

200V N-Channel MOSFET

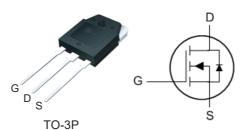
General Description

The CMA40N20P uses advanced planar stripe DMOS technology and design to provide excellent RDS(ON).

These devices are wellsuited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- Low on-resistance
- Fast Switching
- RoHS Compliant


Product Summary

BVDSS	RDSON	ID
200V	65mΩ	40A

Applications

- DC-AC converters
- SMPS Power
- UPS (Uninterruptible Power Supply)

TO-247/3P Pin Configuration

Туре	Package	Marking		
CMA40N20P	TO-3P	CMA40N20P		

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	200	V	
V_{GS}	Gate-Source Voltage	±30	V	
I _D @T _C =25℃	Continuous Drain Current	40	Α	
I _D @T _C =100℃	Continuous Drain Current	32	А	
I _{DM}	Pulsed Drain Current ¹	160	Α	
EAS	Single Pulse Avalanche Energy ²	1050	mJ	
P _D @T _C =25℃	Total Power Dissipation	260	W	
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{0JA}	Thermal Resistance Junction-ambient		62.5	°C/W	
R _{θJC}	Thermal Resistance Junction-case		0.48	°C/W	

200V N-Channel MOSFET

Electrical Characteristics (T_J=25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =20A			65	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =250V, V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance 3	V _{DS} =20V , I _D =15A		23		S
Qg	Total Gate Charge	I _D =20A		63		
Q _{gs}	Gate-Source Charge	V _{DS} =125V		17		nC
Q_{gd}	Gate-Drain Charge	V _{GS} = 10V (Note 3, 4)		19		
$T_{d(on)}$	Turn-On Delay Time	V _{DS} =125V		43		
Tr	Rise Time	I _D =20A		27		20
T _{d(off)}	Turn-Off Delay Time	$R_G=25\Omega$		156		ns
T _f	Fall Time	(Note 3, 4)		33		
C _{iss}	Input Capacitance			2700		
C _{oss}	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		325		рF
C _{rss}	Reverse Transfer Capacitance			40		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			40	Α
I _{SM}	Pulsed Source Current	V _G -V _D -UV , Force Current			160	Α
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =40A , T _J =25℃			1.4	V

Note

1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.L = 1mH, ID = 40A, VDD = 50V, Starting TJ = 25 $^{\circ}$ C

3.Pulse Test: Pulse width≤300µs, Duty Cycle≤2%

4. Essentially Independent of Operating Temperature

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.