

150V N-Channel MOSFET

General Description

The 6015 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss.

This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

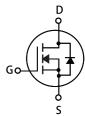
Features

- Low On-Resistance
- Simple Drive Requirements
- Fast Switching

Product Summary

BVDSS	RDSON	ID
150V	90mΩ	19A

Applications


- PWM Motor Controls
- LED controller
- Power Supplies
- DC-DC & DC-AC Converters

TO-252/251 Pin Configuration

(CMD6015)

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	150	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	19	Α	
I _D @T _C =100℃	Continuous Drain Current	13.5	А	
I _{DM}	Pulsed Drain Current	76	Α	
EAS	Single Pulse Avalanche Energy ^C	60	mJ	
I _{AS}	Avalanche Current	9	Α	
P _D @T _C =25℃	Total Power Dissipation ^B	83	W	
T _{STG}	Storage Temperature Range	-55 to 175	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 175	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient (Steady-State) A D		50	°C/W
$R_{ heta JC}$	Thermal Resistance Junction -Case		1.8	°C/W

150V N-Channel MOSFET

Electrical Characteristics (T_J=25 ^oC, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	150			V
В	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =10A		74	90	mΩ
R _{DS(ON)}		V_{GS} =4.5V , I_{D} =8A		78	100	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1.0	1.8	2.8	V
1	Drain-Source Leakage Current	V_{DS} = 150V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1	- uA
I _{DSS}		V_{DS} =150V , V_{GS} =0V , T_{J} =55 $^{\circ}$ C			5	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V_{DS} =5 V , I_D =10 A		25		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3		Ω
Qg	Total Gate Charge	V _{DS} =75V , V _{GS} =10V, I _D =10A		15.5		nC
Q _{gs}	Gate-Source Charge			4		
Q_{gd}	Gate-Drain Charge			1.2		
T _{d(on)}	Turn-On Delay Time	V_{DS} =75V , V_{GS} =10V , R_{GEN} =3 Ω		6.5		
Tr	Rise Time			5		no
T _{d(off)}	Turn-Off Delay Time			23		ns
T _f	Fall Time			2.5		
C _{iss}	Input Capacitance			1400		
C _{oss}	Output Capacitance	V _{DS} =75V , V _{GS} =0V , f=1MHz		90		pF
C _{rss}	Reverse Transfer Capacitance			50		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			19	Α
I _{SM}	Pulsed Source Current				76	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =10A , T _J =25℃		0.81	1	V

Note:

- A. The value of Reja is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with Ta =25°C. The Power dissipation PDSM is based on Reja and the maximum allowe d junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
- B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. The EAS data shows Max. rating . The test condition is VDD=50V, VGS=10V, L=1mH, IAS=11A.
- D. The Reja is the sum of the thermal impedance from junction to case Rejc and case to ambient.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.