

Technical Product Description SMI230

Inertial Sensor (6DoF) for Non-Safety Automotive Applications

Document revision 1.0

Release date 13.12.2019

Document number 1 279 940 369

Part number 0273 142 144

Document Author AE/PAS1.3-Horvath

This Technical Product Description is for customer information purposes only.

Bosch does not guarantee any parameters or information given within this document.

Parameters may be subject to change at any time without notice.

Please refer to the Technical Customer Documentation for specified values.

Table of Contents

Ta	ıble o	f Con	tents	3		
1	P	roduc	t Identification	6		
	1.1	Main	Functions and Properties	6		
2	G	enera	l Product Description	7		
	2.1		sor Structure			
	2.2	Blocl	k Diagram	8		
	2.3 Signal Path					
	2.	3.1	Accelerometer	9		
	2.	3.2	Gyroscope	9		
	2.4	Pow	er Management	10		
	2.	4.1	Power Modes Accelerometer	11		
	2.	4.2	Power Modes Gyroscope	11		
	2.5	Sens	sor Data	12		
	2.6	Sens	sor Time	12		
	2.7	Sens	sing Axes Orientation	13		
3	Н	ardwa	are Interface Description and Packaging	14		
	3.1	Pack	age Parameters	14		
	3.2	Tran	sport Package	15		
	3.	2.1	Tape on Reel Specification			
		2.2	Orientation within Reel			
	3.3		ling of the Product			
	3.4		ing			
	3.5		print			
	3.6		ture Sensitivity Level			
	3.7		nting Recommendations			
	3.8		ering			
	-	8.1	Reflow Soldering Recommendation for Sensors in LGA Package			
		8.2	Classification Reflow Profiles			
		8.3	Multiple Reflow Soldering Cycles			
	3.9		ner Important Mounting and Assembly Recommendations			
4			nment and Parameter Specification			
	4.1		mum Ratings			
	4.2	•	rating Conditions			
	4.3		me Conditions			
	4.4		elerometer			
_	4.5		scope			
5			re Interface Description			
	5.1		al Peripheral Interface (SPI)			
		1.1	SPI Connection			
	5.	1.2	SPI Timing	27		

	5.1.3	SPI interface of accelerometer	28
	5.2 Two-	wire Interface (TWI)	29
	5.2.1	TWI Connection	29
	5.2.2	TWI Timing	30
	5.3 Acce	ess Restrictions (SPI and TWI)	33
6	Applica	ation Details	34
	6.1 Sens	sor Setup	34
	6.1.1	Accelerometer	34
	6.1.2	Gyroscope	35
	6.2 Devi	ce Initialization	36
	6.3 Self-	test	36
	6.3.1	Accelerometer	36
	6.3.2	Gyroscope	37
	6.4 Inter	rupt Engine	38
	6.4.1	New Data Interrupt	38
	6.5 Read	ling Data	39
	6.5.1	Accelerometer	39
	6.5.2	Gyroscope	39
	6.5.3	Temperature Sensor	39
	6.6 Soft	Reset	41
	6.6.1	Accelerometer	41
	6.6.2	Gyroscope	41
	6.7 Regi	ster Description Accelerometer	42
	6.7.1	Accelerometer - Register Map	
	6.7.2	ACC Register 0x00 (ACC_CHIP_ID)	
	6.7.3	ACC Register 0x02 (ACC_ERR_REG)	
	6.7.4	ACC Register 0x03 (ACC_STATUS)	
	6.7.5	ACC Register 0x12 (ACC_X_LSB)	
	6.7.6	ACC Register 0x13 (ACC_X_MSB)	
	6.7.7	ACC Register 0x14 (ACC_Y_LSB)	
	6.7.8	ACC Register 0x15 (ACC_Y_MSB)	
	6.7.9	ACC Register 0x16 (ACC_Z_LSB)	
	6.7.10	ACC Register 0x17 (ACC_Z_MSB)	
	6.7.11	ACC Register 0x18 (SENSORTIME_0)	
	6.7.12	ACC Register 0x19 (SENSORTIME_1)	
	6.7.13	ACC Register 0x1A (SENSORTIME_2)	
	6.7.14	ACC Register 0x1D (ACC_INT_STAT_1)	
	6.7.15	ACC Register 0x22 (TEMP_MSB)	
	6.7.16	ACC Register 0x23 (TEMP_LSB)	
	6.7.17	ACC Register 0x40 (ACC_CONF)	
	6.7.18	ACC Register 0x41 (ACC_RANGE)	
	b./.19	ACC Register 0x53 (INT1 IO CONF)	48

	6.7.21	ACC Register 0x58 (INT1_INT2_MAP_DATA)	49
	6.7.22	ACC Register 0x6D (ACC_SELF_TEST)	
	6.7.23	ACC Register 0x7C (ACC_PWR_CONF)	49
	6.7.24	ACC Register 0x7D (ACC_PWR_CTRL)	50
	6.7.25	ACC Register 0x7E (ACC_SOFTRESET)	50
6	.8 Regi	ister Description Gyroscope	51
	6.8.1	GYR Register 0x00 (CHIP_ID)	52
	6.8.2	GYR Register 0x02 (RATE_X_LSB)	52
	6.8.3	GYR Register 0x03 (RATE_X_MSB)	52
	6.8.4	GYR Register 0x04 (RATE_Y_LSB)	52
	6.8.5	GYR Register 0x05 (RATE_Y_MSB)	53
	6.8.6	GYR Register 0x06 (RATE_Z_LSB)	53
	6.8.7	GYR Register 0x07 (RATE_Z_MSB)	53
	6.8.8	GYR Register 0x08 (TEMP)	53
	6.8.9	GYR Register 0x0A (INT_STATUS_1)	54
	6.8.10	GYR Register 0x0F (RANGE)	54
	6.8.11	GYR Register 0x10 (BW)	
	6.8.12	GYR Register 0x11 (GYRO_LPM1)	55
	6.8.13	GYR Register 0x13 (RATE_HBW)	
	6.8.14	GYR Register 0x14 (BGW_SOFTRESET)	
	6.8.15	GYR Register 0x15 (INT_EN_0)	
	6.8.16	GYR Register 0x16 (INT_EN_1)	
	6.8.17	GYR Register 0x18 (INT_MAP_1)	
	6.8.18	GYR Register 0x34 (BGW_SPI3_WDT)	
	6.8.19	GYR Register 0x3C (BIST)	57
7	Legal [Disclaimer	58
8	Docum	ent History	59
9	Table o	of Figures	60

1 Product Identification

The SMI230 is a combined triaxial accelerometer (ACC) and triaxial gyroscope (GYR) for non-safety related applications, e.g. for in-dash navigation in the passenger compartment. Within one package, the SMI230 offers the detection of acceleration and angular rate for the x-, y-, and z-axis. The digital standard serial peripheral interface (SPI) of the SMI230 allows for bi-directional data transmission. To increase flexibility, both gyroscope and accelerometer can be operated individually, but can also be tied together for data synchronization purposes.

Sensor	Bosch Part Nr.	Туре	Range	Resolution
SMI230	0273 142 144	Accelerometer	±2, ±4, ±8, ±16 g	16 bit
		Gyroscope	±125 ±2000 °/s	16 bit

1.1 Main Functions and Properties

Key Feature	Description
2 inertial sensors in one device	Advanced triaxial 16 bit gyroscope and a versatile, leading edge triaxial 16 bit accelerometer for reduced PCB space and simplified signal routing
Small package	LGA, 16 pins, footprint 3.0 x 4.5 mm², height 0.95 mm
Common voltage supplies	VDD voltage range: 2.4 3.6 V
Digital interface	SPI, TWI (compatible with I ² C)
Smart operation and integration	Gyroscope and accelerometer can be operated individually or synchronized
Consumer electronics suite	MSL1, RoHS compliant, halogen-free
Operating temperature	-40 +105 °C
Programmable functionality	Acceleration and rate ranges selectable Low-pass filter bandwidths selectable
On-chip temperature sensor	-104 °C 150 °C factory trimmed, 11 bit, typical

Provided that SMI230 is used within the conditions (environment, application, installation, loads) as described in the TCD and the corresponding agreed upon documents, Bosch ensures that the product complies with the agreed properties. Agreements beyond this require the written approval by Bosch. The product is considered fit for the intended use when the product successfully has passed the tests in accordance with the TCD and agreed upon documents.

It is the responsibility of the customer to ensure the proper application of the product in the overall system/vehicle.

Bosch does not assume any responsibility for changes to the environment of the product that deviate from the TCD and the agreed upon documents.

 Doc No. 1 279 940 369
 AE/PAS1.3-Horvath

 Doc Rev. 1.0
 13-December-2019

2 General Product Description

2.1 Sensor Structure

The inertial sensor SMI230 is based upon a combined two-chip stacked concept. The accelerometer and gyroscope sensing parts consist of sensitive micro-mechanical sensing elements (MEMS) mounted side-by-side on the PCB. The read out ASICs are stacked on top of the respective sensing elements. All of these elements are packed in one LGA package.

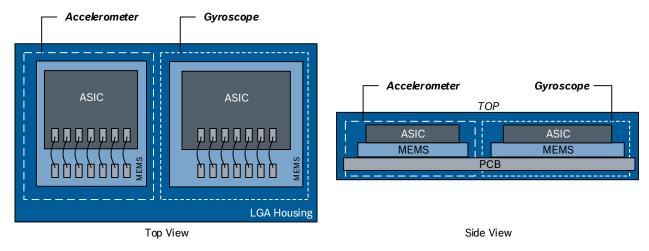


Figure 1 Schematics of the SMI230 mechanical design (left: top view; right: side view)

2.2 Block Diagram

Figure 2 shows the basic building blocks of the SMI230. As stated in Figure 2, the accelerometer and the gyroscope MEMS elements are each evaluated by their own ASIC. Both sensing elements detect voltage (V) variations, feeding into the analog-digital converter (ADC). The digital signals are further processed and accessible via SPI or TWI.

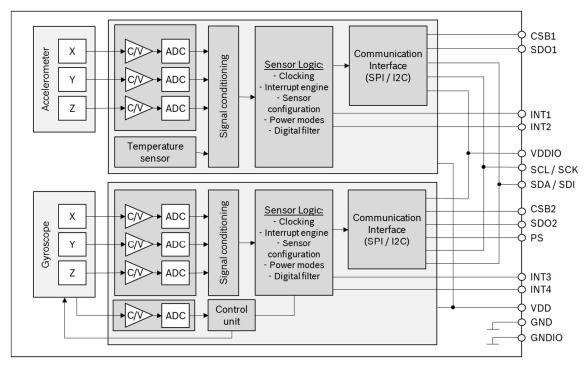


Figure 2 Simplified block diagram of the SMI230

2.3 Signal Path

2.3.1 Accelerometer

The accelerometer offers temperature and acceleration data for all three spatial dimensions. For the latter, the differential capacitance change (C) of the corresponding sensing element is detected. These signals correspond to the voltage (V) entering the hybrid algorithmic analog-digital-converter (ADC), translating the formerly analog signals into digital serial bit streams at a rate of 400 kHz. Then, the detected signal is translated into a data word of max. 16 bits and enters the digital signal processor (DSP).

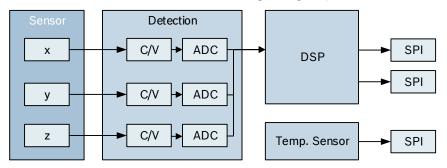


Figure 3 Simplified signal path of the accelerometer

Within the DSP (see Figure 4), the data is corrected for the analog-digital conversion, the gain and offset corrected. A low-pass filter provides an adjustable data bandwidth. Here, the sampling rate is directly connected with the selected bandwidth.

The low-pass filter can be bypassed so that unfiltered data is accessible.

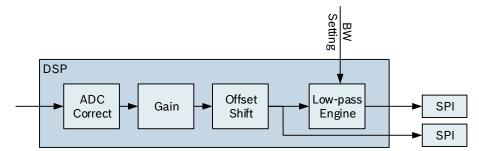


Figure 4 Simplified signal path of the accelerometer

2.3.2 Gyroscope

The signal path of the gyroscope is sketched in Figure . For proper data acquisition, five blocks are necessary for each rate axis, i.e., the drive, the (MEMS) sensor, the detection, the controller & demodulator, and the digital signal processor (DSP). In addition, a temperature signal is provided by the temperature sensor.

The drive is a closed-loop system that actively moves each sensor element at ~25 kHz.

Figure 5 Simplified signal path of the gyroscope

Data acquisition is independent from the drive and the temperature sensor. A more detailed sketch of the signal path of one axis is given in Figure 6.

The block 'Detection' corresponds to the analog part of the SMI230. The differential capacitance change (C) of each sensing element corresponds to the rate data of the respective sensing axis. The latter corresponds to the voltage (V) entering the 25 kHz filter which is equal to the drive frequency. The 1-bit Σ/Δ -converter (ADC) translates the signal into a digital serial bit stream at a rate of 400 kHz.

This bit stream is fed into both the common mode controller and the demodulator. The first back-couples to 'C/V' in order to negate mass deviation of the sensor element. The latter demodulates the 25 kHz data signal which then enters the DSP.

In the DSP, the signal is both fed into the quadrature correction and the offset is shifted. Afterwards, it passes a fine gain block and low pass filter before being accessible via e.g. SPI.

The block 'Quad. Corr.' back-couples onto distinctive pads on the sensing element to compensate for possible deviations from the oscillation axis.

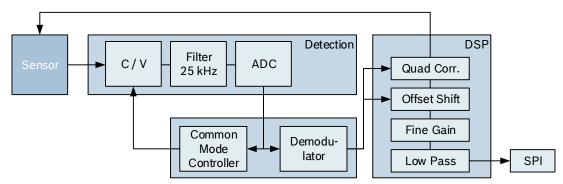


Figure 6 Path of the detection signal for one axis (gyroscope)

2.4 Power Management

The SMI230 has two distinct power supply pins:

- VDD is the main power supply for the internal blocks.
- VDDIO is a separate power supply pin mainly used for the supply of the interface.

There are no limitations on the voltage levels of both pins relative to each other, as long as each of them lies within its operating range. Furthermore, the device can be completely switched off (VDD = 0V) while keeping the VDDIO supply on (VDDIO > 0V) or vice versa.

In the case that the VDDIO supply is off, all interface pins (CSB, SDI, SCK, PS) must be kept close to GNDIO potential.

The SMI230 provides a **power-on reset (POR)** generator. It resets the logic part and the register values after powering-on VDD and VDDIO. This means that all application specific settings which are not equal to the default settings, must be changed back to their designated values after POR.

The POR resets also the interface. For the gyroscope part, the interface is defined by the voltage level on the PS pin. The interface of the accelerometer part is defined by the voltage level of the CSB1 pin at the moment when the POR is initiated (see chapter 2.4).

2.4.1 Power Modes Accelerometer

The power state of the SMI230 accelerometer is controlled through the register ACC_PWR_CTRL. The register ACC_PWR_CTRL enables and disables the accelerometer and the temperature sensor.

To enter **normal mode**, and the value 0x04 must be written to ACC PWR CTRL.

To enter **suspend mode**, register ACC PWR CTRL must be cleared.

SMI230 accelerometer is in suspend mode after reset (POR or soft-reset), thus the user actively needs to enter normal mode in order to obtain acceleration values.

After POR or soft-reset, the acceleration sensor needs up to 1ms boot time. When changing power modes, the sensor needs up to 5ms to settle. Any communication with the sensor during this time should be avoided.

2.4.2 Power Modes Gyroscope

The gyroscope has 3 different power modes. Besides **normal mode**, which represents the fully operational state of the device, there are 2 energy saving modes: suspend mode and deep-suspend mode.

After power-up gyro is in normal mode so that all parts of the device are held powered-up and data acquisition is performed continuously.

In **suspend mode** the whole analog part is powered down. No data acquisition is performed. While in suspend mode the latest rate data and the content of all configuration registers are kept. The registers can still be read (though they are not updated).

Suspend mode is entered by writing 0x80 to the Register GYRO_LPM1. It can be left by writing 0x00 to GYRO LPM1 or by a soft reset.

Although write access to registers is supported at the full interface clock speed (SCL or SCK), a waiting period must be inserted between two consecutive write cycles.

In **deep suspend mode** the device reaches the lowest possible power consumption. Only the interface section is kept alive. No data acquisition is performed and the content of the configuration registers is lost.

Deep suspend mode is entered by writing 0x20 to the register GYRO_LPM1. It can be left by writing 0x00 to GYRO LPM1 or by a soft reset.

Please note, that all application specific settings, which are not equal to the default settings, must be re-set to its designated values after leaving deep-suspend mode.

After POR or soft-reset, or when switching between the different power modes, the gyroscope sensor needs up to 30 ms time to reach the new state. Any communication with the sensor during this time should be avoided.

Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties

2.5 Sensor Data

The width of the gyroscope and accelerometer sensor data is 16 bits (11 bits for the temperature sensor) given in two's complement representation.

The bits for each axis are split into an MSB upper part and an LSB lower part. Reading the sensor data registers shall always start with the LSB part. In order to ensure the integrity of the sensor data, the content of an MSB register is locked by reading the corresponding LSB register (shadowing procedure).

The **burst-access** mechanism provides an efficient way to read out the angular rate data in I2C or SPI mode. During a burst-access, the sensor automatically increments the starting read address after each byte. The burst-access allows data to be transferred over the I2C bus with an up to 50% reduced data density. The sensor data (angular rate or acceleration data) in all read-out registers is locked as long as the burst read access is active. Reading the sensor data registers of each gyroscope and accelerometer part in burst read access mode ensures that the sensor values in all readout registers belong to the same sample.

2.6 Sensor Time

The accelerometer part of SMI230 has a built-in counter with a width of 24 bits. It increments periodically with a resolution of $39.0625 \, \mu s$.

2.7 Sensing Axes Orientation

If the sensor is accelerated and/or rotated in the indicated directions, the corresponding channels of the device will deliver a positive acceleration and/or yaw rate signal (dynamic acceleration). If the sensor is at rest without any rotation, and the force of gravity is acting contrary to the indicated directions, the output of the corresponding acceleration channel will be positive and the output of the corresponding gyroscope channel will be 'zero' (static acceleration).

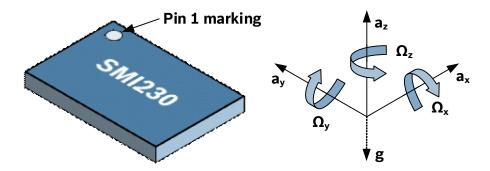


Figure 7 Sensing axis orientation

Example:

According to Figure 5, if the sensor is at rest, or at uniform motion in a gravity field, the output signals are:

±0 for the ACC x-channel
 ±0 for the GYR Ωx-channel
 ±0 for the GYR Ωy-channel
 ±0 for the GYR Ωy-channel
 ±0 for the GYR Ωy-channel

The table below lists all corresponding output signals of x, y, and z, and Ω_x , Ω_y , and Ω_z , while the sensor is at rest, or at uniform motion in a gravity field. This assumes a ±2 g accelerometer range setting and a top down gravity vector as shown above.

Sensor Orientation	SMI230	SMI230	SMI230	SMI230		
	Earth	Earth	Earth	Earth	Earth	Earth
Output	0	+1 g	0	-1 g	0	0
Signal x	0	+1024 LSB	0	-1024 LSB	0	0
Output	-1 g	0	+1 g	0	0	0
Signal y	-1024 LSB	0	+1024 LSB	0		0
Output	0	0	0	0	+1 g	-1 g
Signal z	0	0	0	0	+1024 LSB	-1024 LSB
Output Signal Ω_x	0	0 0	0 0	0 0	0 0	0 0
Output Signal $\Omega_{\scriptscriptstyle Y}$	0	0	0	0	0	0
	0	0	0	0	0	0
Output Signal Ω_z	0 0	0 0	0 0	0 0	0	0

Doc No. 1 279 940 369 Doc Rev. 1.0

3 Hardware Interface Description and Packaging

3.1 Package Parameters

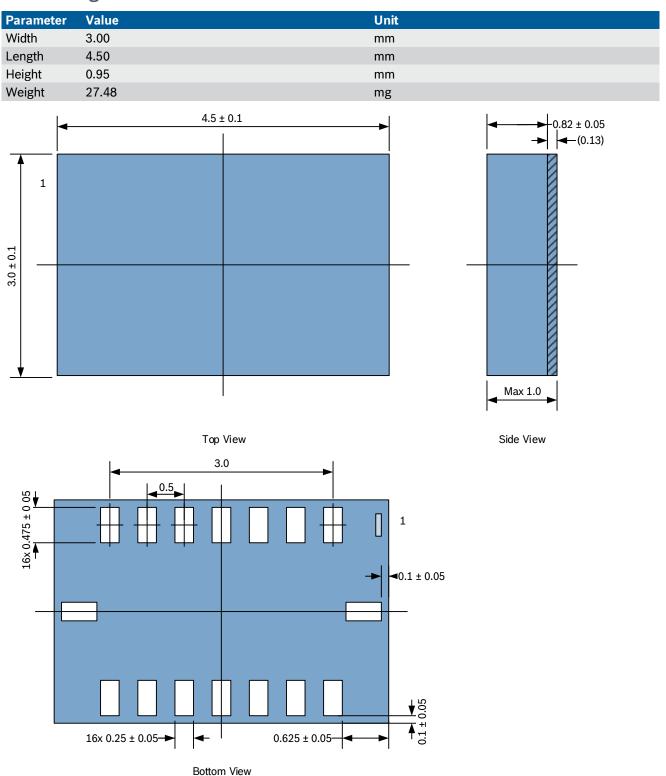


Figure 8 SMI230 package outline drawing

The dimensions are given in mm. Note: Unless otherwise specified, the tolerance is ± 0.05 mm.

The SMI230 sensor meets the requirements of the EC restriction of hazardous substances (RoHS) directive, see also:

Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

The sensor module is recyclable according to the norm WEEE - 2012/19/EU.

The sensor housing is a standard LGA package.

Halogen content:

The SMI230 is halogen-free. For more details on the analysis results, please contact your Bosch representative.

3.2 Transport Package

3.2.1 Tape on Reel Specification

The SMI230 is shipped in a standard cardboard box.

The box dimensions for one reel are L x W x H = 35 cm x 35 cm x 6 cm.

SMI230 quantity: 5000 pcs per reel. Please handle with care

3.2.1.1 Tape Dimensions

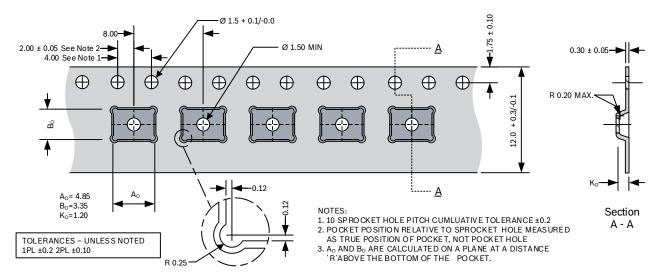


Figure 9 Tape dimensions in mm

3.2.1.2 Reel Dimensions

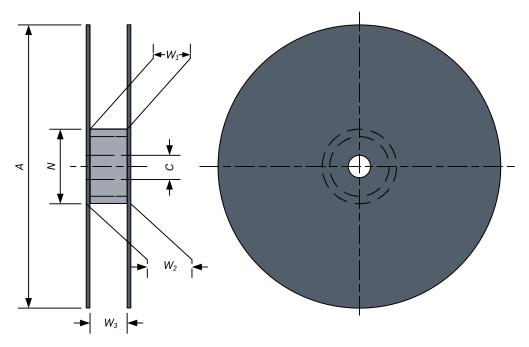


Figure 10 Reel dimensions

Parameter	Meaning	Dimensions [mm]
W (not depicted)	tape width	12
Α	reel diameter	330
N	hub diameter	100
W_1	inner width of reel	12.4 +2
W_2	total width of reel	18.4
W ₃ , min	inner width of reel, minimum	11.9
W ₃ , max	inner width of reel, maximum	15.4

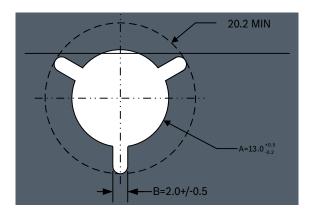


Figure 11 Details on hub hole dimension C in mm

3.2.2 Orientation within Reel

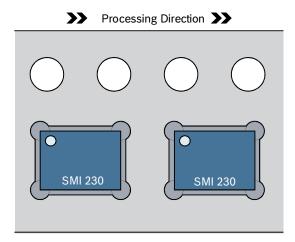
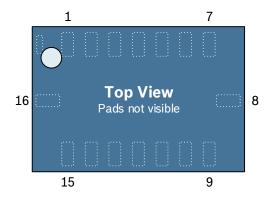



Figure 12 Orientation of the SMI230 devices relative to the tape

3.3 Labeling of the Product

Labeling	Name	Symbol	Remark
	Product number	XXX	144, fixed to identify product type
• XXX	Subcon ID	Α	1 alphanumeric digit, variable to identify sub-con
AYYWW CCC	Date code	YYWW	4 numeric digits, fixed to identify YY: "year", WW: "working week"
	Counter ID	CCC	3 numeric digits, variable to generate trace-code
	Pin 1 identifier	•	

3.4 Pinning

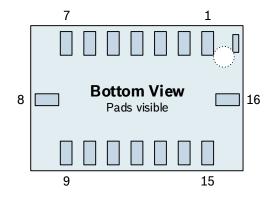


Figure 13 Pin-out top (left) and bottom (right) view

Pin	Name	I/O Type	Description	Connect to - SPI -	Connect to - TWI -
1	INT2	Digital I/O	Interrupt pin (ACC #2)	INT2 / DNC	INT2 / DNC
2	NC			GND	GND
3	VDD	Supply	Power supply analog & digital domain	VDD	VDD
4	GNDA	Ground	Ground for analog domain	GND	GND
5	CSB2	Digital in	SPI chip select GYR	CSB2	DNC (float)
6	GNDIO	Ground	Ground for I/O	GND	GND
7	PS	Digital in	Protocol select	GND	VDDIO
8	SCx	Digital in	Serial clock	SCK	SCL
9	SDx	Digital I/O	SPI: serial data in; TWI: serial data in/out	SDI	SDA
10	SDO2	Digital out	SPI: serial data out GYR	SDO2	SDO2
11	VDDIO	Supply	Digital I/O supply voltage	VDDIO	VDDIO
12	INT3	Digital I/O	Interrupt pin (GYR int #1)	INT3 / DNC	INT3 / DNC
13	INT4	Digital I/O	Interrupt pin (GYR int #2)	INT4 / DNC	INT4 / DNC
14	CSB1	Digital in	SPI chip select ACC	CSB1	DNC (float)
15	SDO1	Digital out	SPI: serial data out ACC	SDO1	SDO1
16	INT1	Digital I/O	Interrupt pin 1 (ACC int #1)	INT1 / DNC	INT1 / DNC

DNC: Do not connect INTx: If not needed, DNC

3.5 Footprint

For the design of the landing patterns, the dimensioning shown in Figure 14 is recommended. The dimensions are given in mm.

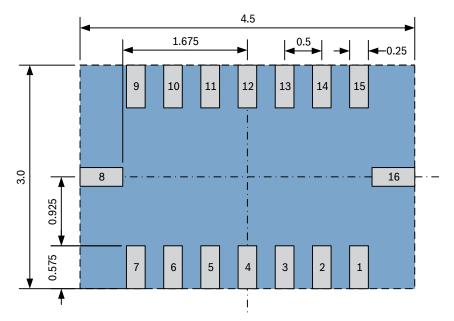


Figure 14 SMI230 footprint

3.6 Moisture Sensitivity Level

The moisture sensitivity level (MSL) of BOSCH SMI230 corresponds to JEDEC Level 1, see also

- ► IPC/JEDEC J-STD-020C "Joint Industry Standard: Moisture/Reflow Sensitivity Classification for non-hermetic Solid State Surface Mount Devices"
- ► IPC/JEDEC J-STD-033A "Joint Industry Standard: Handling, Packing, Shipping and Use of Moisture/Reflow Sensitivity Surface Mount Devices"

The sensor IC fulfils the lead-free soldering requirements of the above-mentioned IPC/JEDEC standard, i.e. reflow soldering with a peak temperature up to 260°C.

3.7 Mounting Recommendations

In general, MEMS sensors are high-precision measurement devices that consist of electronic as well as mechanical structures. BOSCH sensor devices are designed for precision, efficiency, and mechanical robustness.

However, in order to achieve best possible results of your design, the following recommendations should be taken into consideration when mounting the sensor on a printed circuit board (PCB).

In order to evaluate and optimize the considered placement position of the sensor on the PCB, it is recommended to use additional tools during the design in phase. For example:

- Regarding thermal aspects: infrared camera
- ▶ Regarding mechanical stress: warpage measurements and/or FEM-simulations
- Regarding shock robustness: drop test of the devices after soldering on the target application PCB

Recommendations in Detail

- ▶ It is recommended to keep a reasonable distance between the sensor mounting location on the PCB and the critical points described in the following examples. The exact value for a "reasonable distance" depends on many customer specific variables and therefore must be determined case by case.
- It is generally recommended to minimize the PCB thickness (recommended: ≤0.8 mm) since a thin PCB shows less intrinsic stress.
- ▶ It is not recommended to place the sensor directly under or next to push-button contacts as this can result in mechanical stress.
- It is not recommended to place the sensor in the direct vicinity of extremely high temperature spots (e.g. a μController or a graphic chip) as this can result in the PCB heating up and consequently the sensor as well.
- ▶ It is not recommended to place the sensor in the direct vicinity of a mechanical stress maximum (e.g. in the center of a diagonal crossover). Mechanical stress can lead to bending of the PCB and the sensor.
- ▶ Do not mount the sensor too closely to a PCB anchor point, where the PCB is attached to a shelf (or similar), as this could also result in mechanical stress. To reduce potential mechanical stress, minimize redundant anchor points and/or loosen respective screws.
- ▶ Avoid mounting the sensor in areas where resonant amplitudes (vibrations) of the PCB are likely or expected.
- ▶ Please avoid partial coverage of the sensor by any kind of (epoxy) resin, as this can result in mechanical stress.
- Avoid mounting (and operation) of the sensor in the vicinity of strong magnetic, strong electric, and/or strong infrared radiation fields (IR).
- ▶ Avoid electrostatic charging of the sensor and of the device in which the sensor is mounted.

If the above mentioned recommendations cannot be realized appropriately, a specific in-line offsetcalibration after placement of the device onto your PCB may help to minimize the potentially remaining effects.

3.8 Soldering

3.8.1 Reflow Soldering Recommendation for Sensors in LGA Package

Please make sure that the edges of the LGA substrate of the sensor are free of solder material. Avoid solder material forming a high meniscus covering the edge of the LGA substrate (see Figure 15).

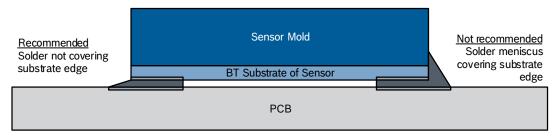


Figure 15 Reflow soldering recommendation

3.8.2 Classification Reflow Profiles

Profile Feature	Pb-Free Assembly
Average ramp-up rate (T _{Smax} to T _p)	3 °C/s max.
Preheat Temperature min (T_{Smin}) Temperature max (T_{Smax}) Time $(t_{Smin}$ to $t_{Smax})$	150 °C 200 °C 60 – 180 s
Time maintained above: Temperature (T_L) Time (t_L)	217 °C 60 s – 150 s
Peak classification temperature (T _P)	260 °C
Time within 5 °C of actual peak temperature (tp)	20 s – 40 s
Ramp-down rate	6 °C/s max.
Time 25 °C to peak temperature	8 min max.

Note: All temperatures refer to the topside of package, measured on the package body surface.

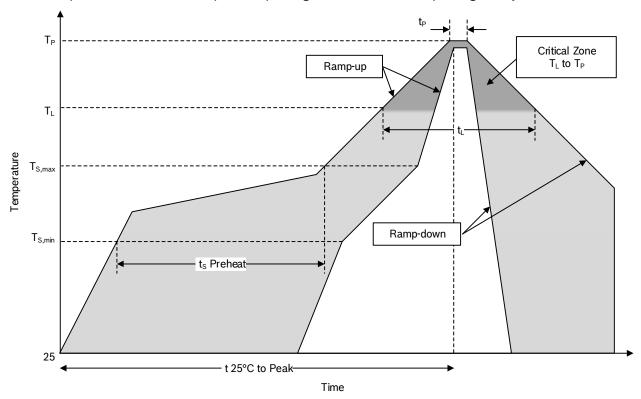


Figure 16 Soldering profile

3.8.3 Multiple Reflow Soldering Cycles

The product can withstand up to 3 reflow soldering cycles in total. This could be a situation where a PCB is mounted with devices from both sides (i.e., 2 reflow cycles necessary) and where, in the next step, an additional re-work cycle could be required (1 reflow).

3.9 Further Important Mounting and Assembly Recommendations

The SMI230 is designed to sense angular rates and accelerations with high accuracy even at low amplitudes and contains highly sensitive structures inside the sensor element. The MEMS sensor can tolerate mechanical shocks up to several thousand g's. However, these limits might be exceeded in conditions with extreme shock loads such as a hammer blow on or next to the sensor, dropping the sensor onto hard surfaces, etc.

It is strongly recommended to avoid any g forces beyond the limits specified in the data sheet during transport, handling, and mounting of the sensors. A defined and qualified installation process on customer side is required.

This device has built-in protections against high electrostatic discharges or electric fields (2 kV HBM). However, anti-static precautions should be taken as with any other CMOS component.

Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range. Unused inputs must always be connected to a defined logic voltage level.

 Doc No. 1 279 940 369
 AE/PAS1.3-Horvath

 Doc Rev. 1.0
 13-December-2019

4 Environment and Parameter Specification

The data in this section, unless otherwise noted, applies for the valid operation conditions given in section 4.2. All of the following figures include voltage, temperature, and lifetime effects if not noted otherwise. All figures, except sensitivity, are only valid without an external stimulus applied. All figures except for the noise itself exclude noise effects.

Proper function of the sensor in the overall system must be validated by the customer.

In any case, the electrical stability (power supply and EMC) of each system design including the SMI230 must be evaluated in advance to guarantee proper functionality during operation.

In any case, the mechanical stability of each system design including the SMI230 must be evaluated in advance to guarantee proper functionality during operation.

4.1 Maximum Ratings

Any values beyond the given ratings may seriously damage the device. The sensor must be discarded when exceeding these limits.

Parameter	Condition	Min	Max	Unit
Voltage at supply pin	VDD pin	-0.3	4	V
Voltage at supply pin	VDDIO pin	-0.3	4	V
Voltage at any logic pin	non-supply pin	-0.3	VDDIO +0.3	V
Passive storage temp. range	≤ 65% rel. H.	-50	+150	°C
Mechanical shock	duration ≤ 200 µs		10000	g
Mechanical shock	duration ≤1 ms		2000	g
Mechanical shock	Free fall onto hard surfaces		1.8	m
ESD	HBM, any pin		2	kV
ESD	CDM		500	V
ESD	MM		200	V

4.2 Operating Conditions

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Supply voltage internal domains	VDD		2.4	3.3	3.6	٧
Supply voltage I/O domain	VDDIO		1.62	3.3	3.6	V
Voltage input low level	V_{IL}				0.3 VDDIO	-
Voltage input high level	VIH		0.7 VDDIO			-
Voltage output low level	V_{OL}	l _{OL} ≤ 2 mA, SPI			0.23 VDDIO	-
Voltage output high level	Vон	lон ≤ 2 mA, SPI	0.8 VDDIO			-
Operating temperature	T		-40		105	°C

4.3 Lifetime Conditions

Parameter	Condition
Lifetime	according to AEC-Q100 grade 2 requirements

4.4 Accelerometer

Unless otherwise specified, the sensor is configured with the default settings. The measurement range is set to 2 g and the bandwidth is set to 40.5 Hz (100 Hz ODR).

Parameter	Symbol	Condition / Comment	Typical	Max*	Unit
Supply current in Normal mode	I_{DD}	VDD = VDDIO =3.0V, 25°C, g _{FS4g}	150		μΑ
Supply current in Suspend mode	I _{DDsum}	VDD = VDDIO =3.0V, 25°C	3		μΑ
Start-up time	t _{s,up}	time to first valid sample from suspend mode	1		ms
Measurement range	g FS	selectable	±2 ±4 ±8 ±16		g
Sensitivity	S	g _{FS2g} , T _A =25°C g _{FS4g} , T _A =25°C g _{FS8g} , T _A =25°C g _{FS16g} , T _A =25°C	16384 8192 4096 2048		LSB/g
Sensitivity error		T = 25 °C over lifetime	±1.5		%
Sensitivity error		including temperature and lifetime effects	±2		%
Sensitivity temperature drift	TCS		±0.002		% / K
Zero-g offset		T = 25 °C over lifetime	±20		mg
Zero-g offset		including temperature and lifetime effects	±40		mg
Zero-g offset temperature drift	TCO	nominal VDD supply, over full temperature range	±0.2		mg/K
Output Data Rate	ODR	selectable between	12.5 - 1600		Hz
Bandwidth	BW	3dB cutoff frequency of the accelerometer depends on ODR and OSR	5.06 – 684 (max. 353 for Z axis)		Hz
Nonlinearity	NL	best fit straight line, no life-time	0.5		%FS
Output Noise Density	n _{rms}	T _A = 25 °C, nominal VDD supply no lifetime	120		µg/√Hz
Cross axis sensitivity	S	relative contribution between any two of the three axes	0.5		%
Alignment Error	EA	relative to package outline	0.5		0
Temperature Sensor Measurement Range			-104+150		°C
Temperature Sensor Slope			0.125		K/LSB
Temperature Sensor Offset Error		T _A = 25 °C	±1		K

^{*} For specified maximum values, please refer to the Technical Customer Documentation.

4.5 Gyroscope

Unless otherwise specified, the sensor is configured with default settings. The measurement range is set to 2000 °/s and the bandwidth is set to 47 Hz.

Parameter	Symbol	Condition / Comment	Typical	Max*	Unit
Measurement range	R _{FS}	selectable	±125 ±250 ±500 ±1000 ±2000		°/s
Supply current	I_{DD}	w/o SPI communication	5.5		mA
Start-up time	$t_{\text{s,up}}$	POR	0.1		S
Sensitivity error		including temperature and lifetime effects	±4		%
Sensitivity error		T = 25 °C over lifetime	±1		%
Sensitivity temperature drift	TCS	nominal VDD supply, over full temperature range	±0.03		% / K
Zero-rate offset		lifetime and temperature effects	±0.5		°/s
Zero-rate offset		T = 25 °C over lifetime	±0.5		°/s
Zero-rate offset temperature drift	TCO	nominal VDD supply, over full temperature range	±0.015		°/s / K
Bandwidth	BW		12, 23, 32, 47, 64, 116, 230, 523 (unfiltered)		Hz
Nonlinearity range: ±125 °/s	NL	best fit straight line, no life-time	0.05		%FS
Noise rms		T = 25 °C, nominal VDD supply no lifetime	0.1		°/s
Temperature sensor slope			0.5		K/LSB
Temperature sensor offset		T = 25 °C	±5		K
Cross axis sensitivity		including temperature and lifetime effects	±2		%

^{*} For specified maximum values, please refer to the Technical Customer Documentation.

5 Software Interface Description

5.1 Serial Peripheral Interface (SPI)

5.1.1 SPI Connection

For communication, the SMI230 supports the SPI 4-wire protocol as a slave with a host device. The connection diagram is shown in Figure 17. The mapping for the interface of both accelerometer and gyroscope is given in the table below:

Pin	Name	Description
15	SDO1	ACC data output
10	SDO2	GYR data output
9	SDx	SDI serial data in
14	CSB1	ACC chip select (enable)
5	CSB2	GYR chip select (enable)
8	SCx	SCK serial clock

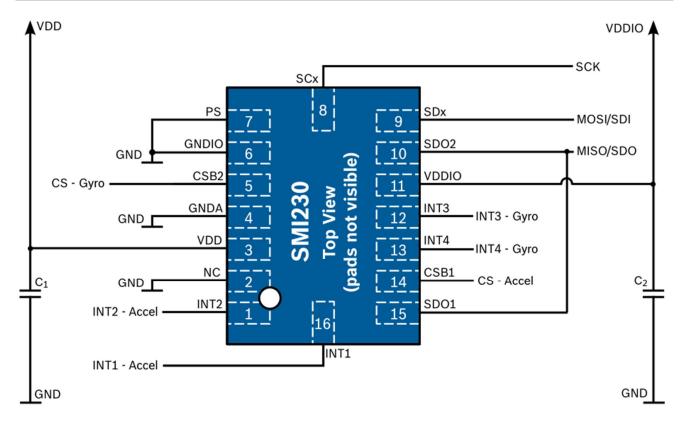


Figure 17 SPI connection diagram

 $C_1, C_2: 100 nF$

INT1, INT2: see register ACC 0x53, 0x54

INT3, INT4: see register GYR 0x16

Note:

For a proper functionality defined voltage levels at SDI, SDO and SCK are required. In case this cannot be guaranteed by the SPI controller, additional pull-up or pull-down resistors are required.

5.1.2 SPI Timing

The SPI timing specification of the SMI230 is given in the following table:

Parameter	Symbol	Condition	Min	Max	Units
Clock frequency	f _{SPI}	max. load on SDI or SDO = 25 pF		10	MHz
SCK low pulse	tsckl		20		ns
SCK high pulse	t sckH		48		ns
SDI setup time	tsDI_setup		20		ns
SDI hold time	tsDI_hold		20		ns
SDO output delay	tsdo_od	load = 25 pF		40	ns
		load = 250 pF, VDDIO = 2.4 V		40	ns
CSB setup time	tcsB_setup		20		ns
CSB hold time	tcsB_hold		40		ns
Idle time between write accesses	tIDLE_wacc_nm		2		μs

Figure 18 shows the definition of the SPI timing.

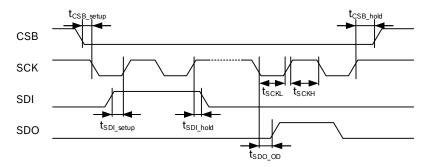


Figure 18 SPI timing diagram

The SPI interface of the SMI230 is compatible with two modes: 00 and 11. The automatic selection between [CPOL = 0 and CPHA = 0] and [CPOL = 1 and CPHA = 1] is controlled based on the value of SCK after a falling edge of CSB (1 or 2). For single byte read as well as write operations, 16 bit protocols are used. The SMI230 also supports multiple-byte read operations (burst-read).

For standard SPI configuration, CSB (1 or 2 - chip select low active), SCK (serial clock), SDI (serial data input), and SDO (1 or 2 - serial data output) pins are used. The communication starts when CSB (1 or 2) is pulled low by the SPI master and stops when CSB (1 or 2) is pulled high. SCK is also controlled by the SPI master. SDI and SDO (1 or 2) are driven at the falling edge of SCK and should be captured at the rising edge of SCK.

The basic write operation waveform for the 4-wire configuration is depicted in Figure 19. During the full write cycle, SDO remains in high-impedance state.

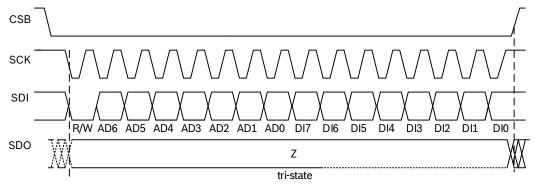


Figure 19 4-wire basic SPI write sequence (mode 11)

The basic read operation waveform for the 4-wire configuration is depicted in Figure 20.

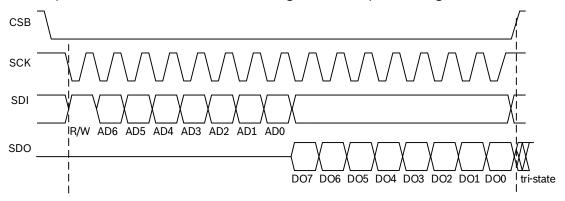


Figure 20 4-wire basic SPI read sequence (mode 11)

The data bits are used as follows:

Bit <15>: Read/write bit. When 0, the data SDI is written into the chip. When 1, the data SDO from the

chip is read.

Bits <14:8>: Address AD (6:0)

Bits <7:0>: When in write mode, these bits are the data SDI which will be written into the address. When

in read mode, these bits are the data SDO which are read from the address.

Multiple read operations (burst-read) are possible by keeping CSB low and continuing the data transfer. Only the first register address has to be written. Addresses are automatically incremented after each read access as long as CSB stays active low.

The principle of multiple read is shown in Figure 21.

			Control Byte								D	ata	Ву	te					D	ata	Ву	rte					D	ata	Ву	te			
Start	R۷	٧	Reg	ist er	ad dı	ress	(02 h)	[Data register – address 02h					Data register – address 03 h						h	Data register – address 04h							h	Stop			
CSB = 0	1	0	0	0	0	0	1	0	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	CSB = 1

Figure 21 SPI multiple read

5.1.3 SPI interface of accelerometer

In case of read operations of the accelerometer part, the **requested data is not sent immediately, but instead first a dummy byte** is sent, and after this dummy byte the actual requested register content is transmitted.

This means that – in contrast to the description in section 5.1.2– a **single byte read operation requires to read 2 bytes in burst mode**, of which the first received byte can be discarded, while the second byte contains the desired data.

The same applies to burst-read operations. For example, to read the accelerometer values in SPI mode, the user has to read 7 bytes, starting from address 0x12 (ACC data). From these bytes the user must discard the first byte and finds the acceleration information in byte #2 – #7 (corresponding to the content of the addresses 0x12 - 0x17).

5.2 Two-wire Interface (TWI)

With some exceptions, the TWI interface of the SMI230 is compatible to the I2C specification UM10204 Rev. 03 (19 June 2007), available at http://www.nxp.com.

- The SMI230 supports the I²C standard and fast mode, but only the 7-bit address mode.
- For VDDIO = 1.2 ... 1.8 V the granted voltage output levels are slightly relaxed compared to the specification.
- The internal data hold time (t_{HDDAT}) of 300 ns is not met under all operation conditions. The device achieves a minimum value of 120 ns across process corners and temperature.
- The minimum data fall time (t_F) of 20 ns cannot be met.
- Only single byte write is supported.
- Detection of a stop condition is not supported. All data transfer protocols are fully operational by means of detecting the start condition only.
- The device does not support the high-impedance mode while VDDIO is tied to GND.
- The device does not perform clock stretching, i.e. clock frequencies may not exceed the one specified in the parameter section and wait times between subsequent write accesses (as specified in section 5.2.2) have to be ensured by the bus master.

5.2.1 TWI Connection

The TWI interface uses SCL (= SCx pin, serial clock) and SDA (= SDx pin, serial data input and output) signal lines. Both lines are connected to VDDIO externally via pull-up resistors so that they are pulled high when the bus is free.

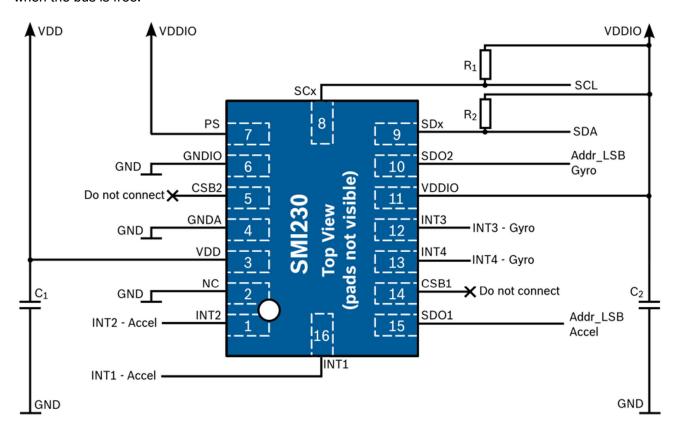


Figure 22 TWI connection diagram

 C_1, C_2 : 100 nF

INT1, INT2: see register GYR 0x16

 R_1 , R_2 : pull-up resistors

INT3, INT4: see registers ACC 0x53, 0x54

SDO1 and SDO2 are used to define the TWI address of accelerometer and gyroscope. The default TWI address of the SMI230 accelerometer is 0x18 and the one of the gyroscope is 0x68. It is used if both SDO pins are pulled to GND. The alternative address is selected by pulling the corresponding SDO pin to VDDIO.

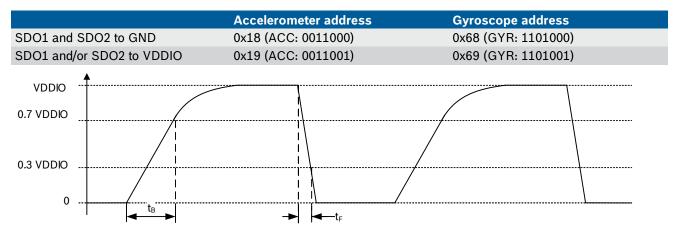


Figure 23 Definition of the rise and fall time of TWI signals

5.2.2 TWI Timing

The TWI timing specification of the SMI230 is given in the table below.

Parameter	Symbol	Min	Max	Units
Clock frequency	f _{SCL}	0	400	kHz
SCL low period	t LOW	1.3		μs
SCL high period	t HIGH	0.6		
SDA setup time	t sudat	0.1		
SDA hold time	t _{HDDAT}	0.0		
Setup time for a repeated start condition	t susta	0.6		
Hold time for a start condition	t hdsta	0.6		
Setup time for a stop condition	t susto	0.6		
Time before a new transmission can start	t BUF	1.3		
Idle time between write accesses normal mode	t _{IDLE} wacc nm	2		
Fall time	t _F	0	300	ns
Rise time (determined by external pull-up resistance)	t _R	20	300	ns

Figure 24 shows the definition of the TWI timing given in the table above.

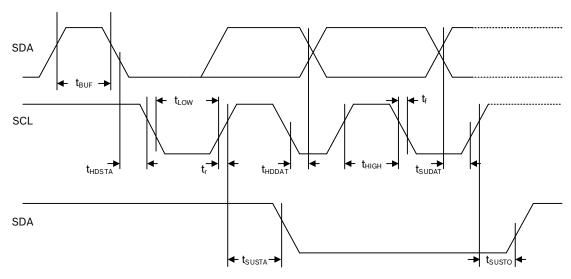


Figure 24 SMI230 TWI timing specification

The TWI protocol works as follows:

Mode	Description
START:	Data transmission on the bus begins with a high to low transition on the SDA line while SCL is held high (start condition (S) indicated by the TWI bus master). Once the start signal is transferred by the master, the bus is considered busy.
STOP:	Each data transfer should be terminated by a stop signal (P) generated by the master. The stop condition is a low to high transition on the SDA line while SCL is held high.
ACK:	Each byte of data transferred must be acknowledged. It is indicated by an acknowledge bit sent by the receiver. The transmitter must release the SDA line (no pull down) during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

In the following diagrams these abbreviations are used:

S	Start	Р	Stop
ACKS	Acknowledge by slave	ACKM	Acknowledge by master
NACKM	Not acknowledge by master	RW	Read / Write

A start (S) immediately followed by a stop (P) (without SCL toggling from VDDIO to GND) is not supported and not recognized by the SMI230.

TWI write access can be used to write a data byte in one sequence.

The sequence begins with a start condition generated by the master, followed by 7 bits of the slave address and a write bit (RW = 0). The slave sends an acknowledge bit (ACK = 0) and releases the bus. Then the master sends the one-byte register address. The slave again acknowledges the transmission and waits for the 8 bits of data, which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol. Figure 25 shows an example of a TWI write access to the accelerometer.

												Control Byte											Data	Byte					
	Start			Slav	e Add	lress			RW	ACKS	Register Address (0x10)					ACKS				Data	(0x09))			ACKS	Stop			
ſ	S	0	0	1	1	0	0	0	0		0	0	0	1	0	0	0	0		Х	Х	Х	Х	Х	Х	Χ	Х		Р

Figure 25 Example of a TWI write access to the accelerometer

TWI read access can be used to read one or multiple data bytes in one sequence.

A read sequence consists of a one-byte TWI write phase followed by the TWI read phase. Both parts of the transmission must be separated by a repeated start condition (Sr). The TWI write phase addresses the slave and sends the register address to be read. After the slave acknowledges the transmission, the master again generates a start condition and sends the slave address together with a read bit (RW = 1). Then the master releases the bus and waits for the data bytes to be read out from the slave. After each data byte, the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACKM (ACK = 1) from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a stop condition and terminate the transmission.

The register address is automatically incremented. Hence, more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the latest TWI write command. By default, the start address is set as 0x00. In this way, repetitive multibyte reads from the same starting address are possible.

In order to prevent the TWI slave from locking the TWI bus, a watchdog timer (WDT) is implemented. The WDT observes internal TWI signals and resets the TWI interface if the bus is locked up. The activity and timer period of the WDT can be configured via bits 2 (*i2c_wdt_en*) and 1 (*i2c_wdt_sel*) in register GYR 0x34 (*BGW_SPI3_WDT*).

- Writing 1 (0) to *i2c wdt en* activates (de-activates) the WDT.
- Writing 0 (1) to $i2c_wdt_se$ sets a timer period of 1 ms (50 ms).

Figure 26 shows an example of a TWI read access to the accelerometer.

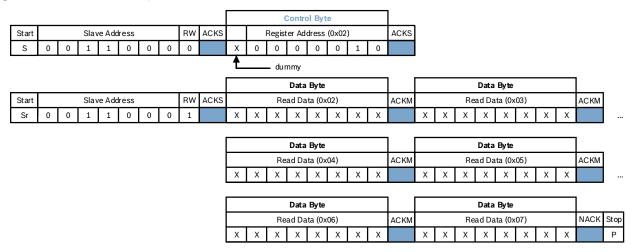


Figure 26 Example of a TWI read access to the accelerometer

Note (Gyroscope Soft Reset):

The SMI230 shows a specific behavior after performing a soft reset of the gyroscope. After carrying out the soft reset, the TWI slave is reset. This releases the bus before completing the command and a NACK is sent instead of an ACK. The user may ignore the first NACK after a soft reset of the gyroscope.

5.3 Access Restrictions (SPI and TWI)

In order to allow for the correct internal synchronization of data written to the SMI230, certain access restrictions apply for consecutive write accesses or a write/read sequence through the SPI and TWI interface.

As illustrated in Figure 27, an interface idle time of at least 2 μ s is required following a write operation when the device operates.

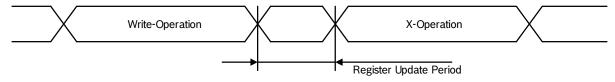


Figure 27 Post-write access timing constraints

6 Application Details

In Figure 28 the basic flow chart for the sensor application is shown. Three different categories of functional elements are shown:

Required: these blocks are mandatory for a proper sensor functionality and

retrieving data (e.g. read data)

Recommended: these blocks are useful to detect potential sensor failure and to allow

further configuration of the sensor (e.g. self-test, sensor setup)

Optional: depending on the customer specific application, these blocks might be

required (e.g. interrupt configuration)

The functional elements are described in the following sections. Proper function of the sensor in the overall system must be validated by the customer.

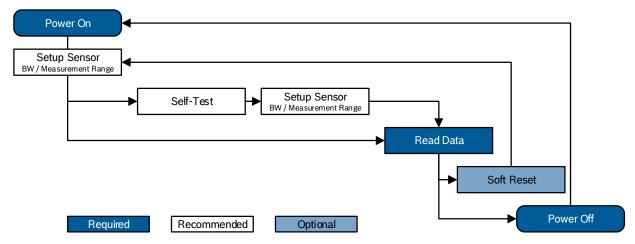


Figure 28 Basic flow chart for SMI230 application with key functional elements

6.1 Sensor Setup

The basic sensor setup includes selection of the bandwidth and measurement range for accelerometer and gyroscope.

6.1.1 Accelerometer

The **bandwidth** (and thus the 3db cutoff frequency) of the digital low-pass filter depends on the chosen ODR as well as on the over-sampling-ratio (OSR). Both can be configured in register ACC 0x40 (ACC CONF). The following table lists the possible options:

Accoloromator ODB [Uz]		3dB cutoff frequency [Hz]	
Accelerometer ODR [Hz]	Normal	OSR = 2	OSR = 4
12.5	5.06	3	1
25	10.12	5	3
50	20.25	10	5
100	40.5	20	10
200	80	41	20
400	162 (155 for Z channel)	80	41
800	324 (252 for Z channel)	162 (155 for Z channel)	80
1600	684 (353 for Z channel)	324 (262 for Z channel)	162

The acceleration measurement **range** can be selected via bits <1:0> (acc_range) in register ACC 0x41 (ACC_RANGE) according to the table below.

acc_range <1:0>	Measurement Range	Resolution
00	± 2 g	16384 LSB/g
01	± 4 g	8192 LSB/g
10	± 8 g	4096 LSB/g
11	± 16 g	2048 LSB/g

6.1.2 Gyroscope

The **bandwidth** of filtered rate data is determined by setting bits <3:0> (*bw*) in register GYR 0x10 (*BW*) as shown in the following table.

bw <3:0>	Filter Bandwidth [Hz]	ODR [Hz]	Decimation Factor
0111	32	100	20
0110	64	200	10
0101	12	100	20
0100	23	200	10
0011	47	400	5
0010	116	1000	2
0001	230	2000	0
0000	523 (unfiltered)	2000	0
1xxx	reserved	reserved	reserved

The rate measurement **range** can be selected via bits <2:0> (*range*) in register GYR 0x0F (*RANGE*) according to the table below.

range <2:0>	Measurement Range	Resolution
000	±2000 °/s	16.38 LSB/°/s
001	±1000 °/s	32.77 LSB/°/s
010	±500 °/s	65.54 LSB/°/s
011	±250 °/s	131.07 LSB/°/s
100	±125 °/s	262.14 LSB/°/s
others	reserved	-

6.2 Device Initialization

For a proper device initialization, the following steps need to be considered:

- The user must decide on the interface (I2C or SPI) already during hardware design: with the PS pin the user determines which interface the sensor should listen to.
- The gyroscope part of the SMI230 initializes its I/O pins according to the selection given by the PS pin.
 - The accelerometer part starts in I2C mode. It will stay in I2C mode until it detects a rising edge on the CSB1 pin (chip select of the accelerometer), on which the accelerometer part switches to SPI mode and stays in this mode until the next power-on-reset (POR). To change the sensor to SPI mode in the initialization phase, the user has to perform a dummy SPI read or write operation, e.g. reading of register ACC_CHIP_ID. Any obtained value will be invalid.
- After the POR the gyroscope is in normal mode, while the accelerometer is in suspend mode. To switch the accelerometer into normal mode, the user must perform the following steps:
 - a. Power up the sensor.
 - b. Wait 1 ms.
 - c. Enter normal mode by writing '4' to ACC PWR CTRL.
 - d. Wait for 5 ms.

6.3 Self-test

6.3.1 Accelerometer

The self-test feature allows for checking the sensor functionality by applying electrostatic forces to the sensor core instead of external accelerations. By physically deflecting the seismic mass, the entire signal path of the sensor is tested. Activation of the self-test results in a static offset in the acceleration data. Any external acceleration or gravitational force that is applied to the sensor during a self-test will be observed in the sensor output as a superposition of the acceleration and the self-test signal.

The recommended self-test procedure is as follows:

- 1) Set ±16 g range by writing 0x03 to register ACC_RANGE (0x41)
- 2) Set ODR=1.6 kHz, continuous sampling mode, "normal mode" (norm_avg4) by writing 0xAC to register ACC CONF (0x40)
- 3) Wait for > 2 ms
- 4) Enable the positive self-test polarity by writing 0x0D to register ACC_SELF_TEST (0x6D)
- 5) Wait for > 50 ms
- 6) Read the accelerometer offset values for each axis (positive self-test response)
- 7) Enable the negative self-test polarity by writing 0x09 to register ACC_SELF_TEST (0x6D)
- 8) Wait for > 50 ms
- 9) Read the accelerometer offset values for each axis (negative self-test response)
- 10) Disable the self-test by writing 0x00 to register ACC_SELF_TEST (0x6D)
- 11) Calculate the difference of positive and negative self-test response and compare with the expected values (see table below)
- 12) Wait for > 50 ms to let the sensor settle to normal mode steady state operation

The minimum difference for each axis is shown in the table below. The measured signal differences can be significantly larger.

	x-axis	y-axis	z-axis
minimum difference signal	1000 mg	1000 mg	500 mg

Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

After performing a self-test, a reset of the device is recommended. If the reset cannot be performed, the following sequence must be kept to prevent unwanted interrupt generation:

- A. Disable interrupts
- **B.** Change parameters of interrupts
- C. Wait for at least 50 ms
- **D.** Enable desired interrupts

Note:

An external stimulus during the self-test procedure might lead to wrong sensor reading for the specific axis. This might result in a failure of the self-test. A repetition of the self-test is recommended in this case.

6.3.2 Gyroscope

A built-in self-test (BIST) has been implemented, which provides a quick way to determine if the gyroscope is operational within the specifications.

The BIST uses three parameters for the evaluation of proper device operation:

- Drive voltage regulator
- Sense frontend offset regulator of x-, y- and z-channel
- Quad regulator for x-, y- and z-channel

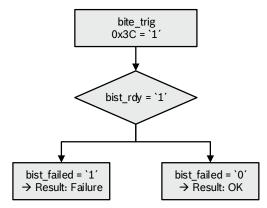


Figure 29 SMI230 BIST sequence

If any of the three parameters is not within the limits, the BIST results in a 'fail'.

To trigger the BIST, set bit 0 (trig bist) in register GYR 0x3C (BIST) to 1.

Two bits (read-only) have to be checked in register GYR 0x3C (BIST):

- ▶ bit 1(bist rdy)
- bit 2 (bist fail)

bist_rdy = 1 indicates that a test was performed. bist_fail contains the result of the BIST. bist_fail = 1 corresponds to a 'fail'.

A simple option to check for the sensor status is to read out bit 4 (*rate_ok*) in register GYR 0x3C (*BIST*). No trigger is needed for this, and proper sensor function is indicated by a 1.

A waiting time of 50 ms is mandatory after enabling the self-test.

Note:

In contrast to the self-test of the accelerometer, the BIST of the gyroscope is fully decoupled from the sensing element. This means that the MEMS element is not deflected, and the current state of the MEMS element (e.g. its orientation) has no influence on the result of the BIST.

6.4 Interrupt Engine

6.4.1 New Data Interrupt

Both accelerometer and gyroscope part offer a new data ready interrupt, which fires whenever a new data sample set is complete and made available in the corresponding sensor data registers. This allows a low latency data readout.

6.4.1.1 Acceleration

The new data interrupt flag can be found in the register ACC_INT_STAT_1 (bit #7). It is set whenever new data is available in the data registers and cleared automatically.

The interrupt can be mapped to the interrupt pins INT1 and/or INT2 in register INT1_INT2_MAP_DATA.

Both interrupt pins INT1 and INT2 can be configured regarding their electrical behavior (see INT1_IO_CONF and INT2_IO_CONF).

6.4.1.2 Gyroscope

The gyroscope provides a new data interrupt, which will generate an interrupt every time after storing a new value of z-axis angular rate data in the data register. The interrupt is cleared automatically after $280-400 \mu s$.

In contrast to the accelerometer part, for the gyro the new data interrupt must be explicitly enabled by writing 0x80 to the register GYRO_INT_CTRL.

The interrupt can be mapped to the interrupt pins INT3 and/or INT4 in register INT3_INT4_IO_MAP.

Both interrupt pins INT3 and INT4 can be configured regarding their electrical behavior (see INT3 INT4 IO CONF).

6.5 Reading Data

6.5.1 Accelerometer

For each axis the sensor output is stored as signed 16-bit number in 2's complement format in each 2 registers, split into a MSB upper part (bits <15:8> of acceleration data) and a LSB lower part (bits <7:0> of acceleration data). From the registers, the acceleration values can be calculated as follows:

Accel_X_int16 = ACC_X_MSB * 256 + ACC_X_LSB Accel_Y_int16 = ACC_Y_MSB * 256 + ACC_Y_LSB Accel_Z_int16 = ACC_Z_MSB * 256 + ACC_Z_LSB

An example for the range setting of ±2 g is shown in the table below.

LSB	1111 1111		0000 0000)	0000 0000
MSB	0111 1111	(0000 0000		1000 0000
LSB + MSB [bin]	0111 1111 1111 1111		0000 0000 0000 0000		1000 0000 0000 0000
LSB + MSB [dec]	+32767		0	•••	-32768
Acceleration value	+2 g		0 g	•••	-2 g

When a register is read containing the LSB value of an acceleration value, the corresponding MSB register is locked internally, until it is read. By this mechanism, it is ensured that both LSB and MSB values belong to the same acceleration value and are not updated between the readouts of the individual registers. Therefore is recommended to always start reading out the LSB register first followed by the corresponding MSB register. Acceleration data may be read from register LSB and/or MSB at any time except during power-up.

6.5.2 Gyroscope

For each axis the sensor output is stored as signed 16-bit number in 2's complement format in each 2 registers, split into a MSB upper part (bits <15:8> of rate data) and a LSB lower part (bits <7:0> of rate data). From the registers, the acceleration values can be calculated as follows:

Rate_X_int16: RATE_X_MSB * 256 + RATE_X_LSB Rate_Y_int16: RATE_Y_MSB * 256 + RATE_Y_LSB Rate_Z_int16: RATE_Z_MSB * 256 + RATE_Z_LSB

An example for the range setting of ±125 °/s is shown in the table below.

LSB	1111 1111		0000 0000	0	0000 0000
MSB	0111 1111	0	000 0000		1000 0000
LSB + MSB [bin]	0111 1111 1111 1111		0000 0000 0000 0000		1000 0000 0000 0000
LSB + MSB [dec]	+32767		0		-32768
Angular rate value	+125 °/s	•••	0 °/s		-125 °/s

When a register is read containing the LSB value of a rate value, the corresponding MSB register is locked internally, until it is read. By this mechanism, it is ensured that both LSB and MSB values belong to the same rate value and are not updated between the readouts of the individual registers. Therefore is recommended to always start reading out the LSB register first followed by the corresponding MSB register. Rate data may be read from register LSB and/or MSB at any time except during power-up.

6.5.3 Temperature Sensor

The temperature sensor data is stored in an 11-bit value in 2's complement format in 2 registers, split into a MSB upper part (bits <10:3> of temperature data) and a LSB lower part (bits <2:0> of temperature data). The resolution is 0.125 °C / LSB, the temperature values can be calculated as follows:

An example for the temperature values is shown in the table below.

LSB	111x xxxx		000x xxxx	X	000x xxxx	xxxx xxxx
MSB	0111 1111		0000 0000		1000 0001	1000 000
LSB + MSB [bin]	0111 1111 111	0000 0000 000			1000 0001 000	1000 0000 xxx
LSB + MSB [dec]	+1023	•••	0	•••	-1016	-10171024
Temperature value	+150 °C		23 °C		-104 °C	Invalid

Note: If the MSB register of the temperature data is 0x80, regardless the value of the LSB register, the temperature value is invalid.

The temperature sensor data is updated every 1.28 s.

6.6 Soft Reset

A soft reset causes all user configuration settings to be overwritten with their default value and the sensor to enter normal mode. A waiting time of 30 ms after a soft reset of the SMI230 accelerometer and gyroscope is recommended.

6.6.1 Accelerometer

A soft reset is initiated by writing the value 0xB6 to register ACC 0x7E (ACC_SOFTRESET).

6.6.2 Gyroscope

A soft reset is initiated by writing the value 0xB6 to register GYR 0x14 (GYRO_SOFTRESET).

6.7 Register Description Accelerometer

6.7.1 Accelerometer - Register Map

The following table shows the register map of the SMI230 accelerometer.

Reg. Addr.	Register Name	Reset Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
		œ >								
0x7E	ACC_SOFTRESET	0x00				softreset_d	cmd (0xb6)			
0x7D	ACC_PWR_CTRL	0x00				acc_e	nable			
0x7C	ACC_PWR_CONF	0x03				pwr_sav	re_mode			
0x6D	ACC_SELF_TEST	0x00				acc_se	elf_test			
		1								
0x58	INT_MAP_DATA	0x00		int2_drdy				int1_drdy		
0x54	INTO IO CTDI	0x00				int? in	int? out	int? od	int? Jul	
0x54	INT2_IO_CTRL INT1 IO CTRL	0x00				int2_in int1 in	int2_out int1_out	int2_od int1_od	int2_lvl int1 lvl	
UAJJ	INTI_IO_CTILE	0,000				111(1_111	IIILI_OUL	IIILI_OU	IIICT_IAI	
0x41	ACC RANGE	0x01							acc	range
0x40	ACC_CONF	0xA8	1		acc_bwp			acc	_odr	
	-									
0x23	TEMP_LSB	0x00	ten	nperature[2	:0]					
0x22	TEMP_MSB	0x00				temperat	ure[10:3]			
0x1D	ACC_INT_STAT_1	0x00	acc_drdy int							
			_"""							
0x1A	SENSORTIME_2	0x00				sensor tii	me[23:16]			
0x19	SENSORTIME_1	0x00					ime[15:8]			
0x18	SENSORTIME_0	0x00				sensor_	time[7:0]			
0x17	ACC_Z_MSB	0x00				acc_z	[15:8]			
0x16	ACC_Z_LSB	0x00				acc_:	z[7:0]			
0x15	ACC_Y_MSB	0x00				acc_y				
0x14	ACC_Y_LSB	0x00				acc_				
0x13	ACC_X_MSB	0x00	1			acc_x				
0x12	ACC_X_LSB	0x00				acc_:	x[7:0]			
0x03	ACC_STATUS	0x10	acc drdy							
0x03	ACC_STATUS ACC ERR REG	0x10	acc_uruy				error_code			fatal err
UNUZ	7.00_LINI_INLG	0.000					citor_code			iatai_cii
0x00	ACC_CHIP_ID	0x1F				acc_c	hip_id			

read / write
write only
read only
reserved

The entire communication with the device is performed by reading from and writing to registers. Registers have a width of 8 bits and are mapped to 8-bit address space. Within this range some registers are either completely or partially marked as 'reserved'. Any reserved bit is ignored when it is written and no specific value is guaranteed when the bit is read. It is recommended not to use registers which are completely marked as 'reserved'. Furthermore, it is recommended to mask out (logical and with zero) reserved bits of registers which are partially marked as 'reserved'.

Registers with addresses from ACC 0x00 up to ACC 0x23 are read-only. Any attempt to write to these registers will be ignored. There are bits within some registers which trigger internal sequences. These bits are configured for write-only access and read as 0. An example for such a write-only access is the entire register ACC 0x7E (ACC SOFTRESET).

6.7.2 ACC Register 0x00 (ACC_CHIP_ID)

This register contains the chip identification code.

11110 100101	The register contains and sing further action										
0x00	ACC_CHIP ID										
Bit	7	6	6 5 4 3 2 1 0								
Read/Write	R	R	R	R	R	R	R	R			
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
Content				chip_id	d <7:0>						

Register	Description
chip_id <7:0>	Fixed value 10001111 = 1F

6.7.3 ACC Register 0x02 (ACC_ERR_REG)

This register contains the error conditions of SMI230.

0x02	ACC_ERR_REG										
Bit	7	6	5	4	3	2	1	0			
Read/Write	R	R	R	R	R	R	R	R			
Reset Value	n/a	n/a	n/a	0	0	0	n/a	0			
Content					error_code		fatal_err				

Register	Description
error_code <4:2>	Error codes for persistent errors: 000: no error 001: error occurred in accelerometer configuration (invalid data in register ACC_CONF)
fatal_err <0>	0: no error1: fatal error, chip is not in operation state. Reset by POR or soft-reset.
undefined	Random data, to be ignored

6.7.4 ACC Register 0x03 (ACC_STATUS)

This register contains the data ready flag of acceleration registers.

			, ,		,						
0x03		ACC_ERR_REG									
Bit	7	6	5	4	3	2	1	0			
Read/Write	R	R	R	R	R	R	R	R			
Reset Value	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
Content	acc_drdy										

Register	Description
acc_drdy <7>	0: acceleration data is being updated1: data ready for accelerometer. Reset when one acceleration data register is read out
undefined	Random data, to be ignored

6.7.5 ACC Register 0x12 (ACC_X_LSB)

This register contains the least significant bits of x-channel acceleration readout.

0x12	ACC_X_LSB									
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R	R	R	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Content				acc_x_l	sb <7:0>					

Register	Description
acc x lsb <7:0>	Least significant 8 bits of acceleration x-channel read-back value (two's complement format)

6.7.6 ACC Register 0x13 (ACC_X_MSB)

This register contains the most significant bits of x-channel acceleration readout value.

0x13		ACC_X_MSB						
Bit	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Content	acc_x_msb <15:8>							

Register	Description
acc x msb <15:8>	Most significant 8 bits of acceleration x-channel read-back value (two's complement format)

6.7.7 ACC Register 0x14 (ACC_Y_LSB)

This register contains the least significant bits of y-channel acceleration readout value.

0x14		ACC_Y_LSB						
Bit	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Content	acc_y_lsb <7:0>							

Register	Description
acc v lsh <7:0>	Least significant 8 hits of acceleration v-channel read-back value (two's complement format)

6.7.8 ACC Register 0x15 (ACC_Y_MSB)

This register contains the most significant bits of y-channel acceleration readout value.

0								
0x15		ACC_Y_MSB						
Bit	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Content	acc_y_msb <15:8>							

Register	Description
acc v msb <15:8>	Most significant 8 bits of acceleration v-channel read-back value (two's complement format)

6.7.9 ACC Register 0x16 (ACC_Z_LSB)

This register contains the least significant bits of z-channel acceleration readout value.

0x16		ACC_Z_LSB						
Bit	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Content	acc_z_lsb <7:0>							

Register	Description
acc z lsb <7:0>	Least significant 8 bits of acceleration z-channel read-back value (two's complement format)

6.7.10 ACC Register 0x17 (ACC_Z_MSB)

This register contains the most significant bits of z-channel acceleration readout value.

0x17	ACC_Z MSB							
Bit	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Content	acc_z_msb <15:8>							

Register	Description
acc z msb <15:8>	Most significant 8 bits of acceleration z-channel read-back value (two's complement format)

6.7.11 ACC Register 0x18 (SENSORTIME_0)

This register contains the lower 8 bits value of the internal 24-bit counter. This register is incremented every 39.0625 us.

00.00=0 p.o.									
0x18		SENSORTIME_0							
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content	sensortime_0 <7:0>								

Register	Description
sensortime_0 <7:0>	Lower 8 bits of internal counter

6.7.12 ACC Register 0x19 (SENSORTIME_1)

This register contains the middle 8 bits value of the internal 24-bit counter. This register is incremented on SENSORTIME 0 overflow, which is every 10 ms.

		- ,	J	_						
0x19		SENSORTIME_1								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R	R	R	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Content				sensortime	e_ <i>1</i> <15:8>					

Register	Description
sensortime 1 <15.8>	Middle 8 hits of internal counter

6.7.13 ACC Register 0x1A (SENSORTIME_2)

This register contains the higher 8 bits value of the internal 24-bit counter. This register is incremented on SENSORTIME 1 overflow, which is every 2.56 s.

0x1a	SENSORTIME_2								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content				sensortime	_2 <23:16>				

Register Description

sensortime_2 <23:16> Higher 8 bits of internal counter

6.7.14 ACC Register 0x1D (ACC_INT_STAT_1)

This register contains the new data interrupt status.

0x1d		ACC_ERR_REG									
Bit	7	6	5	4	3	2	1	0			
Read/Write	R	R	R	R	R	R	R	R			
Reset Value	0	n/a	n/a	n/a	n/a	n/a	n/a	n/a			
Content	acc_drdy_int										

Register	Description
acc_drdy_int <7>	0: acceleration data ready interrupt inactive1: acceleration data ready interrupt active. Cleared on read of this register.
undefined	Random data, to be ignored

6.7.15 ACC Register 0x22 (TEMP_MSB)

This register contains the most significant 8 bits of the 11-bit internal temperature sensor.

0		0				1			
0x22		TEMP_MSB							
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content				temp_ms	sb <10:3>				

Register Description temp_msb <10:3> Most significant 8 bits of temperature channel (two's complement format)

6.7.16 ACC Register 0x23 (TEMP_LSB)

This register contains the most significant 8 bits of the 11-bit internal temperature sensor.

						•				
0x23		TEMP_LSB								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R	R	R	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Content		temp_lsb <2:0>								

Register	Description
temp_lsb <2:0>	Least significant 3 bits of temperature channel (two's complement format
undefined	Random data, to be ignored

6.7.17 ACC Register 0x40 (ACC_CONF)

This register contains accelerometer BW and ODR configuration.

The register contains decererantees are under a recombination.										
0x40	ACC_CONF									
Bit	7	6 5 4 3 2 1 0								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset Value	1	0	1	0	1	0	0	0		
Content	reserved		acc_bwp			acc_	_odr			

Register	Description							
reserved <7>	This bit must always be	e '1'.						
acc_bwp <6:4>	This parameter influences the bandwidth of the accelerometer low pass filter.							
	acc_bwp	filter setting						
	000	OSR4 (4-fold oversampling)						
	001	OSR2 (2-fold oversampling)						
	010	Normal						
	011111	reserved						
acc_odr <3:0>	This parameter sets th	e output data rate ODR.						
	acc_odr	ODR in Hz						
	00000100	reserved						
	0101	12.5						
	0110	25						
	0111	50						
	1000	100						
	1001	200						
	1010	400						
	1011	800						
	1100	1600						
	11011111	reserved						

6.7.18 ACC Register 0x41 (ACC_RANGE)

This register allows for the selection of the accelerometer g-range.

Tille Tegletel	The register and refer the decement of the adopter of fields.									
0x41	ACC_RANGE									
Bit	7	7 6 5 4 3 2 1 0								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset Value	n/a	n/a n/a n/a n/a n/a 0 1								
Content			rese	rved			acc_ran	ge <1:0>		

Register	Description							
acc_range <1:0>	Selection of the ac	Selection of the accelerometer g-range						
	range <1:0>	g-range	Resolution [LSB / g]					
	00	±2 g	16384					
	01	±4 g	8192					
	10	±8 g	4096					
	11	±16 g	2048					
reserved	write 0							

6.7.19 ACC Register 0x53 (INT1_IO_CONF)

This register allows for the configuration of the input/output pin INT1.

0x53		INT1_IO_CONF								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset Value	0	0	0	0	0	0	0	0		
Content	reserved			int1_in	int1_out	int1_od	int1_lvl	reserved		

Register	Description
reserved <7:5>	write 0
int1_in	enable INT1 as input pin
int1_out	enable INT1 as output pin
int1_od	configures pin behavior of INT1 pin 0: push-pull 1: open-drain
int1_lvl	configures active state of INT1 pin 0: active low 1: active high
reserved <0>	write 0

6.7.20 ACC Register 0x54 (INT2_IO_CONF)

This register allows for the configuration of the input/output pin INT1.

0x54		INT2_IO_CONF							
Bit	7	6	5	4	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	0	0	0	0	
Content	reserved			int2_in	int2_out	int2_od	int2_lvl	reserved	

Register	Description
reserved <7:5>	write 0
int2_in	enable INT2 as input pin
int2_out	enable INT2 as output pin
int2_od	configures pin behavior of INT2 pin 0: push-pull 1: open-drain
int2_lvl	configures active state of INT2 pin 0: active low 1: active high
reserved <0>	write 0

6.7.21 ACC Register 0x58 (INT1_INT2_MAP_DATA)

This register controls the data ready interrupt signals to be mapped to output pin INT1 and/or INT2.

		,		,	1 1	<u> </u>	,			
0x58		INT1_INT2_MAP_DATA								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset Value	0	0	0	0	0	0	0	0		
Content	reserved	int2_drdy	reserved			int1_drdy	rese	rved		

Register	Description
reserved <7>	write 0
int2_drdy <6>	map data ready interrupt to pin INT2
reserved <5:3>	write 0
int1_drdy <2>	map data ready interrupt to pin INT1
reserved <1:0>	write 0

6.7.22 ACC Register 0x6D (ACC_SELF_TEST)

This register enables the sensor self-test signal, occurring as a steady offset to the sensor output. Note that the self-test needs to be switched off actively by the user.

0x6d		ACC_SELF_TEST							
Bit	7	6	5	4	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	0	0	0	0	
Content		acc_self_test							

Register	Description
acc_self_test <7:0>	enable or disable self-test 0x00: self-test is switched off 0x0D: enable positive self-test signal 0x09: enable negative self-test signal

6.7.23 ACC Register 0x7C (ACC_PWR_CONF)

This register enables the accelerometer to be switched into suspend mode for saving power. In this mode the data acquisition is stopped.

0x7c	ACC_PWR_CONF							
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	0	0	1	1
Content		acc_pwr_save						

Register	Description
acc_pwr_save <7:0>	switches the accelerometer into suspend or normal mode 0x03: suspend mode 0x00: normal mode

6.7.24 ACC Register 0x7D (ACC_PWR_CTRL)

This register enables the accelerometer to be switched on or off. Required to do after every reset in order to obtain acceleration values.

0x7d	ACC_PWR_CTRL							
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	0	0	0	0
Content	acc_pwr_ctrl							

Register	Description
acc_pwr_ctrl <7:0>	switches the accelerometer on or off 0x00: accelerometer off 0x04: accelerometer on

6.7.25 ACC Register 0x7E (ACC_SOFTRESET)

This register controls the user triggered reset of the sensor.

0x7E	ACC_SOFTRESET								
Bit	7	6	5	4	3	2	1	0	
Read/Write	W	W	W	W	W	W	W	W	
Reset Value	0	0	0	0	0	0	0	0	
Content		softreset							

Register	Description
softreset	Writing 0xB6 to the register triggers a reset. Other values are ignored. After a delay, all user configuration settings are overwritten with their default values. Please note that all application specific settings which are not equal to the default settings must be reconfigured to their designated values.

6.8 Register Description Gyroscope

The following table shows the register map of the SMI230 gyroscope.

Reg. Addr.	Register Name	Reset Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x3C	BIST	0x00				rate_ok		bist_fail	bist_rdy	trig_bist
						_		_		
0x34	BGW_SPI3_WDT	0x00						I2c_wdt_ en	I2c_wdt_ sel	
0x18	INT_MAP_1	0x00	int4_data							int3_data
0.40	INIT EN 4	0.05					1.4.1	1 14 1 1	0	. 10 1 1
0x16	INT_EN_1	0x0F					Int4_od	Int4_lvl	int3_od	int3_lvl
0x15	INT_EN_0	0x00	data_en							
0x14	BGW_SOFTRESET	0x00				softreset_c	cmd (0xb6)		
0x13	RATE_HBW	0x00	data_ high_bw	shadow_ dis						
0x11	GYRO_LPM1	0x00		power_m	ode [7:4]					
0x10	BW	0x80						bw	[3:0]	
0x0F	RANGE	0x00							range [2:0]]
0x0A	INT_STATUS_1	0x00	data_int							
0x08	TEMP	0x00				temp	[7:0]			
0x07	RATE_Z_MSB	0x00				rate_z_m	nsb [15:8]			
0x06	RATE_Z_LSB	0x00				rate_z_	lsb [7:0]			
0x05	RATE_Y_MSB	0x00				rate_y_m	rsb [15:8]			
0x04	RATE_Y_LSB	0x00	rate_y_lsb [7:0]							
0x03	RATE_X_MSB	0x00	rate_x_msb [15:8]							
0x02	RATE_X_LSB	0x00	rate_x_lsb [7:0]							
0x00	CHIP_ID	0x0F				chip_i	d [7:0]			

read / write
write only
read only
reserved

All shown registers are common w/r registers:

Application specific settings which are not equal to the default settings must be re-set to their designated values after POR, soft-reset and wake up from deep suspend.

The entire communication with the device is performed by reading from and writing to registers. Registers have a width of 8 bits and are mapped to a common space of 64 addresses from GYR 0x00 up to GYR 0x3C. Within this range some registers are either completely or partially marked as 'reserved'. Any reserved bit is ignored when it is written and no specific value is guaranteed when the bit is read. It is recommended

not to use registers which are completely marked as 'reserved'. Furthermore, it is recommended to mask out (logical and with zero) reserved bits of registers which are partially marked as 'reserved'.

Registers with addresses from GYR 0x00 up to GYR 0x0E are read-only. Any attempt to write to these registers will be ignored. There are bits within some registers which trigger internal sequences. These bits are configured for write-only access and read as 0. An example for such a write-only access is the entire register GYR 0x14 (BGW_SOFTRESET).

6.8.1 GYR Register 0x00 (CHIP ID)

This register contains the chip identification code.

0x00	CHIP_ID								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content	chip_id <7:0>								

Register	Description
chip_id <7:0>	Fixed value 00001111 = 0x0F

6.8.2 GYR Register 0x02 (*RATE_X_LSB*)

This register contains the least significant bits of x-channel angular rate readout value (see section 6.5.2).

0x02	RATE_X_LSB								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content		rate_x_lsb <7:0>							

Register	Description
rate_x_lsb <7:0>	Least significant 8 bits of rate x-channel read-back value (two's complement format)

6.8.3 GYR Register 0x03 (RATE X MSB)

This register contains the most significant bits of x-channel angular rate readout value (see section 6.5.2).

0x03	RATE_X_MSB								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content	rate x msb <15:8>								

Register	Description
rate x msh <15:8>	Most significant 8 bits of rate x-channel read-back value (two's complement format)

6.8.4 GYR Register 0x04 (RATE Y LSB)

This register contains the least significant bits of y-channel angular rate readout value (see section 6.5.2).

0x04	RATE_Y_LSB								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content		rate_y_lsb <7:0>							

Register Description

rate_y_lsb <7:0> Least significant 8 bits of rate y-channel read-back value (two's complement format)

6.8.5 GYR Register 0x05 (RATE_Y_MSB)

This register contains the most significant bits of y-channel angular rate readout value (see section 6.5.2).

				•			•	•		
0x05		RATE_Y_MSB								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R	R	R	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Content		rate_y_msb <15:8>								

Register Description

rate_y_msb <15:8> Most significant 8 bits of rate y-channel read-back value (two's complement format)

6.8.6 GYR Register 0x06 (RATE_Z_LSB)

This register contains the least significant bits of z-channel angular rate readout value (see section 6.5.2).

		<u> </u>								
0x06		RATE_Z_LSB								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R	R	R	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Content		rate_z_lsb <7:0>								

Register Description

rate_z_lsb <7:0> Least significant 8 bits of rate z-channel read-back value (two's complement format)

6.8.7 GYR Register 0x07 (RATE_Z_MSB)

This register contains the most significant bits of z-channel angular rate readout value (see section 6.5.2).

0	-0									
0x07	RATE_Z_MSB									
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R	R	R	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Content		rate_z_msb <15:8>								

Register Description

rate z msb <15:8> Most significant 8 bits of rate z-channel read-back value (two's complement format)

6.8.8 GYR Register 0x08 (TEMP)

This register contains the current chip temperature (see section 6.5.3)

				•					
0x08	TEMP								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	0	0	0	0	0	0	0	0	
Content		temp <7:0>							

Register	Description
temp <7:0>	Temperature value (two's complement format) 00000010 corresponds to 25 °C

6.8.9 GYR Register 0x0A (INT_STATUS_1)

This register contains the interrupt status flag data_int of the new data interrupt (see section 0)

0x0A	INT_STATUS_1								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Content	data_int		reserved						

Register	Description
data_int	Data ready interrupt status 0: inactive 1: active
reserved	Random data, to be ignored

6.8.10 GYR Register 0x0F (RANGE)

This register allows for the selection of the gyroscope angular rate measurement range.

0x0F		RANGE								
Bit	7	6	5	4	3	2	1	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset Value	0	0	0	0	0	0	0	0		
Content			reserved				range <2:0>			

Register	Descript	ion		
range <2:0>	Selection	of the gyroscope angu	ar rate range	Resolution
		range <2:0>	rate range	Resolution [LSG / °/s]
		000	±2000 °/s	16.38
		001	±1000 °/s	32.77
		010	±500 °/s	65.54
		011	±250 °/s	131.07
		100	±125 °/s	262.14
	All other	settings are reserved (d	o not use)	
reserved	Write 0			

6.8.11 GYR Register 0x10 (BW)

This register allows for the selection of the rate data filter bandwidth.

0x10	BW								
Bit	7	6	5	4	3	2	1	0	
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Value	1	0	0	0	0	0	0	0	
Content		rese	rved		bw <3:0>				

Register	Description										
bw <3:0>	Selection of the data filter bandwidth										
	bw <3:0>	Bandwidth	bw <3:0>	Bandwidth							
	0111	32 Hz	0011	47 Hz							
	0110	64 Hz	0010	116 Hz							
	0101	12 Hz	0001	230 Hz							
	0100	23 Hz	0000	unfiltered (523 Hz)							
	All other settings are reserved (do not use)										
reserved	Write 0										

6.8.12 GYR Register 0x11 (GYRO_LPM1)

This register allows for the selection of the power mode.

0x11	GYRO_LPM1									
Bit	7	6	5	4	3	2	1	0		
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset Value	0	0	0	0	0	0	0	0		
Content		power	mode		reserved					

Register	Description
power mode <7:4>	Selection of power mode 0x00: normal mode 0x80: suspend mode 0x20: deep suspend mode
reserved	Write 0

6.8.13 GYR Register 0x13 (RATE_HBW)

This register controls the angular rate data acquisition and data output format.

0x13	RATE_HBW							
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	0	0	0	0
Content	data_high_bw	shadow_dis	reserved					

Register	Description
data_high_bw	Data-read from the rate data registers 1: unfiltered 0: filtered
shadow_dis	Shadowing mechanism for the rate data output registers 1: disable 0: enable
reserved	Write 0

6.8.14 GYR Register 0x14 (BGW_SOFTRESET)

This register controls the user triggered reset of the sensor.

0x14	BGW_SOFTRESET							
Bit	7	7 6 5 4 3 2 1 0						
Read/Write	W	W	W	W	W	W	W	W
Reset Value	0	0	0	0	0	0	0	0
Content		softreset<7:0>						

Register	Description
softreset<7:0>	Writing 0xB6 to the register triggers a reset. Other values are ignored. After a delay, all user configuration settings are overwritten with their default values. Please note that all application specific settings which are not equal to the default settings must be reconfigured to their designated values.

6.8.15 GYR Register 0x15 (INT_EN_0)

This register enables the new data interrupt. See bit data_int in register GYR 0x0A (INT_STATUS_1).

0x15	INT_EN_0							
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	0	0	0	0
Content	data_en		reserved					

Register	Description	
data_en	New data interrupt 0: disabled 1: enabled	
reserved	Write 0	

6.8.16 GYR Register 0x16 (INT_EN_1)

This register contains interrupt pin configurations.

0x16		INT_EN_1						
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	1	1	1	1
Content	reserved				int4_od	int4_lvl	int3_od	int3_lvl

Register	Description
int4_od	Behavior for INT4 pin 0: push-pull 1: open drain
int4_lvl	Active level for INT4 pin 0: active low 1: active high
int3_od	Behavior for INT3 pin 0: push-pull 1: open drain
int3_lvl	Active level for INT3 pin 0: active low 1: active high
reserved	Write 0

6.8.17 GYR Register 0x18 (INT_MAP_1)

This register controls if interrupt signals are mapped to the INT3 / INT4 pin.

0x18		INT_MAP_1						
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	0	0	0	0
Content	int4_data		reserved					

Register	Description
int4_data	Map new data interrupt to the INT4 pin 0: disabled 1: enabled
int3_data	Map new data interrupt to the INT3 pin 0: disabled 1: enabled
reserved	Write 0

6.8.18 GYR Register 0x34 (BGW_SPI3_WDT)

This register contains settings for the digital interfaces.

0x34	BGW_SPI3_WDT							
Bit	7	7 6 5 4 3 2 1 0						
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0	0	0	0	0
Content		reserved					i2c_wdt_sel	reserved

Register	Description
i2c_wdt_en	Watchdog timer at the SDA pin in TWI mode 0: disable 1: enable
i2c_wdt_sel	Watchdog timer period 0: 1 ms 1: 50 ms
reserved	Write 0

6.8.19 GYR Register 0x3C (BIST)

This register contains the built-in self-test (BIST) options (see section 6.1).

0x3C	BIST							
Bit	7	6	5	4	3	2	1	0
Read/Write	R/W	R/W	R/W	R	R/W	R	R	W
Reset Value	0	0	0	0	0	0	0	0
Content	reserved			rate_ok	reserved	bist_fail	bist_rdy	trig_bist

Register	Description				
rate_ok	1: indicates proper sensor function, no trigger is needed for this				
bist_fail	Contains the fail flag, needs to be evaluated together with bist_rdy				
bist_rdy	Status of BIST, needs to be evaluated together with bist_fail				
		bist_rdy	bist_fail	Status	
		0	-	BIST not finished	
		1	0	BIST ok, sensor ok	
		1	1	BIST not ok, sensor values not in expected range	
trig_bist	Write 1: p	erform the B	IST		
reserved	Write 0				

Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties

7 Legal Disclaimer

In order to ensure proper functionality during operation, it is the responsibility of the customer to evaluate:

- The proper function of the sensor in the overall system.
- ▶ The mechanical stability of each system design including the sensor.
- ▶ The electrical stability, e.g. power supply and EMC, of each system design including the sensor.

Bosch complied with the following regulations specific to the target market when developing the product: The sensor complies with all statutory regulations regarding restriction of hazardous substances and recyclability which are in the scope of IMDS (International Material Data System).

If other or additional regulations are required for marketing the product or marketing is effected outside the named target markets, the customer requests compliance with the specific regulations of the target market from Bosch, or ensures these by itself.

Bosch points out that the system/product does not implement any ASIL-classified requirements (in the sense of ISO 26262). Therefore, it has not been approved by Bosch for applications in which Bosch delivered system/product has an ASIL-related (above QM) role. This implies the following limitations:

- ► The SMI230 must not be used if it influences safety goals with ratings higher than ASIL QM. Safety goals are defined in the overall system (i.e. on item level).
- ▶ Bosch cannot provide any quantitative failure analysis (e.g. FTA or FMEDA) for the SMI230.
- ▶ The SMI230 does not provide a CRC to check communication errors within a SPI/I2C frame.
- ▶ The SMI230 does not provide error flags to detect malfunctions of the ASIC.

Repair and manual soldering of sensors is not permitted.

Sensors must not be handled as bulk good.

Sensors with visible damages (housing, connectors, pins, etc.) and sensors which might have exceeded the absolute maximum ratings (e.g. dropped down from a height of more than 120 cm onto a hard surface) must not be mounted in the device. These sensors must be scrapped.

Data security: The sensor only contains the explicitly stated characteristics for product, data and information security. It is the responsibility of the system integrator to verify and validate on system level, if the stated characteristics comply with and fulfill the requirements of the product.

Returned products are considered good if they fulfill the specifications / test data for 0-mileage and field listed in this document.

Engineering samples are marked with (e) or (E). Samples may vary from the valid technical specifications of the series product contained in this data sheet. Therefore, they are not intended or fit for resale to third parties or for use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of a series product. Bosch assumes no liability for the use of engineering samples. The purchaser shall indemnify Bosch from all claims arising from the use of engineering samples.

Due to the measurement principle, the sensor is sensitive to mechanical disturbances, such as shocks, vibrations or stress. Therefore, the printed circuit board (PCB) has to be designed in such a way, as to suppress any of these influences and ensure the proper functionality in each application.

The sensor elements have to be protected against extreme shock loads such as e.g. hammer blows on or next to the sensor elements, vibrations of a power wrench when fixing bolts, dropping of the sensor elements onto hard surfaces, etc. Sensor modules which have been dropped must not be used and have to be scrapped. We recommend the avoidance of g-forces beyond the maximum rating during transport, handling and mounting of the sensors resulting in a defined and qualified installation process. As the sensor is sensitive to mechanical stress, any bending or torsion of the PCB close to the sensor, e.g. during forcing in, has to be avoided.

Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties

8 Document History

Version	Section	Comment	Date
1.0	General	Initial Release	

9 Table of Figures

Figure 1	Schematics of the SMI230 mechanical design (left: top view; right: side view) 7 $$				
Figure 2	Simplified block diagram of the SMI230 8				
Figure 3	Simplified signal path of the accelerometer 9				
Figure 4	Simplified signal path of the accelerometer 9				
Figure 5	Simplified signal path of the gyroscope 10				
Figure 6	Path of the detection signal for one axis (gyroscope) 10				
Figure 7	Sensing axis orientation 13				
Figure 8	SMI230 package outline drawing 14				
Figure 9	Tape dimensions in mm 15				
Figure 10	Reel dimensions 16				
Figure 11	Details on hub hole dimension C in mm 16				
Figure 12	Orientation of the SMI230 devices relative to the tape 17				
Figure 13	Pin-out top (left) and bottom (right) view 18				
Figure 14	SMI230 footprint 19				
Figure 15	Reflow soldering recommendation 20				
Figure 16	Soldering profile 21				
Figure 17	SPI connection diagram 26				
Figure 18	SPI timing diagram 27				
Figure 19	4-wire basic SPI write sequence (mode 11) 27				
Figure 20	4-wire basic SPI read sequence (mode 11) 28				
Figure 21	SPI multiple read 28				
Figure 22	TWI connection diagram 29				
Figure 23	Definition of the rise and fall time of TWI signals 30				
Figure 24	SMI230 TWI timing specification 31				
Figure 25	Example of a TWI write access to the accelerometer 31				
Figure 26	Example of a TWI read access to the accelerometer 32				
Figure 27	Post-write access timing constraints 33				
Figure 28	Basic flow chart for SMI230 application with key functional elements 34				
Figure 29	SMI230 BIST sequence 37				

Robert Bosch GmbH AE/PAS1 Postfach 13 42 72703 Reutlingen Germany