurred.

10.5.16 Overload Digital Output Pins

The digital outputs are protected against short to GND and battery. If one output is shorted the output pad will be disconnected, a dedicated error register bit will be set. The pin \overline{ERR} will be set to low in case \overline{ERR} is not the affected pin. To unlock the output pin reset with ENA has to be performed. The failure behavior of the gate driver IC is adjustable at configuration mode, either the output stages will turn all external FETs off or not. Functionality of the overload detection of the digital output pins is limited, for details please refer to Chapter 14.2.6.

Register Err_outp bit 4 to bit 0 indicate a short of a digital output pin.

10.5.17 Configuration Errors

The configuration mode and the data of the configuration registers are monitored. After Configuration has been completed successfully the configuration register bank will be checked by a CRC.

10.5.17.1 Configuration Signature Invalid

The configuration register bank will be monitored with a CRC during normal operation-, reduced operation-, self-test-, error- and safe off mode. A CRC check will be performed every 5 ms. In case of calculated CRC does not match to the byte configuration signature the flag config valid of the SPI status flags will be reset and the configuration register bank or the CRC signature byte will be restored. After successful recovery the config valid flag of the SPI status flags will be set. If the calculated CRC of the rebuild fails too $\overline{\text{ERR}}$ pin will be set and the output stages will be switched off. To get out of configuration signature invalid error the μ C has to rewrite a valid CRC into the register configuration signature or a reconfiguration sequence might be possible. A reset performed by $\overline{\text{INH}}$ will initiate reconfiguration.

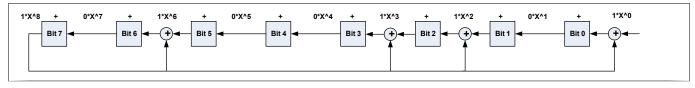


Figure 16 CRC Shift Registers

The CRC generator polynomial $x^8+x^6+x^3+x^2+1$ is used for calculation.

10 Protection and Diagnostics

Table 47 Configuration Truth Table

Status Bit Name	Flag Status	Description
Config Valid	0	Configuration signature invalid
	1	Configuration signature valid

At configuration mode the status bit is always low. If the calculated configuration CRC does not match to configuration signature byte sent by the μ C the error bit conf_sig_invalid and the flag error of the status flag will be set. So μ C can resend signature byte via SPI unless configuration time-out has not been detected.

10.5.17.2 Configuration Time-out

Activating the configuration mode will start a 100 ms timer. The configuration timer starts after pin $\overline{\text{INH}}$ is set to high and the first valid SPI configuration write command has been received. If the correct configuration signature has not been sent by the μC yet and the timer exceeds configuration time-out will be detected. Bit config time out and the flag error of the SPI status flag will be set. Only a reset performed by $\overline{\text{INH}}$ can reset the configuration time-out.

10.5.18 Control Register Error Monitoring

The control register bank is protected against bit errors. Every control register has an error correction based on hamming code. 1 bit error per register is detected and corrected automatically without notification. The control register invalid bit will be set if the correction of a single bit error fails for 16 clock cycles. 2 bit errors will be detected and the control register invalid bit is set after 16 clock cycles.

Register Ser bit 5 indicates a if control register is invalid.

10.5.19 State Machine Error Monitoring

A special detection and correction function is integrated to protect the internal state machines against unmotivated state changes. 2003 voters are implemented at every bit of the main functional state machine, power up functional state machine, clock trimming and the configuration OK bit.

10.5.20 SPI Communication Errors

For a safe SPI communication several communication diagnostics are required. Every SPI failure has its own bit in the register SPI Communication and Configuration Error. The detections SPI framer error, SPI time-out, SPI CRC error and the invalid address monitoring are logic ORed and highlighted in the status flag SPI-Error. Configuration signature invalid, SPI window watchdog and configuration time-out will trigger the error flag of the SPI status flag instead. For details please refer to TE9183 registers.

Table 48 SPI Error Truth Table

Status Bit Name	Flag Status	Description				
SPI-Error 0		No failure in register SPI Communication and Configuration Errors				
	1	SPI Communication failure detected				

10.5.20.1 SPI Frame Error

A counter checks, if exact 24 rising and 24 falling clock edges are received between the negative edge of CSN and the positive edge of CSN. In case the number is not equal to 24, the data is discarded. No data is taken over

TLE9183QK

Bridge Driver IC

10 Protection and Diagnostics

into the address and command decoder. At the next data transmission the data stored in the shift register is transmitted again.

10.5.20.2 **SPI Frame Time-out**

In addition to the frame counter a time-out function is included in the frame supervision. In case the rising edge of CSN won't come in time SPI-Time-out is detected.

A timer starts at the falling edge of CSN. If the 24 clock cycles and the CSN rising edge is not received within $t_{\sf SPI-timeout}$, the dedicated error bit and status flag SPI-Error will be set.

10.5.20.3 **SPI Window Watchdog**

The purpose of the window watchdog is the improvement of the system integrity. With this function the availability of the external µC can be checked and if it fails a configurable failure behavior will be executed by the TLE9183QK.

Three separated counters are available. The window watchdog period counter determines the period of the watchdog window itself. The window watchdog counter counts the internal clk cycles between the two SPI commands triggering the watchdog. The loop counter counts failed or missed servicing SPI commands. The result of the loop counter and the clock counter is stored in the registers wwlc, res_cc1, res_cc2 and res_cc3. The first incorrect service command will cause the SPI Window Watchdog error. The error bit is cleared after a correct service command will be sent.

After the driver IC has been configured successfully the 24 bit the loop counter and the period timer start from 0. It can be serviced while the counter value of the period counter is within the window boundary. The boundary conditions are fully configurable, like the absolute value of the window watchdog period TWWD and the ratio between the window watchdog period and locked window TLW/TWWD. A correct SPI read command of the configuration signature byte during evaluation window is open is a successful servicing of the watchdog timer. The period counter will be restarted and the loop counter will be decremented by 1. At the same time the final value of the clock counter will be stored into the registers watchdog clock counter and the clock counter will automatically restarted. If servicing failed, by reading during locked window, a wrong or no read SPI command has been sent during complete window watchdog period the period counter will be restarted and the loop counter will be incremented by 2. As soon as the first service fails the bit SPI window watchdog time-out will be set. The limit of the loop counter can be configured as well at configuration mode. If the loop counter reaches the configured limit the configured fault reaction behavior will be executed.

The failure behavior of the window watchdog can be configured as warning, error, auto-restart and latched error.

Next to the standard failure behavior the window watchdog failure can activate the APC pin. For details of the activation of phase cut off function please see Chapter 12.

If the SPI window watchdog function is not requested it has to be deactivated at configuration.

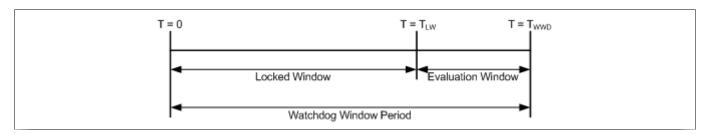


Figure 17 **Window Watchdog Timing**

10.5.20.3.1 **SPI Register Reference for Window Watchdog**

The window watchdog functionality is configurable.

TLE9183QK Bridge Driver IC

10 Protection and Diagnostics

Table 49 Window Watchdog Period Counter TWWD

Bit Name	Bit Value	Period	Bit Value	Period
wwd_tp	00	1 ms	10 (default)	5 ms
	01	2 ms	11	10 ms

Table 50 Window Watchdog Ratio TLW/TWWD

Bit Name	Bit Value	Ratio	Bit Value	Ratio
wwd_ratio	000	50%	100	80%
	001	60%	101 (default)	90%
	010	70%	110	92%
	011	75%	111	95%

Table 51 Window Watchdog Loop Counter

Bit Name	Bit Value	Activation Threshold	Bit Value	Activation Threshold
wwd_count	000	2	100	10
	001	4	101	12
	010	6 (default)	110	14
	011	8	111	16

The value of the window watchdog loop counter can be read at register wwlc.

Table 52 Result of Window Watchdog Clock Counter

Reg. Name	Description
res_cc1	Low Byte of internal clock counter
res_cc2	Middle Byte of internal clock counter
res_cc3	High Byte of internal clock counter

The window watchdog clock counter read out registers store the number of clk cycles between two SPI.

10.5.20.4 CRC Error

The CRC is a 3 bit CRC related to the data sent out or received over the whole SPI frame including address, data and status. If CRC fails status flag SPI-Error is set, CRC error is detected and the invalid received data will be ignored.

10.5.20.5 Invalid Address Access Monitoring

In case of the SPI Master tries to access any reserved read or write register, the command or request will be ignored and the SPI-Error status flag is set. Once Configuration mode has been left any write command into the configuration register bank will lead to an invalid address error. A write access to self-test mode registers in any mode except self-test mode will lead to an invalid address access error.

10 Protection and Diagnostics

Electrical Characteristics Protection and Diagnostic Functions 10.6

Table 53 **Electrical Characteristics - Protection and Diagnostic Functions**

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number	
		Min.	Тур.	Max.		Condition		
Overvoltage Detection and Shuto	lown at Pir	ı VS						
Adjustable Range Overvoltage Detection Vs	V _{VSOVr}	18	_	40	V	⁷²⁾ 8 steps programmable	P_11.6.2	
Accuracy Overvoltage Detection Threshold Vs	V _{VSOVacc}	-5	PROG	+5	%	_	P_11.6.3	
Hysteresis of Overvoltage Detection Vs	V _{VSOVhy}	_	2.0	_	V	-	P_11.6.4	
Overvoltage Detection Filter Time Range Vs ⁷³⁾⁷⁴⁾	t _{OVVS}	8 24 48 96	_	17 33 57 105	μs	f_ov_vs = '0x0' f_ov_vs = '0x1' f_ov_vs = '0x2' f_ov_vs = '0x3'	P_11.6.5	
Undervoltage VS							1	
Reduced Operation Mode Detection Level at Vs	V _{VsROP}	4.2	4.7	5.0	V	_	P_11.6.6	
Hysteresis of Reduced Operation Mode Detection at Vs ⁷⁵⁾	V _{VsROPhys}	_	0.05	_	V	-	P_11.6.7	
Entry Filter and Reaction Time of Reduced Operation Mode Detection at Vs	t _{VsROPf1}	0.6	_	-	μs	75)	P_11.6.8	
Adjustable Range Undervoltage Detection Vs	V _{VSUVr}	4.88	_	9.45	V	16 steps programmable	P_11.6.1	
Accuracy Undervoltage Threshold Vs	V _{VSUVacc1}	-8.5	PROG	+8.5	%	<i>V</i> _{VSUV} ≥ 7.5 V	P_11.6.1	
Accuracy Undervoltage Threshold Vs	V _{VSUVacc2}	-13.5	PROG	+13.5	%	$4.2 \text{ V} \le V_{\text{VSUV}} < 7.5 \text{ V}$	P_11.6.1	
Hysteresis of Undervoltage Detection Vs	V _{VSUVhys}	_	0.15	_	V	_	P_11.6.1	
Undervoltage Filter Time Range Vs ⁷³⁾⁷⁴⁾	t _{UVVSr}	8 24 48 96	_	17 33 57 105	μs	f_uv_vs = '0x0' f_uv_vs = '0x1' f_uv_vs = '0x2' f_uv_vs = '0x3'	P_11.6.1	

⁷² Drift of detection and shutdown threshold correlates to each other (e.g. if threshold of shutdown is +3% too high, detection threshold will be +3% too high as well)

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

Fault Reaction Time excluded

Not subject to production test, specified by design

10 Protection and Diagnostics

(continued) Electrical Characteristics - Protection and Diagnostic Functions Table 53

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	bol Values			Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Overvoltage Detection and Shuto	lown at Pin	VDHP			•		
Adjustable Range Overvoltage Detection VDHP	V _{VDHOVr}	18	_	56	V	⁷²⁾ 9 steps programmable	P_11.6.1
Accuracy Overvoltage Detection Threshold VDHP	$V_{ m VDHOVacc}$	-5	PROG	+5	%	-	P_11.6.1
Hysteresis of Overvoltage Detection VDHP	$V_{ m VDHOVhys}$	-	1.8	-	V	-	P_11.6.1
Overvoltage Detection and Shutdown Filter Time Range VDHP ⁷³⁾⁷⁴⁾	t _{OVVDHr}	8 24 48 96	-	17 33 57 105	μs	f_ov_vdh = '0x0' f_ov_vdh = '0x1' f_ov_vdh = '0x2' f_ov_vdh = '0x3'	P_11.6.1
Undervoltage VDHP							
Adjustable Range Undervoltage Detection VDHP	V _{VDHUVr}	4	_	10	V	8 steps programmable	P_11.6.2
Accuracy Undervoltage Threshold VDHP	V _{VDHUVacc2}	-8.5	PROG	+8.5	%	7.5 V ≤ V _{VDHUV} < 12 V	P_11.6.2
Accuracy Undervoltage Threshold VDHP	V _{VDHUVacc3}	-13.5	PROG	+13.5	%	3.9V ≤ <i>V</i> _{VDHUV} < 7.5 V	P_11.6.2
Hysteresis of Undervoltage Detection VDHP	V _{VDHUVhys}	_	0.1	_	V	-	P_11.6.2
Undervoltage Filter Time Range VDHP ⁷³⁾⁷⁴⁾	t _{UVVDHr}	8 24 48 96	-	17 33 57 105	μs	f_uv_vdh = '0x0' f_uv_vdh = '0x1' f_uv_vdh = '0x2' f_uv_vdh = '0x3'	P_11.6.2
VS, VDHP Read Out					-		
Voltage Detection Range	V_{ADCr}	0	_	77.76	V	0 to FFh	P_11.6.3
Minimum Resolution	V _{ADCres}	_	0.305	_	V	1 LSB	P_11.6.3
Accuracy	V _{ADCacc1}	-6.5	-	+6.5	%	12 V $\leq V_{VS} \leq$ 60 V 12 V $\leq V_{VDHP} \leq$ 77.76 V	P_11.6.3
Accuracy	V _{ADCacc2}	-8.5	_	+8.5	%	$7.5 \text{ V} \le V_{\text{VS}} < 12 \text{ V}$ $7.5 \text{ V} \le V_{\text{VDHP}} < 12 \text{ V}$	P_11.6.3

⁷² Drift of detection and shutdown threshold correlates to each other (e.g. if threshold of shutdown is +3% too high, detection threshold will be +3% too high as well)

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

⁷⁴ Fault Reaction Time excluded

10 Protection and Diagnostics

Table 53 (continued) Electrical Characteristics - Protection and Diagnostic Functions

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Accuracy	V _{ADCacc3}	-12.5	_	+12.5	%	$5.0 \text{ V} \le V_{\text{VS}} < 7.5 \text{ V}$	P_11.6.34
						$5.0 \text{ V} \le V_{\text{VDHP}} < 7.5 \text{ V}$	
Result Refresh Time ⁷³⁾	t _{ADCrefr}	_	8	_	μs		P_11.6.35
Overvoltage Shutdown CB							
Overvoltage Shutdown Threshold CB	V _{CBOVR}	16.0	17.0	18.0	V	-	P_11.6.36
Filter Time Overvoltage CB Shutdown ⁷⁴⁾⁷⁵⁾	t_{CBOV}	_	100	_	ns	-	P_11.6.37
Undervoltage Detection and Shu	tdown at Pi	n CB					
Undervoltage Shutdown Threshold CB	V _{CBUVSD}	6.51	6.86	7.2	V	72)	P_11.6.38
Hysteresis of Undervoltage Shutdown CB	V _{CBUVSDhys}	_	0.9	-	V	-	P_11.6.39
Adjustable Range Undervoltage Detection CB	V _{CBUVr}	7	_	10.5	V	⁷²⁾ 16 steps programmable	P_11.6.40
Accuracy Undervoltage Detection Threshold CB	$V_{CBUVacc}$	-5	PROG	+5	%	-	P_11.6.41
Hysteresis of Undervoltage Detection CB	V _{CBUVhys}	_	0.28	_	V	-	P_11.6.42
Undervoltage Detection and	t _{UVCBr}	8	_	13	μs	f_uv_cb = '0x0'	P_11.6.43
Shutdown Filter Time Range CB ⁷³⁾⁷⁴⁾		20		25		f_uv_cb = '0x1'	
CB. Sy. sy		48		53		f_uv_cb = '0x2'	
		96		101		f_uv_cb = '0x3'	
CB Read Out							
Voltage Detection Range	$V_{\rm ADCr}$	0	_	19.44	V	0 to FFh	P_11.6.44
Minimum Resolution	V _{ADCres}	_	76	-	mV	1 LSB	P_11.6.45
Accuracy	V _{ADCacc1}	-4	_	+4	%	6.3 V ≤ V _{VCB} ≤ 19.44 V	P_11.6.46
Result Refresh Time ⁷³⁾	t _{ADCrefr}	_	4	_	μs		P_11.6.47

Overvoltage Shutdown CP2

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

⁷⁴ Fault Reaction Time excluded

⁷⁵ Not subject to production test, specified by design

Drift of detection and shutdown threshold correlates to each other (e.g. if threshold of shutdown is +3% too high, detection threshold will be +3% too high as well)

10 Protection and Diagnostics

Table 53 (continued) Electrical Characteristics - Protection and Diagnostic Functions

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Overvoltage Shutdown Threshold CH2-CL2	V _{CHOVR}	16.0	20.0	22.0	V	-	P_11.6.48
Filter Time Shutdown Overvoltage CH2-CL2 ⁷⁴⁾⁷⁵⁾	t _{CHOV}	_	1.2	_	μs	-	P_11.6.49
High-side Buffer Capacitor Voltag	e Supervis	ion					
Undervoltage Detection Threshold BHx-SHx	V _{BSUV}	6.1	6.5	7.0	V	-	P_11.6.50
Hysteresis of Undervoltage Detection BHx-SHx	V _{BSUVhys}	-	0.35	_	V	-	P_11.6.51
Undervoltage Detection Filter Time BHx-SHx ⁷³⁾⁷⁴⁾	t _{UVBS}	0.8 2.8 4.8 9.8	-	1.8 3.8 5.8 10.8	μs	f_uv_bs = '0x0' f_uv_bs = '0x1' f_uv_bs = '0x2' f_uv_bs = '0x3'	P_11.6.52
Overvoltage Detection Threshold BHx-SHx	V_{BSOV}	16.0	20.0	22.0	V	-	P_11.6.53
Overvoltage Detection Filter Time BHx-SHx ⁷⁴⁾⁷⁵⁾	t _{OVBS1}	-	1.2	_	μs	-	P_11.6.54
Overvoltage BHx-SHx Detection Reaction Time to Turn off CP2 ⁷⁵⁾	t _{OVBS2}	_	0.5	_	μs	-	P_11.6.108
Internal Clock Supervision							
CLK Supervision Threshold	f _{CLKint_sup}	+/-23	_	+/-45	%	_	P_11.6.55
Overtemperature Shutdown and	'						
Overtemperature Shutdown Threshold	T_{OTSD}	_	185	_	°C	76)	P_11.6.56
Overtemperature Detection Threshold Range	T _{OTDET}	125	_	160	°C	⁷⁶⁾ 8 steps programmable	P_11.6.59
Overtemperature Threshold Accuracy	T_{OTacc}	-15	_	15	°C	-	P_11.6.57
Overtemperature Hysteresis	T _{OTSDhys}	_	6	_	°C	_	P_11.6.58
Temperature Read Out							
Digital Temperature Read Out	T_{Tread}	_	3F	_	Hex	$T_{\rm J} = 28^{\circ} {\rm C}^{77)}$	P_11.6.63

⁷⁴ Fault Reaction Time excluded

Not subject to production test, specified by design

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

Drift of detection and shutdown threshold correlates to each other (e.g. if threshold shutdown overtemperature is +2% too high, overtemperature detection threshold will be +2% too high as well)

10 Protection and Diagnostics

Table 53 (continued) Electrical Characteristics - Protection and Diagnostic Functions

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Min. Temperature Read Step	T_{Tread_step}	_	5.83	_	K	1 LSB = 5.83 K	P_11.6.64
Temperature Read Out Accuracy	T_{Tread_a}	-25	_	+25	K	_	P_11.6.115
Short Circuit Detection							<u>'</u>
SCD Threshold Range	$V_{SCDrange}$	0.0	PROG	1.472	V	Prog. Step 7bit	P_11.6.66
Accuracy of SCD Threshold	V _{SCDaccx1}	-4	_	+4	%	$0.6 \text{ V} \le V_{\text{SHx}}$ $_{\text{SLx}} < 1.472 \text{ V}$ $0.6 \text{ V} \le V_{\text{VDHx}}$	P_11.6.67
						SHx < 1.472 V	
Accuracy of SCD Threshold	V _{SCDaccx2}	-6	_	+6	%	$0.32 \text{ V} \le V_{\text{SHx-}}$ $_{\text{SLx}} < 0.6 \text{ V}$ $0.32 \text{ V} \le V_{\text{VDHx-}}$ $_{\text{SHx}} < 0.6 \text{ V}$	P_11.6.109
Accuracy of SCD Threshold	V _{SCDaccx3}	-10	_	+10	%	$0.14 \text{ V} \le V_{\text{SHx}}$ $_{\text{SLx}} < 0.32 \text{ V}$ $0.14 \text{ V} \le V_{\text{VDHx}}$ $_{\text{SHx}} < 0.32 \text{ V}$	P_11.6.110
Accuracy of SCD Threshold	V _{SCDaccx3}	-15	-	+15	%	$0.1 \text{ V} \le V_{\text{SHx}}$ $_{\text{SLx}} < 0.14 \text{ V}$ $0.1 \text{ V} \le V_{\text{VDHx}}$ $_{\text{SHx}} < 0.14 \text{ V}$	P_11.6.116
Blank Time of SCD ⁷³⁾	t _{SCDb}	0.5	PROG	15	μs	8 steps programmable	P_11.6.68
Filter Time of SCD ⁷³⁾⁷⁴⁾	t_{SCDf}	0.5	_	2.3	μs	f_fi_scd = '0x0'	P_11.6.69
		1.7		3.5		f_fi_scd = '0x1'	
		3.4		5.2		f_fi_scd = '0x2'	
		5.7		7.5		f_fi_scd = '0x3'	
FET Diode Forward Voltage Dete	ction						
Reverse Diode Voltage Range	V_{RDMlr}	-1.495	_	0	V	_	P_11.6.70
RDM Acquisition Time ⁷³⁾	t _{RDMlf}	_	3	_	μs	_	P_11.6.72
FET Drain Source Voltage Detect	ion	-			•		·
FET Drain Source Measurement Range (table continues)	V_{DSMIr}	0	_	1.472	V	_	P_11.6.73

⁷⁷ Initial offset may differ. For higher accuracy it is recommended to compensate initial offset at a specific ambient temperature at power-up

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

⁷⁴ Fault Reaction Time excluded

10 Protection and Diagnostics

Table 53 (continued) Electrical Characteristics - Protection and Diagnostic Functions

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Values			Unit	Note or Test	Number	
		Min.	Тур.	Max.		Condition	
DSM Acquisition Time ⁷³⁾	t_{DSMlf}	-	1	-	μs	_	P_11.6.75
VCC Monitoring							
Reduced Operation Mode Detection Level at VCC	V_{VCCROP}	2.5	_	3.1	V	_	P_11.6.76
Hysteresis of Reduced Operation Mode Detection at VCC	$V_{\text{VCCROPhys}}$	_	0.13	_	V	_	P_11.6.77
Entry Filter and Reaction Time of Reduced Operation Mode Detection at VCC	t _{VCCROPf1}	0.6	-	-	μs	75)	P_11.6.78
VCC Overvoltage Detection Threshold	V _{VCC3OV4}	3.45	-	3.67	V	Accuracy of 4% and VCC = 3.3 V configured	P_14.6.164
VCC Overvoltage Detection Threshold	V _{VCC3OV10}	3.64	-	3.88	V	Accuracy of 10% and VCC = 3.3 V configured	P_11.6.80
VCC Overvoltage Detection Threshold	V _{VCC5OV4}	5.33	-	5.67	V	Accuracy of 4% and VCC = 5.0 V configured	P_14.6.166
VCC Overvoltage Detection Threshold	V _{VCC5OV10}	5.38	-	5.78	V	Accuracy of 10% and VCC = 5.0 V configured	P_11.6.81
VCC Undervoltage Detection Threshold	V _{VCC3UV4}	3.00	-	3.20	V	Accuracy of 4% and VCC = 3.3 V configured	P_14.6.168
VCC Undervoltage Detection Threshold	V _{VCC3UV10}	2.84	-	3.02	V	Accuracy of 10% and VCC = 3.3 V configured	P_11.6.82
VCC Undervoltage Detection Threshold	V _{VCC5UV4}	4.60	-	4.88	V	Accuracy of 4% and VCC = 5.0 V configured	P_14.6.170
VCC Undervoltage Detection Threshold	V _{VCC5UV10}	4.32	-	4.60	V	Accuracy of 10% and VCC = 5.0 V configured	P_11.6.83
Hysteresis of OV/UV Detection VCC	V _{VCChys}	_	0.05	_	V	_	P_11.6.84

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

Not subject to production test, specified by design

10 Protection and Diagnostics

Table 53 (continued) Electrical Characteristics - Protection and Diagnostic Functions

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
VCC Filter Time ⁷³⁾⁷⁴⁾	t _{VCCf}	8	_	17	μs	f_uv_vcc = f_ov_vcc = '0x0'	P_11.6.85
		24		33		f_uv_vcc = f_ov_vcc = '0x1'	
		48		57		f_uv_vcc = f_ov_vcc = '0x2'	
		96		105		f_uv_vcc = f_ov_vcc = '0x3'	
VCC Read Out					_		
Voltage Detection Range	$V_{\rm ADCr}$	0	_	5.55	V	0 to FFh	P_11.6.86
Minimum Resolution	$V_{\rm ADCres}$	_	22	_	mV	1 LSB	P_11.6.87
Accuracy	V _{ADCacc1}	-4	_	+4	%	$2 \text{ V} \le V_{\text{VCC}} \le 5.554 \text{ V}$	P_11.6.88
Result Refresh Time ⁷³⁾	t _{ADCrefr}	_	8	_	μs		P_11.6.89
Output Stage Feedback Timing							
Output Stage Feedback Filter Time ⁷³⁾⁷⁴⁾	t _{OSFf}	_	5.5	_	μs	-	P_11.6.90
Digital Driving Path Monitoring							
Digital Driving Path Monitoring Filter Time ⁷³⁾⁷⁴⁾	t _{STDTf1}	_	500	_	ns	-	P_11.6.92
Input Pattern Violation Monitori	ng						
Input Pattern Violation Filter and Reaction Time ⁷³⁾	t _{STDTf3}	_	750	_	ns	-	P_11.6.93
Overload Digital Output Pins		•					
Detection Threshold Short to GND ⁷⁵⁾	V _{OPOLH}	-	-	Vcc - 0.5 V	V	Output pin = High Short to any voltage lower as VCC	P_11.6.94
Detection Threshold Short to Supply ⁷⁸⁾	V _{OPOLx}	-	Vcc +0.5 V	_	V	Output pin = X Short to any voltage higher as VCC	P_11.6.95

⁷³ Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

⁷⁴ Fault Reaction Time excluded

Not subject to production test, specified by design

For details please refer to Chapter 14.2.6

10 Protection and Diagnostics

Table 53 (continued) Electrical Characteristics - Protection and Diagnostic Functions

 $V_S = 5.5 \text{ V}$ to 40 V, $T_i = -40 ^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or Test	Number
		Min.	Тур.	Max.		Condition	
Detection Threshold Short to Supply ⁷⁸⁾	V _{OPOLL}	0.5	-	-	V	Output pin = Low Short to any voltage	P_11.6.96
Filter and Reaction Time ⁷⁵⁾	t _{OPf}	-	4	-	μs	_	P_11.6.97
Configuration Supervision		1	•	-			
Configuration Time-out ⁷³⁾	t _{cfg-timeout}	_	100	_	ms	_	P_11.6.98
SPI Supervisions							
SPI-Frame Time-out ⁷³⁾	t _{SPI-timeout}	35	_	_	μs	_	P_11.6.99
SPI WIndow Watchdog Period ⁷³⁾	$t_{\rm WWD}$	1	-	10	ms	4 steps programmable	P_11.6.100
SPI Window Watchdog Ratio	t _{WWDratio}	50	-	95	%	8 steps programmable	P_11.6.101
SPI Window Watchdog Loop Counter	t _{WWDLC}	2	-	16	#	8 steps programmable	P_11.6.102
Timing Error Handling							
Fault Reaction Time ⁷⁵⁾	t_{FRT}	20	_	500	ns	_	P_11.6.103
ENA Low Time Threshold for Clearing Latched Errors	t _{clear}	2.2	3.0	3.8	μs	ENA falling edge	P_11.6.104
Return Time to Normal Operation for ARE Fault Behavior Configuration ⁷³⁾	t_{RT}	_	_	1.0	μs	-	P_11.6.106
Extension Time Fault Signaling at Pin ERR ⁷³⁾	t_{ext}	_	10	_	μs	-	P_11.6.107

⁷⁸ For details please refer to Chapter 14.2.6

⁷⁵ Not subject to production test, specified by design

Internal clock frequency accuracy has to be added to the specified values, please see Chapter 6.2

10 Protection and Diagnostics

10.7 **Typical Behavior Figures**



Figure 18 Accuracy for SCD, drain source and revers diode measurement

11 Digital Phase Voltage Feedback

11 Digital Phase Voltage Feedback

The TLE9183QK incorporates a fast conversion of the phase voltages into logic level signals. Its threshold values are proportional to the voltage at pin VDHP as long as the VDHP voltage is below 50 V and stays above 4.0 V. At voltages higher than 50 V at the pin VDHP the PFB pins will still operate but thresholds and the threshold matching will not match to its specified values in Table 55 because the reference input of the internal PFB comparator is limited to 50 V. If the device is activated via pin INH at VDHP > 50 V the PFBx pins will work as specified after 50 ms. At voltages lower than 4.0 V the PFBx output pins might oscillate. In the case of oscillation overload of the digital output pins might occur. The outputs are VCC push-pull stages with an internal pull down resistor. The phase voltage feedback is realized functional independent to the core logic. If the digital phase feedback is not used the output pins shall be open.

11.1 Phase Voltage Feedback Programming

Two transition thresholds can be selected for the comparator reference input.

Table 54 Phase Voltage Feedback Transition Threshold Levels

Bit Name	Bit Value	High/Low Threshold Levels
pfb 0 (default) 80%/25		80%/25% of VDHP
	1	50%/50% of VDHP

11.2 Electrical Parameter Phase Feedback

Table 55 Electrical Characteristics - Phase Feedback

 V_S = 5.5 V to 40 V, T_j = -40°C to +150°C, all voltages with respect to GND, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test	Number	
		Min.	Тур.	Max.		Condition		
Low Level Threshold 50%	V _{ILPfb1}	46.5	49	51.5	% of VDHP	VSHx decreasing; 4 V < V _{VDHP} < 60 V	P_12.2.1	
High Level Threshold 50%	V _{IHfb1}	47.5	51.0	53.5	% of VDHP	VSHx increasing; 4 V < V _{VDHP} < 60 V	P_12.2.2	
Low Level Threshold 25%	V _{ILPfb2}	10	25	40	% of VDHP	VSHx decreasing; 4 V < V _{VDHP} < 60 V	P_12.2.3	
High Level Threshold 80%	V_{IHfb2}	65	80.0	95	% of VDHP	VSHx increasing; 4 V < V _{VDHP} < 60 V	P_12.2.4	
Threshold Matching	dV _{Ifb}	-	2.0	5.0	% of VDHP	4 V < V _{VDHP} < 60 V	P_12.2.5	
Propagation Delay Time	t_{PDfb}	_	60	110	ns		P_12.2.6	
Propagation Delay Time Matching	t _{PDfball1}	-	_	15	ns	50%/50% selected;	P_12.2.7	
Propagation Delay Time Matching	t _{PDfball2}	-	_	35	ns	80%/25% selected;	P_12.2.9	

12 Phase Cut Off Activation

Phase Cut Off Activation 12

The TLE9183QK provides an additional output pin to drive a phase separation circuit. The output characteristic of the APC pin is configurable. The pin will be triggered depending on configuration either by the window watchdog or the over- or undervoltage detection of the VCC pin. If APC is triggered bit 3 in register Ser is set. An activation delay after triggering is configurable too. Once APC is activated the sequence will be executed and can only be disrupted by setting pin INH to low. The bit apc_act which is set in the special event register can be reset via pin ENA.

13 Operation Modes

13 Operation Modes

This chapter describes the different operation modes. The register indicates which operation mode is currently active.

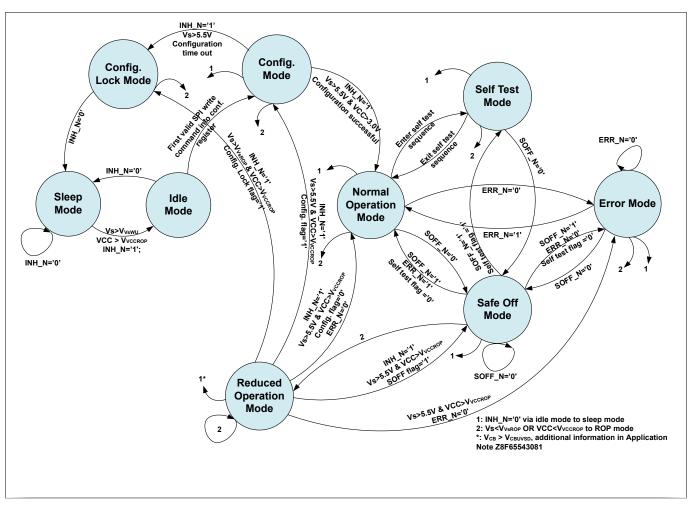


Figure 19 Overview of Digital Operation Modes

13.1 Normal Operation Mode

In normal operation mode all functions and all diagnostics are available. If no error conditions are detected, the output drivers will follow the signals provided at the digital inputs of the TLE9183QK.

13.1.1 Driving Mode

If no error conditions are detected, the output drivers follow the signals provided at the digital inputs of the TLE9183QK. All protection and diagnosis features are working as specified.

13.1.2 Limp Mode

The option to go into to limp mode is available only if enabled in configuration mode before. If TLE9183QK is in limp mode bit 1 in Ser is set. For detailed description of limp mode please refer to Chapter 10.4.

infineon

13 Operation Modes

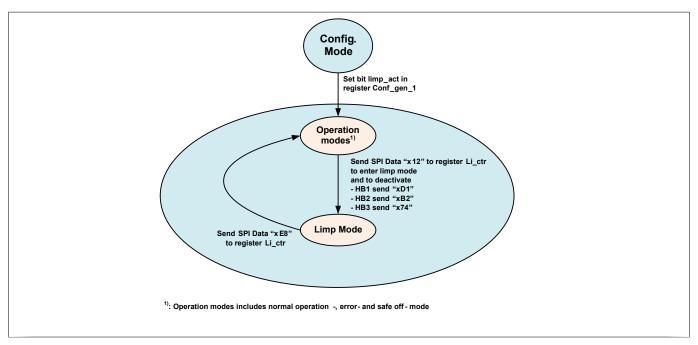


Figure 20 LIMP Mode Enter and Exit Sequence

13.2 Reduced Operation Mode

In the reduced operation mode the logic is operational. So digital registers keep their states and supervision functions don't stop. However the I/Os are not properly supplied and therefore SPI communication does not work. All digital pins are disabled and the output stage of the operational amplifier is not supplied. At transition from reduced operation mode to normal operation all latched errors will be cleared. After reduced operation mode of VCC has been ended, an ENA reset has to be performed to release output pin overload detection which might be detected unintentionally. If TLE9183QK has been in reduced operation mode bit 0 in Ser is set.

13.3 Sleep Mode

If the $\overline{\text{INH}}$ pin is set to low the internal power down sequence will be initiated. After detection of the low transition changes at the $\overline{\text{INH}}$ pin will be ignored until the sleep mode has been reached. The gate driver IC will enter sleep mode after undervoltage shutdown at pin CB has been detected. First the $\overline{\text{INH}}$ pin switches off the external FETs actively with the output stages. The undervoltage shutdown at pin CB will be checked after the internal blocks – output stages, OPAMPs, internal 5 V voltage regulator, charge pumps, PFB blocks, output stages logic blocks and SCD blocks – are switched off. Afterwards the remaining clocks, the VCC supervision, all digital pads, the temperature sensors and the HV ADC will be deactivated. Then the digital core will be reset and the internal 3.3 V and 1.5 V regulators will be deactivated. If the charge pump and high-side buffer capacitors are discharged the gate of the external FET will be clamped to its source with an internal passive clamping circuit. Once set to sleep mode the TLE9183QK has to be reconfigured.

13.4 Idle Mode

Idle mode is entered via sleep mode. After Vs is applied and the $\overline{\text{INH}}$ pin is set to high, the internal logic is operational and power up is initiated. As soon as $\overline{\text{ERR}}$ pin is high the digital ports are supplied and the TLE9183QK is ready for configuration.

13 Operation Modes

13.5 Configuration Mode

The TLE9183QK has to be configured. Failure behavior, diagnosis thresholds and filter times have to be adjusted at configuration mode. The configuration mode will be entered from idle mode if the first valid SPI write command into the configuration registers has been received. As soon as the first valid SPI command has been received the configuration timer starts and the \overline{ERR} pin is set to low. If the configuration is completed successfully the gate driver IC will enter normal operation mode automatically. Entering normal operation mode resets all errors and error filters. The correct configuration signature byte has to be sent to enter normal operation mode before the configuration timer has elapsed. The calculation if the transmitted configuration signature byte matches to the correct internal CRC8 requires max. 1.2 μ s. After 1.2 μ s the SPI status flag bit 3 is set to high. If no changes of default values of the configuration registers are required the default configuration signature shall be sent to enter normal operation mode directly. A transition to reduced operation mode will stop the configuration and the configuration timer. As soon as the external supply voltage recovers configuration mode will be entered again and the configuration timer will be reset.

13.6 Configuration Lock Mode

If configuration timer expires the TLE9183QK will pass from configuration mode to configuration lock mode. A reset via $\overline{\text{INH}}$ has to be performed to restart configuration.

13.7 Safe-Off Mode

If SOFF is set to low the output stages will turn off the external MOSFETs independent on the input signal at the pins IHx and ILx. SPI interface and the CSAs are still working. For details concerning the availability of diagnostic features refer to Chapter 10.1.

13.8 Error Mode

As soon as the ERR pin is low the driver IC enters the error mode. A supervision which has been configured as warning, will not lead into error mode if the failure condition of the supervision is met. Leaving the error mode depends on the adjusted failure behavior during configuration mode. Supervisions adjusted as latched error need a reset by the ENA pin. ARE or ERR failures will stay in error mode as long as the failure occurs and will leave the error mode automatically if the error is not present anymore.

13.9 Overview of Operation Modes and Transition States

Table 56 Operation Modes

Mode	Comment	Logic	Power Supply	Output Stages	Shunt Signal Conditioning	_	SPI Access	ERR Pin
Normal Operation	ENA = INH = SO FF = High; Power-up successful	Operation as specified	Operation as specified		Operation as specified	All available	Yes	High

13 Operation Modes

Table 56 (continued) Operation Modes

Mode	Comment	Logic	Power Supply	Output Stages	Shunt Signal Conditioning	Diagnosis	SPI Access	ERR Pin
Reduced Operation	$\overline{\text{INH}}$ = High and Vs < V_{VSROP} or VCC < V_{VCCROP} / PENA = $\overline{\text{SOFF}}$ = X	Digital core operative, no loss of Config. data	Operation as specified or off ⁸⁰⁾	Outputs active off -> passive clamping	CSAs off, outputs low	See Table 21	No	Low (passive)
Sleep	INH = Low or VS < 3 V; ENA = SOFF = X	Digital core off, loss of data	Off, caps are discharging	Outputs active off -> passive clamping	CSAs off, outputs low	None	No	Low (passive)
Idle	$\overline{\text{INH}}$ = High and Vs > V_{VSWU} and VCC > V_{VCCROP} ; ENA = $\overline{\text{SOFF}}$ = X	Digital core operative	Operation as specified	Outputs active off	Operation as specified	See Table 21	Yes	High
Config- uration	INH = High and first valid SPI write access into config. register; ENA = SOFF = X	Operation as specified	Operation as specified	Outputs active off	Operation as specified	Depends on default setting	Yes	Low
Config- uration lock	INH = High and configuration timer expired; ENA = SOFF = X	Operation as specified	Operation as specified	Outputs active off	Operation as specified	Depends on default setting	Yes	Low
Safe Off	INH = High and SOFF = Low; ENA = X	Operation as specified	Operation as specified	Outputs active off	Operation as specified	See Table 21	Yes	Low/ High ⁸¹⁾
Error	INH = SOFF = ENA = High and error detected	Operation as specified	Operation as specified	Depends on failure reaction	Operation as specified	All available	Yes	Low
Self-test	INH = SOFF = ENA = High and entry by SPI command	depends on dedicated self test	Depends on dedicated self test	depends on dedicated self-test	Depends on dedicated self test	See Table 21	Yes	Result of self-test

⁷⁹ If reduced operation mode occurs caused by too low Vs voltage bit 5 and bit 1 of register 0x43 is set. Reduced operation mode by too low VCC voltage sets bit 1 only

⁸⁰ If Vs drops too low the charge pumps turn off

Depends if fault has been detected or not

infineon

13 Operation Modes

13.10 Power-up Diagram

It is recommended to follow the power-up sequence shown in Figure 21. The TLE9183QK is compatible with the power-up sequence of the TLE9180 family.

13 Operation Modes

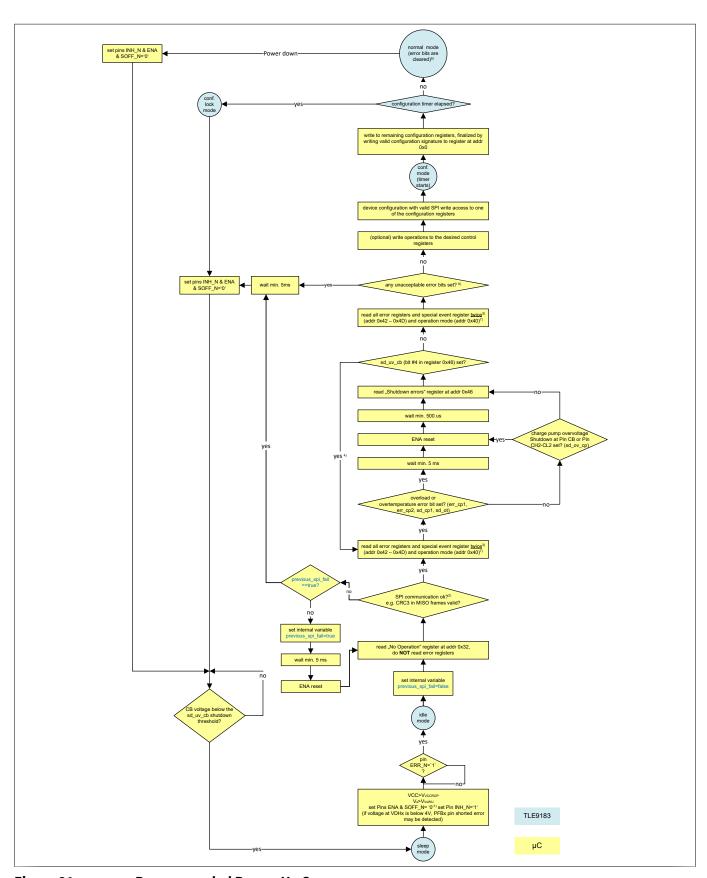


Figure 21 **Recommended Power-Up Sequence**

Notes:

Do not perform an ENA reset unless specified. For details see Chapter 4.1, ENA. 1.

13 Operation Modes

- **2.** General note: It is assumed that SPI communication is checked for errors (validate CRC3 of MISO frames, check if addr/data of write access SPI MOSI frame matches the next MISO frame, check if addr of read access SPI MOSI frame matches addr in next MISO frame). If SPI errors do occur, apply chosen retry strategy and abort after a limited number of tries.
- 3. Note: It is expected that there are at least 500us (enough time for the overload detections to trigger again) between the ENA reset to clear "MISO Pin shorted error" detection and the first read operation of all error registers.
- **4.** Note: The chosen strategy is optimized for speed by polling the status of sd_uv_cb. Error sd_uv_cb must disappear in less than tINH_Pen1 ms after the minimum of (time after last ENA reset) and (time after INH_N transition to high). If it does not, it is ok to proceed with the other path (which will not lead to a direct path to normal mode 2 steps later).
- **5.** Note: Please be aware of the increased SPI sequential transfer delay for the transition to normal mode.
- 6. Note: Unacceptable bits are: global test mode (gtm), Overvoltage Internal Regulator 6 Error (err_ov_reg6), Charge Pump 1 Overload Error (err_cp1), Charge Pump 2 Overload Error (err_cp2), Overtemperature Shutdown (sd_ot), Charge Pump Overvoltage Shutdown at Pin CB or Pin CH2-CL2 (sd_ov_cp), Vs Path Charge Pump Input Overload (sd_cp1), CB Undervoltage Shutdown (sd_uv_cb). It is up to the customer to define if the following bits are acceptable: Overtemperature Detection (err_ot_w), Latent Fault Warning (lfw), Error Correction of Control Register Failed (ctrl_reg_invalid), all bits in register 0x45 (External Errors). With the exception of the bits in register 0x4A "SPI Communication and Configuration Errors" (which need to be dealt with according to Note2)), all other bits should be ignored and dealt with after finalizing the transition to normal mode.
- **7.** Note: Operation Mode must be idle mode. If it is not, abort.

14 Application Information

14 Application Information

In this application 3 phase motors, synchronous and asynchronous, are used, combining high output performance, low space requirements and high reliability.

Note:

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

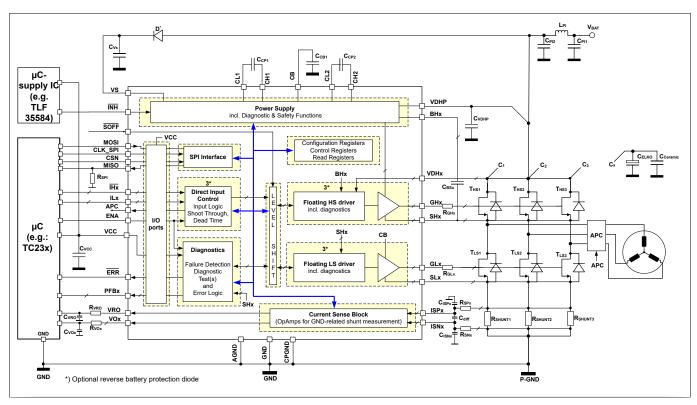


Figure 22 Simplified Application Circuit

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.

14.1 Layout Guide Lines

Please refer also to the simplified application example.

- Three separated bulk capacitors CBridge1 should be used one per half bridge
- Three separated ceramic capacitors CBridge2 should be used one per half bridge
- Each of the 3 bulk capacitors CBridge1 and each of the 3 ceramic capacitors Cbridge2 should be assigned to one of the half bridges and should be placed very close to it
- The components within one half bridge should be placed close to each other to reduce stray inductance to a minimum: high-side MOSFET, low-side MOSFET, bulk capacitor CBridge1 and ceramic capacitor CBridge2 (CBridge1 and CBridge2 are in parallel) and the shunt resistor form a loop that should be as small and tight as possible. The traces should be short and wide.
- The three half bridges can be separated; yet, when there is one common GND referenced shunt resistor for the three half bridges the sources of the three low-side MOSFETs should be close to each other and close to the common shunt resistor

14 Application Information

- Additional R-C snubber circuits (R and C in series) can be placed to attenuate/suppress oscillations during switching of the MOSFETs, there may be one or two snubber circuits per half bridge, R (several Ohm) and C (several nF) must be low inductive in terms of routing and packaging (ceramic capacitors)
- The exposed pad on the backside of the package is recommended to connect to GND
- The ground pins GND, CP_GND, A_GND have to be connected together to the PCB GND closely to the chip
- VDHP has to be connected and referenced to a common point of the drains of the high-side MOSFETs
- External components see "Additional Application Information"
- For further information you may contact http://www.infineon.com/

14.2 Additional Application Hints

Additional external components might be recommended to increase robustness.

14.2.1 High Level Output Voltage of Digital Output Pins

Please refer to Chapter 4.7.

The min. value of the high level output voltage of the digital output pins \overline{ERR} , PFBx and MISO might be too low for 5 V μ C ports are used. In this case please configure ports to TTL.

μC with 3.3 V ports are not affected.

14.2.2 Quiescent Current Consumption at Pin Vs

Please refer to Table 10.

After pulling $\overline{\text{INH}}$ to low the quiescent current can be up to 20 μA at pin Vs for a short period of time. The effect is strongly temperature dependent. Under hot conditions the decay time is in the range of seconds, at ambient conditions in the range of minutes and at cold up to 1h.

14.2.3 Minimum Input Pulses at Pins IHx and ILx

Please refer to Chapter 8.4.

Input turn on pulses at the pins IHx and ILx shorter than 50 ns may cause an increase of the turn on time of the external FET to maximum 1000 ns. Short voltage glitches at the pin CB have been observed.

If 6 μ C output ports are used to drive 6 FETs and dead time is generated by the μ C avoid input pulses at $\overline{\text{IHx}}$ and ILx shorter than $t_{\text{Pulse_in}}$.

If 3 μ C output ports are used to drive 6 FETs using the internal dead time of the TLE9183QK avoid input pulses at $\overline{\text{IHx}}$ and ILx shorter than the internal dead + $t_{\text{Pulse in}}$.

In case of glitches at pin CB has been identified please contact Infineon.

14.2.4 CSA Cross Talk

Cross talk of CP2 to current sense amplifier output 3 has been identified. Voltage spikes at pin VO3 according to charge pump 2 charging pulses will influence current measurement of current sense amplifier 3.

Additionally APC, ERR and PFBx signal toggling will induce voltage spikes on CSA 2 and CSA 1.

Voltage spike caused by Charge pump 2 is typical +/-55 mV.

Voltage spike caused by PFBx pins toggling is typical +/-35-600 mV.

Voltage spike caused by APC and ERR pin toggling is typical +/-25 mV.

Work Around

Current measurement by ADC of μ C shall not be performed if PFBx ports are toggling. Output filter bandwidth shall be decreased and oversampling of the ADC shall be activated. Please contact Infineon

14 Application Information

14.2.5 Overload CP1

Please refer to Table 21.

If a short happens at the CB pin, the overload protection shall prevent the IC from destruction.

Connecting pin CB directly to GND via 0 Ohm will end up in loss of configuration but all output stages will keep external FETs off. CB capacitor discharging slopes higher as typ. 100 µs does not end up in loss of configuration.

Work Around

In case of loss of configuration the TLE9183QK will be in idle mode and a restart by pulling $\overline{\text{INH}}$ to low is required. In this case an ENA reset shall be performed before the pin $\overline{\text{INH}}$ is set to low. If TLE9183QK does not loose configuration, error bit overload CP1 is set a reset via ENA instead of $\overline{\text{INH}}$ is required to clear the error.

14.2.6 Digital Output Pin Overload Detection

Please refer to Chapter 10.5.16.

The overload protection for digital output pins protects the IC against destruction if this pin has a short to higher voltages than VCC.

This protection is too sensitive at cold temperatures if VCC is supplied with 5 V. In case the pin is pulled up to VCC externally an overload might be detected.

If VCC is 3.3 V the overload protection is working as specified.

The affected pins are: \overline{ERR} , PFBx and MISO. Usually \overline{ERR} and PFBx are not pulled up to VCC by external circuit, so no overload detection will occur.

If the SPI is shared with other ICs, the MISO pin of the TLE9183QK might be pulled to 5 V by the MISO-Output of the other IC and might cause on overload detection.

Connecting more than one TLE9183QK as slaves to the SPI bus does not cause the unexpected behavior.

14.2.7 FET Reverse Diode Forward Voltage Read Out - Short Dead Time

Please refer to Chapter 10.5.13.

A fault in the measurement sequence of the reverse diode readout will occur if the configured dead time is shorter than typical 400 ns and maximum 800 ns. If dead time is higher than 800 ns sequence is as specified. FET reverse diode measurement shall not be performed if a dead time shorter than 800 ns has been configured.

14.2.8 FET Reverse Diode Forward Voltage Read Out - No Dead time Generation in μC

Please refer to Chapter 10.5.13.

If 3 μ C output ports are used to drive 6 FETs (ILx connected to $\overline{\text{IHx}}$) using the internal dead time of the TLE9183QK the FET Reverse Diode Forward Voltage measurement might cause wrong results in the read out registers.

Dead time shall be generated at µC and shall be higher than 800 ns.

14.2.9 Minimum INH Pulse Length at Power Up Sequence

Please refer to tINH_minp.

If power up sequence is initiated via rising edge of $\overline{\text{INH}}$ and falling edge at $\overline{\text{INH}}$ occurs before CB voltage has been ramped up (indicated by undervoltage CB shutdown bit is 0) the device will stay in idle mode. If device stays in idle mode and will not enter configuration mode $\overline{\text{INH}}$ shall be set to high again.

15 Package Outlines

15 Package Outlines

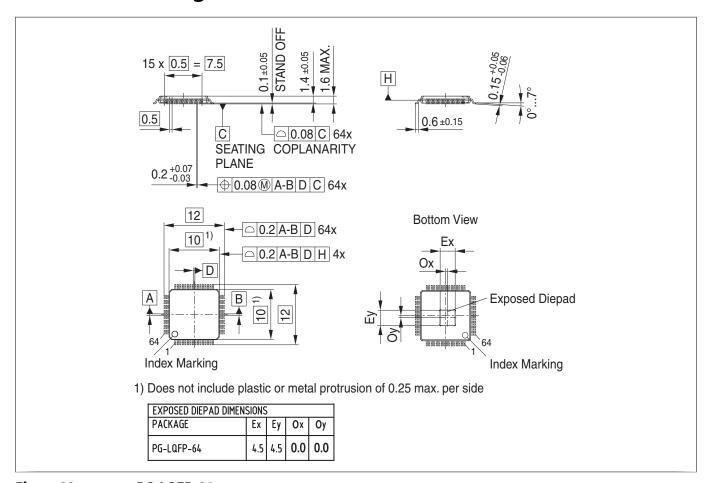


Figure 23 PG-LQFP-64

Bridge Driver IC

15 Package Outlines

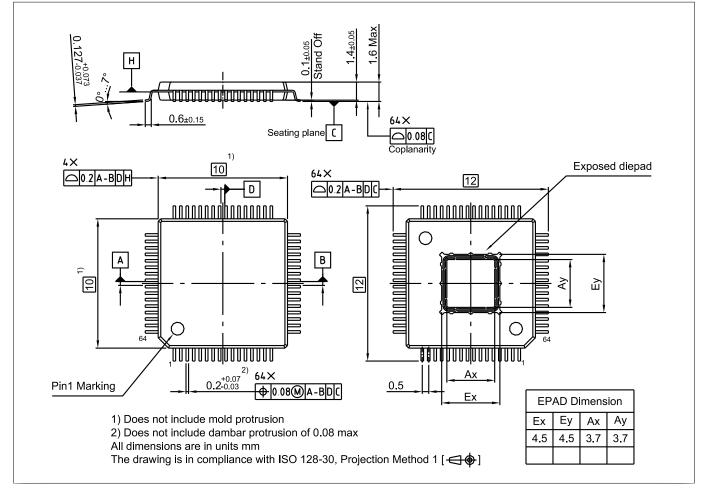


Figure 24 PG-LQFP-64

Green Product (RoHS-compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: http://www.infineon.com/packages.

Dimensions in mm

Bridge Driver IC

16 Revision History

Revision History 16

Revision	Date	Changes
1.21	2023-04-30	Editorial change
1.20	2022-03-08	Changed footnotes of table "Electrical Characteristics: Timing"
		Note 3 in chapter "Absolute Maximum Ratings" removed
		P_11.6.67, P_11.6.109, P_11.6.110, P_11.6.116 added
		Updated figure "Overview of Digital Operation Modes"
		P_4.1.57 and P_4.1.65 removed
		P_4.1.58 values updated
		Figure "Package outlines" updated
1.10	2021-05-06	Editorial changes
		Changed min. value of P_9.4.19
		Table 21: line"overvoltage VS shut down" removed
		Chapter 10.5.1 modified
		Changed min. value of P_5.7.47
		Changed max. value of P_12.2.6
		P_5.7.24 and P_5.7.57 removed, P_5.7.38 updated
		Chapter 7.1 updated
		Updated figure Principle for SPI-Bus Architecture
		Table 7 header updated
		Chapter 13.3 updated
		Changed symbol in P_11.6.115, P_11.6.78 and P_11.6.79
		Chapter 9.5.1 updated
		Changed test condition for P_11.6.12
		Table 24 and footnote updated
		Chapter 10.5.4 and P_8.3.38 updated
		Changed footnote for P_6.5.1 - P_6.5.17 and P_6.5.19
		Updated footnote for P_11.6.5, P_11.6.14, P_11.6.19, P_11.6.23, P_11.6.29, P_11.6.35, P_11.6.43, P_11.6.52, P_11.6.47, P_11.6.68, P_11.6.69, P_11.6.72, P_11.6.75, P_11.6.85, P_11.6.89, P_11.6.90, P_11.6.92, P_11.6.93, P_11.6.98, P_11.6.99, P_11.6.100, P_11.6.106, P_11.6.107, P_9.6.20, P_9.6.37, P_9.4.30, P_13.2.1
		Chapter 10.5.16 updated
		Added comment for path 1 in "Overview of Digital Operation Modes", figure updated
		Added Chapter "Reduced Operation Mode INH set to low"
		Changed footnote for Table 7
		P_4.1.56 removed and added footnote for P_4.1.55
		Updated figure Simplified Application Circuit
		Chapter 14.1 updated
		Corrected voltage ratings for Chapter 4.1, P_8.3.20, P_8.3.22, P_12.2.1, P_12.2.2, P_12.2.3, P_12.2.4, P_12.2.5, P_11.6.32, Chapter 11

16 Revision History

Revision	Date	Changes
1.01	2018-07-13	Editorial and format changes
		P_9.6.58 footnote added and conditions changed
1.0	2018-06-29	Initial data sheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-04-30 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-ypk1626262050645

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.