#### DESCRIPTION

The IS31LT3178 and IS32LT3178 are adjustable linear current devices with excellent temperature stability. A single resistor is all that is required to set the operating current from 10mA to 200mA. The devices can operate from an input voltage from 2.6V to 40V with a minimal voltage headroom of 1.0V (Typ.) at 150mA. Designed with a low dropout voltage; the device can drive LED strings close to the supply voltage without switch capacitors or inductors.

The EN Pin of the IS31LT3178/IS32LT3178 can function as the PWM signal input used for MCU PWM dimming.

As a current sink it is ideal for LED lighting applications or current limiter for power supplies.

The device is provided in a lead (Pb) free, SOT23-6 and SOP-8-EP packages.

#### FEATURES

QUICK START

- Low-side current sink

   Adjustable from 10mA to 150mA
   (SOT23-6)/200mA (SOP-8-EP) with external resistor selection
- Wide input voltage range from
   2.6V to 40V
- with a low dropout of typical 1.0V at 150mA Up to 1kHz PWM input
- $\pm 5\%$  current accuracy over -40°C ~ +125°C
- Protection features: -0.6%/K current roll off at high temp over 145°C for thermal protection
- Up to 0.77W (SOT23-6)/2.32W (SOP-8-EP) power dissipation in a small package
- RoHS compliant (Pb-free) package
- AEC-Q100 qualification in progress (IS32LT3178)



Figure 1: Photo of IS31LT3178-STLS4/IS32LT3178-STLA3 Evaluation Board



Figure 2: Photo of IS31LT3178-GRLS4/IS32LT3178-GRLA3 Evaluation Board

#### **RECOMMENDED EQUIPMENT**

- 2.6V~40V, 1A DC variable power supply
- HBLEDs

#### **ABSOLUTE MAXIMUM RATINGS**

• ≤ 40V input voltage

Caution: Do not exceed the conditions listed above, otherwise the board will be damaged.

#### PROCEDURE

The IS31LT3178/IS32LT3178 evaluation board are fully assembled and tested. Follow the steps listed below to verify board operation.

## Caution: Do not turn on the power supply until all connections are completed.

- Connect the ground terminal of the power supply to the GND (TP3) and the positive terminal to the VCC (TP1). Connect the Anode of an external LED string to LED+ (TP5) and its Cathode to LED-(TP6).
- 2) The evaluation board (IS31LT3178-STLS4/ IS32LT3178-STLA3-EB) supports three current levels, selected by JP1, JP2, JP3 see the table below. The test point REXT can be used to add an external resistor. The final resistance can be measured with an ohm meter across REXT and GND (TP7) pins. For jumpers (JP1~JP3) Closed=1 and Open=0.

| JP1 | JP2 | JP3 | $R_{EXT}$ (k $\Omega$ ) |
|-----|-----|-----|-------------------------|
| 1   | 0   | 0   | 33                      |
| 0   | 1   | 0   | 16                      |
| 0   | 0   | 1   | 11                      |





3) The evaluation board (IS31LT3178-GRLS4 /IS32LT3178-GRLA3-EB) supports four current levels, selected by JP1, JP2, JP3, JP4 see the table on the right. The test point REXT can be used to add an external resistor. The final resistance can be measured with an ohm meter across REXT and GND (TP7) pins. For jumpers (JP1~JP4) Closed=1 and Open=0.

|   | JP1 | JP2 | JP3 | JP4 | $R_{EXT}$ (k $\Omega$ ) |
|---|-----|-----|-----|-----|-------------------------|
| ſ | 1   | 0   | 0   | 0   | 33                      |
| I | 0   | 1   | 0   | 0   | 16                      |
| I | 0   | 0   | 1   | 0   | 11                      |
|   | 0   | 0   | 0   | 1   | 8.2                     |

#### **ORDERING INFORMATION**

| Part No.            | Temperature Range           | Package             |
|---------------------|-----------------------------|---------------------|
| IS31LT3178-STLS4-EB | -40°C ~ +125°C (Industrial) | SOT-23-6, Lead-free |
| IS31LT3178-GRLS4-EB | -40°C ~ +125°C (Industrial) | SOP-8-EP, Lead-free |
| IS32LT3178-STLA3-EB | -40°C ~ +125°C (Automotive) | SOT-23-6, Lead-free |
| IS32LT3178-GRLA3-EB | -40°C ~ +125°C (Automotive) | SOP-8-EP, Lead-free |

Table 1: Ordering Information

# For pricing, delivery, and ordering information, please contact Lumissil's analog marketing team at <u>analog@Lumissil.com</u> or (408) 969-6600

#### **EVALUATION BOARD OPERATION**

IS31LT3178/IS32LT3178 evaluation board drives one string of HBLEDs.

#### **OUTPUT CURRENT SETING**

IS31LT3178/IS32LT3178 provides an easy constant current source solution for LED lighting applications. It uses an external resistor to adjust the LED current from 10mA to 150mA (SOT23-6)/200mA (SOP-8-EP). The LED current can be determined by the external resistor  $R_{ISET}$  as Equation (1):

$$R_{ISET} = \frac{V_{ISET} \times 1600}{I_{SET}}$$
(1)

10.6k $\Omega \le R_{ISET} \le 160 k\Omega$  for SOT23-6 package, and  $8k\Omega \le R_{ISET} \le 160 k\Omega$  for SOP-8-EP package.

Where  $R_{ISET}$  is in  $\Omega$ ,  $I_{SET}$  is desired LED current in Amp and  $V_{ISET}$  = 1.0V (Typ.)

 $R_{\text{ISET}}$  must be a 1% accuracy resistor with good temperature characteristics in order to ensure stable

output current. The device limits the maximum output current to  $I_{OUT\_LIMIT}$  to protect itself from an output overcurrent condition caused by a low value. Do not leave ISET pin floating.

#### THERMAL PROTECTION

The IS31LT3178/IS32LT3178 implements thermal roll off protection to reduce the LED current when the package's thermal dissipation is exceeded and prevent "thermal runaway". The thermal roll off begins from 145°C, and linearly decreases following the junction temp to 85% of the set current value at  $T_{SD}$  (170°C). In the event that the junction temperature exceeds 170°C, the device will go into shutdown mode. At this point, the IC begins to cool off and will resume operation once the junction temperature goes below 140°C.



Figure 3:IS31LT3178/ IS32LT3178 (SOT23-6) Application Schematic



Figure 4:IS31LT3178/ IS32LT3178 (SOP-8-EP) Application Schematic



#### BILL OF MATERIALS

| Name          | Symbol  | Description                 | Qty | Supplier | Part No.                                   |
|---------------|---------|-----------------------------|-----|----------|--------------------------------------------|
| LED Driver    | U1      | Constant-Current LED Driver | 1   | Lumissil | IS31LT3178-STLS4-TR<br>IS32LT3178-STLA3-TR |
| Resistor      | R1      | RES,33K,1/8W,±1%,SMD        | 1   | YAGEO    | RC0805FR-0733KL                            |
| Resistor      | R2      | RES,16K,1/8W,±1%,SMD        | 1   | YAGEO    | RC0805FR-0716KL                            |
| Resistor      | R3      | RES,11K,1/8W,±1%,SMD        | 1   | YAGEO    | RC0805FR-0711KL                            |
| Capacitor     | C1      | CAP, 0.1µF,50V,±10%,SMD     | 1   | YAGEO    | CC1206KRX7R9BB104                          |
| Capacitor     | C2      | CAP, 1nF,50V,±10%,SMD       | 1   | YAGEO    | CC1206KRX7R9BB102                          |
| Diode         | D1      | 1N4007,1A,1000V,SMA         | 1   | Diodes   | M7                                         |
| Capacitor     | C3      | NC                          | 1   |          |                                            |
| Jumper        | JP1~JP3 | Jumper                      | 3   |          |                                            |
| Test Terminal | TP1~TP7 | Test terminal               | 7   |          |                                            |

Bill of materials, refer to Figure 3 above.

| Name          | Symbol  | Description                 | Qty | Supplier | Part No.                                   |
|---------------|---------|-----------------------------|-----|----------|--------------------------------------------|
| LED Driver    | U1      | Constant-Current LED Driver | 1   | Lumissil | IS31LT3178-GRLS4-TR<br>IS32LT3178-GRLA3-TR |
| Resistor      | R1      | RES,33K,1/8W,±1%,SMD        | 1   | YAGEO    | RC0805FR-0733KL                            |
| Resistor      | R2      | RES,16K,1/8W,±1%,SMD        | 1   | YAGEO    | RC0805FR-0716KL                            |
| Resistor      | R3      | RES,11K,1/8W,±1%,SMD        | 1   | YAGEO    | RC0805FR-0711KL                            |
| Resistor      | R4      | RES,8.2K,1/8W,±1%,SMD       | 1   | YAGEO    | RC0805FR-078K2L                            |
| Capacitor     | C1      | CAP, 0.1µF,50V,±10%,SMD     | 1   | YAGEO    | CC1206KRX7R9BB104                          |
| Capacitor     | C2      | CAP, 1nF,50V,±10%,SMD       | 1   | YAGEO    | CC1206KRX7R9BB102                          |
| Diode         | D1      | 1N4007,1A,1000V,SMA         | 1   | Diodes   | M7                                         |
| Capacitor     | C3      | NC                          | 1   |          |                                            |
| Jumper        | JP1~JP4 | Jumper                      | 4   |          |                                            |
| Test Terminal | TP1~TP7 | Test terminal               | 7   |          |                                            |

Bill of materials, refer to Figure 4 above.





Figure 5: Board Component Placement Guide - Top Layer (SOT23-6)



Figure 6: Board PCB Layout - Top Layer (SOT23-6)





Figure 7: Board Component Placement Guide - Bottom Layer (SOT23-6)



Figure 8: Board PCB Layout - Bottom Layer (SOT23-6)





Figure 9: Board Component Placement Guide - Top Layer (SOP-8-EP)



Figure 10: Board PCB Layout - Top Layer (SOP-8-EP)





Figure 11: Board Component Placement Guide - Bottom Layer (SOP-8-EP)



Figure 12: Board PCB Layout - Bottom Layer (SOP-8-EP)

Copyright © 2018 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances



## **REVISION HISTORY**

| Revision | Detail Information | Date       |
|----------|--------------------|------------|
| А        | Initial release    | 2018.08.20 |
| В        | Update BOM list    | 2018.10.23 |