
 
 

 1 / 312 

 

 

 

 

 

 

 

 

 

 

 

 

 

AG32 MCU 
 

Reference Manual 
1.2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 2 / 312 

 

contents 

1 Device overview ________________________________________________________ 10 

1.1 Introduction _____________________________________________________________ 10 

1.1.1 System Overview  _______________________________________________________________ 10 

1.1.2 Clock, reset and supply management  _______________________________________________ 10 

1.1.3 Low-power operation  ____________________________________________________________ 10 

1.1.4 ADC/DAC/CMP/DMA/Timers/GPIO __________________________________________________ 10 

1.1.5 Communication interfaces  ________________________________________________________ 11 

1.1.6 Others _________________________________________________________________________ 11 

1.2 Features and peripheral counts ______________________________________________ 12 

1.3 Chip architecture _________________________________________________________ 13 

1.4 Memory Map ____________________________________________________________ 14 

1.5 System Control ___________________________________________________________ 14 

2 Pin Definition __________________________________________________________ 22 

3 Clock _________________________________________________________________ 29 

3.1 Clock sources ____________________________________________________________ 29 

3.2 HSE clock ________________________________________________________________ 30 

3.3 HSI clock ________________________________________________________________ 31 

3.4 PLL clock ________________________________________________________________ 32 

3.5 LSE clock ________________________________________________________________ 32 

3.6 LSI clock ________________________________________________________________ 32 

3.7 System clock (SYSCLK) selection _____________________________________________ 32 

3.8 RTC clock ________________________________________________________________ 32 

3.9 Watchdog clock __________________________________________________________ 33 

4 Reset _________________________________________________________________ 34 

4.1 System reset _____________________________________________________________ 34 

4.2 Power reset _____________________________________________________________ 35 

4.3 Backup domain reset ______________________________________________________ 35 

5 Power control __________________________________________________________ 36 

5.1 Power supplies ___________________________________________________________ 36 

5.2 Independent ADC and DAC converter supply and reference voltage _________________ 36 

5.3 Battery backup domain ____________________________________________________ 37 

5.4 Voltage regulator _________________________________________________________ 37 



 
 

 3 / 312 

 

5.5 Power on reset (POR)/power down reset (PDR) _________________________________ 37 

5.6 Low-power modes ________________________________________________________ 38 

5.6.1 Slowing down system clocks ________________________________________________________ 38 

5.6.2 Peripheral clock gating ____________________________________________________________ 38 

5.6.3 Sleep mode _____________________________________________________________________ 39 

5.6.4 Stop mode ______________________________________________________________________ 40 

5.6.5 Standby mode ___________________________________________________________________ 41 

5.6.6 Auto-wakeup (AWU) from low-power mode ___________________________________________ 42 

6 Interrupt Controller _____________________________________________________ 43 

6.1 Local interrupts __________________________________________________________ 43 

6.2 External interrupts ________________________________________________________ 43 

6.3 Overall priority ___________________________________________________________ 45 

6.4 Interrupt enable __________________________________________________________ 45 

6.5 Interrupt registers ________________________________________________________ 45 

7 Dual Timer(Basic Timers) _________________________________________________ 47 

7.1 Introduction _____________________________________________________________ 47 

7.2 Functional Overview ______________________________________________________ 48 

7.2.1 Overview _______________________________________________________________________ 48 

7.2.2 Functional description ____________________________________________________________ 49 

7.3 Programmer’s Model ______________________________________________________ 56 

7.3.1 ummary of registers ______________________________________________________________ 56 

7.4 Register descriptions ______________________________________________________ 57 

8 Advanced-control timers _________________________________________________ 61 

8.1 Introduction _____________________________________________________________ 61 

8.2 Main features ____________________________________________________________ 61 

8.3 Functional description _____________________________________________________ 63 

8.3.1 Time-base unit ___________________________________________________________________ 63 

8.3.2 Counter modes __________________________________________________________________ 65 

8.3.3 Repetition counter _______________________________________________________________ 78 

8.3.4 Clock selection ___________________________________________________________________ 80 

8.3.5 Capture/compare channels_________________________________________________________ 84 

8.3.6 Input capture mode ______________________________________________________________ 88 

8.3.7 PWM input mode ________________________________________________________________ 89 

8.3.8 Forced output mode ______________________________________________________________ 90 

8.3.9 Output compare mode ____________________________________________________________ 90 

8.3.10 PWM mode ___________________________________________________________________ 92 

8.3.11 Complementary outputs and dead-time insertion ____________________________________ 96 

8.3.12 Using the break function ________________________________________________________ 98 



 
 

 4 / 312 

 

8.3.13 Clearing the OCxREF signal on an external event ___________________________________ 101 

8.3.14 6-step PWM generation _______________________________________________________ 102 

8.3.15 One-pulse mode _____________________________________________________________ 102 

8.3.16 Encoder interface mode _______________________________________________________ 104 

8.3.17 Timer input XOR function ______________________________________________________ 107 

8.3.18 Interfacing with Hall sensors ___________________________________________________ 107 

8.3.19 External trigger synchronization _________________________________________________ 109 

8.3.20 Timer synchronization_________________________________________________________ 113 

8.3.21 Debug mode ________________________________________________________________ 113 

8.4 registers _______________________________________________________________ 114 

8.4.1 control register 1 (CR1) __________________________________________________________ 114 

8.4.2 control register 2 (CR2) __________________________________________________________ 115 

8.4.3 slave mode control register (SMCR) ________________________________________________ 117 

8.4.4 DMA/interrupt enable register (DIER) ______________________________________________ 120 

8.4.5 status register (SR) _____________________________________________________________ 122 

8.4.6 event generation register (EGR) ___________________________________________________ 124 

8.4.7 capture/compare mode register 1 (CCMR1) _________________________________________ 125 

8.4.8 capture/compare mode register 2 (CCMR2) _________________________________________ 128 

8.4.9 capture/compare enable register (CCER) ____________________________________________ 130 

8.4.10 counter (CNT) _______________________________________________________________ 133 

8.4.11 prescaler (PSC) ______________________________________________________________ 133 

8.4.12 auto-reload register (ARR) _____________________________________________________ 134 

8.4.13 repetition counter register (RCR) ________________________________________________ 134 

8.4.14 capture/compare register 1 (CCR0) ______________________________________________ 135 

8.4.15 capture/compare register 2 (CCR1) ______________________________________________ 135 

8.4.16 capture/compare register 3 (CCR2) ______________________________________________ 136 

8.4.17 capture/compare register 4 (CCR3) ______________________________________________ 136 

8.4.18 break and dead-time register (BDTR) _____________________________________________ 137 

8.4.19 register map ________________________________________________________________ 139 

9 Watchdogs ___________________________________________________________ 142 

9.1 Overview ______________________________________________________________ 142 

9.2 Independent watchdog (IWDG) _____________________________________________ 142 

9.2.1 IWDG main features ____________________________________________________________ 142 

9.2.2 IWDG functional description _____________________________________________________ 142 

9.2.3 Watchdog clock ________________________________________________________________ 143 

9.2.4 Debug mode __________________________________________________________________ 143 

9.2.5 IWDG registers_________________________________________________________________ 144 

9.3 Functional overview ______________________________________________________ 145 

9.3.1 Features ______________________________________________________________________ 145 

9.3.2 Watchdog module overview ______________________________________________________ 146 

9.3.3 Functional description __________________________________________________________ 146 

9.3.4 Operation_____________________________________________________________________ 147 



 
 

 5 / 312 

 

9.3.5 Summary of registers ___________________________________________________________ 149 

9.3.6 Register descriptions ____________________________________________________________ 150 

10 Real-time clock (RTC) _________________________________________________ 153 

10.1 RTC main features: _______________________________________________________ 153 

10.2 RTC functional description _________________________________________________ 154 

11 DMA ______________________________________________________________ 157 

11.1 Overview ______________________________________________________________ 157 

11.2 Functional Overview _____________________________________________________ 158 

11.2.1 Functional description ________________________________________________________ 158 

11.2.2 System considerations ________________________________________________________ 161 

11.2.3 System connectivity __________________________________________________________ 162 

11.2.4 Software considerations _______________________________________________________ 165 

11.3 Programmer’s Model _____________________________________________________ 167 

11.3.1 About the programmer’s model _________________________________________________ 167 

11.3.2 Programming the DMAC _______________________________________________________ 167 

11.3.3 Summary of registers _________________________________________________________ 169 

11.3.4 Register descriptions __________________________________________________________ 173 

11.3.5 Test registers ________________________________________________________________ 190 

12 Analog-to-digital converter (ADC) _______________________________________ 193 

12.1 Overview ______________________________________________________________ 193 

12.2 Pins and internal signals __________________________________________________ 193 

12.3 Temperature sensor ______________________________________________________ 194 

12.4 ADC block pins __________________________________________________________ 194 

12.5 ADC input signals vs package pins ___________________________________________ 196 

12.6 ADC characteristics _______________________________________________________ 197 

12.7 ADC timing diagram ______________________________________________________ 197 

13 Digital-to-analog converter (DAC) _______________________________________ 199 

13.1 Overview ______________________________________________________________ 199 

13.2 DAC block pins __________________________________________________________ 200 

13.3 DAC pins _______________________________________________________________ 200 

13.4 DACs output signals vs package pins _________________________________________ 200 

13.5 DAC characteristics _______________________________________________________ 201 

13.6 DAC output voltage ______________________________________________________ 201 

14 Comparator (CMP) ___________________________________________________ 202 

14.1 Overview ______________________________________________________________ 202 



 
 

 6 / 312 

 

14.2 Characteristic ___________________________________________________________ 202 

14.3 CMP block pins __________________________________________________________ 204 

14.4 CMP input signals vs package pins __________________________________________ 206 

14.5 Comparator characteristics ________________________________________________ 207 

15 Backup registers (BKP) ________________________________________________ 208 

16 CRC(Cyclic redundancy check calculation unit ) _____________________________ 211 

16.1 Introduction ____________________________________________________________ 211 

16.2 CRC main features _______________________________________________________ 211 

16.3 CRC functional description _________________________________________________ 212 

16.3.1 CRC block diagram ___________________________________________________________ 212 

16.3.2 CRC internal signals ___________________________________________________________ 212 

16.3.3 CRC operation _______________________________________________________________ 212 

16.4 CRC registers ____________________________________________________________ 214 

16.4.1 Data register (CRC_DR) ________________________________________________________ 214 

16.4.2 Independent data register (CRC_IDR) ____________________________________________ 214 

16.4.3 Control register (CRC_CR) ______________________________________________________ 215 

16.4.4 Initial CRC value (CRC_INIT) ____________________________________________________ 215 

16.4.5 CRC polynomial (CRC_POL) _____________________________________________________ 216 

16.4.6 CRC register map _____________________________________________________________ 216 

17 General-purpose input/outputs (GPIOs) __________________________________ 218 

17.1 Overview ______________________________________________________________ 218 

17.2 Functional description ____________________________________________________ 218 

17.3 Register descriptions _____________________________________________________ 220 

17.3.1 Data register, GPIODATA ______________________________________________________ 220 

17.3.2 Data direction register, GPIODIR ________________________________________________ 220 

17.3.3 Interrupt sense register, GPIOIS _________________________________________________ 221 

17.3.4 Interrupt both-edges register, GPIOIBE ___________________________________________ 221 

17.3.5 Interrupt event register, GPIOIEV _______________________________________________ 221 

17.3.6 Interrupt mask register, GPIOIE _________________________________________________ 222 

17.3.7 Raw interrupt status register, GPIORIS ___________________________________________ 222 

17.3.8 Masked interrupt status register, GPIOMIS ________________________________________ 223 

17.3.9 Interrupt clear register, GPIOIC__________________________________________________ 223 

17.3.10 Mode control select register, GPIOAFSEL _________________________________________ 223 

18 Universal asynchronous receiver transmitter (UART) ________________________ 224 

18.1 UART Introduction _______________________________________________________ 224 

18.2 UART functional description _______________________________________________ 224 

18.3 Operation ______________________________________________________________ 226 

18.3.1 Interface reset _______________________________________________________________ 226 



 
 

 7 / 312 

 

18.3.2 Clock signals ________________________________________________________________ 227 

18.3.3 UART operation ______________________________________________________________ 227 

18.3.4 UART character frame ________________________________________________________ 230 

18.4 UART modem operation __________________________________________________ 230 

18.5 UART hardware flow control _______________________________________________ 231 

18.6 UART DMA interface _____________________________________________________ 232 

18.7 Programmer’s Model _____________________________________________________ 234 

18.7.1 Summary of registers _________________________________________________________ 234 

18.7.2 Register descriptions __________________________________________________________ 234 

19 Inter-integrated circuit(I2C) ____________________________________________ 248 

19.1 I2C introduction _________________________________________________________ 248 

19.2 Architecture ____________________________________________________________ 248 

19.3 Operation ______________________________________________________________ 250 

19.3.1 System Configuration _________________________________________________________ 250 

19.3.2 I2C Protocol _________________________________________________________________ 251 

19.3.3 Arbitration Procedure _________________________________________________________ 252 

19.4 Registers _______________________________________________________________ 253 

19.4.1 Registers list ________________________________________________________________ 253 

19.4.2 Register description __________________________________________________________ 253 

20 Controller area network (CAN) _________________________________________ 256 

20.1 Overview ______________________________________________________________ 256 

20.2 Operation ______________________________________________________________ 257 

20.2.1 Configuration _______________________________________________________________ 257 

20.2.2 Bus Timing Parameters ________________________________________________________ 257 

20.2.3 Acceptance Filters ____________________________________________________________ 258 

20.2.4 Interrupts __________________________________________________________________ 259 

20.2.5 Error Warning Limit ___________________________________________________________ 259 

20.2.6 Output Mode _______________________________________________________________ 259 

20.2.7 CLKOUT Signal _______________________________________________________________ 260 

20.2.8 Example Configuration Steps ___________________________________________________ 260 

20.3 Interrupt Handling _______________________________________________________ 260 

20.3.1 Receive Interrupt ____________________________________________________________ 261 

20.3.2 Transmit Interrupt ____________________________________________________________ 261 

20.3.3 Error Warning Interrupt _______________________________________________________ 261 

20.3.4 Data Overrun Interrupt ________________________________________________________ 262 

20.3.5 Wake-up Interrupt ___________________________________________________________ 262 

20.3.6 Error Passive Interrupt ________________________________________________________ 262 

20.3.7 Arbitration Loss Interrupt ______________________________________________________ 263 

20.3.8 Bus Error Interrupt ___________________________________________________________ 263 



 
 

 8 / 312 

 

20.4 Sleep Mode ____________________________________________________________ 263 

20.5 Register Description ______________________________________________________ 264 

20.5.1 Acceptance Code Registers (ACR0 – ACR3): ADDRESS 10h – 13h _______________________ 264 

20.5.2 Acceptance Mask Registers (AMR0 – AMR3): ADDRESS 14h – 17h _____________________ 265 

20.5.3 Arbitration Lost Capture Register (ALC): ADDRESS 0Bh _______________________________ 265 

20.5.4 Bus Timing Register 0 (BTR0): ADDRESS 06h _______________________________________ 266 

20.5.5 Bus Timing Register 1 (BTR1): ADDRESS 07h _______________________________________ 267 

20.5.6 Clcck Divider Register (CDR): ADDRESS 1Fh ________________________________________ 267 

20.5.7 Command Register (CMR): ADDRESS 01h _________________________________________ 268 

20.5.8 Error Code Capture Register (ECC): ADDRESS 0CH __________________________________ 269 

20.5.9 Error Warning Limit Register (EWLR): ADDRESS 0Dh _________________________________ 269 

20.5.10 Interrupt Register (IR): ADDRESS 03h _____________________________________________ 269 

20.5.11 Interrupt Enable Register(IER): ADDRESS 04h ______________________________________ 270 

20.5.12 Mode Register (MOD): ADDRESS 00h ____________________________________________ 271 

20.5.13 Output Control Register (OCR): ADDRESS 08h ______________________________________ 271 

20.5.14 Receive Buffer (10h – 1Ch) _____________________________________________________ 272 

20.5.15 Receive Buffer Start Address (RBSA): ADDRESS 1Eh _________________________________ 273 

20.5.16 Receive Error Counter Register (RXERR): ADDRESS 0Eh ______________________________ 273 

20.5.17 Receive Message Counter (RMC): ADDRESS 1Dh____________________________________ 274 

20.5.18 Status Register(SR): ADDRESS 02h _______________________________________________ 275 

20.5.19 Transmit Buffer (Write: 10h – 1Ch; Read: 60h – 6Ch) ________________________________ 275 

20.5.20 Transmit Error Counter Register (TXERR): ADDRESS 0Fh ______________________________ 276 

21 Flash-SPI control _____________________________________________________ 278 

21.1 Overview ______________________________________________________________ 278 

21.1.1 Characteristics of this spi controller ______________________________________________ 278 

21.1.2 The concept of PHASE _________________________________________________________ 279 

21.1.3 Module block diagram ________________________________________________________ 280 

21.1.4 Top port ____________________________________________________________________ 281 

21.2 Instructions for use of the module __________________________________________ 282 

21.2.1 System integration method ____________________________________________________ 282 

21.2.2 register description ___________________________________________________________ 283 

21.2.3 Description of PHASE_ACTION __________________________________________________ 286 

21.2.1 Software configuration sequence ________________________________________________ 288 

22 Other Interfaces _____________________________________________________ 292 

22.1 Universal serial bus full-speed device interface (USBD) __________________________ 292 

22.2 Ethernet MAC interface ___________________________________________________ 292 

22.3 Debug mode ____________________________________________________________ 293 

23 Electrical characteristics _______________________________________________ 294 

24 Package and operation temperature _____________________________________ 307 

25 Order Information ___________________________________________________ 311 



 
 

 9 / 312 

 

26 Revision history _____________________________________________________ 312 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 10 / 312 

 

 

1 Device overview 

1.1 Introduction 

The AG32 family of 32-bit microcontrollers is designed to offer new degrees of freedom and rich 

compatible peripherals, and compatible pin and features to MCU users. AG32 product series offers 

supreme quality, stability, and exceptional pricing value. 

1.1.1 System Overview   

◼ RISC-V core with RV32IMAFC support   

◼ Up to 1 Mbyte of Flash memory   

◼ 128KB SRAM   

◼ 16KB instruction cache   

 

1.1.2 Clock, reset and supply management   

◼ 3.135 V to 3.465 V application supply and I/Os   

◼ POR, PDR   

◼ 4-to-26 MHz crystal oscillator  

◼ Internal 20MHz oscillator   

◼ 32 kHz oscillator for RTC  

◼ Internal 40 kHz oscillator   

 

1.1.3 Low-power operation   

◼ Sleep, Stop and Standby modes   

◼ VBAT supply for RTC   

 

1.1.4 ADC/DAC/CMP/DMA/Timers/GPIO 

◼ 3×12-bit, 1.0 MSPS A/D converters: up to 16 channels and 3 MSPS in triple interleaved mode 

◼ 2×10-bit D/A converters   
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◼ Two rail-to-rail analog comparators   

◼ General-purpose DMA   

◼ Advanced-control timers   

◼ Up to 78 user I/O ports   

 

1.1.5 Communication interfaces   

◼ I2C interfaces   

◼ UART interfaces   

◼ SPI interfaces   

◼ CAN interfaces   

 

1.1.6 Others 

◼ Debug mode – Serial wire debug (SWD) & JTAG interfaces   

◼ USB 2.0 full-speed device/host controller with on-chip PHY   

◼ 10/100 Ethernet MAC with dedicated DMA supports MII/RMII   

◼ RTC: subsecond accuracy  

◼ 128-bit unique ID 
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1.2 Features and peripheral counts 

 

Peripherals AG32VF303KCU6 AG32VF303CCT6 AG32VF303VCT6 AG32VH407RCT6 AG32VF407RGT6 AG32VF407VGT6 

Flash memory in Kbytes 256K 256K 256K 256K 1024K 1024K 

SRAM in Kbytes 128K 

PSRAM / 8MB / 

Ethernet yes 

Timers 2 x Basic Timer   +   5 x Advanced Timer 

SPI/I²C 2 

UART 5 

USB FS yes 

CAN 1 x CAN2.0 

12-bit ADC 3 3 3 3 3 3 

Number of channels 9 10 16 11 16 16 

10-bit DAC 
2 

Number of channels 

rail-to-rail analog 

comparators 
2 2 2 2 2 2 

Maximum CPU frequency 248Mhz 

Operating voltage 3.135 to 3.465 V 

Package QFN32 LQFP48 LQFP100 LQFP64 LQFP64 LQFP100 

 

AG32VH407RCT6：AG32 + PSRAM 

 
◼ MCU + 2K CPLD + 8MB PSRAM  

◼ HyperRAM high-speed interface  

◼ DMA & FIFO R/W reference design  
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1.3 Chip architecture 
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1.4 Memory Map 

 Address  

ROM 0x0001 0000 - 0x0001 1FFF  

System Control 0x0300 0000 - 0x0300 0FFF  

PLIC 0x0C00 0000 - 0x0C20 FFFF  

SRAM 0x2000 0000 - 0x2001 FFFF  

FLASH (XIP) 0x8000 0000 - 0x80FF FFFF  

Option bytes 0x8100 0000 - 0x8100 003F  

RTC 0x4000 0000 - 0x4000 007F  

FLASH control 0x4000 1000 - 0x4000 1FFF  

APB Peripherals 0x4001 0000 - 0x40FF FFFF  

AHB Peripherals 0x4100 0000 - 0x41FF FFFF  

External AHB 0x6000 0000 - 0x7FFF FFFF  

 

 

1.5 System Control 

 

Device boot mode (BOOT_MODE) 

 Address offset: 0x00 

31 - 2 1 0 

Reserved BOOT_MODE 

 RO RO 

 Bit [1:0]: Device boot mode 

The values of BOOT0 and BOOT1 pins are latched on the 4th rising edge of SYSCLK after a reset 

Reset control (RST_CNTL) 

 Address offset: 0x04 

 Bit 31 RSTF_LPWR: Reset flag by low power 

 0: No reset detected 



 
 

 15 / 312 

 

 1: Low power reset detected 

 Bit 30 RSTF_WDOG: Reset flag by watch dog 

 0: No reset detected 

 1: Watch dog reset detected 

 Bit 29 RSTF_IWDG: Reset flag by independent watch dog 

 0: No reset detected 

 1: Independent watch dog reset detected 

 Bit 28 RSTF_SFT: Reset flag by softare 

 0: No reset detected 

 1: Softare reset detected 

 Bit 27 RSTF_POR: Reset flag by power on reset 

 0: No reset detected 

 1: Power on reset detected 

 Bit 26 RSTF_PIN: Reset flag by NRST pin 

 0: No reset detected 

 1: NRST pin reset detected 

 Bit 25 RSTF_EXT: Reset flag by external logic 

 0: No reset detected 

 1: External logic reset detected 

 Bit 24 RST_REMOVE: Reset flag removal 

 Write 1 to clear all reset flags 

 Bit 1 RST_EXT_EN: External logic reset enable 
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 0: Exernal logic reset disabled 

 1: External logic reset enabled 

 Bit 0 RST_SFT: Reset by software 

 Write 1 to trigger software reset 

Power control (PWR_CNTL) 

 Address offset: 0x08 

 Bit [1:0] LPWR_MODE: Low power mode 

 00: Enter sleep mode with WFI (wait for interrupt) instruction 

 01: Enter stop mode with WFI instruction 

 11: Enter standby mode with WFI instruction 

Clock control (CLK_CNTL) 

 Address offset: 0x0C 

 Bit [15:12] SCLK_DIV_HIGH: Flash SPI clock divider high 

 Flash SPI clock is divided by (SCLK_DIV_HIGH + 1) from SYS_CLK, valid range is 

from 0 (divided by 1) to 15 (divided by 16) 

 Bit [11:8] SCLK_DIV_LOW: Flash SPI clock divider low 

 Must be set to the same value as SCLK_DIV_HIGH 

 Bit 6 PLL_RDY: PLL ready 

 0: PLL is not ready 

 1: PLL is ready 

 Bit 5 PLL_ON: PLL on 

 0: PLL is turned off 

 1: PLL is turned on 
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 Bit 4 HSE_RDY: HSE ready 

 0: HSE is not ready 

 1: HSE is ready 

 Bit 3 HSE_BYP: HSE bypass 

 0: HSE oscillator is not bypassed 

 1: HSE oscillator is bypassed 

 Bit 2 HSE_ON: HSE on 

 0: HSE oscillator is turned off 

 1: HSE oscillator is turned on 

JTAG control (SWJ_CNTL) 

 Address offset: 0x14 

 Bit 4: NJTRST: Configuration for pin NJTRST 

 0: NJTRST is used as a dedicated pin 

 1: NJTRST is used as a user pin 

 Bit 3: JTDO: Configuration for pin JTDO 

 0: JTDO is used as a dedicated pin 

 1: JTDO is used as a user pin 

 Bit 2: JTDI: Configuration for pin JTDI 

 0: JTDI is used as a dedicated pin 

 1: JTDI is used as a user pin 

 Bit 1: JTMS: Configuration for pin JTMS 

 0: JTMS is used as a dedicated pin 

 1: JTMS is used as a user pin 
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 Bit 0: JTCK: Configuration for pin JTCK 

 0: JTCK is used as a dedicated pin 

 1: JTCK is used as a user pin 

Debug control (DBG_CNTL) 

 Address offset: 0x1C 

 Bit 4 DBG_RTC_STOP: Stop RTC during debug 

 Bit 3 DBG_IWDG_STOP: Stop IWDG during debug 

Wake up rise triggers (WKP_RISE_TRG) 

 Address offset: 0x20 

 Bit [7:0] EXT_INT0-7: Wake up device from stop mode using EXT_INT0-7, rising edge 

triggered 

 Bit 8 ALARM: Wake up device from stop mode using RTC alaram 

Wake up fall triggers (WKP_FALL_TRG) 

 Address offset: 0x24 

 Bit [7:0] EXT_INT0-7: Wake up device from stop mode using EXT_INT0-7, falling edge 

triggered 

 Bit 8 ALARM: Wake up device from stop mode using RTC alaram 

Wake up pending register (WKP_PENDING) 

 Address offset: 0x28 

 Bits [8:0]: Correspoding bits are set when the selected triggering event occurs 

PBUS clock divider (PBUS_DIVIDER) 

 Address offset: 0x38 

 Bits [3:0] PBUS_DIV: APB clock is divided by (PBUS_DIV + 1) from SYS_CLK, valid range 

is from 0 (divided by 1) to 15 (divided by 16) 

APB peripheral reset (APB_RESET) 
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 Address offset: 0x40 

 Each APB peripheral can be reset with the corresponding bit 

 0: Reset is deasserted 

 1: Reset is asserted 

 Bit [28]: I2C1 

 Bit [27]: I2C0 

 Bit [26]: CAN0 

 Bit [25]: UART4 

 Bit [24]: UART3 

 Bit [23]: UART2 

 Bit [22]: UART1 

 Bit [21]: UART0 

 Bit [20]: GPTIMER4 

 Bit [19]: GPTIMER3 

 Bit [18]: GPTIMER2 

 Bit [17]: GPTIMER1 

 Bit [16]: GPTIMER0 

 Bit [15]: TIMER1 

 Bit [14]: TIMER0 

 Bit [13]: GPIO9 

 Bit [12]: GPIO8 

 Bit [11]: GPIO7 
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 Bit [10]: GPIO6 

 Bit [9]: GPIO5 

 Bit [8]: GPIO4 

 Bit [7]: GPIO3 

 Bit [6]: GPIO2 

 Bit [5]: GPIO1 

 Bit [4]: GPIO0 

 Bit [3]: SPI1 

 Bit [2]: SPI0 

 Bit [1]: WATCHDOG0 

 Bit [0]: FCB0 

AHB peripheral reset (AHB_RESET) 

 Address offset: 0x50 

 Each AHB peripheral can be reset with the corresponding bit 

 0: Reset is deasserted 

 1: Reset is asserted 

 Bit [3]: MAC0 

 Bit [2]: CRC0 

 Bit [1]: USB0 

 Bit [0]: DMAC0 

APB peripheral clock enable (APB_CLKENABLE) 

 Address offset: 0x60 
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 Clock must be enabled before any APB peripheral is accessed. Bit asssignment is the 

same as APB_RESET register 

 0: Peripheral clock is disabled 

 1: Peripheral clock is enabled 

AHB peripheral clock enable (AHB_CLKENABLE) 

 Address offset: 0x70 

 Clock must be enabled before any AHB peripheral is accessed. Bit asssignment is the 

same as AHB_RESET register 

 0: Peripheral clock is disabled 

 1: Peripheral clock is enabled 

APB peripheral clock stop during debug (APB_CLKSTOP) 

 Address offset: 0x80 

 Clock can be automatically stopped during debug for the following APB peripherals: 

 WATCHDOG 

 TIMER 

 GPTIMER 

 CAN 

 Bit asssignment is the same as APB_RESET register 

 0: Clock is not stopped during debug 

 1: Clock is stopped during debug 

Device ID code (DEVICE_ID) 

 Address offset: 0x100 

 Bit [31:0]: Returns the chip device ID: 0x40200001. Read only 
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2 Pin Definition 

LQFP-100 

 

 

Pin Pin name Function 
 

Pin 
Pin 

name 
Function 

1 PIN_1 IO 26 PIN_26 IO/ADC_IN3/CMP_PA3 

2 PIN_2 IO 27 VSS33 GND 

3 PIN_3 IO 28 VDD33 VDD33 

4 PIN_4 IO 29 PIN_29 IO/ADC_IN4/CMP_PA4/DAC0 

5 PIN_5 IO 30 PIN_30 IO/ADC_IN5/CMP_PA5/DAC1 

6 VBAT VBAT 31 PIN_31 IO/ADC_IN6 

7 PIN_7 IO/RTC 32 PIN_32 IO/ADC_IN7 

8 OSC32_IN OSC32_IN 33 PIN_33 IO/ADC_IN14 

9 OSC32_OUT OSC32_OUT 34 PIN_34 IO/ADC_IN15 

10 VSS33 GND 35 PIN_35 IO/ADC_IN8 

11 VDD33 VDD33 36 PIN_36 IO/ADC_IN9 

12 OSC_IN OSC_IN 37 PIN_37 IO/BOOT1 

13 OSC_OUT OSC_OUT 38 PIN_38 IO 

14 NRST NRST 39 PIN_39 IO 

15 PIN_15 IO/ADC_IN10 40 PIN_40 IO 

16 PIN_16 IO/ADC_IN11 41 PIN_41 IO 

17 PIN_17 IO/ADC_IN12 42 PIN_42 IO 

18 PIN_18 IO/ADC_IN13 43 PIN_43 IO 

19 NC NC 44 PIN_44 IO 

20 VSSA GNDA 45 PIN_45 IO 

21 VREFP VREFP 46 PIN_46 IO 

22 VDDA VDDA 47 PIN_47 IO 

23 PIN_23 
IO/WKUP/ADC_IN0/C

MP_PA0 
48 PIN_48 IO 

24 PIN_24 IO/ADC_IN1/CMP_PA1 49 NC NC 

25 PIN_25 IO/ADC_IN2/CMP_PA2 50 VDD33 VDD33 
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Pin Pin name Function 
 

Pin 
Pin 

name 
Function 

51 PIN_51 IO 76 PIN_76 IO/JTCK 

52 PIN_52 IO 77 PIN_77 IO/JTDI 

53 PIN_53 IO 78 PIN_78 IO 

54 PIN_54 IO 79 PIN_79 IO 

55 PIN_55 IO 80 PIN_80 IO 

56 PIN_56 IO 81 PIN_81 IO 

57 PIN_57 IO 82 PIN_82 IO 

58 PIN_58 IO 83 PIN_83 IO 

59 PIN_59 IO 84 PIN_84 IO 

60 PIN_60 IO 85 PIN_85 IO 

61 PIN_61 IO 86 PIN_86 IO 

62 PIN_62 IO 87 PIN_87 IO 

63 PIN_63 IO 88 PIN_88 IO 

64 PIN_64 IO 89 PIN_89 IO/JTDO 

65 PIN_65 IO 90 PIN_90 IO/JNTRST 

66 PIN_66 IO 91 PIN_91 IO 

67 PIN_67 IO 92 PIN_92 IO 

68 PIN_68 IO/UART0_TX 93 PIN_93 IO 

69 PIN_69 IO/UART0_RX 94 BOOT0 BOOT0 

70 PIN_70 IO/USBDM 95 PIN_95 IO 

71 PIN_71 IO/USBDP 96 PIN_96 IO 

72 PIN_72 IO/JTMS 97 PIN_97 IO 

73 NC NC 98 PIN_98 IO 

74 VSS33 GND 99 VSS33 GND 

75 VDD33 VDD33 100 VDD33 VDD33 
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LQFP-64 

 

Pin Pin name Function  Pin Pin name Function 

1 VBAT VBAT 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

33 PIN_33 IO 

2 PIN_2 IO/RTC 34 PIN_34 IO 

3 OSC32_IN OSC32_IN 35 PIN_35 IO 

4 OSC32_OUT OSC32_OUT 36 PIN_36 IO 

5 OSC_IN OSC_IN 37 PIN_37 IO 

6 OSC_OUT OSC_OUT 38 PIN_38 IO 

7 NRST NRST 39 PIN_39 IO 

8 PIN_8 IO/ADC_IN10 40 PIN_40 IO 

9 PIN_9 IO/ADC_IN11 41 PIN_41 IO 

10 PIN_10 IO/ADC_IN12 42 PIN_42 IO/UART0_TX 

11 PIN_11 IO/ADC_IN13 43 PIN_43 IO/UART0_RX 

12 VSSA GNDA 44 PIN_44 IO/USBDM 

13 VDDA VDDA 45 PIN_45 IO/USBDP 

14 PIN_14 IO/WKUP/ADC_IN0/CMP_PA0 46 PIN_46 IO/JTMS 

15 PIN_15 IO/ADC_IN1/CMP_PA1 47 PIN_47 IO 

16 PIN_16 IO/ADC_IN2/CMP_PA2 48 VDD33 VDD33 

17 PIN_17 IO/ADC_IN3/CMP_PA3 49 PIN_49 IO/JTCK 

18 VSS33 GND 50 PIN_50 IO/JTDI 

19 VDD33 VDD33 51 PIN_51 IO 

20 PIN_20 IO/ADC_IN4/CMP_PA4/DAC0 52 PIN_52 IO 

21 PIN_21 IO/ADC_IN5/CMP_PA5/DAC1 53 PIN_53 IO 

22 PIN_22 IO/ADC_IN6 54 PIN_54 IO 

23 PIN_23 IO/ADC_IN7 55 PIN_55 IO/JTDO 

24 PIN_24 IO/ADC_IN14 56 PIN_56 IO/JNTRST 

25 PIN_25 IO/ADC_IN15 57 PIN_57 IO 

26 PIN_26 IO/ADC_IN8 58 PIN_58 IO 

27 PIN_27 IO/ADC_IN9 59 PIN_59 IO 

28 PIN_28 IO/BOOT1 60 BOOT0 BOOT0 

29 PIN_29 IO 61 PIN_61 IO 

30 PIN_30 IO 62 PIN_62 IO 

31 PIN_31 IO 63 VSS33 GND 

32 VDD33 VDD33 64 VDD33 VDD33 
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LQFP-48 

 

Pin Pin name Function 
 

Pin Pin name Function 

1 VBAT VBAT 25 PIN_25 IO 

2 PIN_2 IO/RTC 26 PIN_26 IO 

3 OSC32_IN OSC32_IN 27 PIN_27 IO 

4 OSC32_OUT OSC32_OUT 28 PIN_28 IO 

5 OSC_IN OSC_IN 29 PIN_29 IO 

6 OSC_OUT OSC_OUT 30 PIN_30 IO/UART0_TX 

7 NRST NRST 31 PIN_31 IO/UART0_RX 

8 VSSA GNDA 32 PIN_32 IO/USBDM 

9 VDDA VDDA 33 PIN_33 IO/USBDP 

10 PIN_10 IO/WKUP/ADC_IN0/CMP_PA0 34 PIN_34 IO/JTMS 

11 PIN_11 IO/ADC_IN1/CMP_PA1 35 PIN_35 IO 

12 PIN_12 IO/ADC_IN2/CMP_PA2 36 VDD33 VDD33 

13 PIN_13 IO/ADC_IN3/CMP_PA3 37 PIN_37 IO/JTCK 

14 PIN_14 IO/ADC_IN4/CMP_PA4/DAC0 38 PIN_38 IO/JTDI 

15 PIN_15 IO/ADC_IN5/CMP_PA5/DAC1 39 PIN_39 IO/JTDO 

16 PIN_16 IO/ADC_IN6 40 PIN_40 IO/JNTRST 

17 PIN_17 IO/ADC_IN7 41 PIN_41 IO 

18 PIN_18 IO/ADC_IN8 42 PIN_42 IO 

19 PIN_19 IO/ADC_IN9 43 PIN_43 IO 

20 PIN_20 IO/BOOT1 44 BOOT0 BOOT0 

21 PIN_21 IO 45 PIN_45 IO 

22 PIN_22 IO 46 PIN_46 IO 

23 VSS33 GND 47 VSS33 GND 

24 VDD33 VDD33 48 VDD33 VDD33 
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QFN-32 

 

 

Pin Pin name Function  Pin Pin name Function 

1 PIN_1 IO/RTC 17 GND GND 

2 PIN_2 IO/OSC_IN 18 PIN_18 IO 

3 PIN_3 IO/OSC_OUT 19 PIN_19 IO 

4 NRST NRST 20 PIN_20 IO_UART0_TX 

5 PIN_5 IO_ADC_IN12 21 PIN_21 IO_UART0_RX 

6 VDDA33 VDDA33 22 PIN_22 IO_USBDM 

7 PIN_7 IO_WKUP_ADC_IN0_CMP_PA0 23 PIN_23 IO_USBDP 

8 PIN_8 IO_ADC_IN1_CMP_PA1 24 PIN_24 IO_JTMS 

9 PIN_9 IO_ADC_IN2_CMP_PA2 25 PIN_25 IO_JTCK 

10 PIN_10 IO_ADC_IN3_CMP_PA3 26 PIN_26 IO_JTDI 

11 PIN_11 IO_ADC_IN4_CMP_PA4_DAC0 27 PIN_27 IO_JTDO 

12 PIN_12 IO_ADC_IN5_CMP_PA5_DAC1 28 PIN_28 IO_JNTRST 

13 PIN_13 IO_ADC_IN6 29 PIN_29 IO 

14 PIN_14 IO_ADC_IN7 30 BOOT0 BOOT0 

15 PIN_15 IO_BOOT1 31 PIN_31 IO 

16 VDD33 VDD33 32 VDD33 VDD33 
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AG32VH407RCT6 & AG32VF407RGT6 

 

PIN 

No. 
AG32VH407RCT6   AG32VF407RGT6 

1 VBAT VBAT   VBAT VBAT 

2 PIN_2 IO_RTC   PIN_2 IO_RTC 

3 OSC32_IN OSC32_IN   OSC32_IN OSC32_IN 

4 OSC32_OUT OSC32_OUT   OSC32_OUT OSC32_OUT 

5 OSC_IN OSC_IN   OSC_IN OSC_IN 

6 OSC_OUT OSC_OUT   OSC_OUT OSC_OUT 

7 NRST NRST   NRST NRST 

8 RWDS RWDS   PIN_8 IO_ADC_IN10 

9 PIN_9 IO_ADC_IN11   PIN_9 IO_ADC_IN11 

10 PIN_10 IO_ADC_IN12   PIN_10 IO_ADC_IN12 

11 PIN_11 IO_ADC_IN13   PIN_11 IO_ADC_IN13 

12 GND GND   GND GND 

13 VDD33 VDD33   VDD33 VDD33 

14 PIN_14 IO_WKUP_ADC_IN0_CMP_PA0   PIN_14 IO_WKUP_ADC_IN0_CMP_PA0 

15 PIN_15 IO_ADC_IN1_CMP_PA1   PIN_15 IO_ADC_IN1_CMP_PA1 

16 PIN_16 IO_ADC_IN2_CMP_PA2   PIN_16 IO_ADC_IN2_CMP_PA2 

17 PIN_17 IO_ADC_IN3_CMP_PA3   PIN_17 IO_ADC_IN3_CMP_PA3 

18 GND GND   GND GND 

19 VDD33 VDD33   VDD33 VDD33 

20 PIN_20 IO_ADC_IN5_CMP_PA5_DAC1   PIN_20 IO_ADC_IN4_CMP_PA4_DAC0 

21 PIN_21 IO_ADC_IN7   PIN_21 IO_ADC_IN5_CMP_PA5_DAC1 

22 RWDS RWDS   PIN_22 IO_ADC_IN6 

23 PIN_23 IO_ADC_IN15   PIN_23 IO_ADC_IN7 

24 PIN_24 IO_ADC_IN9   PIN_24 IO_ADC_IN14 

25 PIN_25 IO_BOOT1   PIN_25 IO_ADC_IN15 

26 PIN_26 IO   PIN_26 IO_ADC_IN8 

27 PIN_27 IO   PIN_27 IO_ADC_IN9 

28 PIN_28 IO   PIN_28 IO_BOOT1 

29 PIN_29 IO   PIN_29 IO 

30 VDD33 VDD33   PIN_30 IO 

31 GND GND   PIN_31 IO 

32 VDD33 VDD33   VDD33 VDD33 

33 PIN_33 IO   PIN_33 IO 

34 PIN_34 IO   PIN_34 IO 

35 PIN_35 IO   PIN_35 IO 

36 PIN_36 IO   PIN_36 IO 

37 PIN_37 IO   PIN_37 IO 

38 PIN_38 IO   PIN_38 IO 
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39 PIN_39 IO   PIN_39 IO 

40 PIN_40 IO   PIN_40 IO 

41 PIN_41 IO   PIN_41 IO 

42 PIN_42 IO_UART0_TX   PIN_42 IO_UART0_TX 

43 PIN_43 IO_UART0_RX   PIN_43 IO_UART0_RX 

44 PIN_44 IO_USBDM   PIN_44 IO_USBDM 

45 PIN_45 IO_USBDP   PIN_45 IO_USBDP 

46 PIN_46 IO_JTMS   PIN_46 IO_JTMS 

47 PIN_47 IO   PIN_47 IO 

48 VDD33 VDD33   VDD33 VDD33 

49 PIN_49 IO_JTCK   PIN_49 IO_JTCK 

50 PIN_50 IO_JTDI   PIN_50 IO_JTDI 

51 PIN_51 IO   PIN_51 IO 

52 PIN_52 IO   PIN_52 IO 

53 PIN_53 IO   PIN_53 IO 

54 PIN_54 IO   PIN_54 IO 

55 PIN_55 IO_JTDO   PIN_55 IO_JTDO 

56 PIN_56 IO_JNTRST   PIN_56 IO_JNTRST 

57 PIN_57 IO   PIN_57 IO 

58 PIN_58 IO   PIN_58 IO 

59 PIN_59 IO   PIN_59 IO 

60 BOOT0 BOOT0   BOOT0 BOOT0 

61 PIN_61 IO   PIN_61 IO 

62 PIN_62 IO   PIN_62 IO 

63 GND GND   GND GND 

64 VDD33 VDD33   VDD33 VDD33 

 

Note: 

RWDS(PIN_8 and PIN_22) needs to be short circuited externally.VDD33 needs to be isolated from other power sources on the 

PCB using magnetic beads separately. 
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3 Clock 

 

3.1 Clock sources 

Three different clock sources can be used to drive the system clock (SYSCLK):  

(1) HSI oscillator clock  

(2) HSE oscillator clock  

(3) PLL clock  

(4) Interconnect global clocks(FPGA Core) 

 

The devices have the following two secondary clock sources: 

(1) 40 kHz low speed internal RC (LSI), which drives the independent watchdog and optionally the RTC 

used for Auto-wakeup from Stop/Standby mode. 

(2) 32.768 kHz low speed external crystal (LSE crystal), which optionally drives the real-time clock 

(RTCCLK) 

Each clock source can be switched on or off independently when it is not used, to optimize power 

consumption. 
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3.2 HSE clock 

The high speed external clock signal (HSE) can be generated from two possible clock sources:  

(1) HSE external crystal/ceramic resonator  

(2) HSE user external clock 

The resonator and the load capacitors have to be placed as close as possible to the oscillator pins in 

order to minimize output distortion and startup stabilization time. The loading capacitance values must 

be adjusted according to the selected oscillator. 
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External source (HSE bypass)  

In this mode, an external clock source must be provided. It can have a frequency of up to 100 MHz. 

You select this mode by setting the HSEBYP and HSEON bits in the Clock control register (RCC_CR). 

The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC_IN pin 

while the OSC_OUT pin should be left hi-Z.  

External crystal/ceramic resonator (HSE crystal)  

The 4 to 24 MHz external oscillator has the advantage of producing a very accurate rate on the main 

clock. The HSERDY flag indicates if the high-speed external oscillator is stable or not. At startup, the 

clock is not released until this bit is set by hardware. The HSE Crystal can be switched on and off 

using the HSEON bit. 

 

3.3 HSI clock  

The HSI clock signal is generated from an internal Oscillator and can be used directly as a system 

clock. The HSI internal oscillator has the advantage of providing a clock source at low cost (no 

external components). It also has a faster startup time than the HSE crystal oscillator.  
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3.4 PLL clock  

The internal PLL can be used to multiply HSE crystal output clock frequency.  

If the USB interface is used in the application, the PLL must be programmed to output 48 MHz. This is 

needed to provide a 48 MHz USBCLK. 

 

3.5 LSE clock 

The LSE crystal is a 32.768 kHz Low Speed External crystal or ceramic resonator. It has the 

advantage providing a low-power but highly accurate clock source to the real-time clock peripheral 

(RTC) for clock/calendar or other timing functions.  

The LSE crystal is switched on and off using the LSEON bit in Backup domain control register.  

The LSERDY flag in the Backup domain control register indicates if the LSE crystal is stable or not. At 

startup, the LSE crystal output clock signal is not released until this bit is set by hardware.  

External source (LSE bypass)  

In this mode, an external clock source must be provided. It can have a frequency of up to 1MHz. The 

external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC32_IN pin 

while the OSC32_OUT pin should be left Hi-Z.   

 

3.6 LSI clock  

The LSI clock is HSI divided by 256. It can be kept running in Stop mode for the independent 

watchdog (IWDG) and Auto-wakeup unit. The clock frequency is around 40 kHz (between 30 kHz and 

60 kHz).  

 

3.7 System clock (SYSCLK) selection  

After a system reset, the HSI oscillator is selected as system clock. When a clock source is used 

directly or through the PLL as system clock, it is not possible to stop it. A switch from one clock source 

to another occurs only if the target clock source is ready (clock stable after startup delay or PLL 

locked). 

A switch from one clock source to another occurs only if the target clock source is ready (clock stable 

after startup delay or PLL locked). 

 

3.8 RTC clock 

The RTCCLK clock source can be either the CLKLOCAL(from fpga core logic), LSE or LSI clocks. This 

is selected by programming the RTCSEL[1:0] bits in the Backup domain control register (RCC_BDCR). 

This selection cannot be modified without resetting the Backup domain. 
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The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not. 

Consequently: 

(1) If LSE is selected as RTC clock: 

The RTC continues to work even if the VDD supply is switched off, provided the VBAT supply is 

maintained. 

(2)  If LSI is selected as Auto-Wakeup unit (AWU) clock: 

The AWU state is not guaranteed if the VDD supply is powered off.  

(3) If the CLKLOCAL is used as the RTC clock: 

The RTC state is not guaranteed if the VDD supply is powered off or if the internal voltage regulator is 

powered off (removing power from the 1.2 V domain). 

The DPB bit (disable backup domain write protection) in the Power controller register must be set to 1. 

 

3.9 Watchdog clock 

If the Independent watchdog (IWDG) is started by either hardware option or software access,  

(1) Under run or stop mode 

     Select LSE or LSI clock source by setting the IWDG_STOP_CLKSEL bit in the Backup domain 

control register (RCC_BDCR). 

(2) Under Standby mode 

     HW will select LSE as clock source for IWDG. 

 

 

 



 
 

 34 / 312 

 

4 Reset 

There are three types of reset: system reset, power reset and backup domain reset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 System reset  

A system reset is generated when one of the following events occurs:  

(1) A low level on the NRST pin (external reset)  

(2) Window watchdog end of count condition (WWDG reset)  

(3) Independent watchdog end of count condition (IWDG reset)  

(4) A software reset (SW reset)  

(5) Low-power management reset   

The reset source can be identified by checking the reset flags in the Control/Status register, 

RCC_CSR. 

 

Software reset 

The SYSRESETREQ bit in MCU Application Interrupt and Reset Control Register must be set to force 

a software reset on the device.  

 

Low-power management reset 

There are two ways to generate a low-power management reset: 

(1) Reset generated when entering Standby mode: 
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This type of reset is enabled by resetting nRST_STDBY bit in User Option Bytes. In this case, 

whenever a Standby mode entry sequence is successfully executed, the device is reset instead of 

entering Standby mode. 

(2) Reset when entering Stop mode: 

This type of reset is enabled by resetting nRST_STOP bit in User Option Bytes. In this case, whenever 

a Stop mode entry sequence is successfully executed, the device is reset instead of entering Stop 

mode. 

 

4.2 Power reset  

A power reset is generated when one of the following events occurs:  

(1) Power-on/power-down reset (POR/PDR reset)  

(2) When exiting Standby mode   

 

4.3 Backup domain reset  

The backup domain has two specific resets that affect only the backup domain.  

A backup domain reset is generated when one of the following events occurs:  

(1)Software reset.  

(2) VDD33 or VBAT power on, if both supplies have previously been powered off. 
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5 Power control 

 

5.1 Power supplies 

The AG32VF requires a 3.135-to-3.465V operating voltage supply (VDD33). An embedded regulator is 

used to supply the internal 1.2V digital power. The real-time clock (RTC) and backup registers can be 

powered from the VBAT voltage when the main VDD33 supply is powered off. 

 

 

5.2 Independent ADC and DAC converter supply and reference 

voltage 

To improve conversion accuracy, the ADC and the DAC have an independent power supply which can 

be separately filtered and shielded from noise on the PCB.  

(1) The ADC and DAC voltage supply input is available on a separate VDDA pin.  

(2) An isolated supply ground connection is provided on pin VSSA.  

To ensure a better accuracy on low-voltage inputs and outputs, the user can connect a separate 

external reference voltage on VREFP. VREFP is the highest voltage, represented by the full scale 
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value, for an analog input (ADC) or output (DAC) signal. The voltage on VREFP can range from 

3.135V to VDDA. 

 

5.3 Battery backup domain  

 

To retain the content of the Backup registers and supply the RTC function when VDD33 is turned off, 

VBAT pin can be connected to an optional standby voltage supplied by a battery or by another source.  

The VBAT pin powers the RTC unit, the LSE oscillator and the OSC32_IN and OSC32_OUT Pins, 

allowing the RTC to operate even when the main digital supply (VDD33) is turned off.  

If no external battery is used in the application, it is recommended to connect VBAT externally to 

VDD33 with a 100nF external ceramic decoupling capacitor.  

When the backup domain is supplied by VDD33 (analog switch connected to VDD33).  

 

5.4 Voltage regulator  

The voltage regulator is always enabled after Reset. It works in two different modes depending on the 

application modes.  

(1) In Run and Stop modes, the regulator supplies full power to the 1.2V domain (core, memories, 

digital peripherals and interconnect logic).  

(2) In Standby Mode, the regulator is powered off. The contents of the registers and SRAM are lost 

except for the Standby circuitry and the Backup Domain. 

 

5.5 Power on reset (POR)/power down reset (PDR)  

The device has an integrated POR/PDR circuitry that allows proper operation starting from/down to 

2.2V. The device remains in Reset mode when VDD33/VDDA is below a specified threshold, 

VPOR/PDR, without the need for an external reset circuit. 
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5.6 Low-power modes  

By default, the micro-controller is in Run mode after a system or a power Reset. Several low-power 

modes are available to save power when the CPU does not need to be kept running. It is up to the 

user to select the mode that gives the best compromise between low-power consumption, short 

startup time and available wakeup sources.  

The AG32VF devices feature three low-power modes:  

(1) Sleep mode (CPU clock off, all peripherals including core peripherals are kept running)  

(2) Stop mode (all clocks are stopped)  

(3) Standby mode (1.2V domain powered-off) 

In addition, the power consumption in Run mode can be reduce by one of the following means: 

(1) Slowing down the system clocks. 

(2) Gating the clocks to the APB and AHB peripherals when they are unused. 

 

5.6.1 Slowing down system clocks 

In Run mode the speed of the system clocks can be reduced. And also slow down peripherals before 

entering Sleep mode. 

 

5.6.2 Peripheral clock gating 

In Run mode, the clocks for individual peripherals and memories can be stopped at any time to reduce 

power consumption. 

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled prior to 

executing the WFI or WFE instructions. 
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5.6.3 Sleep mode 

Entering Sleep mode 

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for Event) 

instructions. Two options are available to select the Sleep mode entry mechanism, depending on the 

SLEEPONEXIT bit in the System Control register: 

(1) Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon as WFI or 

WFE instruction is executed. 

(2)  Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as it exits the 

lowest priority ISR. 

In the Sleep mode, all I/O pins keep the same state as in the Run mode. 

 

Exiting Sleep mode 

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by the 

nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode. If the WFE 

instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as an event occurs. The 

wakeup event can be generated either by: 

(1) enabling an interrupt in the peripheral control register but not in the NVIC, and enabling the 

SEVONPEND bit in the System Control register. When the MCU resumes from WFE, the peripheral 

interrupt pending bit and the peripheral NVIC IRQ channel pending bit (in the NVIC interrupt clear 

pending register) have to be cleared. 

(2) or configuring an external or internal EXTI line in event mode. When the CPU resumes from WFE, 

it is not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel pending bit as 

the pending bit corresponding to the event line is not set. This mode offers the lowest wakeup time as 

no time is wasted in interrupt entry/exit. 

 

 

Table 1. Sleep-now 

Sleep-now mode Description 

Mode entry 

WFI (Wait for Interrupt) or WFE (Wait for Event) while: 

– SLEEPDEEP = 0 and 

– SLEEPONEXIT = 0 

Refer to the System Control register. 

Mode exit 

If WFI was used for entry: 

Interrupt: Refer to : Interrupt and exception vectors 

If WFE was used for entry 

Wakeup event: Refer to : Wakeup event management 

Wakeup latency None 

 

Table 2. Sleep-on-exit 

Sleep-on-exit Description 

Mode entry WFI (wait for interrupt) while: 
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– SLEEPDEEP = 0 and 

– SLEEPONEXIT = 1 

Refer to the System Control register. 

Mode exit Interrupt: refer to: Interrupt and exception vectors. 

Wakeup latency None 

 

 

5.6.4 Stop mode 

The Stop mode is based on the MCU deep-sleep mode combined with peripheral clock gating.  

In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI and the HSE oscillators are 

disabled. SRAM and register contents are preserved. 

In the Stop mode, all I/O pins keep the same state as in the Run mode.  

 

 Entering Stop mode 

Refer to Table 3 for details on how to enter the Stop mode. 

If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory access is 

finished. 

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB access is 

finished. 

In Stop mode, the following features can be selected by programming individual control bits: 

(1) Independent watchdog (IWDG): the IWDG is started by writing to its enable register or by hardware 

option. Once started it cannot be stopped except by a Reset.  

(2) Real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain control register 

(RCC_BDCR). 

(3) External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the Backup 

domain control register (RCC_BDCR). 

 

The ADC or DAC can also consume power during the Stop mode, unless they are disabled before 

entering it.  

 

 Exiting Stop mode 

Refer to Table 3 for more details on how to exit Stop mode. 

When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is selected 

as system clock. 

Table 3. Stop mode 

Stop mode Description 

Mode entry 

WFI (Wait for Interrupt) or WFE (Wait for Event) while: 

– Set SLEEPDEEP bit in System Control register 

– Clear PDDS bit in Power Control register (PWR_CR) 
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Note: To enter Stop mode, all EXTI Line pending bits (in Pending register 

(EXTI_PR)), all peripheral interrupt pending bits, and RTC Alarm flag must 

be reset. Otherwise, the Stop mode entry procedure is ignored and 

program execution continues. 

Mode exit 

If WFI was used for entry: 

Any EXTI Line configured in Interrupt mode (the corresponding EXTI 

Interrupt vector must be enabled in the NVIC). Refer to: 

Interrupt and exception vectors. 

If WFE was used for entry: 

Any EXTI Line configured in event mode. Refer to: 

Wakeup event management 

Wakeup latency HSI RC wakeup time  

 

 

5.6.5 Standby mode 

The Standby mode allows to achieve the lowest power consumption. It is based on the deep-sleep 

mode, with the voltage regulator disabled. The 1.2V domain is consequently powered off. The PLL, 

the HSI oscillator and the HSE oscillator are also switched off. SRAM and register contents are lost 

except for registers in the Backup domain and Standby circuitry. 

 

 Entering Standby mode 

Refer to Table 4 for more details on how to enter Standby mode. 

In Standby mode, the following features can be selected by programming individual control bits: 

(1) Independent watchdog (IWDG): the IWDG is started by writing to its enable register or by hardware 

option. Once started it cannot be stopped except by a reset.  

(2) Real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain control register 

(RCC_BDCR). 

(3) External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the Backup 

domain control register (RCC_BDCR) 

 Exiting Standby mode 

The micro-controller exits the Standby mode when an external reset (NRST pin), an IWDG reset, a 

rising edge or falling edge on the WKUP pin or the rising edge of an RTC alarm occurs. All registers 

are reset after wakeup from Standby. 

After waking up from Standby mode, program execution restarts in the same way as after a Reset. 

The SBF status flag in the Power control/status register (PWR_CSR) indicates that the MCU was in 

Standby mode. 

Refer to Table 4 for more details on how to exit Standby mode. 

 

Table 4. Standby mode 

Stop mode Description 
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Mode entry 

WFI (Wait for Interrupt) or WFE (Wait for Event) while: 

– Set SLEEPDEEP in System Control register 

– Set PDDS bit in Power Control register (PWR_CR) 

– Clear WUF bit in Power Control/Status register (PWR_CSR) 

– No interrupt (for WFI) or event (for WFI) is pending 

Mode exit 
WKUP pin rising edge, RTC alarm event’s rising edge, external Reset in 

NRST pin, IWDG Reset. 

Wakeup latency Reset phase 

 

I/O states in Standby mode 

In Standby mode, all I/O pins are high impedance except: 

(1) Reset pin (still available) 

(2) CLKRTCOUT pin if configured for calibration out 

(3) WKUP pin, if enabled 

 

5.6.6  Auto-wakeup (AWU) from low-power mode 

The RTC can be used to wakeup the MCU from low-power mode without depending on an external 

interrupt (Auto-wakeup mode). The RTC provides a programmable time base for waking up from Stop 

or Standby mode at regular intervals. For this purpose, two of the three alternative RTC clock sources 

can be selected by programming the RTCSEL[1:0] bits in the Backup domain control register 

(RCC_BDCR): 

(1) Low-power 32.768 kHz external crystal oscillator (LSE OSC). 

This clock source provides a precise time base with very low-power consumption. 

(2) Low-power internal RC Oscillator (LSI RC) 

This clock source has the advantage of saving the cost of the 32.768 kHz crystal. 
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6 Interrupt Controller 

 

The AG32 device embed a nested vectored interrupt controller able to manage 16 priority levels, and 

handle up to 44 maskable interrupt channels plus the 16 interrupt lines of the RISC-V core. 

 

6.1 Local interrupts 

4 local interrupts (LOCAL_INT0-3) are connected directly to the core and have lower latencies. They 

have fixed priorities. 

 

6.2 External interrupts 

External interrupts are routed through the Platform-Level Interrupt Controller (PLIC). They have 

programmable priority levels and a threshold. The interrupt numbers are listed below: 

 

Interrupt Name Interrupt Number Comment 

FLASH 1  

RTC 2  

FCB0 3  

WATCHDOG0 4  

SPI0 5  

SPI1 6  

GPIO0 7  

GPIO1 8  

GPIO2 9  

GPIO3 10  

GPIO4 11  

GPIO5 12  

GPIO6 13  
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GPIO7 14  

GPIO8 15  

GPIO9 16  

TIMER0 17  

TIMER1 18  

GPTIMER0 19  

GPTIMER1 20  

GPTIMER2 21  

GPTIMER3 22  

GPTIMER4 23  

UART0 24  

UART1 25  

UART2 26  

UART3 27  

UART4 28  

CAN0 29  

I2C0 30  

I2C1 31  

DMAC0_INTR 32 DMA combined interrupt 

DMAC0_INTTC 33 DMA terminal count interrupt 

DMAC0_INTERR 34 DMA error interrupt 

USB0 35  

MAC0 36  

EXT_INT0 37  

EXT_INT1 38  

EXT_INT2 39  

EXT_INT3 40  

EXT_INT4 41  

EXT_INT5 42  

EXT_INT6 43  
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EXT_INT7 44  

 

6.3 Overall priority 

From highest priority to lowest: 

◼ LOCAL_INT3 

◼ LOCAL_INT2 

◼ LOCAL_INT1 

◼ LOCAL_INT0 

◼ External interrupts from PLIC 

◼ Machine software interrupt 

◼ Machine timer interrupt 

 

6.4 Interrupt enable 

 The machine interrupt enable (MIE) bit of the RISC-V machine status register (mstatus) must 

be set as a global enable for all interrupts. 

 Corresponding bits in the RISC-V machine interrupt enable register (mie) must be set for 

each type of interrupt to work: 

◼ The machine external interrupt enable (MEIE) bit for external interrupts. 

◼ The machine software interrupt enable (MSIE) bit for machine software interrupt. 

◼ The machine timer interrupt enable (MTIE) bit for machine timer interrupt. 

◼ Bits 16-19 for LOCAL_INT0-3, respectively. 

 

6.5 Interrupt registers 

⚫ Machine software interrupt pending (MSIP) 

 Address: 0x2000000 

 Bit 0: 

◼ Write 1 to trigger machine software interrupt 

◼ Write 0 to clear the pending status 

⚫ Machine timer compare low (MTIMECMP_LO) 

 Address: 0x2004000 

 Bit [31:0]: Lower 32 bits of the machine timer compare register 

⚫ Machine timer compare high (MTIMECMP_HI) 

 Address: 0x2004004 

 Bit [31:0]: Higher 32 bits of the machine timer compare register 
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⚫ Machine timer low (MTIME_LO) 

 Address: 0x200bFF8 

 Bit [31:0] Lower 32 bits of the machine timer register 

⚫ Machine timer high (MTIME_HI) 

 Address: 0x200bFFC 

 Bit [31:0] Higher 32 bits of the machine timer register 

⚫ External interrupt priority (PRIORITY) 

 Address: 0xC000000 + (interrupt number * 4) 

 Each priority registers holds the priority level of the corresponding interrupt 

 The valid range of priority level is from 0 (lowest, interrupt disabled) to 15 (highest). 

⚫ External interrupt pending (PENDING) 

 Address: 0xC001000 

 Each interrupt has 1 bit pending status. The bit offset is decided by the interrupt number. 

 The bit is set automatically by hardware when the corresponding interrupt is triggered and is 

cleared automatically by reading the CLAIM_COMPLETE register when the corresponding 

interrupt has the highest priority. 

⚫ External interrupt enable (ENABLE) 

 Address: 0xC002000 

 Each interrupt has 1 bit enable. The bit offset is decided by the interrupt number. 

 Each bit can be set or cleared by software. 

⚫ External interrupt threshold (THRESHOLD) 

 Address: 0xC200000 

 Bit [3:0]: Can be set by software to determine the external interrupt threshold. Only those 

external interrupts that have higher priority than THRESHOLD will trigger an interrupt to the 

CPU core. 

⚫ External interrupt claim and complete (CLAIM_COMPLETE) 

 Address: 0xC200004 

 Reading this register will return the highest priority pending interrupt number and clear the 

corresponding pending bit (only for enabled interrupts with above threshold priority). Since 

Interrupts are numbered starting from 1, a read value of 0 means no active interrupt. A write 

to this register will complete the interrupt and make the written interrupt number ready to 

respond again 
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7 Dual Timer(Basic Timers) 

7.1 Introduction 

The Dual-Timer module consists of two programmable 32/16-bit down counters that can generate 

interrupts on reaching zero. 

• Two 32/16-bit down counters with free-running, periodic and one-shot modes.  

• Common clock with separate clock-enables for each timer gives flexible control of the timer intervals.  

• Interrupt output generation on timer count reaching zero.  

• Identification registers that uniquely identify the Dual-Timer module. These can be used by software 

to automatically configure itself. 

 

Figure below shows a simplified block diagram of the module. 
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7.2 Functional Overview 

7.2.1 Overview 

The Dual-Timer module consists of two identical programmable Free Running Counters (FRCs) that can 

be configured for 32-bit or 16-bit operation and one of three timer modes;  

• free-running  

• periodic  

• one-shot. 

The FRCs operate from a common timer clock, TIMCLK with each FRC having its own clock enable input, 

TIMCLKEN1 and TIMCLKEN2. Each FRC also has a prescaler that can divide down the enabled 

TIMCLK rate by 1, 16, or 256. This enables the count rate for each FRC to be controlled independently 

using their individual clock enables and prescalers. 

TIMCLK can be equal to or be a submultiple of the PCLK frequency. However, the positive edges of 

TIMCLK and PCLK must be synchronous and balanced. 

The operation of each Timer module is identical. A Timer module can be programmed for a 32-bit or 16-

bit counter size and one of three timer modes using the Control Register. The three timer modes are: 

Free-running  The counter operates continuously and wraps around to its maximum value each time 

that it reaches zero.  

Periodic  The counter operates continuously by reloading from the Load Register each time that 

the counter reaches zero.  

One-shot  The counter is loaded with a new value by writing to the Load Register. The counter 

decrements to zero and then halts until it is reprogrammed. 

The timer count is loaded by writing to the Load Register and, if enabled, the timer count decrements at 

a rate determined by TIMCLK, TIMCLKENX, and the prescaler setting. When the Timer counter is 

already running, writing to the Load Register causes the counter to immediately restart from the new 

value. 

An alternative way of loading the Timer count is by writing to the Background Load Register. This has no 

immediate effect on the current count but the counter continues to decrement. On reaching zero, the 

Timer count is reloaded from the new load value if it is in periodic mode. 

When the Timer count reaches zero an interrupt is generated. The interrupt is cleared by writing to the 

Interrupt Clear Register. The external interrupt signals can be masked off by the Interrupt Mask Registers.  

The current counter value can be read from the Value Register at any time. 
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7.2.2 Functional description 

The Dual-Timer module block diagram is shown in Figure below. 

 

 

7.2.2.1 AMBA APB Interface 

The AMBA APB slave interface generates read and write decodes for accesses to all registers in the 

Dual-Timer module. 

 

7.2.2.2 Free-running counter blocks 

The two FRCs are identical and contain the 32/16-bit down counter and interrupt functionality. The counter 

logic is clocked independently of PCLK by TIMCLK in conjunction with a clock enable TIMCLKENX 

although there are constraints on the relationship between PCLK and TIMCLK.  

Although the two FRCs are driven from a common clock, TIMCLK, each timer count rate can be 

independently controlled by their respective clock enables, TIMCLKEN1 and TIMCLKEN2. The prescaler 

in each FRC gives a further independent control of the count rate of each FRC. 
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7.2.2.3 Interface reset 

The Dual-Timer module is reset by the global reset signal PRESETn. 

PRESETn can be asserted asynchronously to PCLK but must be deasserted synchronously to the rising 

edge of PCLK. PRESETn is used to reset the state of the Dual-Timer module registers. The Dual-Timer 

module requires that PRESETn is asserted LOW for at least one period of PCLK. In summary, the Timer 

is initialized to the following state after reset: 

• the counter is disabled  

• free-running mode is selected  

• 16-bit counter mode is selected  

• prescalers are set to divide by 1  

• interrupts are cleared but enabled  

• the Load Register is set to zero  

• the counter Value is set to 0xFFFFFFFF. 

 

7.2.2.4 Clock signals and clock enables 

The Dual-Timer module uses two input clocks: 

• PCLK is used to time all APB accesses to the Dual-Timer module registers.  

• TIMCLK is qualified by the clock enables, TIMCLKEN1 and TIMCLKEN2, and used to clock the 

prescalers, counters and their associated interrupt logic. This qualified TIMCLK rate is referred to as the 

effective timer clock rate. The prescaler counter only decrements on a rising edge of TIMCLK when 

TIMCLKENX is HIGH. The Timer counter only decrements on a rising edge of TIMCLK when 

TIMCLKENX is HIGH and the prescaler counter generates an enable. 

 

The relationship between TIMCLK and PCLK must observe the following constraints: 

• the rising edges of TIMCLK must be synchronous and balanced with a rising edge of PCLK  

• TIMCLK frequency cannot be greater than PCLK frequency. 

 

TIMCLK, TIMCLKEN1, and TIMCLKEN2 can be used in the ways described in the following sections: 

• TIMCLK equals PCLK and TIMCLKENX equals one  

• TIMCLK equals PCLK and TIMCLKENX is pulsed  

• TIMCLK is less than PCLK and TIMCLKENX equals  

• TIMCLK is less than PCLK and TIMCLKENX is pulsed. 

Note: 

Unless otherwise stated these examples use a prescale setting of divide by 1. The examples apply to 

either Timer1 or Timer2 in the module. TIMCLKENX refers to either TIMCLKEN1 or TIMCLKEN2. 

 

TIMCLK equals PCLK and TIMCLKENX equals one 

Figure below shows the case where TIMCLK is identical to PCLK and TIMCLKENX is permanently 

enabled. In this case, the counter is decremented on every TIMCLK edge. 
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TIMCLK equals PCLK and TIMCLKENX is pulsed  

Figure below shows the case where TIMCLK is identical to PCLK but TIMCLKENX only enables every 

second TIMCLK edge. In this case, the counter is decremented on every second TIMCLK rising edge. 

 

 

TIMCLK is less than PCLK and TIMCLKENX equals one  

Figure below shows the case where TIMCLK frequency is a submultiple of the PCLK frequency but the 

rising edges of TIMCLK are synchronous and balanced with PCLK edges. TIMCLKENX is permanently 

enabled. In this case, the counter is decremented on every TIMCLK rising edge. 

 

 

TIMCLK is less than PCLK and TIMCLKENX is pulsed 

Figure below shows the case where TIMCLK frequency is a submultiple of the PCLK frequency but the 

rising edges of TIMCLK are synchronous and balanced with PCLK edges. TIMCLKENX only enables 

every second TIMCLK edge. In this case, the counter is decremented on every second TIMCLK rising 

edge. 
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7.2.2.5 Prescaler operation 

The prescaler generates a timer clock enable that is used to enable the decrementing of the timer counter 

at one of the following rates: 

• the effective timer clock rate where TIMCLK is qualified by TIMCLKENX  

• the effective timer clock rate divided by 16  

• the effective timer clock rate divided by 256. 

Figure below shows how the timer clock enable is generated by the prescaler 

 

 

Figure below shows an example of how the prescaler generates the timer clock enable for a prescaler 

setting of divide by 16. 

 
 

7.2.2.6 Timer operation 

After the initial application and release of PRESETn, the Timer state is initialized as follows: 

• the counter is disabled, TimerEn=0  

• free-running mode is selected, TimerMode=0 and OneShot=0  

• 16-bit counter mode is selected, TimerSize=0  

• prescalers are set to divide by 1, TimerPre=0x0  

• interrupts are cleared but enabled, IntEnable=1  

• the Load Register is set to zero  

• the counter Value is set to 0xFFFFFFFF. 

 

The operation in each of the three Timer modes is described in:  
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• Free-running mode  

• Periodic mode  

• One-shot mode 

 

Free-running mode 

Free-running mode is selected by setting the following bits in the TimerControl Register:  

• set TimerMode bit to 1  

• set OneShot bit to 0. 

The 32-bit or 16-bit counter operation is selected by setting the TimerSize bit appropriately in the 

TimerControl Register. 

 

On reset the timer value is initialized to 0xFFFFFFFF and if the counter is enabled then the count 

decrements by one for each TIMCLK positive edge when TIMCLKENX is HIGH and the prescaler 

generates an enable pulse. Alternatively, a new initial counter value can be loaded by writing to the 

TimerXLoad Register and the counter starts decrementing from this value if the counter is enabled. 

In 32-bit mode, when the count reaches zero, 0x00000000, an interrupt is generated and the counter 

wraps around to 0xFFFFFFFF irrespective of the value in the TimerXLoad Register. The counter starts 

to decrement again and this whole cycle repeats for as long as the counter is enabled. 

In 16-bit mode, only the least significant 16-bits of the counter are decremented and when the count 

reaches 0x0000, an interrupt is generated and the counter wraps round to 0xFFFF irrespective of the 

value in the TimerXLoad Register. 

If the counter is disabled by clearing the TimerEn bit in the TimerControl Register, the counter halts and 

holds its current value. If the counter is re-enabled again then the counter continues decrementing from 

the current value. 

The counter value can be read at any time by reading the TimerXValue Register. 

 

Periodic mode 

Periodic mode is selected by setting the following bits in the TimerControl Register:  

• set TimerMode bit to 0  

• set OneShot bit to 0. 

The 32-bit or 16-bit counter operation is selected by setting the TimerSize bit appropriately in the 

TimerControl Register.  

An initial counter value can be loaded by writing to the TimerXLoad Register and the counter starts 

decrementing from this value if the counter is enabled.  

In 32-bit mode, the full 32 bits of the counter are decremented and when the count reaches zero, 

0x00000000, an interrupt is generated and the counter reloads with the value in the TimerXLoad Register. 

The counter starts to decrement again and this whole cycle repeats for as long as the counter is enabled. 

In 16-bit mode, only the least significant 16-bits of the counter are decremented and when the count 

reaches 0x0000, an interrupt is generated and the counter reloads with the value in the TimerXLoad 

Register. The counter starts to decrement again and this whole cycle repeats for as long as the counter 

is enabled.  

If a new value is loaded into the counter by writing to the TimerXLoad Register while the counter is running 

then the counter values changes to the new load value on the next TIMCLK when TIMCLKENX is HIGH. 

If a new value is written to the Background Load Register, TimerXBGLoad, while the counter is running 
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then the TimerXLoad Register is also updated with the same load value but the counter continues to 

decrement to zero. When it reaches zero, the counter reloads with the new load value and uses this new 

load value for each subsequent reload for as long as the timer is enabled in periodic mode.  

If the counter is disabled by clearing the TimerEn bit in the TimerControl Register, the counter halts and 

holds its current value. If the counter is re-enabled again then the counter continues decrementing from 

the current value. 

 

One-shot mode 

One-shot timer mode is selected by setting the OneShot bit in the TimerControl Register to 1. The 

TimerMode bit has no effect in one-shot mode.  

The 32-bit or 16-bit counter operation is selected by setting the TimerSize bit appropriately in the 

TimerControl Register.  

To initiate a count down sequence in one-shot mode, write a new load value to the TimerXLoad Register 

and the counter starts decrementing from this value if enabled.  

In 32-bit mode, the full 32-bits of the counter are decremented and when the count reaches zero, 

0x00000000, an interrupt is generated and the counter halts.  

In 16-bit mode, only the least significant 16-bits of the counter are decremented and when the count 

reaches 0x0000, an interrupt is generated and the counter halts.  

One-shot mode can be retriggered by writing a new value to the TimerXLoad Register. The counter values 

changes to the new load value on the next TIMCLK when TIMCLKENX is HIGH. 

 

7.2.2.7 Interrupt behavior 

An interrupt is generated if IntEnable=1 and the counter reaches 0x00000000 in 32-bit mode or 

0xXXXX0000 in 16-bit mode. The most significant 16 bits of the counter are ignored in 16-bit mode.  

When the Timer module raises an interrupt by asserting TIMINTX, the timing of this signal is generated 

from a rising clock edge of TIMCLK enabled by TIMCLKENX. When the interrupt is cleared by a write to 

the Interrupt Clear Register, TimerXIntClr, the TIMINTX signal is deasserted immediately in the PCLK 

domain rather than waiting for the next enabled TIMCLK rising edge.  

Figure below illustrates an example of the timing for an interrupt being raised and cleared. 

 

 

The interrupt signals generated by the Timer module, TIMINT1 and TIMINT2, can be masked by setting 

the IntEnable bit to 0 in the TimerXControl Register. The raw interrupt status prior to masking can be read 
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from the TimerXRIS Register and the masked interrupt status can be read from the TimerXMIS Register. 

Figure below shows how the raw and masked interrupt status is accessed. 

 

 

7.2.2.8 Programming the timer interval 

Table below shows the equations that are used to calculate the timer interval generated for each timer 

mode in terms of: 

• TIMCLKFREQ is the frequency of TIMCLK. 

• TIMCLKENXDIV is the effective division of the TIMCLK rate by the clock enable, TIMCLKENX. For 

example, if TIMCLKENX enables every fourth TIMCLK edge then TIMCLKENXDIV=4.  

• PRESCALEDIV is the prescaler division factor of 1, 16, or 256. Derived from Control Register bits[3:2].  

• TimerXLoad is the value in the Load Register. 

 
 

 

 

 

 

For example, the TimerXLoad value required for a 1ms periodic interval with TIMCLK=100MHz, 

TIMCLKENXDIV=1, and PRESCALEDIV=1 is calculated as shown in Example below. 
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Note: 

The minimum valid value for TimerXLoad is 1. If TimerXload is set to 0 then an interrupt is generated 

immediately. 

 

7.3 Programmer’s Model 

7.3.1 ummary of registers 

 

Address Type Width Reset value Name Description 

Base+0x00 Read/write 32 0x00000000 Timer1Load See Load Register, TimerXLoad on 

Chapter 3.2.1 

Base+0x04 Read 32 0xFFFFFFFF Timer1Value See Current Value Register, 

TimerXValue on Chapter 3.2.2 

Base+0x08 Read/write 8 0x20 Timer1Control See Control Register, TimerXControl 

on Chapter 3.2.3 

Base+0x0C Write - - Timer1IntClr See Interrupt Clear Register. 

TimerXIntClr on Chapter 3.2.4 

Base+0x10 Read 1 0x0 Timer1RIS See Raw Interrupt Status Register, 

TimerXRIS on Chapter 3.2.5 

Base+0x14 Read 1 0x0 Timer1MIS See Masked Interrupt Status Register, 

TimerXMIS on Chapter 3.2.6 

Base+0x18 Read/write 32 0x00000000 Timer1BGLoad See Background Load Register, 

TimerXBGLoad on Chapter 3.2.7 

Base+0x20 Read/write 32 0x00000000 Timer2Load See Load Register, TimerXLoad on 

Chapter 3.2.1 

Base+0x24 Read 32 0xFFFFFFFF Timer2Value See Current Value Register, 

TimerXValue on Chapter 3.2.2 

Base+0x28 Read/write 8 0x20 Timer2Control See Control Register, TimerXControl 

on Chapter 3.2.3 

Base+0x2C Write - - Timer2IntClr See Interrupt Clear Register. 

TimerXIntClr on Chapter 3.2.4 
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Base+0x30 Read 1 0x0 Timer2RIS See Raw Interrupt Status Register, 

TimerXRIS on Chapter 3.2.5 

Base+0x34 Read 1 0x0 Timer2MIS See Masked Interrupt Status Register, 

TimerXMIS on Chapter 3.2.6 

Base+0x38 Read/write 32 0x00000000 Timer2BGLoad See Background Load Register, 

TimerXBGLoad on Chapter 3.2.7 

 

 

7.4 Register descriptions 

7.4.1.1 Load Register, TimerXLoad 

The TimerXLoad Register is a 32-bit register that contains the value from which the counter is to 

decrement. This is the value used to reload the counter when Periodic mode is enabled, and the current 

count reaches zero.  

When this register is written to directly, the current count immediately resets to the new value at the next 

rising edge of TIMCLK which is enabled by TIMCLKENX. 

 

Note: 

The minimum valid value for TimerXLoad is 1. If TimerXload is set to 0 then an interrupt is generated 

immediately 

 

The value in this register is also over-written if the TimerXBGLoad Register is written to, but the current 

count is not immediately affected. 

If values are written to both the TimerXLoad and TimerXBGLoad Registers before an enabled rising edge 

on TIMCLK, then on the next enabled TIMCLK edge the value written to the TimerXLoad value replaces 

the current count value. After that, each time the counter reaches zero the current count value resets to 

the value written to TimerXBGLoad. 

 

Reading from the TimerXLoad Register at any time after the two writes have occurred retrieves the value 

written to TimerXBGLoad. That is, the value read from TimerXLoad is always the value that takes effect 

for Periodic mode after the next time the counter reaches zero. 

 

7.4.1.2 Current Value Register, TimerXValue 

The TimerXValue Register is a 32-bit read-only register that gives the current value of the decrementing 

counter.  

After a load operation has taken place by writing a new load value to TimerXLoad, the TimerXValue 

register reflects the new load value immediately in the PCLK clock domain without waiting for the next 

TIMCLK edge qualified by TIMCLKENX. 

Note: 
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The most significant 16 bits of the 32-bit TimerXValue Register are not automatically set to 0 when in 16-

bit timer mode. If the timer is in 16-bit mode then the most significant 16 bits of the TimerXValue Register 

might have a non-zero value if the timer was previously in 32-bit mode and a write to the TimerXLoad 

Register has not occurred since the change to 16-bit mode. 

 

7.4.1.3 Control Register, TimerXControl 

The bit assignments of the Control Register are listed in Table below. 

 

 
 

Caution: 

The counter mode, size or prescale settings must not be changed while the Timer module is running. If a 

new configuration is required then the Timer module must be disabled and then the new configuration 

values written to the appropriate registers. The Timer module must then be re-enabled after the 

configuration changes are complete. Failure to follow this procedure can result in unpredictable behavior 

of the device. 



 
 

 59 / 312 

 

 

7.4.1.4 Interrupt Clear Register. TimerXIntClr 

Any write to this register, clears the interrupt output from the counter. 

 

7.4.1.5 Raw Interrupt Status Register, TimerXRIS 

The TimerXRIS Register indicates the raw interrupt status from the counter. The bit assignment is listed 

in Table below. 

 

 

7.4.1.6 Masked Interrupt Status Register, TimerXMIS 

The TimerXMIS Register indicates the masked interrupt status from the counter. This value is the logical 

AND of the raw interrupt status with the Timer Interrupt Enable bit from the control register, and is the 

same value which is passed to the interrupt output pin, TIMINTX. The bit assignment is listed in Table 

below. 

 

 

 

 

 

 

 

 

 

7.4.1.7 Background Load Register, TimerXBGLoad 

The TimerXBGLoad Register is a 32-bit register that contains the value from which the counter is to 

decrement. This is the value used to reload the counter when Periodic mode is enabled, and the current 

count reaches zero.  
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This provides an alternative method of accessing the TimerXLoad Register. The difference is that writes 

to TimerXBGLoad do not cause the counter to restart from the new value immediately.  

Reading from this register returns the same value returned from TimerXLoad. See Load Register, 

TimerXLoad on page before for more information. 
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8 Advanced-control timers 

8.1 Introduction 

The advanced-control timers consist of a 32-bit auto-reload counter driven by a 

programmable prescaler. 

It may be used for a variety of purposes, including measuring the pulse lengths of input 

signals (input capture) or generating output waveforms (output compare, PWM, 

complementary PWM with dead-time insertion). 

Pulse lengths and waveform periods can be modulated from a few microseconds to several 

milliseconds using the timer prescaler and the RCC clock controller prescalers. 

The advanced-control and general-purpose timers are completely independent, and do not 

share any resources.  

8.2 Main features 

Timer features include: 

• 32-bit up, down, up/down auto-reload counter. 

• 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock 

frequency either by any factor between 1 and 65536. 

• Up to 4 independent channels for: 

– Input capture 

– Output compare 

– PWM generation (Edge and Center-aligned Mode) 

– One-pulse mode output 

• Complementary outputs with programmable dead-time 

• Synchronization circuit to control the timer with external signals and to interconnect 

several timers together. 

• Repetition counter to update the timer registers only after a given number of cycles 

of the counter. 

• Break input to put the timer’s output signals in reset state or in a known state. 

 Interrupt/DMA generation on the following events: 

– Update: counter overflow/underflow, counter initialization (by software or 

internal/external trigger) 
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– Trigger event (counter start, stop, initialization or count by internal/external 

trigger) 

– Input capture 

– Output compare 

– Break input 

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning 

purposes 

• Trigger input for external clock or cycle-by-cycle current management 

 

Figure 1. Advanced-control timer block diagram 
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8.3 Functional description 

8.3.1 Time-base unit 

The main block of the programmable advanced-control timer is a 16-bit counter with its 

related auto-reload register. The counter can count up, down or both up and down. The 

counter clock can be divided by a prescaler.  

The counter, the auto-reload register and the prescaler register can be written or read by 

software. This is true even when the counter is running. 

The time-base unit includes: 

• Counter register (TCNT) 

• Prescaler register (PSC) 

• Auto-reload register (ARR) 

• Repetition counter register (RCR) 

The auto-reload register is preloaded. Writing to or reading from the auto-reload register 

accesses the preload register. The content of the preload register are transferred into the 

shadow register permanently or at each update event (UEV), depending on the auto-reload 

preload enable bit (ARPE) in CR1 register. The update event is sent when the counter 

reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the 

CR1 register. It can also be generated by software. The generation of the update event is 

described in detailed for each configuration. 

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the 

counter enable bit (CEN) in CR1 register is set (refer also to the slave mode controller 

description to get more details on counter enabling).  

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the CR1 

register. 

         Prescaler description 

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. 

It is based on a 16-bit counter controlled through a 16-bit register (in the PSC register). It 

can be changed on the fly as this control register is buffered. The new prescaler ratio is 

taken into account at the next update event. 

Figure 2 and Figure 3 give some examples of the counter behavior when the prescaler ratio 

is changed on the fly: 
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Figure 2. Counter timing diagram with prescaler division change from 1 to 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Counter timing diagram with prescaler division change from 1 to 4 
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8.3.2 Counter modes 

         Upcounting mode 

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the ARR 

register), then restarts from 0 and generates a counter overflow event. 

If the repetition counter is used, the update event (UEV) is generated after upcounting is 

repeated for the number of times programmed in the repetition counter register plus one 

(RCR+1). Else the update event is generated at each counter overflow. 

Setting the UG bit in the EGR register (by software or by using the slave mode controller) 

also generates an update event. 

The UEV event can be disabled by software by setting the UDIS bit in the CR1 register. 

This is to avoid updating the shadow registers while writing new values in the preload 

registers. Then no update event occurs until the UDIS bit has been written to 0. However, 

the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate 

does not change). In addition, if the URS bit (update request selection) in CR1 register is 

set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus 

no interrupt or DMA request is sent). This is to avoid generating both update and capture 

interrupts when clearing the counter on the capture event. 

When an update event occurs, all the registers are updated and the update flag (UIF bit in 

SR register) is set (depending on the URS bit): 

• The repetition counter is reloaded with the content of RCR register, 

• The auto-reload shadow register is updated with the preload value (ARR), 

• The buffer of the prescaler is reloaded with the preload value (content of the PSC 

register). 

The following figures show some examples of the counter behavior for different clock 

frequencies when ARR=0x36. 
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Figure 4. Counter timing diagram, internal clock divided by 1 
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Figure 5. Counter timing diagram, internal clock divided by 2 

 

Figure 6. Counter timing diagram, internal clock divided by 4 

Figure 7. Counter timing diagram, internal clock divided by N 
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Figure 8. Counter timing diagram, update event when ARPE=0 (ARR not preloaded) 

Figure 9. Counter timing diagram, update event when ARPE=1 (ARR preloaded) 
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           Downcounting mode 

In downcounting mode, the counter counts from the auto-reload value (content of the ARR 

register) down to 0, then restarts from the auto-reload value and generates a counter 

underflow event. 

If the repetition counter is used, the update event (UEV) is generated after downcounting 

is repeated for the number of times programmed in the repetition counter register plus one 

(RCR+1). Else the update event is generated at each counter underflow. 

Setting the UG bit in the EGR register (by software or by using the slave mode controller) 

also generates an update event. 

The UEV update event can be disabled by software by setting the UDIS bit in CR1 register. 

This is to avoid updating the shadow registers while writing new values in the preload 

registers. Then no update event occurs until UDIS bit has been written to 0. However, the 

counter restarts from the current auto-reload value, whereas the counter of the prescaler 

restarts from 0 (but the prescale rate doesn’t change).  

In addition, if the URS bit (update request selection) in CR1 register is set, setting the  

UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt 

or DMA request is sent). This is to avoid generating both update and capture interrupts 

when clearing the counter on the capture event. 

When an update event occurs, all the registers are updated and the update flag (UIF bit in 

SR register) is set (depending on the URS bit): 

• The repetition counter is reloaded with the content of RCR register 

• The buffer of the prescaler is reloaded with the preload value (content of the PSC 

register) 

• The auto-reload active register is updated with the preload value (content of the ARR 

register). Note that the auto-reload is updated before the counter is reloaded, so that 

the next period is the expected one 

The following figures show some examples of the counter behavior for different clock 

frequencies when ARR=0x36. 
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Figure 10. Counter timing diagram, internal clock divided by 1 
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Figure 11. Counter timing diagram, internal clock divided by 2 
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Figure 12. Counter timing diagram, internal clock divided by 4 

 

Figure 13. Counter timing diagram, internal clock divided by N 

MS40510V1 

0036 0035 0001 0000 

CK_PSC 

Timerclock = CK_CNT 

Counter register 

Update event (UEV) 

Counter underflow 

Update interrupt flag (UIF) 

CNT_EN 

00 1 F 20 

MS31187V1 

CK_PSC 

Timerclock = CK_CNT 

Counter register 

Update event (UEV) 

Counter underflow 

Update interrupt flag 
 (UIF) 

36 



 
 

 73 / 312 

 

 

Figure 14. Counter timing diagram, update event when repetition counter is not used 

 

           Center-aligned mode (up/down counting) 

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the 

ARR register) – 1, generates a counter overflow event, then counts from the autoreload 

value down to 1 and generates a counter underflow event. Then it restarts counting from 

0. 

Center-aligned mode is active when the CMS bits in CR1 register are not equal to '00'. The 

Output compare interrupt flag of channels configured in output is set when: the counter 

counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned 

mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = 

"11"). 

In this mode, the DIR direction bit in the CR1 register cannot be written. It is updated by 

hardware and gives the current direction of the counter. 

The update event can be generated at each counter overflow and at each counter 

underflow or by setting the UG bit in the EGR register (by software or by using the slave 

mode controller) also generates an update event. In this case, the counter restarts counting 

from 0, as well as the counter of the prescaler. 

The UEV update event can be disabled by software by setting the UDIS bit in the CR1 

register. This is to avoid updating the shadow registers while writing new values in the 

preload registers. Then no update event occurs until UDIS bit has been written to 0. 
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However, the counter continues counting up and down, based on the current auto-reload 

value.  

In addition, if the URS bit (update request selection) in CR1 register is set, setting the  

UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt 

or DMA request is sent). This is to avoid generating both update and capture interrupts 

when clearing the counter on the capture event. 

When an update event occurs, all the registers are updated and the update flag (UIF bit in 

SR register) is set (depending on the URS bit): 

• The repetition counter is reloaded with the content of RCR register 

• The buffer of the prescaler is reloaded with the preload value (content of the PSC 

register) 

• The auto-reload active register is updated with the preload value (content of the ARR 

register). Note that if the update source is a counter overflow, the autoreload is 

updated before the counter is reloaded, so that the next period is the expected one 

(the counter is loaded with the new value). 

The following figures show some examples of the counter behavior for different clock 

frequencies. 

Figure15. Counter timing diagram, internal clock divided by 1, ARR = 0x6 
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Figure16. Counter timing diagram, internal clock divided by 2 

 

 

Figure17. Counter timing diagram, internal clock divided by 4, ARR=0x36 
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Figure 18. Counter timing diagram, internal clock divided by N 
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   Figure 19. Counter timing diagram, update event with ARPE=1 (counter underflow) 

 

Figure 20. Counter timing diagram, Update event with ARPE=1 (counter overflow) 
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8.3.3 Repetition counter 

Time-base unit describes how the update event (UEV) is generated with respect to the 

counter overflows/underflows. It is actually generated only when the repetition counter has 

reached zero. This can be useful when generating PWM signals. 

This means that data are transferred from the preload registers to the shadow registers 

(ARR auto-reload register, PSC prescaler register, but also CCRx capture/compare 

registers in compare mode) every N+1 counter overflows or underflows, where N is the 

value in the RCR repetition counter register. 

The repetition counter is decremented: 

• At each counter overflow in upcounting mode, 

• At each counter underflow in downcounting mode, 

• At each counter overflow and at each counter underflow in center-aligned mode. 

Although this limits the maximum number of repetition to 128 PWM cycles, it makes 

it possible to update the duty cycle twice per PWM period. When refreshing compare 

registers only once per PWM period in center-aligned mode, maximum resolution is 

2xTck, due to the symmetry of the pattern. 

The repetition counter is an auto-reload type; the repetition rate is maintained as defined 

by the RCR register value (refer to Figure 21). When the update event is generated by 

software (by setting the UG bit in EGR register) or by hardware through the slave mode 

controller, it occurs immediately whatever the value of the repetition counter is and the 

repetition counter is reloaded with the content of the RCR register. 

In center-aligned mode, for odd values of RCR, the update event occurs either on the 

overflow or on the underflow depending on when the RCR register was written and when 

the counter was started. If the RCR was written before starting the counter, the UEV occurs 

on the overflow. If the RCR was written after starting the counter, the UEV occurs on the 

underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or 

underflow event depending on when RCR was written. 
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Figure 21. Update rate examples depending on mode and RCR register settings 
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8.3.4 Clock selection 

The counter clock can be provided by the following clock sources: 

• Internal clock (CK_INT) 

• External clock mode1: external input pin 

• External clock mode2: external trigger input ETR 

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for 

example, the user can configure Timer 1 to act as a prescaler for Timer 2. Refer to 

Using one timer as prescaler for another timer for more details. 

           Internal clock source (CK_INT) 

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the CR1 register) 

and UG bits (in the EGR register) are actual control bits and can be changed only by 

software (except UG which remains cleared automatically). As soon as the CEN bit is 

written to 1, the prescaler is clocked by the internal clock CK_INT. 

Figure 22shows the behavior of the control circuit and the upcounter in normal mode, 

without prescaler. 

Figure 22. Control circuit in normal mode, internal clock divided by 1 
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Figure 23. TI2 external clock connection example 

 

 

For example, to configure the upcounter to count in response to a rising edge on the TI2 

input, use the following procedure: 

1. Configure channel 1 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in 

the CCMR1 register. 

2. Configure the input filter duration by writing the IC2F[3:0] bits in the CCMR1 register 

(if no filter is needed, keep IC2F=0000). 

3. Select rising edge polarity by writing CC2P=0 in the CCER register. 

4. Configure the timer in external clock mode 1 by writing SMS=111 in the SMCR 

register.  

5. Select TI2 as the trigger input source by writing TS=110 in the SMCR register. 

6. Enable the counter by writing CEN=1 in the CR1 register. 

Note: The capture prescaler is not used for triggering, so the user does not need to configure it. 

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. 

The delay between the rising edge on TI2 and the actual clock of the counter is due to the 

resynchronization circuit on TI2 input. 
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Figure 24. Control circuit in external clock mode 1 

 

            

 

           External clock source mode 2  

This mode is selected by writing ECE=1 in the SMCR register. 

The counter can count at each rising or falling edge on the external trigger input ETR. 

Figure 25 gives an overview of the external trigger input block. 
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Figure 25. External trigger input block 

 

 

For example, to configure the upcounter to count each 2 rising edges on ETR, use the 

following procedure: 

1. As no filter is needed in this example, write ETF[3:0]=0000 in the SMCR register. 

2. Set the prescaler by writing ETPS[1:0]=01 in the SMCR register  

3. Select rising edge detection on the ETR pin by writing ETP=0 in the SMCR register 

4. Enable external clock mode 2 by writing ECE=1 in the SMCR register. 

5. Enable the counter by writing CEN=1 in the CR1 register. 

The counter counts once each 2 ETR rising edges. 

The delay between the rising edge on ETR and the actual clock of the counter is due to the 

resynchronization circuit on the ETRP signal. 
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Figure 26. Control circuit in external clock mode 2 

 

8.3.5  Capture/compare channels 

Each Capture/Compare channel is built around a capture/compare register (including a 

shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) 

and an output stage (with comparator and output control). 

Figure 27 to Figure 30 give an overview of one Capture/Compare channel. 

The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, 

an edge detector with polarity selection generates a signal (TIxFPx) which can be used as 

trigger input by the slave mode controller or as the capture command. It is prescaled before 

the capture register (ICxPS). 
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Figure 27. Capture/compare channel (example: channel 0 input stage) 

 

The output stage generates an intermediate waveform that is then used for reference: 

OCxRef (active high). The polarity acts at the end of the chain. 
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Figure 28. Capture/compare channel 0 main circuit 
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Figure 29. Output stage of capture/compare channel (channel 1 to3) 

 

Figure 30. Output stage of capture/compare channel (channel 4) 

 

The capture/compare block is made of one preload register and one shadow register. Write 

and read always access the preload register.  

In capture mode, captures are actually done in the shadow register, which is copied into 

the preload register.  

In compare mode, the content of the preload register is copied into the shadow register 

which is compared to the counter. 
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8.3.6  Input capture mode 

In Input capture mode, the Capture/Compare registers (CCRx) are used to latch the value 

of the counter after a transition detected by the corresponding ICx signal. When a capture 

occurs, the corresponding CCXIF flag (SR register) is set and an interrupt or a DMA request 

can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, 

then the over-capture flag CCxOF (SR register) is set. CCxIF can be cleared by software 

by writing it to ‘0’ or by reading the captured data stored in the CCRx register. CCxOF is 

cleared when written to ‘0’. 

The following example shows how to capture the counter value in CCR1 when TI1 input 

rises. To do this, use the following procedure: 

• Select the active input: CCR1 must be linked to the TI1 input, so write the CC1S bits 

to 01 in the CCMR1 register. As soon as CC1S becomes different from 00, the 

channel is configured in input and the CCR1 register becomes read-only. 

• Program the needed input filter duration with respect to the signal connected to the 

timer (by programming ICxF bits in the CCMRx register if the input is a TIx input). 

Let’s imagine that, when toggling, the input signal is not stable during at must five 

internal clock cycles. We must program a filter duration longer than these five clock 

cycles. We can validate a transition on TI1 when 8 consecutive samples with the 

new level have been detected (sampled at fDTS frequency). Then write IC1F bits to 

0011 in the CCMR1 register. 

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in 

the CCER register (rising edge in this case). 

• Program the input prescaler. In our example, we wish the capture to be performed at 

each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the 

CCMR1 register). 

• Enable capture from the counter into the capture register by setting the CC1E bit in 

the CCER register. 

• If needed, enable the related interrupt request by setting the CC1IE bit in the DIER 

register, and/or the DMA request by setting the CC1DE bit in the DIER register. 

When an input capture occurs: 

• The CCR1 register gets the value of the counter on the active transition. 

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive 

captures occurred whereas the flag was not cleared. 

• An interrupt is generated depending on the CC1IE bit. 

• A DMA request is generated depending on the CC1DE bit. 

In order to handle the overcapture, it is recommended to read the data before the 

overcapture flag. This is to avoid missing an overcapture which could happen after reading 

the flag and before reading the data. 

Note: IC interrupt and/or DMA requests can be generated by software by setting the 
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corresponding CCxG bit in the EGR register. 

8.3.7 PWM input mode 

This mode is a particular case of input capture mode. The procedure is the same except: 

• Two ICx signals are mapped on the same TIx input. 

• These 2 ICx signals are active on edges with opposite polarity. 

• One of the two TIxFP signals is selected as trigger input and the slave mode 

controller is configured in reset mode. 

For example, user can measure the period (in CCR1 register) and the duty cycle (in CCR2 

register) of the PWM applied on TI1 using the following procedure (depending on CK_INT 

frequency and prescaler value): 

• Select the active input for CCR1: write the CC1S bits to 01 in the CCMR1 register 

(TI1 selected). 

• Select the active polarity for TI1FP1 (used both for capture in CCR1 and counter 

clear): write the CC1P bit to ‘0’ (active on rising edge). 

• Select the active input for CCR2: write the CC2S bits to 10 in the CCMR1 register 

(TI1 selected). 

• Select the active polarity for TI1FP2 (used for capture in CCR2): write the CC2P bit 

to ‘1’ (active on falling edge). 

• Select the valid trigger input: write the TS bits to 101 in the SMCR register (TI1FP1 

selected). 

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the 

SMCR register. 

• Enable the captures: write the CC1E and CC2E bits to ‘1’ in the CCER register. 
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Figure 31. PWM input mode timing 

 

1. The PWM input mode can be used only with the CH1/CH2 signals due to the fact that only TI1FP1 and TI2FP2 

are connected to the slave mode controller. 

8.3.8 Forced output mode 

In output mode (CCxS bits = 00 in the CCMRx register), each output compare signal 

(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, 

independently of any comparison between the output compare register and the counter. 

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs 

to write 101 in the OCxM bits in the corresponding CCMRx register. Thus OCXREF is 

forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity 

bit. 

For example: CCxP=0 (OCx active high) => OCx is forced to high level. 

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the CCMRx 

register. 

Anyway, the comparison between the CCRx shadow register and the counter is still 

performed and allows the flag to be set. Interrupt and DMA requests can be sent 

accordingly. This is described in the output compare mode section below. 

8.3.9 Output compare mode 

This function is used to control an output waveform or indicating when a period of time has 

elapsed. 
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When a match is found between the capture/compare register and the counter, the output 

compare function:  

• Assigns the corresponding output pin to a programmable value defined by the output 

compare mode (OCxM bits in the CCMRx register) and the output polarity (CCxP bit 

in the CCER register). The output pin can keep its level (OCXM=000), be set active 

(OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. 

• Sets a flag in the interrupt status register (CCxIF bit in the SR register). 

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the 

DIER register). 

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the DIER 

register, CCDS bit in the CR2 register for the DMA request selection). 

The CCRx registers can be programmed with or without preload registers using the OCxPE 

bit in the CCMRx register. 

In output compare mode, the update event UEV has no effect on OCxREF and OCx output. 

The timing resolution is one count of the counter. Output compare mode can also be used 

to output a single pulse (in One Pulse mode). 

Procedure: 

1. Select the counter clock (internal, external, prescaler). 

2. Write the desired data in the ARR and CCRx registers. 

3. Set the CCxIE bit if an interrupt request is to be generated. 

4. Select the output mode. For example: 

– Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx 

– Write OCxPE = 0 to disable preload register – Write CCxP = 0 to select active 

high polarity 

– Write CCxE = 1 to enable the output 

5. Enable the counter by setting the CEN bit in the CR1 register. 

The CCRx register can be updated at any time by software to control the output waveform, 

provided that the preload register is not enabled (OCxPE=’0’, else CCRx shadow register 

is updated only at the next update event UEV). An example is given in Figure 32. 
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Figure 32. Output compare mode, toggle on OC1. 

 

8.3.10 PWM mode 

Pulse Width Modulation mode allows generating a signal with a frequency determined by 

the value of the ARR register and a duty cycle determined by the value of the CCRx register. 

The PWM mode can be selected independently on each channel (one PWM per OCx 

output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the 

CCMRx register. The corresponding preload register must be enabled by setting the 

OCxPE bit in the CCMRx register, and eventually the auto-reload preload register (in 

upcounting or center-aligned modes) by setting the ARPE bit in the CR1 register. 

As the preload registers are transferred to the shadow registers only when an update event 

occurs, before starting the counter, the user must initialize all the registers by setting the 

UG bit in the EGR register. 

OCx polarity is software programmable using the CCxP bit in the CCER register. It can be 

programmed as active high or active low. OCx output is enabled by a combination of the 

CCxE, CCxNE, MOE, OSSI and OSSR bits (CCER and BDTR registers). Refer to the 

CCER register description for more details. 

In PWM mode (1 or 2), CNT and CCRx are always compared to determine whether CCRx 

 CNT or CNT  CCRx (depending on the direction of the counter).  

The timer is able to generate PWM in edge-aligned mode or center-aligned mode 

depending on the CMS bits in the CR1 register. 

               PWM edge-aligned mode 
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  Upcounting configuration 

Upcounting is active when the DIR bit in the CR1 register is low. Refer to Upcounting 

mode. 

In the following example, we consider PWM mode 1. The reference PWM signal 

OCxREF is high as long as CNT < CCRx else it becomes low. If the compare value in 

CCRx is greater than the auto-reload value (in ARR) then OCxREF is held at ‘1’. If the 

compare value is 0 then OCxRef is held at ‘0’. Figure 33 shows some edge-aligned 

PWM waveforms in an example where ARR=8. 

 

Figure 33. Edge-aligned PWM waveforms (ARR=8) 

 

  Downcounting configuration 

Downcounting is active when DIR bit in CR1 register is high. Refer to Downcounting 

mode 

In PWM mode 1, the reference signal OCxRef is low as long as  

CNT > CCRx else it becomes high. If the compare value in CCRx is greater than the 

auto-reload value in ARR, then OCxREF is held at ‘1’. 0% PWM is not possible in this 

mode. 
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        PWM center-aligned mode 

Center-aligned mode is active when the CMS bits in CR1 register are different from ‘00’ (all 

the remaining configurations having the same effect on the OCxRef/OCx signals). The 

compare flag is set when the counter counts up, when it counts down or both when it counts 

up and down depending on the CMS bits configuration. The direction bit (DIR) in the CR1 

register is updated by hardware and must not be changed by software. Refer to Center-

aligned mode (up/down counting). 

Figure 34 shows some center-aligned PWM waveforms in an example where: 

• ARR=8, 

• PWM mode is the PWM mode 1, 

• The flag is set when the counter counts down corresponding to the center-aligned 

mode 1 selected for CMS=01 in CR1 register.  
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Figure 34. Center-aligned PWM waveforms (ARR=8) 

 

Hints on using center-aligned mode: 

• When starting in center-aligned mode, the current up-down configuration is used. It 

means that the counter counts up or down depending on the value written in the DIR 

bit in the CR1 register. Moreover, the DIR and CMS bits must not be changed at the 

same time by the software. 

• Writing to the counter while running in center-aligned mode is not recommended as it 

can lead to unexpected results. In particular: 

CCxIF 

0 1 1 0 1 3 4 5 2 2 6 7 8 7 6 5 4 3 Counter register 

CCRx = 4 
OCxREF 

CMS=01 

CMS=10 

CMS=11 

CCxIF 

CCRx = 7 
OCxREF 

CMS=10 or 11 

CCxIF 

CCRx = 8 
OCxREF 

CMS=01 

CMS=10 

CMS=11 

'1' 

CCxIF 

CCRx > 8 
OCxREF 

CMS=01 

CMS=10 

CMS=11 

'1' 

CCxIF 

CCRx = 0 
OCxREF 

CMS=01 

CMS=10 

CMS=11 

'0' 

ai14681b 



 
 

 96 / 312 

 

– The direction is not updated if the user writes a value in the counter greater 

than the auto-reload value (CNT>ARR). For example, if the counter was 

counting up, it will continue to count up. 

– The direction is updated if the user writes 0 or write the ARR value in the 

counter but no Update Event UEV is generated. 

• The safest way to use center-aligned mode is to generate an update by software 

(setting the UG bit in the EGR register) just before starting the counter and not to write 

the counter while it is running. 

8.3.11 Complementary outputs and dead-time insertion 

The advanced-control timers can output two complementary signals and manage the 

switching-off and the switching-on instants of the outputs. 

This time is generally known as dead-time and it has to be adjust it depending on the 

devices connected to the outputs and their characteristics (intrinsic delays of level-shifters, 

delays due to power switches...) 

User can select the polarity of the outputs (main output OCx or complementary OCxN) 

independently for each output. This is done by writing to the CCxP and CCxNP bits in the 

CCER register. 

The complementary signals OCx and OCxN are activated by a combination of several 

control bits: the CCxE and CCxNE bits in the CCER register and the MOE, OISx, OISxN, 

OSSI and OSSR bits in the BDTR and CR2 registers. In particular, the dead-time is 

activated when switching to the IDLE state (MOE falling down to 0). 

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if 

the break circuit is present. DTG[7:0] bits of the BDTR register are used to control the 

dead-time generation for all channels. From a reference waveform OCxREF, it generates 

2 outputs OCx and OCxN. If OCx and OCxN are active high: 

• The OCx output signal is the same as the reference signal except for the rising edge, 

which is delayed relative to the reference rising edge. 

• The OCxN output signal is the opposite of the reference signal except for the rising 

edge, which is delayed relative to the reference falling edge. 

If the delay is greater than the width of the active output (OCx or OCxN) then the 

corresponding pulse is not generated. 

The following figures show the relationships between the output signals of the dead-time 

generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, 

CCxE=1 and CCxNE=1 in these examples) 
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Figure 35. Complementary output with dead-time insertion. 

 
 

Figure 36. Dead-time waveforms with delay greater than the negative pulse. 
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The dead-time delay is the same for each of the channels and is programmable with the 

DTG bits in the BDTR register. Refer to break and dead-time register (BDTR) for delay 

calculation. 

        Re-directing OCxREF to OCx or OCxN 

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx 

output or to OCxN output by configuring the CCxE and CCxNE bits in the CCER register. 

This allows the user to send a specific waveform (such as PWM or static active level) on 

one output while the complementary remains at its inactive level. Other possibilities are to 

have both outputs at inactive level or both outputs active and complementary with dead-

time. 

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes 

active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the 

other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes 

active when OCxREF is high whereas OCxN is complemented and becomes active when 

OCxREF is low. 

8.3.12  Using the break function 

When using the break function, the output enable signals and inactive levels are modified 

according to additional control bits (MOE, OSSI and OSSR bits in the BDTR register, OISx 

and OISxN bits in the CR2 register). In any case, the OCx and OCxN outputs cannot be 

set both to active level at a given time.. 

The break source can be either the break input pin or a clock failure event, generated by 

the Clock Security System (CSS), from the Reset Clock Controller. For further information 

on the Clock Security System. 

When exiting from reset, the break circuit is disabled and the MOE bit is low. User can 

enable the break function by setting the BKE bit in the BDTR register. The break input 

polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can 

be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB 

clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 

APB clock period to correctly read back the bit after the write operation. 

Because MOE falling edge can be asynchronous, a resynchronization circuit has been 

inserted between the actual signal (acting on the outputs) and the synchronous control bit 

(accessed in the BDTR register). It results in some delays between the asynchronous and 

the synchronous signals. In particular, if MOE is written to 1 whereas it was low, a delay 

(dummy instruction) must be inserted before reading it correctly. This is because the user 

writes an asynchronous signal, but reads a synchronous signal. 

When a break occurs (selected level on the break input): 
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• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle 

state or in reset state (selected by the OSSI bit). This feature functions even if the 

MCU oscillator is off. 

• Each output channel is driven with the level programmed in the OISx bit in the CR2 

register as soon as MOE=0. If OSSI=0 then the timer releases the enable output 

else the enable output remains high. 

• When complementary outputs are used:  

– The outputs are first put in reset state inactive state (depending on the polarity). 

This is done asynchronously so that it works even if no clock is provided to the 

timer.  

– If the timer clock is still present, then the dead-time generator is reactivated in 

order to drive the outputs with the level programmed in the OISx and OISxN bits 

after a dead-time. Even in this case, OCx and OCxN cannot be driven to their 

active level together. Note that because of the resynchronization on MOE, the 

dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles). 

– If OSSI=0 then the timer releases the enable outputs else the enable outputs 

remain or become high as soon as one of the CCxE or CCxNE bits is high. 

• The break status flag (BIF bit in the SR register) is set. An interrupt can be generated 

if the BIE bit in the DIER register is set. A DMA request can be sent if the BDE bit in 

the DIER register is set. 

• If the AOE bit in the BDTR register is set, the MOE bit is automatically set again at 

the next update event UEV. This can be used to perform a regulation, for instance. 

Else, MOE remains low until it is written to ‘1’ again. In this case, it can be used for 

security and the break input can be connected to an alarm from power drivers, 

thermal sensors or any security components. 

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is 

active (neither automatically nor by software). In the meantime, the status flag BIF cannot 

be cleared. 

The break can be generated by the BRK input which has a programmable polarity and an 

enable bit BKE in the BDTR register. 

There are two solutions to generate a break: 

• By using the BRK input which has a programmable polarity and an enable bit BKE in 

the BDTR register 

• By software through the BG bit of the EGR register. 

In addition to the break input and the output management, a write protection has been 

implemented inside the break circuit to safeguard the application. It allows freezing the 

configuration of several parameters (dead-time duration, OCx/OCxN polarities and state 

when disabled, OCxM configurations, break enable and polarity). The user can choose 

from three levels of protection selected by the LOCK bits in the BDTR register. Refer to 

Section : break and dead-time register (BDTR). The LOCK bits can be written only once 

after an MCU reset. 
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Figure 38 shows an example of behavior of the outputs in response to a break. 

Figure 38. Output behavior in response to a break. 
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8.3.13 Clearing the OCxREF signal on an external event 

The OCxREF signal for a given channel can be driven Low by applying a High level to the 

ETRF input (OCxCE enable bit of the corresponding CCMRx register set to ‘1’). The 

OCxREF signal remains Low until the next update event, UEV, occurs.  

This function can only be used in output compare and PWM modes, and does not work in 

forced mode. 

For example, the ETR signal can be connected to the output of a comparator to be used 

for current handling. In this case, the ETR must be configured as follow: 

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the SMCR 

register set to ‘00’. 

2. The external clock mode 2 must be disabled: bit ECE of the SMCR register set to  

‘0’. 

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be 

configured according to the user needs. 

Figure 39shows the behavior of the OCxREF signal when the ETRF Input becomes High, 

for both values of the enable bit OCxCE. In this example, the timer is programmed in  

PWM mode. 

Figure 39. Clearing OCxREF 
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8.3.14 6-step PWM generation 

When complementary outputs are used on a channel, preload bits are available on the  

OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the 

COM commutation event. The user can thus program in advance the configuration for the 

next step and change the configuration of all the channels at the same time. COM can be 

generated by software by setting the COM bit in the EGR register or by hardware (on TRGI 

rising edge). 

A flag is set when the COM event occurs (COMIF bit in the SR register), which can generate 

an interrupt (if the COMIE bit is set in the DIER register) or a DMA request (if the COMDE 

bit is set in the DIER register). 

Figure 40 describes the behavior of the OCx and OCxN outputs when a COM event occurs, 

in 3 different examples of programmed configurations. 

Figure 40. 6-step generation, COM example (OSSR=1) 

 

8.3.15  One-pulse mode 

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to 

be started in response to a stimulus and to generate a pulse with a programmable length 

after a programmable delay. 
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Starting the counter can be controlled through the slave mode controller. Generating the 

waveform can be done in output compare mode or PWM mode. Select One-pulse mode 

by setting the OPM bit in the CR1 register. This makes the counter stop automatically at 

the next update event UEV. 

A pulse can be correctly generated only if the compare value is different from the counter 

initial value. Before starting (when the timer is waiting for the trigger), the configuration 

must be: 

• In upcounting: CNT < CCRx  ARR (in particular, 0 < CCRx) 

• In downcounting: CNT > CCRx 

 

Figure 41. Example of one pulse mode. 

 

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE 

and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. 

Let’s use TI2FP2 as trigger 1: 

• Map TI2FP2 to TI2 by writing CC2S=’01’ in the CCMR1 register. 

• TI2FP2 must detect a rising edge, write CC2P=’0’ in the CCER register. 

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ 

in the SMCR register. 

• TI2FP2 is used to start the counter by writing SMS to ‘110’ in the SMCR register 

(trigger mode). 

The OPM waveform is defined by writing the compare registers (taking into account the 

clock frequency and the counter prescaler). 

• 
The t

DELAY is defined by the value written in the CCR1 register. 
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• The tPULSE is defined by the difference between the auto-reload value and the 

compare value (ARR - CCR1). 

• Let us say the user wants to build a waveform with a transition from ‘0’ to ‘1’ when a 

compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the 

auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the 

CCMR1 register. The user can optionally enable the preload registers by writing 

OC1PE=’1’ in the CCMR1 register and ARPE in the CR1 register. In this case the 

compare value must be written in the CCR1 register, the auto-reload value in the 

ARR register, generate an update by setting the UG bit and wait for external trigger 

event on TI2. CC1P is written to ‘0’ in this example. 

In our example, the DIR and CMS bits in the CR1 register should be low. 

The user only wants one pulse (Single mode), so '1’ must be written in the OPM bit in the 

CR1 register to stop the counter at the next update event (when the counter rolls over from 

the auto-reload value back to 0). When OPM bit in the CR1 register is set to '0', so the 

Repetitive Mode is selected. 

Particular case: OCx fast enable: 

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the 

counter. Then the comparison between the counter and the compare value makes the 

output toggle. But several clock cycles are needed for these operations and it limits the 

minimum delay tDELAY min we can get. 

If the user wants to output a waveform with the minimum delay, the OCxFE bit in the 

CCMRx register must be set. Then OCxRef (and OCx) are forced in response to the 

stimulus, without taking in account the comparison. Its new level is the same as if a 

compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or 

PWM2 mode. 

8.3.16  Encoder interface mode 

To select Encoder Interface mode write SMS=‘001’ in the SMCR register if the counter is 

counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and SMS=’011’ if 

it is counting on both TI1 and TI2 edges. 

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the CCER 

register. When needed, the user can program the input filter as well. 

The two inputs TI1 and TI2 are used to interface to an incremental encoder. The counter is 

clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2  

after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, 

TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in  

CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated and 

generates count pulses as well as the direction signal. Depending on the sequence the 

counter counts up or down, the DIR bit in the CR1 register is modified by hardware 

accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever 
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the counter is counting on TI1 only, TI2 only or both TI1 and TI2. 

Encoder interface mode acts simply as an external clock with direction selection. This 

means that the counter just counts continuously between 0 and the auto-reload value in 

the ARR register (0 to ARR or ARR down to 0 depending on the direction). So user must 

configure ARR before starting. in the same way, the capture, compare, prescaler, repetition 

counter, trigger output features continue to work as normal. Encoder mode and External 

clock mode 2 are not compatible and must not be selected together.  

In this mode, the counter is modified automatically following the speed and the direction of 

the incremental encoder and its content, therefore, always represents the encoder’s 

position. The count direction correspond to the rotation direction of the connected sensor.  

Table 1 summarizes the possible combinations, assuming TI1 and TI2 do not switch at the 

same time. 

Table 1. Counting direction versus encoder signals 

Active 

edge 

Level on opposite signal 

(TI1FP1 for TI2, TI2FP2 for TI1) 
TI1FP1 signal TI2FP2 signal 

  Rising Falling Rising Falling 

Counting on 

TI1 only 

High Down Up No Count No Count 

 Low Up Down No Count No Count 

Counting on 

TI2 only 

High No Count No Count Up Down 

 Low No Count No Count Down Up 

Counting on 

TI1 and TI2 

High Down Up Up Down 

 Low Up Down Down Up 

An external incremental encoder can be connected directly to the MCU without external 

interface logic. However, comparators are normally be used to convert the encoder’s 

differential outputs to digital signals. This greatly increases noise immunity. The third 

encoder output which indicate the mechanical zero position, may be connected to an 

external interrupt input and trigger a counter reset. 

Figure 42 gives an example of counter operation, showing count signal generation and 

direction control. It also shows how input jitter is compensated where both edges are 

selected. This might occur if the sensor is positioned near to one of the switching points. 

For this example we assume that the configuration is the following: 

• CC1S=’01’ (CCMR1 register, TI1FP1 mapped on TI1). 

• CC2S=’01’ (CCMR2 register, TI1FP2 mapped on TI2). 

• CC1P=’0’, and IC1F = ‘0000’ (CCER register, TI1FP1 non-inverted, TI1FP1=TI1). 

• CC2P=’0’, and IC2F = ‘0000’ (CCER register, TI1FP2 non-inverted, TI1FP2= TI2). 
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• SMS=’011’ (SMCR register, both inputs are active on both rising and falling edges). 

• CEN=’1’ (CR1 register, Counter enabled). 

Figure 42. Example of counter operation in encoder interface mode. 

 

Figure 43 gives an example of counter behavior when TI1FP1 polarity is inverted (same 

configuration as above except CC1P=’1’). 

Figure 43. Example of encoder interface mode with TI1FP1 polarity inverted. 
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configured in capture mode. The output of the encoder which indicates the mechanical zero 

can be used for this purpose. Depending on the time between two events, the counter can 

also be read at regular times. This can be done by latching the counter value into a third 

input capture register if available (then the capture signal must be periodic and can be 

generated by another timer). when available, it is also possible to read its value through a 

DMA request generated by a real-time clock. 

8.3.17 Timer input XOR function  

The TI1S bit in the CR2 register, allows the input filter of channel 0 to be connected to the 

output of a XOR gate, combining the three input pins CH1, CH2 and CH3. 

The XOR output can be used with all the timer input functions such as trigger or input 

capture.  

8.3.18 Interfacing with Hall sensors 

This is done using the advanced-control timers to generate PWM signals to drive the motor 

and another timer referred to as  

“interfacing timer” in Figure 44. The “interfacing timer” captures the 3 timer input pins (CH1, 

CH2, and CH3) connected through a XOR to the TI1 input channel (selected by setting the 

TI1S bit in the CR2 register). 

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus, 

each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a 

time base triggered by any change on the Hall inputs. 

On the “interfacing timer”, capture/compare channel 0 is configured in capture mode, 

capture signal is TRC (see Figure 27). The captured value, which corresponds to the time 

elapsed between 2 changes on the inputs, gives information about motor speed. 

The “interfacing timer” can be used in output mode to generate a pulse which changes the 

configuration of the channels of the advanced-control timer (by triggering a COM event). 

The timer is used to generate PWM signals to drive the motor. To do this, the interfacing 

timer channel must be programmed so that a positive pulse is generated after a 

programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-

control timer through the TRGO output. 

Example: the user wants to change the PWM configuration of the advanced-control timer 

after a programmed delay each time a change occurs on the Hall inputs connected to one 

of the timers. 

• Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the 

CR2 register to ‘1’, 
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• Program the time base: write the ARR to the max value (the counter must be cleared 

by the TI1 change. Set the prescaler to get a maximum counter period longer than 

the time between 2 changes on the sensors, 

• Program channel 0 in capture mode (TRC selected): write the CC1S bits in the  

CCMR1 register to ‘11’. The user can also program the digital filter if needed, 

• Program channel 1 in PWM 2 mode with the desired delay: write the OC2M bits to 

‘111’ and the CC2S bits to ‘00’ in the CCMR1 register, 

• Select OC2REF as trigger output on TRGO: write the MMS bits in the CR2  

register to ‘101’, 

In the advanced-control timer, the right ITR input must be selected as trigger input, the timer 

is programmed to generate PWM signals, the capture/compare control signals are 

preloaded (CCPC=1 in the CR2 register) and the COM event is controlled by the trigger 

input (CCUS=1 in the CR2 register). The PWM control bits (CCxE, OCxM) are written after 

a COM event for the next step (this can be done in an interrupt subroutine generated by 

the rising edge of OC2REF). 

Figure 44 describes this example. 
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Figure 44. Example of Hall sensor interface 

 

8.3.19 External trigger synchronization 

The timer can be synchronized with an external trigger in several modes: Reset mode, 

Gated mode and Trigger mode. 

           Slave mode: Reset mode 

The counter and its prescaler can be reinitialized in response to an event on a trigger input. 

Moreover, if the URS bit from the CR1 register is low, an update event UEV is generated. 

Then all the preloaded registers (ARR, CCRx) are updated. 

In the following example, the upcounter is cleared in response to a rising edge on TI1 input: 
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• Configure the channel 0 to detect rising edges on TI1. Configure the input filter 

duration (in this example, we don’t need any filter, so we keep IC1F=0000). The 

capture prescaler is not used for triggering, so there’s no need to configure it. The 

CC1S bits select the input capture source only, CC1S = 01 in the CCMR1 register. 

Write CC1P=0 in CCER register to validate the polarity (and detect rising edges 

only). 

• Configure the timer in reset mode by writing SMS=100 in SMCR register. Select TI1 

as the input source by writing TS=101 in SMCR register. 

• Start the counter by writing CEN=1 in the CR1 register. 

The counter starts counting on the internal clock, then behaves normally until TI1 rising 

edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the 

trigger flag is set (TIF bit in the SR register) and an interrupt request, or a DMA request can 

be sent if enabled (depending on the TIE and TDE bits in DIER register). 

The following figure shows this behavior when the auto-reload register ARR=0x36. The 

delay between the rising edge on TI1 and the actual reset of the counter is due to the 

resynchronization circuit on TI1 input. 

Figure 45. Control circuit in reset mode 

 

          

         Slave mode: Gated mode 

The counter can be enabled depending on the level of a selected input. 

In the following example, the upcounter counts only when TI1 input is low: 

• Configure the channel 0 to detect low levels on TI1. Configure the input filter duration 

(in this example, we don’t need any filter, so we keep IC1F=0000). The capture 

prescaler is not used for triggering, so the user does not need to configure it. The 

CC1S bits select the input capture source only, CC1S=01 in CCMR1 register. Write 

CC1P=1 in CCER register to validate the polarity (and detect low level only). 
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• Configure the timer in gated mode by writing SMS=101 in SMCR register. Select TI1 

as the input source by writing TS=101 in SMCR register. 

• Enable the counter by writing CEN=1 in the CR1 register (in gated mode, the counter 

doesn’t start if CEN=0, whatever is the trigger input level). 

The counter starts counting on the internal clock as long as TI1 is low and stops as soon 

as TI1 becomes high. The TIF flag in the SR register is set both when the counter starts or 

stops. 

The delay between the rising edge on TI1 and the actual stop of the counter is due to the 

resynchronization circuit on TI1 input. 

Figure 46. Control circuit in gated mode 

 
 

 

         Slave mode: Trigger mode 

The counter can start in response to an event on a selected input. 

In the following example, the upcounter starts in response to a rising edge on TI2 input: 

• Configure the channel 1 to detect rising edges on TI2. Configure the input filter 

duration (in this example, we don’t need any filter, so we keep IC2F=0000). The 

capture prescaler is not used for triggering, so there’s no need to configure it. The 

CC2S bits are configured to select the input capture source only, CC2S=01 in 

CCMR1 register. Write CC2P=1 in CCER register to validate the polarity (and detect 

low level only). 

• Configure the timer in trigger mode by writing SMS=110 in SMCR register. Select TI2 

as the input source by writing TS=110 in SMCR register. 

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the 

TIF flag is set. 

The delay between the rising edge on TI2 and the actual start of the counter is due to the 

resynchronization circuit on TI2 input. 
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Figure 47. Control circuit in trigger mode 

 

Slave mode: external clock mode 2 + trigger mode 

The external clock mode 2 can be used in addition to another slave mode (except external 

clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock 

input, and another input can be selected as trigger input (in reset mode, gated mode or 

trigger mode). It is recommended not to select ETR as TRGI through the TS bits of SMCR 

register. 

In the following example, the upcounter is incremented at each rising edge of the ETR 

signal as soon as a rising edge of TI1 occurs: 

1. Configure the external trigger input circuit by programming the SMCR register as 

follows: 

– ETF = 0000: no filter  

– ETPS = 00: prescaler disabled 

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external 

clock mode 2. 

2. Configure the channel 0 as follows, to detect rising edges on TI:  

– IC1F=0000: no filter.  

– The capture prescaler is not used for triggering and does not need to be 

configured. 

– CC1S=01 in CCMR1 register to select only the input capture source 

– CC1P=0 in CCER register to validate the polarity (and detect rising edge only). 

3. Configure the timer in trigger mode by writing SMS=110 in SMCR register. Select TI1 

as the input source by writing TS=101 in SMCR register. 

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on 

ETR rising edges. 

The delay between the rising edge of the ETR signal and the actual reset of the counter is 

due to the resynchronization circuit on ETRP input.  
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Figure 48. Control circuit in external clock mode 2 + trigger mode 

 

8.3.20  Timer synchronization 

The TIM timers are linked together internally for timer synchronization or chaining.  

Note: The clock of the slave timer must be enabled prior to receive events from the master timer, 

and must not be changed on-the-fly while triggers are received from the master timer. 

8.3.21 Debug mode 

When the microcontroller enters debug mode, the counter either continues to work normally 

or stops, depending on  APB_CLK STOP configuration bit in the system control module. 
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8.4 registers 

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). 

8.4.1 control register 1 (CR1) 

Address offset: 0x00 

Reset value: 0x0000 

          

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN 

 rw rw rw rw rw rw rw rw rw rw 

          

Bits 15:10 Reserved, must be kept at reset value. 

Bits 9:8 CKD[1:0]: Clock division 

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and 

the dead-time and sampling clock (tDTS)used by the dead-time generators and the digital 

filters (ETR, TIx), 

00:
 t

DTS=
t
CK_INT 

01:
 t

DTS=2
*t

CK_INT 

10:
 t

DTS=4
*t

CK_INT 

11: 
t
DTS=8

*t
CK_INT 

Bit 7 ARPE: Auto-reload preload enable 

0: ARR register is not buffered 

1: ARR register is buffered 

Bits 6:5 CMS[1:0]: Center-aligned mode selection 

00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 

01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare 

interrupt flags of channels configured in output (CCxS=00 in CCMRx register) are set only 

when the counter is counting down. 

10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare 

interrupt flags of channels configured in output (CCxS=00 in CCMRx register) are set only 

when the counter is counting up. 

11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare 

interrupt flags of channels configured in output (CCxS=00 in CCMRx register) are set both 
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when the counter is counting up or down. 

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as 

the counter is enabled (CEN=1) 

Bit 4 DIR: Direction 

0: Counter used as upcounter 

1: Counter used as downcounter 

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder 

mode. 

Bit 3 OPM: One pulse mode 

0: Counter is not stopped at update event 

1: Counter stops counting at the next update event (clearing the bit CEN) 

Bit 2 URS: Update request source 

This bit is set and cleared by software to select the UEV event sources. 

0: Any of the following events generate an update interrupt or DMA request if enabled. 

These events can be:  

– Counter overflow/underflow 

– Setting the UG bit 

– Update generation through the slave mode controller 

1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. 

Bit 1 UDIS: Update disable 

This bit is set and cleared by software to enable/disable UEV event generation. 

0: UEV enabled. The Update (UEV) event is generated by one of the following events: 

– Counter overflow/underflow 

– Setting the UG bit 

– Update generation through the slave mode controller Buffered registers are 

then loaded with their preload values. 

1: UEV disabled. The Update event is not generated, shadow registers keep their value 

(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is 

set or if a hardware reset is received from the slave mode controller. 

Bit 0 CEN: Counter enable 

0: Counter disabled 

1: Counter enabled 

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been 

previously set by software. However trigger mode can set the CEN bit automatically 

by hardware. 

8.4.2 control register 2 (CR2) 

Address offset: 0x04 
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Reset value: 0x0000 

      

Bit 15 Reserved, must be kept at reset value. 

Bit 14 OIS3: Output Idle state 4 (OC3 output)  

refer to OIS1 bit 

Bit 13 OIS2N: Output Idle state 3 (OC2N output) 

 refer to OIS1N bit 

Bit 12 OIS2: Output Idle state 3 (OC2 output) 

 refer to OIS1 bit 

Bit 11 OIS1N: Output Idle state 2 (OC1N output)  

refer to OIS1N bit 

Bit 10 OIS1: Output Idle state 2 (OC1 output) 

 refer to OIS1 bit 

Bit 9 OIS0N: Output Idle state 1 (OC0N output) 

0: OC0N=0 after a dead-time when MOE=0 

1: OC0N=1 after a dead-time when MOE=0 

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed 

(LOCK bits in BDTR register). 

Bit 8 OIS0: Output Idle state 1 (OC0 output) 

0: OC0=0 (after a dead-time if OC1N is implemented) when MOE=0 

1: OC0=1 (after a dead-time if OC1N is implemented) when MOE=0 

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed 

(LOCK bits in BDTR register). 

Bit 7 TI1S: TI1 selection 

0: The CH1 pin is connected to TI1 input 

1: The CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) 

Bits 6:4 MMS[2:0]: Master mode selection 

These bits allow to select the information to be sent in master mode to slave timers for 

synchronization (TRGO). The combination is as follows: 

000: Reset - the UG bit from the EGR register is used as trigger output (TRGO). If the reset 

is generated by the trigger input (slave mode controller configured in reset mode) then the 

signal on TRGO is delayed compared to the actual reset. 

001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is 

useful to start several timers at the same time or to control a window in which a slave timer 
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is enable. The Counter Enable signal is generated by a logic OR between CEN control bit 

and the trigger input when configured in gated mode. When the Counter Enable signal is 

controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode 

is selected (see the MSM bit description in SMCR register). 

010: Update - The update event is selected as trigger output (TRGO). For instance a master 

timer can then be used as a prescaler for a slave timer. 

011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to 

be set (even if it was already high), as soon as a capture or a compare match occurred.  

(TRGO). 

100: Compare - OC0REF signal is used as trigger output (TRGO) 

101: Compare - OC1REF signal is used as trigger output (TRGO) 

110: Compare - OC2REF signal is used as trigger output (TRGO) 

111: Compare - OC3REF signal is used as trigger output (TRGO) 

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from 

the master timer, and must not be changed on-the-fly while triggers are received from 

the master timer. 

Bit 3 CCDS: Capture/compare DMA selection 

0: CCx DMA request sent when CCx event occurs 

1: CCx DMA requests sent when update event occurs 

Bit 2 CCUS: Capture/compare control update selection 

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting 

the COMG bit only 

1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting 

the COMG bit or when an rising edge occurs on TRGI 

Note: This bit acts only on channels that have a complementary output. 

Bit 1 Reserved, must be kept at reset value. 

Bit 0 CCPC: Capture/compare preloaded control 

0: CCxE, CCxNE and OCxM bits are not preloaded 

1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated 

only when a commutation event (COM) occurs (COMG bit set or rising edge detected on 

TRGI, depending on the CCUS bit). 

 

 

 

8.4.3 slave mode control register (SMCR) 

Address offset: 0x08 
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Reset value: 0x0000 

          

Bit 15 ETP: External trigger polarity 

This bit selects whether ETR or ETR is used for trigger operations 

0: ETR is non-inverted, active at high level or rising edge. 1: ETR 

is inverted, active at low level or falling edge. 

Bit 14 ECE: External clock enable 

This bit enables External clock mode 2. 

0: External clock mode 2 disabled 

1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF 

signal. 

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI 

connected to ETRF (SMS=111 and TS=111). 

2: It is possible to simultaneously use external clock mode 2 with the following slave 

modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be 

connected to ETRF in this case (TS bits must not be 111). 

3: If external clock mode 1 and external clock mode 2 are enabled at the same time, 

the external clock input is ETRF. 

Bits 13:12 ETPS[1:0]: External trigger prescaler 

External trigger signal ETRP frequency must be at most 1/4 of CLK frequency. A prescaler 

can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 

00: Prescaler OFF 

01: ETRP frequency divided by 2 

10: ETRP frequency divided by 4 

11: ETRP frequency divided by 8 

Bits 11:8 ETF[3:0]: External trigger filter 

This bit-field then defines the frequency used to sample ETRP signal and the length of the 

digital filter applied to ETRP. The digital filter is made of an event counter in which N 

consecutive events are needed to validate a transition on the output: 0000: No filter, 

sampling is done at fDTS 

0001: fSAMPLING=fCK_INT, N=2 

0010: fSAMPLING=fCK_INT, N=4 

0011: fSAMPLING=fCK_INT, N=8 

0100: fSAMPLING=fDTS/2, N=6 

0101: fSAMPLING=fDTS/2, N=8 

0110: fSAMPLING=fDTS/4, N=6 

0111: fSAMPLING=fDTS/4, N=8 

1000: fSAMPLING=fDTS/8, N=6 
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1001: fSAMPLING=fDTS/8, N=8 

1010: fSAMPLING=fDTS/16, N=5 

1011: fSAMPLING=fDTS/16, N=6 

1100: fSAMPLING=fDTS/16, N=8 

1101: fSAMPLING=fDTS/32, N=5 

1110: fSAMPLING=fDTS/32, N=6 

1111: fSAMPLING=fDTS/32, N=8 

Bit 7 MSM: Master/slave mode 

0: No action 

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect 

synchronization between the current timer and its slaves (through TRGO). It is useful if we 

want to synchronize several timers on a single external event. 

Bits 6:4 TS[2:0]: Trigger selection 

This bit-field selects the trigger input to be used to synchronize the counter. 

000: Internal Trigger 0 (ITR0)  

001: Internal Trigger 1 (ITR1) 

010: Internal Trigger 2 (ITR2) 

011: Internal Trigger 3 (ITR3) 

100: TI1 Edge Detector (TI1F_ED) 

101: Filtered Timer Input 1 (TI1FP1) 

110: Filtered Timer Input 2 (TI2FP2) 

111: External Trigger input (ETRF) 

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to 

avoid wrong edge detections at the transition. 

Bit 3 Reserved, must be kept at reset value. 

 

Bits 2:0 SMS: Slave mode selection 

When external signals are selected the active edge of the trigger signal (TRGI) is linked to 

the polarity selected on the external input (see Input Control register and Control register 

description. 

000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal 

clock. 

001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2 

level. 

010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1 

level. 

011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges 

depending on the level of the other input. 

100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter 

and generates an update of the registers. 

101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The 

counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of 
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the counter are controlled. 

110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not 

reset). Only the start of the counter is controlled. 

111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. 

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’). 

Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode 

checks the level of the trigger signal. 

The clock of the slave timer must be enabled prior to receiving events from the master 

timer, and must not be changed on-the-fly while triggers are received from the master 

timer. 

Table 2. Internal trigger connection 

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011) 

GPTIMER0 

 

GPTIMER1_TRGO GPTIMER2_TRGO GPTIMER3_TRGO GPTIMER4_TRGO 

GPTIMER1 

 

GPTIMER2_TRGO GPTIMER3_TRGO GPTIMER4_TRGO GPTIMER0_TRGO 

GPTIMER2 

 

GPTIMER3_TRGO GPTIMER4_TRGO GPTIMER0_TRGO GPTIMER1_TRGO 

GPTIMER3 

 

GPTIMER4_TRGO GPTIMER0_TRGO GPTIMER1_TRGO GPTIMER2_TRGO 

GPTIMER4 

 

GPTIMER0_TRGO GPTIMER1_TRGO GPTIMER2_TRGO GPTIMER3_TRGO 

 

8.4.4 DMA/interrupt enable register (DIER) 

Address offset: 0x0C 

Reset value: 0x0000 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Res. TDE COMDE CC3DE CC2DE CC1DE CC0DE UDE BIE TIE COMIE CC3IE CC2IE CC1IE CC0IE UIE 

 rw Rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

          

 

Bit 15 Reserved, must be kept at reset value. 

Bit 14 TDE: Trigger DMA request enable 

0: Trigger DMA request disabled 

1: Trigger DMA request enabled 
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Bit 13 COMDE: COM DMA request enable 

0: COM DMA request disabled 

1: COM DMA request enabled 

Bit 12 CC3DE: Capture/Compare 3 DMA request enable 

0: CC3 DMA request disabled 

1: CC3 DMA request enabled 

Bit 11 CC2DE: Capture/Compare 2 DMA request enable 

0: CC2 DMA request disabled 

1: CC2 DMA request enabled 

Bit 10 CC1DE: Capture/Compare 1 DMA request enable 

0: CC1 DMA request disabled 

1: CC1 DMA request enabled 

Bit 9 CC0DE: Capture/Compare 0 DMA request enable 

0: CC0 DMA request disabled 

1: CC0 DMA request enabled 

Bit 8 UDE: Update DMA request enable 

0: Update DMA request disabled 

1: Update DMA request enabled 

Bit 7 BIE: Break interrupt enable 

0: Break interrupt disabled 

1: Break interrupt enabled 

Bit 6 TIE: Trigger interrupt enable 

0: Trigger interrupt disabled 

1: Trigger interrupt enabled 

Bit 5 COMIE: COM interrupt enable 

0: COM interrupt disabled 

1: COM interrupt enabled 

Bit 4 CC4IE: Capture/Compare 4 interrupt enable 

0: CC3 interrupt disabled 

1: CC3 interrupt enabled 

Bit 3 CC3IE: Capture/Compare 3 interrupt enable 

0: CC2 interrupt disabled 

1: CC2 interrupt enabled 

Bit 2 CC2IE: Capture/Compare 2 interrupt enable 

0: CC1 interrupt disabled 

1: CC1 interrupt enabled 

Bit 1 CC1IE: Capture/Compare 1 interrupt enable 

0: CC0 interrupt disabled 
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1: CC0 interrupt enabled 

Bit 0 UIE: Update interrupt enable 

0: Update interrupt disabled 

1: Update interrupt enabled 

 

8.4.5 status register (SR) 

Address offset: 0x10 

Reset value: 0x0000 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved CC3OF CC2OF CC1OF CC0OF Res. BIF TIF COMIF CC3IF CC2IF CC1IF CC0IF UIF 

 rc_w0 rc_w0 rc_w0 rc_w0 Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 

          

Bits 15:13 Reserved, must be kept at reset value. 

Bit 12 CC3OF: Capture/Compare 3 overcapture flag  

refer to CC0OF description 

Bit 11 CC2OF: Capture/Compare 2 overcapture flag  

refer to CC0OF description 

Bit 10 CC1OF: Capture/Compare 1 overcapture flag  

refer to CC0OF description 

Bit 9 CC0OF: Capture/Compare 0 overcapture flag 

This flag is set by hardware only when the corresponding channel is configured in input 

capture mode. It is cleared by software by writing it to ‘0’. 

0: No overcapture has been detected. 

1: The counter value has been captured in CCR0 register while CC0IF flag was already set 

Bit 8 Reserved, must be kept at reset value. 

Bit 7 BIF: Break interrupt flag 

This flag is set by hardware as soon as the break input goes active. It can be cleared by 

software if the break input is not active. 

0: No break event occurred. 

1: An active level has been detected on the break input. 

Bit 6 TIF: Trigger interrupt flag 

This flag is set by hardware on trigger event (active edge detected on TRGI input when the 

slave mode controller is enabled in all modes but gated mode, both edges in case gated 

mode is selected). It is cleared by software. 

0: No trigger event occurred. 1: 

Trigger interrupt pending. 
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Bit 5 COMIF: COM interrupt flag 

This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, 

CCxNE, OCxM - have been updated). It is cleared by software. 

0: No COM event occurred. 1: 

COM interrupt pending. 

Bit 4 CC3IF: Capture/Compare 3 interrupt flag  

refer to CC0IF description 

Bit 3 CC2IF: Capture/Compare 2 interrupt flag  

refer to CC0IF description 

 

Bit 2 CC1IF: Capture/Compare 1 interrupt flag  

refer to CC0IF description 

Bit 1 CC0IF: Capture/Compare 0 interrupt flag 

If channel CC0 is configured as output: 

This flag is set by hardware when the counter matches the compare value, with some 

exception in center-aligned mode (refer to the CMS bits in the CR0 register description). It 

is cleared by software. 

0: No match. 

1: The content of the counter CNT matches the content of the CCR0 register. When the 

contents of CCR0 are greater than the contents of ARR, the CC0IF bit goes high on the 

counter overflow (in upcounting and up/down-counting modes) or underflow (in 

downcounting mode)  

If channel CC0 is configured as input: 

This bit is set by hardware on a capture. It is cleared by software or by reading the CCR0 

register. 

0: No input capture occurred 

1: The counter value has been captured in CCR0 register (An edge has been detected on 

IC0 which matches the selected polarity) 

Bit 0 UIF: Update interrupt flag 

This bit is set by hardware on an update event. It is cleared by software. 

0: No update occurred. 

1: Update interrupt pending. This bit is set by hardware when the registers are updated: 

– At overflow or underflow regarding the repetition counter value (update if repetition 

counter = 0) and if the UDIS=0 in the CR1 register. 

– When CNT is reinitialized by software using the UG bit in EGR register, if URS=0 and 

UDIS=0 in the CR0 register. 

– When CNT is reinitialized by a trigger event (refer to Section: slave mode control register 

(SMCR)), if URS=0 and UDIS=0 in the CR1 register. 
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8.4.6 event generation register (EGR) 

Address offset: 0x14 

Reset value: 0x0000 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved BG TG COMG CC3G CC2G CC1G CC0G UG 

 w w w w w w w w 

          

Bits 15:8 Reserved, must be kept at reset value. 

Bit 7 BG: Break generation 

This bit is set by software in order to generate an event, it is automatically cleared by 

hardware. 

0: No action 

1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or 

DMA transfer can occur if enabled. 

Bit 6 TG: Trigger generation 

This bit is set by software in order to generate an event, it is automatically cleared by 

hardware. 

0: No action 

1: The TIF flag is set in SR register. Related interrupt or DMA transfer can occur if enabled. 

Bit 5 COMG: Capture/Compare control update generation 

This bit can be set by software, it is automatically cleared by hardware 0: No action 

1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits Note: This bit acts 

only on channels having a complementary output. 

Bit 3 CC3G: Capture/Compare 3 generation refer to CC1G 

description 

Bit 2 CC2G: Capture/Compare 2 generation refer to CC1G 

description 

Bit 1 CC1G: Capture/Compare 1 generation refer to CC1G 

description 

Bit 0 CC0G: Capture/Compare 0 generation 

This bit is set by software in order to generate an event, it is automatically cleared by hardware. 

0: No action 

1: A capture/compare event is generated on channel 0: 

If channel CC0 is configured as output: 

CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. 

If channel CC0 is configured as input: 

The current value of the counter is captured in CCR0 register. The CC0IF flag is set, the corresponding 

interrupt or DMA request is sent if enabled. The CC0OF flag is set if the CC0IF flag was already high. 



 
 

 125 / 312 

 

Bit 0 UG: Update generation 

This bit can be set by software, it is automatically cleared by hardware. 

0: No action 

1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is 

cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode 

is selected or if DIR=0 (upcounting), else it takes the auto-reload value (ARR) if DIR=1 (downcounting). 

 

8.4.7 capture/compare mode register 1 (CCMR1) 

Address offset: 0x18 

Reset value: 0x0000 

The channels can be used in input (capture mode) or in output (compare mode). The 

direction of a channel is defined by configuring the corresponding CCxS bits. All the other 

bits of this register have a different function in input and in output mode. For a given bit, 

OCxx describes its function when the channel is configured in output, ICxx describes its 

function when the channel is configured in input. So the user must take care that the same 

bit can have a different meaning for the input stage and for the output stage. 

          

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OC1 

CE 
OC1M[2:0] 

 OC1 

PE 

OC1F

E 
CC1S[1:0] 

OC0 

CE 
OC0M[2:0] 

 OC0 

PE 

OC0 

FE 
CC0S[1:0] 

 IC1F[3:0]  IC1PSC[1:0]    IC0F[3:0]  IC0PSC[1:0]  

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

 

Output compare mode: 

Bit 15 OC1CE: Output compare 2 clear enable 

Bits 14:12 OC1M[2:0]: Output compare 2 mode 

Bit 11 OC1PE: Output compare 2 preload enable 

Bit 10 OC1FE: Output compare 2 fast enable 

Bits 9:8 CC1S[1:0]: Capture/Compare 2 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC1 channel is configured as output 

01: CC1channel is configured as input, IC1 is mapped on TI1 

10: CC1 channel is configured as input, IC1 is mapped on TI0 

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only 

if an internal trigger input is selected through the TS bit (SMCR register) 
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Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in CCER). 

Bit 7 OC0CE: Output compare 1 clear enable 

OC0CE: Output compare 1 Clear Enable 0: 

OC0Ref is not affected by the ETRF Input 

1: OC0Ref is cleared as soon as a High level is detected on ETRF input 

Bits 6:4 OC0M: Output compare 1 mode 

These bits define the behavior of the output reference signal OC0REF from which OC0 and OC0N are 

derived. OC0REF is active high whereas OC0 and OC0N active level depends on CC0P and CC0NP 

bits. 

000: Frozen - The comparison between the output compare register CCR0 and the counter CNT has no 

effect on the outputs.(this mode is used to generate a timing base). 

001: Set channel 0 to active level on match. OC0REF signal is forced high when the counter CNT 

matches the capture/compare register 1 (CCR0). 

010: Set channel 0 to inactive level on match. OC1REF signal is forced low when the counter CNT 

matches the capture/compare register 1 (CCR0). 

011: Toggle - OC0REF toggles when CNT=CCR0. 

100: Force inactive level - OC0REF is forced low. 

101: Force active level - OC0REF is forced high. 

110: PWM mode 1 - In upcounting, channel 0 is active as long as CNT<CCR0  

else inactive. In downcounting, channel 0 is inactive (OC0REF=‘0’) as long as CNT>CCR0 else active 

(OC0REF=’1’). 

111: PWM mode 2 - In upcounting, channel 0 is inactive as long as CNT<CCR0 else active. In 

downcounting, channel 0 is active as long as CNT>CCR0 else inactive. 

 

Note:    1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK 

bits in BDTR register) and CC0S=’00’ (the channel is configured in output). 

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes 

or when the output compare mode switches from “frozen” mode to “PWM” mode. 

Bit 3 OC0PE: Output compare 1 preload enable 

0: Preload register on CCR0 disabled. CCR0 can be written at anytime, the new value is taken in account 

immediately. 

1: Preload register on CCR0 enabled. Read/Write operations access the preload register. CCR0 preload 

value is loaded in the active register at each update event. 

Note:  1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in 

BDTR register) and CC0S=’00’ (the channel is configured in output). 

2: The PWM mode can be used without validating the preload register only in one pulse mode 

(OPM bit set in CR0 register). Else the behavior is not guaranteed. 

Bit 2 OC0FE: Output compare 1 fast enable 

This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 

0: CC0 behaves normally depending on counter and CCR0 values even when the trigger is ON. The 

minimum delay to activate CC0 output when an edge occurs on the trigger input is 5 clock cycles. 

1: An active edge on the trigger input acts like a compare match on CC0 output. Then, OC is set to the 
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compare level independently from the result of the comparison. Delay to sample the trigger input and to 

activate CC0 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 

or PWM2 mode. 

Bits 1:0 CC0S: Capture/Compare 1 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC0 channel is configured as output 

01: CC0 channel is configured as input, IC0 is mapped on TI1 

10: CC0 channel is configured as input, IC0 is mapped on TI2 

11: CC0 channel is configured as input, IC0 is mapped on TRC. This mode is working only if an internal 

trigger input is selected through TS bit (SMCR register) 

Note: CC0S bits are writable only when the channel is OFF (CC0E = ‘0’ in CCER). 

 

 Input capture mode 

       

Bits 15:12 IC1F: Input capture 2 filter 

Bits 11:10 IC1PSC[1:0]: Input capture 2 prescaler 

Bits 9:8 CC1S: Capture/Compare 2 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC1 channel is configured as output 

01: CC1 channel is configured as input, IC1 is mapped on TI2 

10: CC1 channel is configured as input, IC1 is mapped on TI1 

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an 

internal trigger input is selected through TS bit (SMCR register) 

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in CCER). 

Bits 7:4 IC0F[3:0]: Input capture 1 filter 

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied 

to TI1. The digital filter is made of an event counter in which N consecutive events are needed to 

validate a transition on the output: 

0000: No filter, sampling is done at fDTS 

0001: fSAMPLING=fCK_INT, N=2 

0010: fSAMPLING=fCK_INT, N=4 

0011: fSAMPLING=fCK_INT, N=8 

0100: fSAMPLING=fDTS/2, N=6 

0101: fSAMPLING=fDTS/2, N=8 

0110: fSAMPLING=fDTS/4, N=6 

0111: fSAMPLING=fDTS/4, N=8 

1000: fSAMPLING=fDTS/8, N=6 

1001: fSAMPLING=fDTS/8, N=8 

1010: fSAMPLING=fDTS/16, N=5 



 
 

 128 / 312 

 

1011: fSAMPLING=fDTS/16, N=6 

1100: fSAMPLING=fDTS/16, N=8 

1101: fSAMPLING=fDTS/32, N=5 

1110: fSAMPLING=fDTS/32, N=6 

1111: fSAMPLING=fDTS/32, N=8 

Bits 3:2 IC0PSC: Input capture 1 prescaler 

This bit-field defines the ratio of the prescaler acting on CC0 input (IC0). 

The prescaler is reset as soon as CC0E=’0’ (CCER register). 

00: no prescaler, capture is done each time an edge is detected on the capture input 

01: capture is done once every 2 events 

10: capture is done once every 4 events 

11: capture is done once every 8 events 

Bits 1:0 CC0S: Capture/Compare 1 Selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC0 channel is configured as output 

01: CC0 channel is configured as input, IC0 is mapped on TI1 

10: CC0 channel is configured as input, IC0 is mapped on TI2 

11: CC0 channel is configured as input, IC0 is mapped on TRC. This mode is working only if an 

internal trigger input is selected through TS bit (SMCR register) 

Note: CC0S bits are writable only when the channel is OFF (CC0E = ‘0’ in CCER). 

8.4.8 capture/compare mode register 2 (CCMR2) 

Address offset: 0x1C 

Reset value: 0x0000 

Refer to the above CCMR1 register description. 

 

 

 

     Output compare mode 

          

Bit 15 OC3CE: Output compare 4 clear enable 

Bits 14:12 OC3M: Output compare 4 mode 
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Bit 11 OC3PE: Output compare 4 preload enable 

Bit 10 OC3FE: Output compare 4 fast enable 

Bits 9:8 CC3S: Capture/Compare 4 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC3 channel is configured as output 

01: CC3 channel is configured as input, IC3 is mapped on TI3 

10: CC3 channel is configured as input, IC3 is mapped on TI2 

11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if 

an internal trigger input is selected through TS bit (SMCR register) 

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in CCER). 

Bit 7 OC2CE: Output compare 3 clear enable 

Bits 6:4 OC2M: Output compare 3 mode 

Bit 3 OC2PE: Output compare 3 preload enable 

Bit 2 OC2FE: Output compare 3 fast enable 

Bits 1:0 CC2S: Capture/Compare 3 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC2 channel is configured as output 

01: CC2 channel is configured as input, IC2 is mapped on TI2 

10: CC2 channel is configured as input, IC3 is mapped on TI3 

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if 

an internal trigger input is selected through TS bit (SMCR register) 

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in CCER). 

      Input capture mode 

          

Bits 15:12 IC3F: Input capture 4 filter 

Bits 11:10 IC3PSC: Input capture 4 prescaler 

Bits 9:8 CC3S: Capture/Compare 4 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC3 channel is configured as output 

01: CC3 channel is configured as input, IC3 is mapped on TI3 

10: CC3 channel is configured as input, IC3 is mapped on T2 

11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only 

if an internal trigger input is selected through TS bit (SMCR register) 

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in CCER). 

Bits 7:4 IC2F: Input capture 3 filter 

Bits 3:2 IC2PSC: Input capture 3 prescaler 
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Bits 1:0 CC2S: Capture/compare 3 selection 

This bit-field defines the direction of the channel (input/output) as well as the used input.  

00: CC2 channel is configured as output 

01: CC2 channel is configured as input, IC2 is mapped on TI2 

10: CC2 channel is configured as input, IC2 is mapped on TI3 

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only 

if an internal trigger input is selected through TS bit (SMCR register) 

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in 

CCER). 

 

8.4.9 capture/compare enable register (CCER) 

Address offset: 0x20 

Reset value: 0x0000 

          

Bit 15 CC3NP: Capture/Compare 4 complementary output polarity  

refer to CC1NP description 

Bit 14 CC3NE: Capture/Compare 3 complementary output enable  

refer to CC0NE description 

Bit 13 CC3P: Capture/Compare 4 output polarity 

refer to CC0P description 

Bit 12 CC3E: Capture/Compare 4 output enable  

refer to CC0E description 

Bit 11 CC2NP: Capture/Compare 3 complementary output polarity  

refer to CC0NP description 

Bit 10 CC2NE: Capture/Compare 3 complementary output enable  

refer to CC0NE description 

Bit 9 CC2P: Capture/Compare 3 output polarity  

refer to CC0P description 

Bit 8 CC2E: Capture/Compare 3 output enable  
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refer to CC0E description 

Bit 7 CC1NP: Capture/Compare 2 complementary output polarity  

refer to CC0NP description 

Bit 6 CC1NE: Capture/Compare 2 complementary output enable  

refer to CC0NE description 

Bit 5 CC1P: Capture/Compare 2 output polarity  

refer to CC0P description 

Bit 4 CC1E: Capture/Compare 2 output enable  

refer to CC0E description 

Bit 3 CC0NP: Capture/Compare 1 complementary output polarity 

0: OC0N active high.  

1: OC0N active low. 

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in 

BDTR register) and CC0S=”00” (the channel is configured in output). 

Bit 2 CC0NE: Capture/Compare 1 complementary output enable 

0: Off - OC0N is not active. OC0N level is then function of MOE, OSSI, OSSR, OIS0, 

OIS0N and CC0E bits. 

1: On - OC0N signal is output on the corresponding output pin depending on MOE, OSSI, 

OSSR, OIS0, OIS0N and CC0E bits. 

Bit 1 CC0P: Capture/Compare 1 output polarity 

CC0 channel configured as output: 

0: OC0 active high 

1: OC0 active low 

CC0 channel configured as input: 

This bit selects whether IC0 or IC0 is used for trigger or capture operations. 

0: non-inverted: capture is done on a rising edge of IC0. When used as external trigger, IC0 

is non-inverted. 

1: inverted: capture is done on a falling edge of IC0. When used as external trigger, IC0 is 

inverted. 

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in 

BDTR register). 

Bit 0 CC0E: Capture/Compare 1 output enable 

CC0channel configured as output: 

0: Off - OC0 is not active. OC0 level is then function of MOE, OSSI, OSSR, OIS0, OIS0N 

and CC0NE bits. 

1: On - OC0 signal is output on the corresponding output pin depending on MOE, OSSI, 

OSSR, OIS0, OIS0N and CC0NE bits. 

CC0 channel configured as input: 

This bit determines if a capture of the counter value can actually be done into the input 
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capture/compare register 1 (CCR0) or not. 

0: Capture disabled. 

1: Capture enabled. 

          

 

Table 3. Output control bits for complementary OCx and OCxN channels with break feature 

Control bits Output states(1) 

MOE 

bit 

OSSI 

bit 

OSSR 

bit 

CCxE 

bit 

CCxNE 

bit 
OCx output state OCxN output state 

1 X 0 0 0 
Output Disabled (not driven by 

the timer), OCx=0, OCx_EN=0 

Output Disabled (not driven by the 

timer), OCxN=0, OCxN_EN=0 

  
0 0 1 

Output Disabled (not driven by 

the timer), OCx=0, OCx_EN=0 

OCxREF + Polarity OCxN=OCxREF 

xor CCxNP, OCxN_EN=1 

0 1 0 

OCxREF + Polarity 

OCx=OCxREF xor CCxP, 

OCx_EN=1 

Output Disabled (not driven by the 

timer) 

OCxN=0, OCxN_EN=0 

0 1 1 
OCREF + Polarity + dead-time 

OCx_EN=1 

Complementary to OCREF (not  

OCREF) + Polarity + dead-time 

OCxN_EN=1 

1 0 0 

Output Disabled (not driven by  

the timer) 

OCx=CCxP, OCx_EN=0 

Output Disabled (not driven by the 

timer) 

OCxN=CCxNP, OCxN_EN=0 

1 0 1 

Off-State (output enabled with  

inactive state) 

OCx=CCxP, OCx_EN=1 

OCxREF + Polarity 

OCxN=OCxREF xor CCxNP,  

OCxN_EN=1 

1 1 0 

OCxREF + Polarity 

OCx=OCxREF xor CCxP, 

OCx_EN=1 

Off-State (output enabled with 

inactive state) 

OCxN=CCxNP, OCxN_EN=1 

1 1 1 
OCREF + Polarity + dead-time 

OCx_EN=1 

Complementary to OCREF (not  

OCREF) + Polarity + dead-time 

OCxN_EN=1 

0 

0 

X 

0 0 Output Disabled (not driven by the timer) 

Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,  

OCxN_EN=0 

Then if the clock is present: OCx=OISx and OCxN=OISxN after a dead-

time, assuming that OISx and OISxN do not correspond to OCX and 

OCxN both in active state. 

 0  0 1  

0 1 0 
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0 1 1 

1 0 0 

1 0 1 Off-State (output enabled with inactive state) 

Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP,  

OCxN_EN=1 

Then if the clock is present: OCx=OISx and OCxN=OISxN after a dead-

time, assuming that OISx and OISxN do not correspond to OCX and 

OCxN both in active state 

1 1 0  

1 1 1 

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept 

cleared. 

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels 

depends on the OCx and OCxN channel state and the GPIOand AFIO registers. 

 

 

 

8.4.10 counter (CNT)  

Address offset: 0x24 

Reset value: 0x0000 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CNT[15:0]       

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

          

  Bits 31:0 CNT[31:0]: Counter value 

8.4.11 prescaler (PSC) 

Address offset: 0x28 

Reset value: 0x0000   

 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       PSC[15:0]        
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rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

          

Bits 15:0 PSC[15:0]: Prescaler value 

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1). 

PSC contains the value to be loaded in the active prescaler register at each update event 

(including when the counter is cleared through UG bit of EGR register or through trigger 

controller when configured in “reset mode”). 

8.4.12 auto-reload register (ARR) 

Address offset: 0x2C 

Reset value: 0xFFFF 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       ARR[31:0]        

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

          

Bits 15:0 ARR[31:0]: Auto-reload value 

ARR is the value to be loaded in the actual auto-reload register. 

The counter is blocked while the auto-reload value is null. 

 

8.4.13 repetition counter register (RCR) 

Address offset: 0x30 

Reset value: 0x0000 

 

 

  Bits 15:8 Reserved, must be kept at reset value. 

 

     Bits 7:0 REP[7:0]: Repetition counter value 

These bits allow the user to set-up the update rate of the compare registers (i.e. 

periodic transfers from preload to active registers) when preload registers are 

enable, as well as the update interrupt generation rate, if this interrupt is enable. 

Each time the REP_CNT related downcounter reaches zero, an update event is 

generated and it restarts counting from REP value. As REP_CNT is reloaded with 

REP value only at the repetition update event U_RC, any write to the RCR register 
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is not taken in account until the next repetition update event. 

It means in PWM mode (REP+1) corresponds to: 

    –  the number of PWM periods in edge-aligned mode 

    –   the number of half PWM period in center-aligned mode. 

 

8.4.14 capture/compare register 1 (CCR0) 

            Address offset: 0x34 

Reset value: 0x0000 

 

Bits 31:0 CCR0[31:0]: Capture/Compare 1 value 

If channel CC0 is configured as output: 

CCR0 is the value to be loaded in the actual capture/compare 1 register (preload value). It 

is loaded permanently if the preload feature is not selected in the CCMR0 register (bit 

OC0PE). Else the preload value is copied in the active capture/compare 1 register when 

an update event occurs. 

The active capture/compare register contains the value to be compared to the counter CNT 

and signaled on OC0 output. 

If channel CC0 is configured as input: 

CCR0 is the counter value transferred by the last input capture 1 event (IC0). The CCR0 

register is read-only and cannot be programmed. 

 

 

 

 

 

8.4.15 capture/compare register 2 (CCR1) 

Address offset: 0x38 

Reset value: 0x0000 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       CCR1[:0]        

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro 

 

Bits 31:0 CCR1[31:0]: Capture/Compare 2 value 
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If channel CC1 is configured as output: 

CCR1 is the value to be loaded in the actual capture/compare 2 register (preload value). It 

is loaded permanently if the preload feature is not selected in the CCMR1 register (bit 

OC1PE). Else the preload value is copied in the active capture/compare 2 register when 

an update event occurs. 

The active capture/compare register contains the value to be compared to the counter CNT 

and signalled on OC1 output. 

If channel CC1 is configured as input: 

CCR1 is the counter value transferred by the last input capture 2 event (IC1). The CCR1 

register is read-only and cannot be programmed. 

8.4.16 capture/compare register 3 (CCR2) 

Address offset: 0x3C 

Reset value: 0x0000 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       CCR2[31:0]        

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro 

          

Bits 31:0 CCR2[31:0]: Capture/Compare value 

If channel CC2 is configured as output: 

CCR2 is the value to be loaded in the actual capture/compare 3 register (preload value). It 

is loaded permanently if the preload feature is not selected in the CCMR2 register (bit 

OC2PE). Else the preload value is copied in the active capture/compare 3 register when 

an update event occurs. 

The active capture/compare register contains the value to be compared to the counter CNT 

and signalled on OC2 output. 

If channel CC2 is configured as input: 

CCR2 is the counter value transferred by the last input capture 3 event (IC2). The CCR2 

register is read-only and cannot be programmed. 

8.4.17 capture/compare register 4 (CCR3) 

Address offset: 0x40 

Reset value: 0x0000 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

       CCR3[31:0]        

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro 
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Bits 31:0 CCR3[31:0]: Capture/Compare value 

If channel CC3 is configured as output: 

CCR3 is the value to be loaded in the actual capture/compare 4 register (preload value). It 

is loaded permanently if the preload feature is not selected in the CCMR3 register (bit 

OC3PE). Else the preload value is copied in the active capture/compare 4 register when 

an update event occurs. 

The active capture/compare register contains the value to be compared to the counter CNT 

and signalled on OC3 output. 

If channel CC3 is configured as input: 

CCR3 is the counter value transferred by the last input capture 4 event (IC3). The 

CCR2 register is read-only and cannot be programmed. 

8.4.18 break and dead-time register (BDTR) 

Address offset: 0x44 

Reset value: 0x0000 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

MOE AOE BKP BKE OSSR OSSI LOCK[1:0]    DTG[7:0]    

rw rw rw rw Rw rw rw rw rw rw rw rw rw rw rw rw 

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on 

the LOCK configuration, it can be necessary to configure all of them during the first write 

access to the BDTR register. 

          

Bit 15 MOE: Main output enable 

This bit is cleared asynchronously by hardware as soon as the break input is active. It is 

set by software or automatically depending on the AOE bit. It is acting only on the channels 

which are configured in output. 

0: OC and OCN outputs are disabled or forced to idle state. 

1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE 

in CCER register). 

See OC/OCN enable description for more details (Section: capture/compare enable register 

(CCER)). 

Bit 14 AOE: Automatic output enable 

0: MOE can be set only by software 

1: MOE can be set by software or automatically at the next update event (if the break input 

is not be active) 

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits 

in BDTR register). 

Bit 13 BKP: Break polarity 

0: Break input BRK is active low 
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1: Break input BRK is active high 

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in 

BDTR register). 

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. 

Bit 12 BKE: Break enable 

0: Break inputs (BRK and CSS clock failure event) disabled 

1; Break inputs (BRK and CSS clock failure event) enabled 

Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in BDTR 

register). 

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. 

Bit 11 OSSR: Off-state selection for Run mode 

This bit is used when MOE=1 on channels having a complementary output which are configured 

as outputs. OSSR is not implemented if no complementary output is implemented in the timer. 

See OC/OCN enable description for more details (Section : capture/compare enable register 

(CCER)). 

0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 1: When 

inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1. 

Then, OC/OCN enable output signal=1 

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits 

in BDTR register). 

Bit 10 OSSI: Off-state selection for Idle mode 

This bit is used when MOE=0 on channels configured as outputs. 

See OC/OCN enable description for more details (Section : capture/compare enable register 

(CCER)). 

0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 

1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or 

CCxNE=1. OC/OCN enable output signal=1) 

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits 

in BDTR register). 

Bits 9:8 LOCK[1:0]: Lock configuration 

These bits offer a write protection against software errors. 

00: LOCK OFF - No bit is write protected. 

01: LOCK Level 1 = DTG bits in BDTR register, OISx and OISxN bits in CR2 register and 

BKE/BKP/AOE bits in BDTR register can no longer be written. 10: LOCK Level 2 = LOCK Level 

1 + CC Polarity bits (CCxP/CCxNP bits in CCER register, as long as the related channel is 

configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be 

written. 

11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in CCMRx registers, 

as long as the related channel is configured in output through the CCxS bits) can no longer be 

written. 

Note: The LOCK bits can be written only once after the reset. Once the BDTR register has been 
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written, their content is frozen until the next reset. 

Bits 7:0 DTG[7:0]: Dead-time generator setup 

This bit-field defines the duration of the dead-time inserted between the complementary 

outputs. DT correspond to this duration. 

DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS. 

DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS. 

DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS. 

DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS. 

Example if TDTS=125ns (8MHz), dead-time possible values are: 

0 to 15875 ns by 125 ns steps, 

16 us to 31750 ns by 250 ns steps, 

32 us to 63us by 1 us steps, 

64 us to 126 us by 2 us steps 

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed 

(LOCK bits in BDTR register). 

 

 

 

 

 

8.4.19 register map 

registers are mapped as 16-bit addressable registers as described in the table below: 

 

Table 4. register map and reset values 
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Table 4. register map and reset values (continued) 
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9 Watchdogs 

9.1 Overview 

 

AG32 device provide a independent watchdog, which connects to the Advanced Peripheral Bus(APB)。 

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  clocked from 

an independent 32 kHz internal RC and as it operates independently from the main clock, it can 

operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a 

problem occurs, or as a free-running timer for application timeout management. It is hardware- or 

software-configurable through the option bytes. 

The Watchdog module is an AMBA slave module and connects to the Advanced Peripheral Bus 

(APB). The Watchdog module consists of a 32-bit down counter with a programmable timeout interval 

that has the capability to generate an interrupt and a reset signal on timing out. It is intended to be 

used to apply a reset to a system in the event of a software failure. 

 

9.2 Independent watchdog (IWDG) 

9.2.1 IWDG main features 

(1) Free-running down-counter 

(2) clocked from an LSI oscillator when Stop and normal modes and from LSE when Standby mode) 

(3) Reset (if watchdog activated) when the down-counter value of 0x000 is reached 

 

9.2.2 IWDG functional description 

Figure below shows the functional blocks of the independent watchdog module. 

When the independent watchdog is started, the counter starts counting down from the reset value of 

0xFFF. When it reaches the end of count value (0x000) a reset signal is generated (IWDG reset). 
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Whenever the key value 1010 is written in the IWDG_KR register, the down-counter is initialized and 

the watchdog reset is prevented. 

9.2.3 Watchdog clock 

If the Independent watchdog (IWDG) is started by either hardware option or software access,  

(1) Under run or stop mode 

Select LSE or LSI clock source by setting the IWDG_STOP_CLKSEL bit in the Backup domain control 

register(RCC_BDCR). 

(2) Under Standby mode 

HW will select LSE as clock source for IWDG. 

 

9.2.4 Debug mode 

When the mcu enter debug mode, the IWDG counter either continues to work normally or stop, 

depending on DBG_IWDG_STOP configuration bit in DBG module.  

 

IWDG timeout period (in ms) at 40 kHz (LSI) 

Pre-scaler divider PR[2:0] bits timeout (ms) 

/2 0 204.8 

/4 1 409.6 

/8 2 819.2 

/16 3 1638.4 

/32 4 3276.8 

/64 5 6553.6 

/128 6 13107.2 

/256 7 26214.4 
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9.2.5 IWDG registers 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IWDG_KR[3:0] 
reserved 

IWDG_EN 

reserv

ed 

IWDG_

STOP_C

KSEL 

IWDG_

STDBY

_FRZ 

IWDG_

STOP_F

RZ reserved 

IWDG_PR[2:0] 

rw rw rw rw rw rw rw rw rw rw rw 

 

Bits 15:12  IWDG_KR<3:0>:  Key value (write only, read 1010h) 

These bits must be written by software at regular intervals with the key value 1010h, otherwise the 

watchdog generates a reset when the counter reaches 0. 

 

Bits 8 IWDG_EN: IWDG enable control 

0: IWDG disable 

1: IWDG enable 

 

Bits 6 IWDG_STOP_CKSEL: when STOP mode, select IWDG clock source. 

0: select LSI  

1: select LSE 

note: when STANDBY mode, force to select LSI. 

 

Bits 5 IWDG_STDBY_FRZ: when STANDBY mode, the IWDG counter either continues to work 

normally or stop. 

0: normal work 

1: stop 

 

Bits 4 IWDG_STOP_FRZ: when STOP mode, the IWDG counter either continues to work normally or 

stop. 

0: normal work 

1: stop 

  

Bits 2:0 IWDG_PR[2:0]: Pre-scaler divider 

These bits are written by software to select the prescaler divider feeding the counter clock.  

000: divider /2 

001: divider /4 

010: divider /8 

011: divider /16 
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100: divider /32 

101: divider /64 

110: divider /128 

111: divider /256 

 

9.3 Functional overview 

9.3.1 Features 

The features of the Watchdog module are:  

• 32-bit down counter with a programmable timeout interval.  

• Separate Watchdog clock with clock enable for flexible control of the timeout interval.  

• Interrupt output generation on timeout.  

• Reset signal generation on timeout if the interrupt from the previous timeout remains unserviced by 

software.  

• Lock register to protect registers from being altered by runaway software.  

• Identification registers that uniquely identify the Watchdog module. These can be used by software to 

automatically configure itself 

 

 

Figure below shows a simplified block diagram of the Watchdog module. 

 

Programmable parameters 

The following Watchdog module parameters are programmable:  

• interrupt generation enable/disable  

• interrupt masking  

• reset signal generation enable and/disable 

• interrupt interval. 
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9.3.2 Watchdog module overview 

The Watchdog module is based around a 32-bit down counter that is initialized from the Reload Register, 

WdogLoad. The counter decrements by one on each positive clock edge of WDOGCLK when the clock 

enable WDOGCLKEN is HIGH. When the counter reaches zero, an interrupt is generated. On the next 

enabled WDOGCLK clock edge the counter is reloaded from the WdogLoad Register and the count 

down sequence continues. If the interrupt is not cleared by the time that the counter next reaches zero 

then the Watchdog module asserts the reset signal, WDOGRES, and the counter is stopped.  

WDOGCLK can be equal to or be a sub-multiple of the PCLK frequency. However, the positive edges 

of WDOGCLK and PCLK must be synchronous and balanced.  

The Watchdog module interrupt and reset generation can be enabled or disabled as required by use of 

the Control Register, WdogControl. When the interrupt generation is disabled then the counter is 

stopped. When the interrupt is re-enabled then the counter starts from the value programmed in 

WdogLoad, and not from the last count value.  

Write access to the registers in the Watchdog module can be disabled by the use of the Watchdog 

module Lock Register, WdogLock. Writing a value of 0x1ACCE551 to the register enables write 

accesses to all of the other registers. Writing any other value disables write accesses to all registers 

except the Lock Register. This feature protects the Watchdog module registers from being spuriously 

changed by runaway software that might otherwise disable the Watchdog module operation. 

 

9.3.3 Functional description 

The Watchdog module block diagram is shown in Figure below. 

 

 

AMBA APB interface 

The AMBA APB slave interface generates read and write decodes for accesses to all registers in the 

Watchdog module. The Lock Register, WdogLock, is used to control the enabling of write accesses to 
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all the other registers in order to ensure software cannot unintentionally disable the Watchdog module 

operation. 

 

Free running counter block 

The free running counter block contains the 32-bit down counter functionality and generates the interrupt 

and reset signal outputs. The counter and interrupt/reset logic is clocked independently of PCLK by 

WDOGCLK in conjunction with a clock enable, WDOGCLKEN, although there are constraints on the 

relationship between PCLK and WDOGCLK. See Clock signals for details of these constraints. 

 

Interface resets 

The Watchdog module is reset by:  

• the global reset signal, PRESETn  

• a block specific reset signal, WDOGRESn.  

PRESETn can be asserted asynchronously to PCLK but must be deasserted synchronously to the rising 

edge of PCLK. PRESETn is used to reset the state of the Watchdog module registers. The Watchdog 

module requires PRESETn to be asserted LOW for at least one period of PCLK. The values of the 

registers after reset are defined in Chapter 3 Programmer’s Model.  

WDOGRESn can be asserted asynchronously to WDOGCLK but must be deasserted synchronously to 

the rising edge of WDOGCLK. WDOGRESn is used to reset the state of registers in the WDOGCLK 

domain. The Watchdog module requires WDOGRESn to be asserted LOW for at least one period of 

WDOGCLK. 

 

Clock signals 

The Watchdog uses two input clocks:  

PCLK This is used to time all APB accesses to the Watchdog module registers. 

WDOGCLK 

This clock, in conjunction with its clock enable, WDOGCLKEN, is used to clock the Watchdog module 

counter and its associated interrupt and reset generation logic. The Watchdog counter only decrements 

on a rising edge of WDOGCLK when WDOGCLKEN is HIGH. The relationship between WDOGCLK 

and PCLK must observe the following constraints: 

• the rising edges of WDOGCLK must be synchronous and balanced with a rising edge of PCLK  

• the WDOGCLK frequency cannot be greater than the PCLK frequency. 

 

9.3.4 Operation 

After the initial application and release of PRESETn and WDOGRESn, the Control Register is reset and 

interrupt and reset generation is disabled. The Lock Register, WdogLock, is initialized in the unlocked 

state so that write access to all Watchdog module registers is enabled. The Watchdog counter remains 

at its initial value (0xFFFFFFFF) until the interrupt generation is enabled by setting the INTEN bit in the 

WdogControl Register. 

The WdogLoad Register must be programmed with the desired timeout interval before the Watchdog 

module is enabled. After the INTEN bit is set, the counter is loaded with the value in the WdogLoad 

Register on the next rising edge of WDOGCLK enabled by WDOGCLKEN. On each subsequent 
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enabled WDOGCLK rising edge the counter decrements by one. When the counter reaches zero an 

interrupt is generated and the Watchdog interrupt signal, WDOGINT, is asserted. The counter is then 

reloaded from the value in the WdogLoad Register and starts another count down sequence. 

The interrupt is cleared by a write of any data value to the WdogIntClr Register. This causes the counter 

to reload with the value held in the WdogLoad Register and another count down sequence starts. If the 

interrupt is not cleared before the counter next reaches zero then the WDOGRES signal is asserted if 

the reset enable bit, RESEN, in the WdogControl Register is set. After the WDOGRES signal is asserted, 

the counter stops. 

In a SoC, the WDOGRES signal is used to reset a system that has got into an unpredictable state. 

Therefore, the Watchdog module expects to be reset by PRESETn and WDOGRESn and the 

initialization procedure starts again. 

To protect the Watchdog module registers from being changed unintentionally, the Lock Register, 

WdogLock, must be used to disable the write access to the Watchdog module registers after registers 

have been modified. To enable write access to all registers, write 0x1ACCE551 to the Lock Register, 

WdogLock. After writing to the required Watchdog registers, disable write access to all registers except 

the Lock Register by writing any value other than 0x1ACCE551 to the Lock Register. Reading the Lock 

Register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are 

disabled, reading the lock register returns 0x00000001 (locked) otherwise the return value is 

0x00000000 (unlocked). 

If the Load Register, WdogLoad, is written to with a new value while the Watchdog counter is 

decrementing then the counter is reloaded immediately with the new load value and continues 

decrementing from the new value. Writing to WdogLoad does not clear an active interrupt. An interrupt 

must be specifically cleared by writing to the Interrupt Clear Register, WdogIntClr. 

If the interrupt generation is disabled by clearing the INTEN bit in the Control Register, WdogControl, 

the counter stops at its current value. When the interrupt generation is enabled again the counter reloads 

from the Load Register, WdogLoad, and starts to decrement. 

 

Interrupt behavior 

When the Watchdog raises an interrupt by asserting WDOGINT, the timing of this signal is generated 

from a rising clock edge of WDOGCLK enabled by WDOGCLKEN. When the interrupt is cleared by a 

write to the Interrupt Clear Register, WdogIntClr, the WDOGINT signal is deasserted immediately in the 

PCLK domain rather than waiting for the next enabled WDOGCLK rising edge. 

Figure below shows an example of the timing for an interrupt being raised and cleared. 
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Programming the timeout interval 

The Watchdog module counter is clocked by the rising edge of WDOGCLK when WDOGCLKEN is 

HIGH. In the case where WDOGCLKEN is permanently HIGH, the count rate is equal to the WDOGCLK 

frequency. When WDOGCLKEN is periodically pulsed HIGH for one WDOGCLK rising edge then the 

count rate is equal to the frequency of the WDOGCLKEN pulses. The frequency of enabled clock edges 

is referred to as the effective watchdog clock frequency and the period is referred to as the effective 

watchdog clock period. 

 

The Watchdog counter is reloaded from the Load Register, WdogLoad, whenever: 

• the counter reaches zero  

• the interrupt generation is enabled by setting the INTEN bit in the Control Register, WdogControl, 

when it was previously disabled  

• an interrupt is cleared by writing to the Interrupt Clear register, WdogIntClr  

• a new value is written to the Load Register, WdogLoad. 

 

The time interval between the counter load occurring, and the counter reaching zero and generating an 

interrupt is given by the following expression: 

Interrupt interval = (WdogLoad+1) x effective watchdog clock period 

 

The initial reset value for WdogLoad is 0xFFFFFFFF and for an example effective watchdog frequency 

of 1MHz (period of 1ms) the interrupt interval is 4295 seconds.  

The minimum valid value for WdogLoad is 0x00000001. If WdogLoad is set to 0x00000000, an interrupt 

is always generated immediately.  

Table below shows examples of WdogLoad values required for a variety of interrupt intervals when the 

effective watchdog clock frequency is 1MHz. 

 

 

9.3.5 Summary of registers 

 

Summary of Watchdog module registers 
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Address Type Width Reset 

value 

Name 

Base + 0x00 Read/write 32 0xFFFFFFFF WdogLoad 

Base + 0x04 Read-only 32 0xFFFFFFFF WdogValue 

Base + 0x08 Read/write 2 0x0 WdogControl 

Base + 0x0C Write-only - - WdogIntClr 

Base + 0x10 Read-only 1 0x0 WdogRIS 

Base + 0x14 Read-only 1 0x0 WdogMIS 

Base + 0x18-0xBFC - - - - 

Base + 0xC00 Read/write 32 0x0 WdogLock 

 

 

9.3.6 Register descriptions 

Load Register, WdogLoad 

This is a 32-bit read/write register that contains the value from which the counter is to decrement. When 

this register is written to, the count is immediately restarted from the new value. The minimum valid 

value for WdogLoad is 1. If WdogLoad is set to 0 then an interrupt is generated immediately. 

 

Value Register, WdogValue 

This read-only 32-bit register gives the current value of the decrementing counter. 

 

Control register, WdogControl 

This is a read/write register that enables the software to control the Watchdog module. Table below 

shows the bit assignment of the WdogControl Register. 

 

Interrupt Clear Register, WdogIntClr 

A write of any value to this location clears the Watchdog module interrupt, and reloads the counter from 

the value in the WdogLoad Register. 

 

Raw Interrupt Status Register, WdogRIS 
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This register indicates the raw interrupt status from the counter. The Raw Interrupt Status Register 

indicates that an interrupt has been raised by the Watchdog counter reaching zero. Table below shows 

the bit assignment of the WdogRIS Register 

 
Masked Interrupt Status Register, WdogMIS 

This register indicates the masked interrupt status from the counter. This value is the logical AND of the 

raw interrupt status with the INTEN bit from the Control Register, and is the same value that is passed 

to the interrupt output pin WDOGINT. Table below shows the bit assignment of the WdogMIS Register. 

 

 

Lock Register, WdogLock 

This register allows write-access to all other registers to be disabled. This is to prevent rogue software 

from disabling the Watchdog module operation. Writing a value of 0x1ACCE551 enables write access 

to all other registers. Writing any other value disables write accesses. A read from this register returns 

the lock status rather than the value written:  

• 0 indicates that write access is enabled (not locked)  

• 1 indicates that write access is disabled (locked). 

Table below shows the bit assignment of the WdogLock Register. 
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Appendix A 

Signal Descriptions 

A.1 AMBA APB signals 

The Watchdog module is connected to the AMBA APB as a bus slave. Table A-1 describes the APB 

interface signals. 

 

 

A.2 Non-AMBA signals 

Table A-2 describes the Watchdog module non-AMBA signals. 
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10 Real-time clock (RTC) 

 

The real-time clock is an independent timer. The RTC provides a set of continuously running counters 

which can be used, with suitable software, to provide a clock-calendar function. The counter values 

can be written to set the current time/date of the system.  

The RTC core and clock configuration are in the Backup domain, which means that RTC setting and 

time are kept after reset or wakeup from Standby mode. After reset, access to the Backup registers 

and RTC is disabled and the Backup domain (BKP) is protected against possible parasitic write 

access. 

To enable access to the Backup registers and the RTC, proceed as follows: 

(1) Enable the power and backup interface clocks by setting the PWREN and BKPEN bits in the 

RCC_APB1ENR register 

(2) Set the DBP bit the Power Control Register (PWR_CR) to enable access to the Backup registers 

and RTC. 

 

10.1 RTC main features: 

Programmable pre-scaler : division factor up to 2^20  

32-bit programmable counter for long-term measurement  

The RTC clock source could be any of the following ones:  

(1) CLKLOCAL from interconnect logic  

(2) LSE oscillator clock  

(3) LSI oscillator clock  

Two separate reset types:  

(1) The APB interface is reset by system reset  

(2) The RTC Core (Pre-scaler, Alarm, Counter and Divider) is reset only by a Backup domain reset.  

Three dedicate interrupt lines:  

(1) Alarm interrupt, for generating a software programmable alarm interrupt.  

(2) Seconds interrupt, for generating a periodic interrupt signal with a programmable period length.(up 

to 1 second).  

(3) Overflow interrupt, to detect when the internal programmable counter rolls over to zero. 

 



 
 

 154 / 312 

 

10.2 RTC functional description 

The RTC consists of two main units. The first one (APB1 Interface) is used to interface with the APB1 

bus. This unit also contains a set of 16-bit registers accessible from the APB1 bus in read or write 

mode. The APB1 interface is clocked by the APB1 bus clock in order to interface with the APB1 bus. 

The other unit (RTC Core) consists of a chain of programmable counters made of two main blocks. 

The first block is the RTC pre-scaler block, which generates the RTC time base TR_CLK that can be 

programmed to have a period of up to 1 second. It includes a 20-bit programmable divider (RTC Pre-

scaler). Every TR_CLK period, the RTC generates an interrupt (Second Interrupt) if it is enabled in the 

RTC_CR register. The second block is a 32-bit programmable counter that can be initialized to the 

current system time. The system time is incremented at the TR_CLK rate and compared with a 

programmable date (stored in the RTC_ALR register) in order to generate an alarm interrupt, if 

enabled in the RTC_CR control register. 

RTC simplified block diagram 

 
Resetting RTC registers 

All system registers are asynchronously reset by a System Reset or Power Reset, except for RTC_PRL, 

RTC_CAL 

RTC_PRL 

RTC_DIV 
RTC_CLK 

LSE 

LSI 

CLK_LOCAL 

RTC pre-scaler 

Powered in standby 

RTC_CNT 

RTC_CLR 

TR_CLK 

Powered in standby 

32 bit counter 

WKUP pin 
Powered in standby 

Exit standby mode 

Backup domain 

RTC_second RTC_overflow RTC_alarm 

Not powered in standby 

APB1 interface 

APB1 bus 

PCLK1 
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RTC_ALR, RTC_CNT, and RTC_DIV. 

The RTC_PRL, RTC_ALR, RTC_CNT, and RTC_DIV registers are reset only by a Backup Domain reset. 

 

Reading RTC registers 

The RTC core is completely independent from the RTC APB1 interface. 

Software accesses the RTC pre-scaler, counter and alarm values through the APB1 interface but the 

associated readable registers are internally updated at each rising edge of the RTC clock 

resynchronized by the RTC APB1 clock. This is also true for the RTC flags. 

This means that the first read to the RTC APB1 registers may be corrupted (generally read as 0) if the 

APB1 interface has previously been disabled and the read occurs immediately after the APB1 interface 

is enabled but before the first internal update of the registers. This can occur if: 

(1) A system reset or power reset has occurred 

(2) The MCU has just woken up from Standby mode 

(3) The MCU has just woken up from Stop mode 

In all the above cases, the RTC core has been kept running while the APB1 interface was disabled 

(reset, not clocked or unpowered). 

Consequently when reading the RTC registers, after having disabled the RTC APB1 interface, the 

software must first wait for the RSF bit (Register Synchronized Flag) in the RTC_CRL register to be set 

by hardware. 

Note that the RTC APB1 interface is not affected by WFI and WFE low-power modes. 

 

Configuring RTC registers 

To write in the RTC_PRL, RTC_CNT, RTC_ALR registers, the peripheral must enter Configuration Mode. 

This is done by setting the CNF bit in the RTC_CRL register.  

In addition, writing to any RTC register is only enabled if the previous write operation is finished. To 

enable the software to detect this situation, the RTOFF status bit is provided in the RTC_CR register to 

indicate that an update of the registers is in progress. A new value can be written to the RTC registers 

only when the RTOFF status bit value is ’1’. 

Configuration procedure 

1. Poll RTOFF, wait until its value goes to ‘1’ 

2. Set the CNF bit to enter configuration mode 

3. Write to one or more RTC registers 

4. Clear the CNF bit to exit configuration mode 

5. Poll RTOFF, wait until its value goes to ‘1’ to check the end of the write operation. 

The write operation only executes when the CNF bit is cleared; it takes at least three RTCCLK cycles to 

complete. 

 

RTC flag assertion 

The RTC Second flag (SECF) is asserted on each RTC Core clock cycle before the update 

of the RTC Counter. 

The RTC Overflow flag (OWF) is asserted on the last RTC Core clock cycle before the 

counter reaches 0x0000. 

The RTC_Alarm and RTC Alarm flag (ALRF)  are asserted on the last RTC Core clock cycle before the 

counter reaches the RTC Alarm value stored in the Alarm register increased by one (RTC_ALR + 1). 



 
 

 156 / 312 

 

The write operation in the RTC Alarm and RTC Second flag must be synchronized by using one of the 

following sequences: 

(1) Use the RTC Alarm interrupt and inside the RTC interrupt routine, the RTC Alarm and/or RTC 

Counter registers are updated. 

(2) Wait for SECF bit to be set in the RTC Control register. Update the RTC Alarm and/or 

the RTC Counter register. 

 

 

RTC second and alarm waveform example with PR=0003, ALARM=00004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTC Overflow waveform example with PR=0003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTC_Secon

RTC_CNT 

0002 0001 0000 0003 0002 0001 0000 0003 0001 0003 0001 0003 0002 0001 0000 0003 0002 0001 0000 0003 

FFFFFFFB 

1 RTCCLK 

RTC_P

RTC_Overflow 

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 

RTCCLK 

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 

FFFFFFFC FFFFFFFD FFFFFFFE FFFFFFFF 00000000 

RTC_Second 

RTC_Alarm 

0002 0001 0000 0003 0002 0001 0000 0003 0001 0003 0001 0003 0002 0001 0000 0003 0002 0001 0000 0003 

0000 0001 0002 0003 0004 0005 

1 RTCCLK 

RTC_PR 

RTC_CNT 

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 

RTCCLK 

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 
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11 DMA 

11.1 Overview 

The flexible general-purpose DMA controllers provide a hardware method of transferring data between 

peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other 

system functions. Three types of access method are supported: peripheral to memory, memory to 

peripheral, memory to memory. 

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests 

are determined by software configuration and hardware channel number. Transfer size of source and 

destination are independent and configurable. 

 

Features of the DMAC 

The DMAC offers: 

• Eight DMA channels. Each channel can support a unidirectional transfer.  

• 16 DMA requests. The DMAC provides 16 peripheral DMA request lines.  

• Single DMA and burst DMA request signals. Each peripheral connected to the DMAC can assert 

either a burst DMA request or a single DMA request. You set the DMA burst size by programming the 

DMAC.  

• Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral 

transfers.  

• Scatter or gather DMA support through the use of linked lists.  

• Hardware DMA channel priority. Each DMA channel has a specific hardware priority. DMA channel 0 

has the highest priority and channel 7 has the lowest priority. If requests from two channels become 

active at the same time, the channel with the highest priority is serviced first.  

• AHB slave DMA programming interface. You program the DMAC by writing to the DMA control 

registers over the AHB slave interface.  

• Two AHB bus masters for transferring data. Use these interfaces to transfer data when a DMA 

request goes active.  

• 32-bit AHB master bus width.  

• Incrementing or non-incrementing addressing for source and destination.  

• Programmable DMA burst size. You can programme the DMA burst size to transfer data more 

efficiently. The burst size is usually set to half the size of the FIFO in the peripheral. 

• Internal four word FIFO per channel. 

• Supports eight, 16, and 32-bit wide transactions.  

• Big-endian and little-endian support. The DMAC defaults to little-endian mode on reset 

Raw interrupt status. You can read the DMA error and DMA count raw interrupt status prior to 

masking.  

• Test registers for use in block and integration system level testing.  

• Identification registers that uniquely identify the DMAC. An operating system can use these to 

automatically configure itself 
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11.2 Functional Overview 

11.2.1 Functional description 

The DMAC enables the following transactions:  

• memory-to-memory  

• memory-to-peripheral  

• peripheral-to-memory  

• peripheral-to-peripheral.  

Each DMA stream provides unidirectional serial DMA transfers for a single source and destination. For 

example, a bidirectional port requires one stream for transmit and one for receive. The source and 

destination areas can each be either a memory region or a peripheral, and you can access them 

through the same AHB master, or one area by each master. Figure 2-1 shows a block diagram of the 

DMAC. 
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11.2.1.1 AHB slave interface  

All transactions on the AHB slave programming bus of the DMAC are 32 bits. This eliminates endian 

issues when programming the DMAC.  

11.2.1.2 Control logic and register bank  

The register block stores data written, or to be read across the AMBA AHB interface. Program the 

DMAC with this block using an AMBA AHB slave interface.  

11.2.1.3 DMA request and response interface  

DMA request mapping 

Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 

Channel 0 FLASH_DMA_REQ GPTIMER0_TRIGGER_DMA_REQ GPTIMER3_CC_DMA0_REQ UART1_RX_DMA_REQ 

Channel 1 EXT_DMA0_REQ GPTIMER1_UPDATE_DMA_REQ GPTIMER3_CC_DMA1_REQ UART2_TX_DMA_REQ 

Channel 2 EXT_DMA1_REQ GPTIMER1_CC_DMA0_REQ GPTIMER3_CC_DMA2_REQ UART2_RX_DMA_REQ 

Channel 3 EXT_DMA2_REQ GPTIMER1_CC_DMA1_REQ GPTIMER3_CC_DMA3_REQ UART3_TX_DMA_REQ 

Channel 4 EXT_DMA3_REQ GPTIMER1_CC_DMA2_REQ GPTIMER3_COM_DMA_REQ UART3_RX_DMA_REQ 

Channel 5 FCB0_DMA_REQ GPTIMER1_CC_DMA3_REQ GPTIMER3_TRIGGER_DMA_REQ UART4_TX_DMA_REQ 

Channel 6 GPTIMER1_COM_DMA_REQ GPTIMER4_UPDATE_DMA_REQ SPI0_TX_DMA_REQ UART4_RX_DMA_REQ 

Channel 7 GPTIMER1_TRIGGER_DMA_REQ GPTIMER4_CC_DMA0_REQ SPI0_RX_DMA_REQ   

Channel 8 GPTIMER2_UPDATE_DMA_REQ GPTIMER4_CC_DMA1_REQ SPI1_TX_DMA_REQ   

Channel 9 GPTIMER2_CC_DMA0_REQ GPTIMER4_CC_DMA2_REQ SPI1_RX_DMA_REQ   

Channel 10 GPTIMER0_UPDATE_DMA_REQ GPTIMER2_CC_DMA1_REQ GPTIMER4_CC_DMA3_REQ   

Channel 11 GPTIMER0_CC_DMA0_REQ GPTIMER2_CC_DMA2_REQ GPTIMER4_COM_DMA_REQ   

Channel 12 GPTIMER0_CC_DMA1_REQ GPTIMER2_CC_DMA3_REQ GPTIMER4_TRIGGER_DMA_REQ   

Channel 13 GPTIMER0_CC_DMA2_REQ GPTIMER2_COM_DMA_REQ UART0_TX_DMA_REQ   

Channel 14 GPTIMER0_CC_DMA3_REQ GPTIMER2_TRIGGER_DMA_REQ UART0_RX_DMA_REQ   

Channel 15 GPTIMER0_COM_DMA_REQ GPTIMER3_UPDATE_DMA_REQ UART1_TX_DMA_REQ   

 

11.2.1.4 Channel logic and channel register bank  

The channel logic and channel register bank contains registers and logic that each DMA channel 

requires.  

11.2.1.5 Interrupt request  

The interrupt request generates interrupts to the core processor. 
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11.2.1.6 AHB master interfaces 

The DMAC contains two full AHB masters. Figure below shows a block diagram of the two masters 

connected into a system. This enables, for example, the DMAC to transfer data directly from the 

memory connected to AHB port 1 to any AHB peripheral connected to AHB port 2. It also enables 

transactions between the DMAC and any APB peripheral to occur independently of transactions on 

AHB bus 1. 

 

The two AHB masters are each capable of dealing with all types of AHB transactions, including:  

• Split, retry, and error responses from slaves. If a peripheral performs a split or retry, the DMAC stalls 

and waits until the transaction can complete.  

• Locked transfers for source and destination of each stream.  

• Setting of protection bits for transfers on each stream.  

All AHB signals are connected as defined in the AHB Specification. The two AHB masters must be 

synchronous. They must use the same HCLK. Support for asynchronous AHB buses is not defined 

within the DMAC, and you must implement it by using wrappers, if required. 

 

Bus and transfer widths 

The two AHB masters are connected to buses of the same width. The default is a 32-bit bus. Source 

and destination transfers can be different widths, and can be the same width or narrower than the 

physical bus width. The DMAC packs or unpacks data as appropriate. The DMAC uses HSIZE1 or 

HSIZE2 to indicate the width of a transfer, and if this fails to match the width expected by the 

peripheral, then the peripheral can assert an error on HRESP1 or HRESP2. 

 

Endian behavior  

The DMAC can cope with both little-endian and big-endian addressing. You can set the endianness of 

each AHB master individually.  

Internally, the DMAC treats all data as a stream of bytes instead of 16-bit or 32-bit quantities. This 

means that when performing mixed-endian activity, where the endianness of the source and 

destination are different, byte swapping of the data within the 32-bit data bus occurs.  

Note: 

If you do not require byte swapping, avoid using different endianness between the source and 

destination addresses. 
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Error conditions  

An error during a DMA transfer is flagged directly by the peripheral by asserting an Error response on 

the AHB bus during the transfer. The DMAC automatically disables the DMA stream after the current 

transfer has completed, and optionally generates an error interrupt to the CPU. You can mask this 

error interrupt. 

 

11.2.1.7 Channel hardware  

A dedicated hardware channel supports each stream, including source and destination controllers, 

and a FIFO. This enables better latency than a DMAC with only a single hardware channel shared 

between several DMA streams, and also simplifies the control logic. 

 

11.2.1.8 Test registers  

Test registers are provided for integration testing. You must not read or write to test registers during 

normal use. The integration testing verifies that the DMAC is connected into a system correctly, 

enabling you to write to and read each input and output. 

 

11.2.1.9 DMA request priority 

DMA channel priority is fixed. DMA channel 0 has the highest priority and DMA channel 7 has the 

lowest priority. 

If the DMAC is transferring data for a lower priority channel, and then a higher priority channel goes 

active, it completes the number of transfers delegated to the master interface by the lower priority 

channel before switching over to transfer data for the higher priority channel. In the worst case, this is 

as large as one quadword.  

The two lowest priority channels in the DMAC, 6 and 7, are designed so that they cannot saturate the 

AHB bus. If one of these lower priority channels goes active, the DMAC relinquishes the bus for one 

cycle each four transfers of the programmed WIDTH irrespective of the size of the transfer. For 

example, if the programmed size WIDTH is 8, then after four transfers of 8 bits the DMAC relinquishes 

the bus. This enables other AHB masters to access the bus.  

It is recommended that memory-to-memory transactions use one of these low-priority channels or 

other lower priority AHB bus masters cannot access the bus during DMAC memory-to-memory 

transfer. 

11.2.2 System considerations 

Reducing the number of transactions that occur on the buses reduces the latency on the bus, 

improves system performance, and reduces power consumption. Therefore, the following design 

considerations are recommended:  

• All memory transactions are, in the standard configuration, 32 bits wide to improve bus efficiency.  
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• Peripherals with natural word sizes that are less than 32 bits must contain byte or halfword packing 

hardware so that all transactions can be made 32 bits wide.  

• Slow peripherals that normally use wait states must contain FIFOs so you can transfer data at full 

speed using burst transfers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.2.3 System connectivity 

Figure below shows how the DMAC connects to a system 
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11.2.3.1 AHB interfaces  

The AHB slave and master interfaces all execute from the same clock, HCLK. Each master is entirely 

separate and there is no shared logic between them. 

11.2.3.2 AHB slave interface  

The AHB slave interface programs the DMAC. Figure 2-3 on page 2-13 shows the port-level 

connections of the AHB slave interface module. 

11.2.3.3 AHB master interface  

Unless otherwise stated, you must connect this interface as the AMBA Specification describes. You 

can set the AHB signals while performing DMA transfers. 

Protection control 

Software programs HPROT[3:0] bits for each DMA channel. The bits are set as follows: 

HPROT[0]  Opcode, or data. This bit is hardcoded to Data-1.  

HPROT[1]  User or privileged:  

user = 0  

privileged = 1.  

Programmed by software. See Channel Control Registers. During LLI 

loads, HPROT[1] is made 1, privileged.  

HPROT[2]  Bufferable or non-bufferable:  

non-bufferable = 0  

bufferable = 1.  

Programmed by software. See Channel Control Registers. During LLI 

loads, HPROT[2] is made 0.  

HPROT[3]  Cacheable or non-cacheable:  

non-cacheable = 0  

cacheable = 1.  

Programmed by software. See Channel Control Registers. During LLI 

loads, HPROT[3] is made 1. 

Peripherals can interpret the HPROT information as required to help perform efficient transactions. For 

example:  

• You can use the HPROT[1] user or privileged bit to protect certain peripherals or memory spaces 

from user mode transactions.  

• You can use the HPROT[2] bufferable or nonbufferable bit to indicate to an AMBA bridge that the 

write can complete in zero wait states on the source bus. This is without waiting for it to arbitrate for 

the destination bus, and for the slave to accept the data.  
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• An AMBA bridge can use the HPROT[3] cacheable or noncacheable bit so that on the first read of a 

burst of eight, it can transfer the whole burst of eight reads on the destination bus, rather than pass the 

transactions through one at a time. 

 

Lock control 

Set the lock bit by programming bit 16 in the DMACCxConfiguration Register. See Channel 

Configuration Registers.  

When a burst occurs, the AHB arbiter must not degrant the master during the burst until the lock is 

deasserted. You can lock the DMAC for a single burst such as a long source fetch burst or a long 

destination drain burst. The DMAC does not usually assert the lock continuously for a source fetch 

burst followed by a destination drain burst.  

There are situations when the DMAC asserts the lock for source transfers followed by destination 

transfers. This is possible when internal conditions in the DMAC enable it to perform a source fetch 

followed by a destination drain back-to-back, and when the following conditions are both met:  

• Source width = destination width, and,  

• Source burst size is a minimum of 4. 

Bus width 

The source width, SWidth, or destination width, DWidth, values in the DMACCxControl Register 

program the HSIZE[1:0] bits. 

11.2.3.4 Interrupt generation logic 

The DMAC generates the individual maskable active HIGH interrupts. A combined interrupt output is 

also generated as an OR function of the individual interrupt requests.  

You can use the single combined interrupt with a system interrupt controller that provides another level 

of masking on a per-peripheral basis. This enables you to use modular device drivers that always 

know where to find the interrupt source control register bits.  

You can also use the individual interrupt requests with a system interrupt controller that provides 

masking for the outputs of each peripheral. In this way, a global interrupt service routine can read the 

entire set of sources from one wide register in the system interrupt controller. This is useful when the 

time to read from the peripheral registers is significant compared to the CPU clock speed in a real-time 

system.  

The peripheral supports both of these methods. 

 

11.2.3.5 Interrupt controller connectivity 

You can connect the interrupt request signals of the DMAC to an interrupt controller in one of two 

ways. 

• For higher performance systems, you must connect the DMACINTERR and DMACINTTC interrupt 

request signals to the interrupt controller. Figure below shows connections to higher performance 

systems. 



 
 

 165 / 312 

 

 

For lower performance systems, where the interrupt controller has fewer interrupt request input lines, 

you can use the DMACINTR interrupt request signal. Figure below shows connections to lower 

performance systems. 

 

11.2.3.6 DMA request and response connectivity 

Figure below shows how you can connect the DMA request and response signals to a peripheral. 

However, some peripherals do not use all of these signals. You can leave output signals that are not 

required unconnected and you can tie input signals that are not required LOW. See Appendix B DMA 

Interface for more information on the DMA request and response interface.  

Figure below shows an example of a peripheral that uses all of the DMA request and grant signals 

 

Figure below shows a simple example of connectivity. 

 

11.2.4 Software considerations 

You must take into account the following software considerations when programming the DMAC: 

• There must not be any write-operation to Channel registers in an active channel after the channel 

enable is made HIGH. If you must reprogram any DMAC channel parameters, you must reprogram 

after disabling the DMAC channel.  
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• If the source width is less than the destination width, the TransferSize value multiplied by the source 

width must be an integral multiple of the destination width.  

• When the source peripheral is the flow controller and the source width is less than the destination 

width, the number of transfers that the source peripheral performs, before asserting an DMACLSREQ 

or DMACLBREQ, must be so that the number of transfers multiplied by the source width is an integral 

multiple of the destination width. If this case is violated, the data can get stuck and lost in the FIFO 

causing UNPREDICTABLE results. You can abort the transfer by disabling the relevant DMAC 

channel. 

• You must not program the SrcPeripheral and DestPeripheral bit fields in the DMACCxConfig 

Register with any value greater than 15. 

• The SWidth and DWidth bit fields in the DMACCxControl Register must not indicate more than a 32-

bit wide peripheral. 

• After the software disables a channel by clearing the ChannelEnable bit in the DMACCxConfig 

Register, see Channel Configuration Registers on page 3-27, it must re-enable the bit only after it has 

polled a 0 in the corresponding DMACEnbldChns Register bit, see Enabled Channel Register. This is 

because the actual disabling does not immediately happen with the clearing of ChannelEnable bit. 

You must accommodate the latency of the ongoing AHB burst.  

• The LLI field in the DMACCxLLIReg Register must not indicate an address greater than 

0xFFFFFFF0, otherwise the four-word LLI burst wraps over at 0x00000000 and the LLI data structure 

is not in contiguous memory locations. See Channel Linked List Item Registers.  

• When the transfer size programmed in the DMAC is greater than the depth of the FIFO in a source 

or destination peripheral, you must only program the DMAC for non-incrementing address generation. 

• A peripheral is expected to deassert any DMACSREQ, DMACBREQ, DMACLSREQ, or 

DMACLBREQ signals on receiving the DMACCLR signal irrespective of the request the DMACCLR 

was asserted in response to. This is because DMACCLR is not specific to a single-request signal, 

DMACSREQ, or burst-request signal, DMACSBEQ. The handshaking of DMACCLR is achieved with 

a logical OR of all the DMA requests in the DMAC. 

• If you program the TransferSize field in the DMACCxControl Register, see Channel Control 

Registers, as zero, and the DMAC is the flow controller, the TransferSize field has no meaning in other 

flow-control modes, then the channel does not initiate any transfers. It is your responsibility to disable 

the channel by writing into the channel enable bit of the DMACCxConfig Register and reprogramming 

the channel again. 

• You must not run the normal read-write tests on the DMACCxControl Register, see Channel Control 

Registers, because the TransferSize field is not a typical write and read-back register field. While 

writing, the TransferSize bit-field is like a control register because it determines how many transfers 

the DMAC performs. However, during read-back, TransferSize behaves like a status register because 

it returns the number of remaining transfers in terms of source width. So when TransferSize is read 

back, it returns the number of destination-transfer-completed stored in a separate counter called 

TrfSizeDst multiplied by a factor. The same physical register is not being written into and read from, 

and normal write and read-back tests are not applicable.  

• In the destination flow control mode, with peripheral-to-peripheral transfer, if sufficient data is present 

in the channel FIFO to service a DMACLSREQ or DMACLBREQ request raised by a destination 

peripheral without requiring data to be fetched from the source peripheral, then the source peripheral 

is issued a DMACTC.  

• For destination flow controlled case, peripheral-to-peripheral transfer, with DWidth < SWidth, the 

number of data bytes requested by the destination peripheral must be an integral multiple of Swidth 

expressed in bytes. If you do not ensure this, then the DMAC might fetch more data from the source 

peripheral than is required. This can result in data loss 

• At the end of accesses corresponding to low-priority channels, an IDLE cycle is inserted on the AHB 

bus to enable other masters to access the bus. This ensures that a low-priority channel does not 
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monopolize the bus. It does, however, mean that the bus might be occupied by transactions 

corresponding to a low priority for up to 16 cycles in the worst case. This applies to all transfer 

configurations, including memory-to-memory transfers. 

 

11.3 Programmer’s Model 

11.3.1 About the programmer’s model 

The DMAC enables the following types of transactions:  

• memory-to-memory  

• memory-to-peripheral  

• peripheral-to-memory  

• peripheral-to-peripheral.  

Each DMA stream is configured to provide unidirectional DMA transfers for a single source and 

destination.  

For example, a bidirectional serial port requires one stream for transmit and one for receive. The 

source and destination areas can each be either a memory region or a peripheral, and you can access 

them through the same AHB master, or one area by each master.  

The base address of the DMAC is not fixed, and can be different for any particular system 

implementation. However, the offset of any particular register from the base address is fixed. 

11.3.2  Programming the DMAC 

11.3.2.1 Enabling the DMAC  

Enable the DMAC by setting the DMA Enable, E, bit in the DMACConfiguration Register. See 

Configuration Register 

11.3.2.2 Disabling the DMAC  

To disable the DMAC:  

1. Read the DMACEnbldChns Register and ensure that you have disabled all the DMA channels. If 

any channels are active, see Disabling a DMA channel.  

2. Disable the DMAC by writing 0 to the DMA Enable bit in the DMACConfiguration Register. See 

Configuration Register. 

11.3.2.3 Enabling a DMA channel 

Enable the DMA channel by setting the Channel Enable bit in the relevant DMA channel Configuration 

Register. See Channel Configuration Registers. 

Note: 
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You must fully initialize the channel before you enable it. Additionally, you must set the Enable bit of 

the DMAC before you enable any channels. 

11.3.2.4 Disabling a DMA channel 

You can disable a DMA channel in the following ways: 

• Write directly to the Channel Enable bit 

• Use the Active and Halt bits in conjunction with the Channel Enable bit.  

• Wait until the transfer completes. The channel is then automatically disabled. 

Disabling a DMA channel and losing data in the FIFO 

Clear the relevant Channel Enable bit in the relevant channel Configuration Register. See Channel 

Configuration Registers. The current AHB transfer, if one is in progress, completes and the channel is 

disabled. 

Disabling a DMA channel without losing data in the FIFO 

To disable a DMA channel without losing data in the FIFO:  

1. Set the Halt bit in the relevant channel Configuration Register. See Channel Configuration 

Registers. This causes any subsequent DMA requests to be ignored.  

2. Poll the Active bit in the relevant channel Configuration Register until it reaches 0. This bit indicates 

whether there is any data in the channel that has to be transferred.  

3. Clear the Channel Enable bit in the relevant channel Configuration Register. 

 

11.3.2.5 Setting up a new DMA transfer 

To set up a new DMA transfer:  

1. If the channel is not set aside for the DMA transaction:  

a. Read the DMACEnbldChns Register and determine the channels that are inactive. See 

Enabled Channel Register.  

b. Choose an inactive channel that has the necessary priority.  

2. Program the DMAC. 

 

11.3.2.6 Halting a DMA channel 

Set the Halt bit in the relevant DMA channel Configuration Register. The current source request is 

serviced. Any subsequent source DMA requests are ignored until the Halt bit is cleared. 

11.3.2.7 Programming a DMA channel 

To program a DMA channel: 

1. Choose a free DMA channel with the necessary priority. DMA channel 0 has the highest priority and 

DMA channel 7 has the lowest priority.  
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2. Clear any pending interrupts on the channel you want to use by writing to the DMACIntTCClear and 

DMACIntErrClr Registers. See Interrupt Terminal Count Clear Register and Interrupt Error Clear 

Register. The previous channel operation might have left interrupts active.  

3. Write the source address into the DMACCxSrcAddr Register. See Channel Source Address 

Registers.  

4. Write the destination address into the DMACCxDestAddr Register. See Channel Destination 

Address Registers.  

5. Write the address of the next LLI into the DMACCxLLI Register. See Channel Linked List Item 

Registers. If the transfer consists of a single packet of data, you must write 0 into this register.  

6. Write the control information into the DMACCxControl Register. See Channel Control Registers.  

7. Write the channel configuration information into the DMACCxConfiguration Register. See Channel 

Configuration Registers. If the Enable bit is set, then the DMA channel is automatically enabled. 

 

11.3.3  Summary of registers 

 

Name 

Ad

dress 

(base+) 

Ty

pe 

Re

set 

value 

Description 

DMACIntStatus 0x000 RO 
0x

00 

See Interrupt Status 

Register 

DMACIntTCStatus 0x004 RO 
0x

00 

See Interrupt Terminal 

Count Status Register 

DMACIntTCClear 0x008 WO - 
See Interrupt Terminal 

Count Clear Register 

DMACIntErrorStatus 0x00C RO 
0x

00 

See Interrupt Error Status 

Register  

DMACIntErrClr 0x010 WO - 
See Interrupt Error Clear 

Register  

DMACRawIntTCStatus 0x014 RO - 
See Raw Interrupt 

Terminal Count Status Register 

DMACRawIntErrorStat

us 
0x018 RO - 

See Raw Error Interrupt 

Status Register 

DMACEnbldChns 0x01C RO 
0x

00 

See Enabled Channel 

Registe 

DMACSoftBReq 0x020 R/W 
0x

0000 

See Software Burst 

Request Register 

DMACSoftSReq 0x024 R/W 
0x

0000 

See Software Single 

Request Register 

DMACSoftLBReq 0x028 R/W 
0x

0000 

See Software Last Burst 

Request Register 

DMACSoftLSReq 0x02C R/W 0x See Software Last Single 
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0000 Request Register 

DMACConfiguration 0x030 R/W 
0b

000 

See Configuration 

Register  

DMACSync 0x34 R/W 
0x

0000 

See Synchronization 

Register 

 
0x38 – 

0x0EC- 
  Reserved 

From 0x100, 8 channel 

of each below 
    

DMACC0SrcAddr 0x100 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC0DestAddr 0x104 R/W 

0x

000000

00 

See Channel Destination 

Address Registers 

DMACC0LLI 0x108 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers 

DMACC0Control 0x10C R/W 

0x

000000

00 

See Channel Control 

Registers  

DMACC0Configuration 0x110 R/W 
0x

00000 

See Channel 

Configuration Registers 

DMACC1SrcAddr 0x120 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC1DestAddr 0x124 R/W 

0x

000000

00 

See Channel Destination 

Address Registers 

DMACC1LLI 0x128 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers 

DMACC1Control 0x12C R/W 

0x

000000

00 

See Channel Control 

Registers  

DMACC1Configuration 0x130 R/W 
0x

00000 

See Channel 

Configuration Registers 

DMACC2SrcAddr 0x140 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC2DestAddr 
0x144 

 
R/W 

0x

000000

00 

See Channel Destination 

Address Registers 

DMACC2LLI 0x148 R/W 0x See Channel Linked List 
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000000

00 

Item Registers 

DMACC2Control 0x14C R/W 

0x

000000

00 

See Channel Control 

Registers 

DMACC2Configuration 0x150 R/W 
0x

00000 

See Channel 

Configuration Registers 

DMACC3SrcAddr 0x160 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC3DestAddr 0x164 R/W 

0x

000000

00 

See Channel Destination 

Address Registers 

DMACC3LLI 0x168 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers 

DMACC3Control 0x16C R/W 

0x

000000

00 

See Channel Control 

Registers  

DMACC3Configuration 0x170 R/W 
0x

00000 

See Channel 

Configuration Registers  

DMACC4SrcAddr 0x180 R/W 

0x

000000

00 

See Channel Source 

Address Registers  

DMACC4DestAddr 0x184 R/W 

0x

000000

00 

See Channel Destination 

Address Registers  

DMACC4LLI 0x188 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers  

DMACC4Control 0x18C R/W 

0x

000000

00 

See Channel Control 

Registers  

 

DMACC4Configuration 0x190 R/W 
0x

00000 

See Channel 

Configuration Registers  

DMACC5SrcAddr 0x1A0 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC5DestAddr 0x1A4 R/W 

0x

000000

00 

See Channel Destination 

Address Registers  

DMACC5LLI 0x1A8 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers 
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DMACC5Control 0x1AC R/W 

0x

000000

00 

See Channel Control 

Registers  

DMACC5Configuration 0x1B0 R/W 
0x

00000 

See Channel 

Configuration Registers on 

page 3-27 

DMACC6SrcAddr 0x1C0 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC6DestAddr 0x1C4 R/W 

0x

000000

00 

See Channel Destination 

Address Registers 

DMACC6LLI 0x1C8 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers 

DMACC6Control 0x1CC R/W 

0x

000000

00 

See Channel Control 

Registers 

DMACC6Configuration 0x1D0 R/W 
0x

00000 

See Channel 

Configuration Registers 

DMACC7SrcAddr 0x1E0 R/W 

0x

000000

00 

See Channel Source 

Address Registers 

DMACC7DestAddr 0x1E4 R/W 

0x

000000

00 

See Channel Destination 

Address Registers 

DMACC7LLI 0x1E8 R/W 

0x

000000

00 

See Channel Linked List 

Item Registers 

DMACC7Control 0x1EC R/W 

0x

000000

00 

See Channel Control 

Registers  

DMACC7Configuration 0x1F0 R/W 
0x

00000 

ee Channel Configuration 

Registers  

DMACPeriphID0 0xFE0 RO 
0x

80 

See DMACPeriphID0 

Register  

DMACPeriphID1 0xFE4 RO 
0x

10 

See DMACPeriphID1 

Register  

DMACPeriphID2 0xFE8 RO 
0x

04 

See DMACPeriphID2 

Register  

DMACPeriphID3 0xFEC RO 
0x

0A 

See DMACPeriphID3 

Register  

DMACPCellID0 0xFF0 RO 
0x

0D 

See DMACPCellID0 

Register  
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DMACPCellID1 0xFF4 RO 
0x

F0 

See DMACPCellID1 

Register  

DMACPCellID2 0xFF8 RO 
0x

05 

See DMACPCellID2 

Register  

DMACPCellID3 0xFFC RO 
0x

B1 

See DMACPCellID3 

Register  

DMACITCR 0x500 R/W 
0x

0 
See Test Control Register 

DMACITOP1 0x504 R/W 
0x

0000 

See Integration Test 

Output Register 1 

DMACITOP2 0x508 R/W 
0x

0000 

See Integration Test 

Output Register 2 

DMACITOP3 0x50C R/W 
0x

0 

See Integration Test 

Output Register 3  

 

11.3.4 Register descriptions 

11.3.4.1 Interrupt Status Register 

The read-only DMACIntStatus Register, with address offset of 0x000, shows the status of the 

interrupts after masking. A HIGH bit indicates that a specific DMA channel interrupt request is active. 

You can generate the request from either the error or terminal count interrupt requests. Figure below 

shows the register bit assignments. 

 

 

11.3.4.2 Interrupt Terminal Count Status Register 

The read-only DMACIntTCStatus Register, with address offset of 0x004, indicates the status of the 

terminal count after masking. You must use this register in conjunction with the DMACIntStatus 

Register if you use the combined interrupt request, DMACINTR, to request interrupts. If you use the 

DMACINTTC interrupt request, then you only have to read the DMACIntTCStatus Register to 

ascertain the source of the interrupt request. Figure below shows the register bit assignments. 
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11.3.4.3  nterrupt Terminal Count Clear Register 

The write-only DMACIntTCClear Register, with address offset of 0x008, clears a terminal count 

interrupt request. When writing to this register, each data bit that is set HIGH causes the 

corresponding bit in the Status Register to be cleared. Data bits that are LOW have no effect on the 

corresponding bit in the register. Figure below shows the register bit assignments. 

 

11.3.4.4 Interrupt Error Status Register 

The read-only DMACIntErrorStatus Register, with address offset of 0x00C, indicates the status of the 

error request after masking. You must use this register in conjunction with the DMACIntStatus 

Register if you use the combined interrupt request, DMACINTR, to request interrupts. If you use the 

DMACINTERR interrupt request, then only read the DMACIntErrorStatus Register. Figure below 

shows the register bit assignments. 
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11.3.4.5 Interrupt Error Clear Register 

The write-only DMACIntErrClr Register, with address offset of 0x010, clears the error interrupt 

requests. When writing to this register, each data bit that is HIGH causes the corresponding bit in the 

Status Register to be cleared. Data bits that are LOW have no effect on the corresponding bit in the 

register. Figure below shows the register bit assignments. 

 

11.3.4.6 Raw Interrupt Terminal Count Status Register 

The read-only DMACRawIntTCStatus Register, with address offset of 0x014, indicates the DMA 

channels that are requesting a transfer complete, terminal count interrupt, prior to masking. A HIGH bit 

indicates that the terminal count interrupt request is active prior to masking. Figure below shows the 

register bit assignments. 
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11.3.4.7 Raw Error Interrupt Status Register 

The read-only DMACRawIntErrorStatus Register, with address offset of 0x018, indicates the DMA 

channels that are requesting an error interrupt prior to masking. A HIGH bit indicates that the error 

interrupt request is active prior to masking. Figure below shows the register bit assignments. 

 

11.3.4.8 Enabled Channel Register 

The read-only DMACEnbldChns Register, with address offset of 0x01C, indicates the DMA channels 

that are enabled, as indicated by the Enable bit in the DMACCxConfiguration Register. A HIGH bit 

indicates that a DMA channel is enabled. A bit is cleared on completion of the DMA transfer. Figure 3-

8 shows the register bit assignments. 

 

11.3.4.9 Software Burst Request Register 

The read/write DMACSoftBReq Register, with address offset of 0x020, enables DMA burst requests to 

be generated by software. You can generate a DMA request for each source by writing a 1 to the 

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to 

this register has no effect. Reading the register indicates the sources that are requesting DMA burst 

transfers. You can generate a request from either a peripheral or the software request register. Figure 

below shows the register bit assignments. 
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11.3.4.10 Software Single Request Register 

The read/write DMACSoftSReq Register, with address offset of 0x024, enables DMA single requests 

to be generated by software. You can generate a DMA request for each source by writing a 1 to the 

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to 

this register has no effect. Reading the register indicates the sources that are requesting single DMA 

transfers. You can generate a request from either a peripheral or the software request register. Figure 

below shows the register bit assignments. 

11.3.4.11 Software Last Burst Request Register 

The read/write DMACSoftLBReq Register, with address offset of 0x028, enables software to generate 

DMA last burst requests. You can generate a DMA request for each source by writing a 1 to the 

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to 

this register has no effect. Reading the register indicates the sources that are requesting last burst 

DMA transfers. You can generate a request from either a peripheral or the software request register. 

Figure below shows the register bit assignments. 

 

11.3.4.12 Software Last Single Request Register 

The read/write DMACSoftLSReq Register, with address offset of 0x02C, enables software to generate 

DMA last single requests. You can generate a DMA request for each source by writing a 1 to the 

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to 

this register has no effect. Reading the register indicates the sources that are requesting last single 



 
 

 178 / 312 

 

DMA transfers. You can generate a request from either a peripheral or the software request register. 

Figure below shows the register bit assignments. 
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11.3.4.13 Configuration Register 

The read/write DMACConfiguration Register, with address offset of 0x030, configures the operation of 

the DMAC. You can alter the endianness of the individual AHB master interfaces by writing to the M1 

and M2 bits of this register. The M1 bit enables you to alter the endianness of AHB master interface 1. 

The M2 bit enables you to alter the endianness of AHB master interface 2. The AHB master interfaces 

are set to little-endian mode on reset. 
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11.3.4.14 Synchronization Register 

The read/write DMACSync Register, with address offset of 0x034, enables or disables synchronization 

logic for the DMA request signals.  

The DMA request signals consist of:  

• DMACBREQ[15:0] 

• DMACSREQ[15:0]  

• DMACLBREQ[15:0]  

• DMACLSREQ[15:0]. 

A bit set to 0 enables the synchronization logic for a particular group of DMA requests. A bit set to 1 

disables the synchronization logic for a particular group of DMA requests. This register is reset to 0, 

and synchronization logic enabled 

Note: 

1. It is illegal for a peripheral to give a new DMACSREQ or DMACBREQ signal while DMACCLR is 

HIGH. 

2. You must use synchronization logic when the peripheral generating the DMA request runs on a 

different clock to the DMAC. For peripherals running on the same clock as the DMAC, disabling the 

synchronization logic improves the DMA request response time. If necessary, synchronize the DMA 

response signals, DMACCLR and DMACTC, in the peripheral. 

 

11.3.4.15 Channel registers 

The channel registers are for programming a DMA channel. These registers consist of:  

• eight DMACCxSrcAddr Registers  

• eight DMACCxDestAddr Registers  

• eight DMACCxLLI Registers  

• eight DMACCxControl Registers  

• eight DMACCxConfiguration Registers.  

When performing scatter/gather DMA, the first four registers are automatically updated. 
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Note： 

Unpredictable behavior can result if you update the channel registers when a transfer is taking place. If 

you want to change the channel configurations, you must disable the channel first and then 

reconfigure the relevant register. 

 

Channel Source Address Registers 

The eight read/write DMACCxSrcAddr Registers, with address offsets of 0x100, 0x120, 0x140, 0x160, 

0x180, 0x1A0, 0x1C0, and 0x1E0 respectively, contain the current source address, byte-aligned, of 

the data to be transferred. Software programs each register directly before the appropriate channel is 

enabled 

When the DMA channel is enabled, this register is updated:  

• as the source address is incremented  

• by following the linked list when a complete packet of data has been transferred. 

Reading the register when the channel is active does not provide useful information. This is because 

by the time the software has processed the value read, the channel might have progressed. It is 

intended to be read-only when the channel has stopped, and in such case, it shows the source 

address of the last item read. 

 

 

Channel Destination Address Registers 

The eight read/write DMACCxDestAddr Registers, with address offsets of 0x104, 0x124, 0x144, 

0x164, 0x184, 0x1A4, 0x1C4, and 0x1E4 respectively, contain the current destination address, byte-

aligned, of the data to be transferred. 

Software programs each register directly before the channel is enabled. When the DMA channel is 

enabled, the register is updated as the destination address is incremented and by following the linked 

list when a complete packet of data has been transferred. Reading the register when the channel is 

active does not provide useful information. This is because by the time the software has processed the 

value read, the channel might have progressed. It is intended to be read-only when a channel has 

stopped. In this case, it shows the destination address of the last item read. 

 

 

Channel Linked List Item Registers 

The eight read/write DMACCxLLI Registers, with address offsets of 0x108, 0x128, 0x148, 0x168, 

0x188, 0x1A8, 0x1C8, and 0x1E8 respectively, contain a word-aligned address of the next LLI. If the 

LLI is 0, then the current LLI is the last in the chain, and the DMA channel is disabled after all DMA 

transfers associated with it are completed. 

Note： 
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Programming this register when the DMA channel is enabled has unpredictable results. 

 

Channel Control Registers 

The eight read/write DMACCxControl Registers, with address offsets of 0x010C, 0x12C, 0x14C, 

0x16C, 0x18C, 0x1AC, 0x1CC, and 0x1EC respectively, contain DMA channel control information 

such as the transfer size, burst size, and transfer width. Software programs each register directly 

before the DMA channel is enabled.  

When the channel is enabled, the register is updated by following the linked list when a complete 

packet of data has been transferred. Reading the register while the channel is active does not give 

useful information. This is because by the time that software has processed the value read, the 

channel might have progressed. It is intended to be read-only when a channel has stopped. 
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Table below lists the values of the DBSize or SBSsize bits and their corresponding burst sizes. 
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Table below lists the value of the SWidth or DWidth bits and their corresponding widths 

 

Protection and access information 

AHB access information is provided to the source and destination peripherals when a transfer occurs. 

The transfer information is provided by programming the DMA channel, the Prot bit of the 

DMACCxControl Register, and the Lock bit of the DMACCxConfiguration Register. Software programs 

these bits, and peripherals can use this information if necessary. Three bits of information are 

provided. Table below lists the purposes of the three protection bits. 
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Channel Configuration Registers 

The eight DMACCxConfiguration Registers, with address offsets of 0x110, 0x130, 0x150, 0x170, 

0x190, 0x1B0, 0x1D0, and 0x1F0 respectively, are read/write and configure the DMA channel. The 

registers are not updated when a new LLI is requested. 

Figure below shows the bit assignments for these registers 

 

Table below lists the bit assignments for these registers 
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Table below lists the bit values of the three flow control and transfer type bits. 
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11.3.4.16 Peripheral Identification Registers 0-3 

The DMACPeriphID0-3 Registers are four 8-bit registers, that span address locations 0xFE0-0xFEC. 

You can treat the registers conceptually as a 32-bit register. These read-only registers provide the 

following peripheral options:  

PartNumber[11:0]  

This identifies the peripheral. The three digit product code 0x080 is used.  

Designer ID[19:12]  

This is the identification of the designer. (ASCII A).  

Revision[23:20]  

This is the revision number of the peripheral. The revision number starts from 0.  

Configuration[31:24]  

This is the configuration option of the peripheral. 

Figure below shows the bit assignments for these registers 

 

DMACPeriphID0 Register 

The read-only DMACPeriphID0 Register, with address offset of 0xFE0, is hard-coded and the fields in 

the register determine the reset value. Figure 3-19 shows the register bit assignments. 

DMACPeriphID1 Register  

The read-only DMACPeriphID1 Register, with address offset of 0xFE4, is hard-coded and the fields in 

the register determine the reset value. Figure 3-20 shows the register bit assignments. 
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DMACPeriphID2 Register  

The read-only DMACPeriphID2 Register, with address offset of 0xFE8, is hard-coded and the fields 

within the register determine the reset value. Figure 3-21 shows the register bit assignments. 

DMACPeriphID3 Register  

The read-only DMACPeriphID3 Register, with address offset of 0xFEC, is hard-coded and the fields in 

the register determine the reset value. Figure 3-22 shows the register bit assignments. 
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11.3.4.17 PrimeCell Identification Registers 0-3 

The DMACPCellID0-3 Registers are four 8-bit wide read-only registers that span address locations 

0xFF0-0xFFC. You can treat the registers conceptually as a 32-bit register. The register is a standard 

cross-peripheral identification system. The DMACPCellID Register is set to 0xB105F00D. Figure 

below shows the bit assignments for these registers. 

 

DMACPCellID0 Register  

The read-only DMACPCellID0 Register, with address offset of 0xFF0, is hard-coded and the fields in 

the register determine the reset value. Figure below shows the register bit assignments. 

 

DMACPCellID1 Register  

The read-only DMACPCellID1 Register, with address offset of 0xFF4, is hard-coded and the fields 

within the register determine the reset value. Figure below shows the register bit assignments. 

 

DMACPCellID2 Register  

The read-only DMACPCellID2 Register, with address offset of 0xFF8, is hard-coded and the fields in 

the register determine the reset value. Figure below shows the register bit assignments. 
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DMACPCellID3 Register 

The read-only DMACPCellID3 Register, with address offset of 0xFFC, is hard-coded and the fields in 

the register determine the reset value. Figure below shows the register bit assignments. 

 

 

11.3.5 Test registers 

11.3.5.1 Test Control Register 

The read/write DMACITCR Register, with address offset of 0x500, is a 16-bit register that selects the 

various test modes and is cleared on reset. This register enables you to test the DMAC using TIC 

block-level tests and Built-In Self-Test (BIST) integration and system level tests. Figure below shows 

the register bit assignments. 
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11.3.5.2 Integration Test Output Register 1 

The read/write DMACITOP1 Register, with address offset of 0x504, is a 16-bit register that controls 

and reads the DMACCLR[15:0] output lines in test mode. Figure 4-2 shows the register bit 

assignments. 

 

11.3.5.3 Integration Test Output Register 2 

The read/write DMACITOP2 Register, with address offset of 0x508, is a 16-bit register that controls 

and reads the DMACTC[15:0] output lines in test mode. Figure 4-3 shows the register bit assignments. 
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11.3.5.4 Integration Test Output Register 3 

The read/write DMACITOP3 Register, with address offset of 0x50C, is a 16-bit register that controls 

and reads the interrupt request output lines in test mode. Figure 4-4 shows the register bit 

assignments 
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12 Analog-to-digital converter (ADC) 

 

12.1 Overview 

3×12-bit, 1.0 MSPS A/D converters are embedded and each ADC has up to 17 multiplexed channels 

allowing it measure signals from sixteen external and one internal sources,and 3 MSPS in triple 

interleaved mode 

A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous 

mode.  

The analog watchdog feature allows the application to detect if the input voltage goes outside the 

user-defined high or low thresholds.  

The ADC input clock is generated from the inter-connection logic clock. 

 

Characteristics  

(1) ADC sampling rate: 1 MSPS for 12-bit resolution  

(2) Programmable sampling time  

(3) 16 external analog inputs and 1 channel for internal temperature sensor  

(4) Converts a single channel or scans a sequence of channels  

(5) Single mode converts selected inputs once per trigger  

(6) Continuous mode converts selected inputs continuously  

(7) Discontinuous mode  

(8) Analog watchdog  

(9) ADC supply requirements: 3.135V to 3.465V, and typical power supply voltage is 3.3V  

(10) ADC input range: VSSA ≤VIN ≤VREFP 

 

12.2 Pins and internal signals 

ADC internal signals 

Internal signal name Signal type Description 

Vtemp-sense(ADC1) input Internal temperature sensor output voltage 
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ADC pins definition 

Name Signal type Description 

VDDA Analog power supply Analog power supply equal to VDD33 and 

3.135 V ≤ VDDA≤3.465 V 

VSSA Analog power ground Ground for analog power supply equal to VSS33 

VREFP Analog 

reference positive 

The positive reference voltage for the 

ADC, 3.135 V ≤ VREFP ≤ VDDA 

IN[15:0] Input, Analog signals Up to 16 external channels 

 

12.3 Temperature sensor 

The temperature sensor can be used to measure the ambient temperature of the device. The sensor 

output voltage can be converted into a digital value by ADC. The sampling time for the temperature 

sensor is recommended to be set to at least 10μs. 

The output voltage of the temperature sensor changes linearly with temperature. Because there is an 

offset, varies from chip to chip due to process variation, the internal temperature sensor is more suited 

for applications that detect temperature variations instead of absolute temperature. 

 

12.4 ADC block pins 
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ADC block diagram 

ADC block pins Descriptions 

in0~in16 Analog input channel 

insel1[4:0] input channel selection 

00001: in0 

00010: in1 

00011: in2 

00100: in3 

00101: in4 

00110: in5 

00111: in6 

01000: in7 

01001: in8 

01010: in9 

01011: in10 

01100: in11 

01101: in12 

01110: in13 

01111: in14 

10000: in15 

10001: in16(internal source) 

for ADC1, inter source is Vtemp-sense 

enb Used to enable adc 

0: adc enable 

1: adc disable 

stop Stop mode enable 

0: disable 

1: enable, when stop enable, power down ADC    block. 

db[11:0] adc 12 bits output data 

eoc adc end of conversion flag. 

when rising edge, adc output data will ready   
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12.5 ADC input signals vs package pins 

ADC IP input pins LQFP64 

IN0 PIN14(WKUP_ADC_IN0_CMP_PA0) 

IN1 PIN15 (ADC_IN1_CMP_PA1) 

IN2 PIN16(ADC_IN2_CMP_PA2) 

IN3 PIN17(ADC_IN3_CMP_PA3) 

IN4 PIN20(ADC_IN4_CMP_PA4_DAC0) 

IN5 PIN21(ADC_IN5_CMP_PA5_DAC1) 

IN6 PIN22(ADC_IN6) 

IN7 PIN23(ADC_IN7) 

IN8 PIN26(ADC_IN8) 

IN9 PIN27(ADC_IN9) 

IN10 PIN8(ADC_IN10) 

IN11 PIN9(ADC_IN11) 

IN12 PIN10(ADC_IN12) 

IN13 PIN11(ADC_IN13) 

IN14 PIN24(ADC_IN14) 

IN15 PIN25(ADC_IN15) 

 

ADC IP input pins LQFP100 

IN0 PIN23(WKUP_ADC_IN0_CMP_PA0) 

IN1 PIN24 (ADC_IN1_CMP_PA1) 

IN2 PIN25(ADC_IN2_CMP_PA2) 

IN3 PIN26(ADC_IN3_CMP_PA3) 

IN4 PIN29(ADC_IN4_CMP_PA4_DAC0) 

IN5 PIN30(ADC_IN5_CMP_PA5_DAC1) 

IN6 PIN31(ADC_IN6) 

IN7 PIN32(ADC_IN7) 
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IN8 PIN35(ADC_IN8) 

IN9 PIN36(ADC_IN9) 

IN10 PIN15(ADC_IN10) 

IN11 PIN16(ADC_IN11) 

IN12 PIN17(ADC_IN12) 

IN13 PIN18(ADC_IN13) 

IN14 PIN33(ADC_IN14) 

IN15 PIN34(ADC_IN15) 

 

12.6 ADC characteristics 

Symbol Parameter MIN TYP MAX  Unit 

VDDA Operating voltage 3.135 3.3 3.465 V 

VIN ADC input voltage range 0 ----- VREFP V 

fADC ADC clock 0.5 ----- 14  MHz 

fs Sampling rate ----- ----- 1 MHz 

tconv ADC conversion time 1 ----- 20   μs  

RADC Input sampling switch resistance ----- ----- 2  kΩ 

CADC Input sampling capacitance ----- 10 -----  pF 

tsu Startup time ----- ----- 10  μs 

 

12.7 ADC timing diagram 

After the start of ADC conversion and after 13 clock cycles, the EOC flag is set and the 12-bit 

Data is ready. 
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Parameter Limit Unit Description 

sclk 14 MHz System Clock Frequency 

tcon 13 Cycles Time for a data conversion 

tACQ 1 Cycles Time for signal acquisition 

t1 10 ns ENB to SCLK Setup Time 
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13 Digital-to-analog converter (DAC) 

 

13.1 Overview 

The Digital-to-analog converter converts 10-bit digital data to a voltage on the external pins. The 

output voltage can be optionally buffered for higher drive capability. The two DACs can work 

independently or concurrently.   

DAC main features  

(1) Two DAC converters: one output channel each  

(2) Conversion triggered by external triggers  

(3) Dual DAC channel independent or simultaneous conversions  

(4) Configurable internal buffer  

(5) External triggers for conversion  

(6) Input voltage reference VREFP 
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13.2 DAC block pins 

DAC block pins Descriptions 

enb Used to enable dac 

0: dac enable 

1: dac disable 

bufenb Used to enable output buffer 

0: buffer enable 

1: buffer disable 

stop Stop mode enable 

0: disable 

1: enable, when stop enable, power down DAC blocks 

din[9:0] 10 bits dac input data 

dout Analog dac output signal to IOs 

13.3 DAC pins 

Name Signal type Remarks 

VDDA Analog power supply Analog power supply equal to VDD and 

3.135 V ≤ VDDA≤3.465 V 

VSSA Analog power ground Ground for analog power supply equal to 

VSS33 

VREFP Analog reference positive The positive reference voltage for the 

ADC, 3.135 V ≤ VREFP ≤ VDDA 

DOUT DAC analog output Analog output signal 

13.4 DACs output signals vs package pins 

 

DAC output pins qfp100 

dout_dac0 PIN_29(ADC_IN4_CMP_PA4_DAC0) 

dout_dac1 PIN_30(ADC_IN5_CMP_PA5_DAC1) 

DAC output pins qfp64 

dout_dac0 PIN_20(ADC_IN4_CMP_PA4_DAC0) 

dout_dac1 PIN_21(ADC_IN5_CMP_PA5_DAC1) 
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13.5 DAC characteristics 

Symbol Parameter Conditions Min Typ Max Unit 

VDDA Operating voltage  3.135 3.3 3.465 V 

VREFP Reference supply 

voltage 

VREFP should always below 

VDDA 
3.135 3.3 3.3 V 

RLOAD Load resistance Resistive load vs. VSSA with 

buffer ON 
5   kΩ 

CLOAD  Load capacitance  No pin/pad capacitance 

included 
  50 pF 

DAC_OUTm

in 

Lower DAC_OUT 

voltage 

with buffer ON 

 

    

DAC_OUTm

ax 

Lower DAC_OUT 

voltage 

with buffer ON 

 

  
VDDA-

0.2 
V 

Update rate Max frequency for 

a correct DAC_OUT 

change from code i 

to i±1LSBs 

CLOAD≤50pF, RLOAD≥5kΩ 

  2 MS/s 

13.6 DAC output voltage 

 The analog output voltage on the DAC pin is determined by the following equation: 

 DACoutput = VREFP ∗ DAC_Dout/1024 

The digital input is linearly converted to an analog output voltage, its range is 0 to VREFP。 
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14 Comparator (CMP) 

 

14.1 Overview 

The general purpose comparators, CMP0 and CMP1, can work either standalone or together with the timers. 

It could be used to wake up the MCU from low-power mode by an analog signal, provide a trigger source 

when an analog signal is in a certain condition, achieves some current control by working together with a 

PWM output of a timer and the DAC. 

 

14.2 Characteristic  

(1) Rail-to-rail comparators  

(2) Configurable hysteresis  

(3) Configurable speed and consumption  

(4) Each comparator has configurable analog input source  

(5) The whole or sub-multiple values of internal reference voltage Window comparator  

(6) Outputs to I/O  

(7) Outputs to timers for triggering 
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14.3 CMP block pins 

CMP block pins Descriptions 

INP1_1 

INP1_2 

Non-inverting input signals of cmp1 

ipsel1[1:0] cmp1_IP input selection 

01: INP1_1 

10: INP1_2 

INM1_1 

INM1_2 

INM1_3 

Inverting input signals of cmp1 

imsel1[2:0] cmp1_IM input selection 

001: INM1_1 

010: INM1_2 

011: INM1_3 

100: ¼ VREF 

101: ½ VREF 

110: ¾ VREF 

111: VREF 
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mode1 Control the operating mode of the cmp1 adjust the speed /consumption. 

0: High speed / full power 

1: Low speed / low power 

hyst1 Used to set the hysteresis of cmp1 

0: no hysteresis 

1: have hysteresis 

enb1 Used to enable cmp1 

0: cmp1 enable 

1: cmp1 disable 

out1 cmp1 output 

INP2_1 

INP2_2 

Non-inverting input signals of cmp2 

ipsel2[1:0] cmp2_IP input selection 

01: INP2_1 

10: INP2_2 

INM2_1 

INM2_2 

INM2_3 

Inverting input signals of cmp2 

imsel2[2:0] cmp2_IM input selection 

001: INM2_1 

010: INM2_2 

011: INM2_3 

100: ¼ VREF 

101: ½ VREF 

110: ¾ VREF 

111: VREF 

mode2 Control the operating mode of the cmp2 adjust the speed /consumption. 

0: High speed / full power 

1: Low speed / low power 

hyst2 Used to set the hysteresis of cmp2 

0: no hysteresis 

1: have hysteresis 

enb2 Used to enable cmp2 

0: cmp2 enable 

1: cmp2 disable 

out2 cmp2 output 

stop Stop mode enable 

0: disable 

1: enable, when stop enable, power down CMP block. 
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14.4 CMP input signals vs package pins 

CMP IP input pins Lqfp64 

INP1_1 PIN_15 (ADC_IN1_CMP_PA1) 

INP1_2 PIN_20(ADC_IN4_CMP_PA4_DAC0) 

INM1_1 PIN_20(ADC_IN4_CMP_PA4_DAC0) 

INM1_2 PIN_14(WKUP_ADC_IN0_CMP_PA0) 

INM1_3 PIN_21(ADC_IN5_CMP_PA5_DAC1) 

INP2_1 PIN_15 (ADC_IN1_CMP_PA1) 

INP2_2 PIN_17(ADC_IN3_CMP_PA3) 

INM2_1 PIN_20(ADC_IN4_CMP_PA4_DAC0) 

INM2_2 PIN_16(ADC_IN2_CMP_PA2) 

INM2_3 PIN_21(ADC_IN5_CMP_PA5_DAC1) 

CMP IP input pins Lqfp100 

INP1_1 PIN_24 (ADC_IN1_CMP_PA1) 

INP1_2 PIN_29(ADC_IN4_CMP_PA4_DAC0) 

INM1_1 PIN_29(ADC_IN4_CMP_PA4_DAC0) 

INM1_2 PIN_23(WKUP_ADC_IN0_CMP_PA0) 

INM1_3 PIN_30(ADC_IN5_CMP_PA5_DAC1) 

INP2_1 PIN_24 (ADC_IN1_CMP_PA1) 

INP2_2 PIN_26(ADC_IN3_CMP_PA3) 

INM2_1 PIN_29(ADC_IN4_CMP_PA4_DAC0) 

INM2_2 PIN_25(ADC_IN2_CMP_PA2) 

INM2_3 PIN_30(ADC_IN5_CMP_PA5_DAC1) 
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14.5 Comparator characteristics 

Symbol Parameter Conditions Min Typ Max Unit 

VDDA Analog supply voltage  3.135 3.3 3.3 V 

VIN Comparator input voltage 

 range 

 
0  VDDA V 

tstart Comparator startup time VDDA ≥3.135 V   10 us 

tD Propagation delay for full 

 range step with 100 mV 

overdrive 

VDDA ≥3.135 V 

  50 ns 

VOFFSET Comparator offset error VDDA ≥3.135 V    ±30 mV 
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15 Backup registers (BKP) 

 

BKP introduction 

The backup registers are sixteen two 16-bit registers for storing 32 bytes of user application data. 

They are implemented in the backup domain that remains powered on by VBAT when the VDD33 

power is switched off. They are not reset when the device wakes up from Standby mode or by a 

system reset or power reset.  

In addition, the BKP control registers are used to manage the RTC calibration.  

After reset, access to the Backup registers and RTC is disabled and the Backup domain (BKP) is 

protected against possible parasitic write access.  

To enable access to the Backup registers and the RTC, proceed as follows: 

(1) enable the power and backup interface clocks by setting the PWREN and BKPEN bits in the 

RCC_APB1ENR register 

(2) set the DBP bit the Power Control Register (PWR_CR) to enable access to the Backup registers 

and RTC. 

 

BKP main features 

(1) 32-byte data registers  

(2) Calibration register for storing the RTC calibration value 

(3) Possibility to output the RTC Calibration Clock, RTC Alarm pulse or Second pulse.  

 

RTC calibration  

For measurement purposes, the RTC clock with a frequency divided by 64 can be output on the pin. 

The clock can be slowed down by up to 121 ppm by configuring CAL[6:0] bits. 

 

BKP registers 

Backup data register x (BKP_DRx) (x = 1 ..17) 

Address offset:  

Reset value: 0x0000 0000 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D<15:0> 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

 

Bits 15:0: D[15:0] Backup data 
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These bits can be written with user data. 

Note: The BKP_DRx registers are not reset by a System reset or Power reset or when the device 

wakes up from Standby mode. 

They are reset by a Backup Domain reset. 

 

 

RTC clock calibration register (BKP_RTCCR) 

 

Address offset:  

Reset value: 0x0000 0000 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 ASOS ASOE COO CAL<6:0> 

rw rw rw rw rw rw rw rw rw rw 

 

 

Bit 9 ASOS: Alarm or second output selection 

When the ASOE bit is set, the ASOS bit can be used to select whether the signal output on IO_RTC is 

the RTC Second pulse signal or the Alarm pulse signal: 

0: RTC Alarm pulse output selected 

1: RTC Second pulse output selected 

Note: This bit is reset only by a Backup domain reset. 

 

Bit 8 ASOE: Alarm or second output enable 

Setting this bit outputs either the RTC Alarm pulse signal or the Second pulse signal on IO_RTC 

depending on the ASOS bit. 

0: output disable 

1: output enable 

The output pulse duration is one RTC clock period. IO_RTC must not be enabled while the ASOE bit 

is set. 

Note: This bit is reset only by a Backup domain reset. 

 

Bit 7 CCO: Calibration clock output 

0: No effect 

1: Setting this bit outputs the RTC clock with a frequency divided by 64 on IO_RTC. 

Note: This bit is reset when the VDD supply is powered off. 

 

Bit 6:0 CAL[6:0]: Calibration value 
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This value indicates the number of clock pulses that will be ignored every 2^20 clock pulses. 

This allows the calibration of the RTC, slowing down the clock by steps of 1000000/2^20PPM. 

The clock of the RTC can be slowed down from 0 to 121PPM. 
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16 CRC(Cyclic redundancy check calculation unit ) 

16.1 Introduction 

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16- or 32-bit 

data word and a generator polynomial. 

Among other applications, CRC-based techniques are used to verify data transmission or storage 

integrity. In the scope of the functional safety standards, they offer a means of verifying the Flash 

memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, 

to be compared with a reference signature generated at link time and stored at a given memory 

location. 

16.2 CRC main features 

⚫ Fully programmable polynomial with programmable size (7, 8, 16, 32 bits) 

⚫ Handles 8-,16-, 32-bit data size 

⚫ Programmable CRC initial value 

⚫ Single input/output 32-bit data register 

⚫ Input buffer to avoid bus stall during calculation 

⚫ CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size 

⚫ General-purpose 8-bit register (can be used for temporary storage)  

⚫ Reversibility option on I/O data 
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16.3 CRC functional description 

16.3.1 CRC block diagram 

Figure 7. CRC calculation unit block diagram 

 

 

 

16.3.2 CRC internal signals 

Table 15. CRC internal input/output signals 

 
 

16.3.3 CRC operation 

The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to input new 

data (write access), and holds the result of the previous CRC calculation (read access). 

Signal name Signal type   Description 

crc_hclk Digital input AHB clock  
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Each write operation to the data register creates a combination of the previous CRC value (stored in 

CRC_DR) and the new one. CRC computation is done on the whole 32-bit data word or byte by byte 

depending on the format of the data being written. 

The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned byte. For 

the other registers only 32-bit access is allowed. 

The duration of the computation depends on data width: 

⚫ 4 AHB clock cycles for 32-bit 

⚫ 2 AHB clock cycles for 16-bit 

⚫ 1 AHB clock cycles for 8-bit 

An input buffer allows to immediately write a second data without waiting for any wait states due to the 

previous CRC calculation. 

The data size can be dynamically adjusted to minimize the number of write accesses for a given 

number of bytes. For instance, a CRC for 5 bytes can be computed with a word write followed by a 

byte write. 

The input data can be reversed, to manage the various endianness schemes. The reversing operation 

can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits in the CRC_CR 

register. 

For example: input data 0x1A2B3C4D is used for CRC calculation as:  

0x58D43CB2 with bit-reversal done by byte 

0xD458B23C with bit-reversal done by half-word 

0xB23CD458 with bit-reversal done on the full word 

The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register. 

The operation is done at bit level: for example, output data 0x11223344 is converted into 

0x22CC4488. 

The CRC calculator can be initialized to a programmable value using the RESET control bit in the 

CRC_CR register (the default value is 0xFFFFFFFF). 

The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR register is 

automatically initialized upon CRC_INIT register write access. 

The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It is not 

affected by the RESET bit in the CRC_CR register. 

Polynomial programmability 

The polynomial coefficients are fully programmable through the CRC_POL register, and the 

polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the  

POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported. 

If the CRC data is less than 32-bit, its value can be read from the least significant bits of the CRC_DR 

register. 

To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can not be 

performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the application must 

either reset it or perform a CRC_DR read before changing the polynomial. 

The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11D 
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16.4 CRC registers 

16.4.1 Data register (CRC_DR) 

Address offset: 0x00 

Reset value: 0xFFFF FFFF 

Bits 31:0  DR[31:0]: Data register bits 

This register is used to write new data to the CRC calculator.  

It holds the previous CRC calculation result when it is read. 

 

If the data size is less than 32 bits, the least significant bits are used to write/read the correct value. 

 

 

 

16.4.2 Independent data register (CRC_IDR) 

Address offset: 0x04 

Reset value: 0x0000 0000 

Bits 31:8   Reserved, must be kept cleared. 

Bits 7:0  IDR[7:0]: General-purpose 8-bit data register bits 

These bits can be used as a temporary storage location for one byte. 

This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register 
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16.4.3 Control register (CRC_CR) 

Address offset: 0x08 

Reset value: 0x0000 0000 

 

Bits 31:8   Reserved, must be kept cleared. 

Bit 7  REV_OUT: Reverse output data 

This bit controls the reversal of the bit order of the output data. 0: Bit order not affected 

1: Bit-reversed output format 

Bits 6:5  REV_IN[1:0]: Reverse input data 

These bits control the reversal of the bit order of the input data 00: Bit order not affected 

01: Bit reversal done by byte 

10: Bit reversal done by half-word 11: Bit reversal done by word 

Bits 4:3  POLYSIZE[1:0]: Polynomial size 

These bits control the size of the polynomial. 

00: 32 bit polynomial 

01: 16 bit polynomial 

10: 8 bit polynomial 

11: 7 bit polynomial 

Bits 2:1   Reserved, must be kept cleared. 

Bit 0  RESET: RESET bit 

This bit is set by software to reset the CRC calculation unit and set the data register to the value stored in 

the CRC_INIT register. This bit can only be set, it is automatically cleared by hardware 

 

 

16.4.4 Initial CRC value (CRC_INIT) 

Address offset: 0x10 
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Reset value: 0xFFFF FFFF 

Bits 31:0  CRC_INIT: Programmable initial CRC value 

This register is used to write the CRC initial value.  

16.4.5 CRC polynomial (CRC_POL) 

Address offset: 0x14  

Reset value: 0x04C11DB7 

Bits 31:0  POL[31:0]: Programmable polynomial 

This register is used to write the coefficients of the polynomial to be used for CRC calculation. 

If the polynomial size is less than 32 bits, the least significant bits have to be used to program the correct value. 

 

16.4.6 CRC register map 

           Table 16. CRC register map and reset values  
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17 General-purpose input/outputs (GPIOs) 

 

17.1 Overview 

AG32 device provides up to 78 user I/O ports(GPIOs). 

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or 

without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral 

alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All 

GPIOs are high-current-capable and have speed selection to better manage internal noise, power 

consumption and electromagnetic emission.  

The I/O configuration can be locked if needed by following a specific sequence in order to avoid 

spurious writing to the I/Os registers. 

 

 

 

17.2 Functional description 

Basic structure of a user I/O 
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User IOs offers a range of programmable features for an I/O pin. These features increase the flexibility 

of I/O utilization and provide a way to reduce the usage of external discrete components, such as pull-

up resistors. 

Programmable Current Strength  

The output buffer for each I/O pin has a programmable current strength control for certain I/O 

standards. The LVTTL, LVCMOS standards have several levels of current strength that you can 

control.  

Slew Rate Control  

The output buffer for each I/O pin provides optional programmable output slew-rate control. However, 

these fast transitions may introduce noise transients in the system. A slower slew rate reduces system 

noise, but adds a nominal delay to rising and falling edges. Because each I/O pin has an individual 

slew-rate control, you can specify the slew rate on a pin-by-pin basis. The slew-rate control affects 

both the rising and falling edges.  

Open-Drain Output  

Each I/O pin provide an optional open-drain (equivalent to an open-collector) output. This open-drain 

output enables the device to provide system-level control signals (for example, interrupt and write 

enable signals) that are asserted by multiple devices in your system.  

Bus Hold  

Each user I/O pin provides an optional bus-hold feature. The bus-hold circuitry holds the signal on an 

I/O pin at its last-driven state. Because the bus-hold feature holds the last-driven state of the pin until 
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the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a 

signal level when the bus is tri-stated.  

Programmable Pull-Up Resistor 

Each I/O pin provides an optional programmable pull-up resistor while in user mode. If you enable this 

feature for an I/O pin, the pull-up resistor holds the output to the VDD level.  

During and just after reset, the user IOs are configured in Input Floating mode.  

The JTAG pins are in input PU/PD after reset:  

◼ JTDI in PU 

◼ JTCK in PD  

◼ JTMS in PU  

◼ NJTRST in PU 

 

 

17.3 Register descriptions 

17.3.1 Data register, GPIODATA 

The GPIODATA register is the data register. In software control mode, values written in the GPIODATA 

register are transferred onto the GPOUT pins if the respective pins have been configured as outputs 

through the GPIODIR register.  

In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus, 

PADDR[9:2], must be HIGH. Otherwise the bit values remain unchanged by the write.  

Similarly, the values read from this register are determined for each bit, by the mask bit derived from the 

address used to access the data register, PADDR[9:2]. Bits that are 1 in the address mask cause the 

corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask cause the 

corresponding bits in GPIODATA to be read as 0, regardless of their value.  

A read from GPIODATA returns the last bit value written if the respective pins are configured as output, 

or it returns the value on the corresponding input GPIN bit when these are configured as inputs. All bits 

are cleared by a reset. 

Table below shows the bit assignment of the GPIODATA register.  

 

17.3.2 Data direction register, GPIODIR 

The GPIODIR register is the data direction register. Bits set to HIGH in the GPIODIR configure 

corresponding pin to be an output. Clearing a bit configures the pin to be input. All bits are cleared by a 
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reset. Therefore, the GPIO pins are input by default. 

Table below shows the bit assignment of the GPIODIR register 

 

17.3.3 Interrupt sense register, GPIOIS 

The GPIOIS register is the interrupt sense register. Bits set to HIGH in GPIOIS configure the 

corresponding pins to detect levels. Clearing a bit configures the pin to detect edges. All bits are cleared 

by a reset.  

Table below shows the bit assignment of the GPIOIS register. 

 

17.3.4 Interrupt both-edges register, GPIOIBE 

The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in GPIOIS is set 

to detect edges, bits set to HIGH in GPIOIBE configure the corresponding pin to detect both rising and 

falling edges, regardless of the corresponding bit in the GPIOIEV (interrupt event register). Clearing a 

bit configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.  

Table below shows the bit assignment of the GPIOIBE register. 

 

17.3.5 Interrupt event register, GPIOIEV 

The GPIOIEV register is the interrupt event register. Bits set to HIGH in GPIOIEV configure the 

corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in 

GPIOIS. Clearing a bit configures the pin to detect falling edges or low levels, depending on the 
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corresponding bit value in GPIOIS. All bits are cleared by a reset.  

Table below shows the bit assignment of the GPIOIEV register. 

 

17.3.6 Interrupt mask register, GPIOIE 

The GPIOIE register is the interrupt mask register. Bits set to HIGH in GPIOIE allow the corresponding 

pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables 

interrupt triggering on that pin. All bits are cleared by a reset.  

Table below shows the bit assignment of the GPIOIE register. 

 

17.3.7 Raw interrupt status register, GPIORIS 

The GPIORIS register is the raw interrupt status register. Bits read HIGH in GPIORIS reflect the status 

of interrupts trigger conditions detected (raw, prior to masking), indicating that all the requirements have 

been met, before they are finally allowed to trigger by GPIOIE. Bits read as zero indicate that 

corresponding input pins have not initiated an interrupt. This register is read only, and bits are cleared 

by a reset.  

Table below shows the bit assignment of the GPIORIS register. 
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17.3.8 Masked interrupt status register, GPIOMIS 

The GPIOMIS register is the masked interrupt status register. Bits read HIGH in GPIOMIS reflect the 

status of input lines triggering an interrupt. Bits read as LOW indicate that either no interrupt has been 

generated, or the interrupt is masked. GPIOMIS is the state of the interrupt after masking. This register 

is read-only, and all bits are cleared by a reset. 

The contents of this register are made available externally through the intra-chip (or on-chip) 

GPIOMIS[7:0] signals.  

Table below shows the bit assignment of the GPIOMIS register. 

 

17.3.9   Interrupt clear register, GPIOIC 

The GPIOIC register is the interrupt clear register. Writing a 1 to a bit in this register clears the 

corresponding interrupt edge detection logic register. Writing a 0 has no effect. This register is write-

only and all bits are cleared by a reset.  

Table below shows the bit assignment of the GPIOIC register. 

 

17.3.10 Mode control select register, GPIOAFSEL 

The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register selects 

the hardware control for the corresponding PrimeCell GPIO line. All bits are cleared by a reset, therefore 

no PrimeCell GPIO line is set to hardware control by default.  

Table below shows the bit assignment of the GPIOAFSEL register. 
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18 Universal asynchronous receiver transmitter (UART) 

18.1 UART Introduction 

 

The UART is an AMBA slave module that connects to the Advanced Peripheral Bus (APB).  

 

The UART (UART0 - UART4) are used to translate data between parallel and serial interfaces, 

provides a flexible full duplex data exchange using asynchronous transfer. It is also commonly used 

for RS-232 standard communication.  

The UART includes a programmable baud rate generator which is capable of dividing the system clock 

to produce a dedicated clock for the UART transmitter and receiver. The UART also supports DMA 

function for high speed data communication except UART4. 

 

Programmable parameters 

The following key parameters are programmable:  

• communication baud rate, integer, and fractional parts  

• number of data bits  

• number of stop bits  

• parity mode  

• FIFO enable (16 deep) or disable (1 deep)  

• FIFO trigger levels selectable between 1/8, 1/4, 1/2, 3/4, and 7/8.  

• internal nominal 1.8432MHz clock frequency (1.42–2.12MHz) to generate low-power mode shorter 

bit duration  

• hardware flow control.  

Additional test registers and modes are implemented for integration testing. 

 

18.2 UART functional description 

 

 

The UART performs:  

• serial-to-parallel conversion on data received from a peripheral device  

• parallel-to-serial conversion on data transmitted to the peripheral device.  

The CPU reads and writes data and control/status information through the AMBA APB interface. The 

transmit and receive paths are buffered with internal FIFO memories enabling up to 16-bytes to be 

stored independently in both transmit and receive modes. 

The UART:  
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• includes a programmable baud rate generator that generates a common transmit and receive 

internal clock from the UART internal reference clock input, UARTCLK  

• offers similar functionality to the industry-standard 16C550 UART device  

• supports baud rates of up to 460.8Kbits/s, subject to UARTCLK reference clock frequency 

The UART operation and baud rate values are controlled by the line control register (UARTLCR_H) 

and the baud rate divisor registers (UARTIBRD and UARTFBRD).  

The UART can generate: 

•individually-maskable interrupts from the receive (including timeout), transmit, modem status and 

error conditions  

• a single combined interrupt so that the output is asserted if any of the individual interrupts are 

asserted, and unmasked  

• DMA request signals for interfacing with a Direct Memory Access (DMA) controller 

If a framing, parity, or break error occurs during reception, the appropriate error bit is set, and is stored 

in the FIFO. If an overrun condition occurs, the overrun register bit is set immediately and FIFO data is 

prevented from being overwritten.  

You can program the FIFOs to be 1-byte deep providing a conventional double-buffered UART 

interface.  

The modem status input signals Clear To Send (CTS), Data Carrier Detect (DCD), Data Set Ready 

(DSR), and Ring Indicator (RI) are supported. The output modem control lines, Request To Send 

(RTS), and Data Terminal Ready (DTR) are also supported. 

There is a programmable hardware flow control feature that uses the nUARTCTS input and the 

nUARTRTS output to automatically control the serial data flow. 
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Figure below shows a block diagram of the UART. 

 

18.3 Operation 

 

18.3.1 Interface reset 

The UART are reset by the global reset signal PRESETn and a block-specific reset signal 

nUARTRST. An external reset controller must use PRESETn to assert nUARTRST asynchronously 
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and negate it synchronously to UARTCLK. PRESETn must be asserted LOW for a period long enough 

to reset the slowest block in the on-chip system, and then be taken HIGH again. The UART requires 

PRESETn to be asserted LOW for at least one period of PCLK. 

The values of the registers after reset are detailed in the next Chapter. 

 

18.3.2 Clock signals 

The frequency selected for UARTCLK must accommodate the desired range of baud rates:  

FUARTCLK (min) >= 16 x baud_rate (max)  

FUARTCLK (max) <= 16 x 65535 x baud_rate (min)  

For example, for a range of baud rates from 110 baud to 460800 baud the UARTCLK frequency must 

be within the range 7.3728MHz to 115MHz.  

The frequency of UARTCLK must also be within the required error limits for all baud rates to be used.  

There is also a constraint on the ratio of clock frequencies for PCLK to UARTCLK. The frequency of 

UARTCLK must be no more than 5/3 times faster than the frequency of PCLK:  

FUARTCLK <= 5/3 x FPCLK  

This allows sufficient time to write the received data to the receive FIFO. 

 

18.3.3 UART operation 

Control data is written to the UART line control register, UARTLCR_H. This register is 29 bits wide 

internally, but is externally accessed through the AMBA APB bus by three writes to register locations, 

UARTLCR_H, UARTIBRD, and UARTFBRD. UARTLCR_H defines: 

• transmission parameters  

• word length  

• buffer mode  

• number of transmitted stop bits  

• parity mode  

• break generation. 

UARTIBRD and UARTFBRD together define the baud rate divisor 

 

Fractional baud rate divider 

The baud rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. This is 

used by the baud rate generator to determine the bit period. The fractional baud rate divider enables 

the use of any clock with a frequency >3.6864MHz to act as UARTCLK, while it is still possible to 

generate all the standard baud rates.  

The 16-bit integer is loaded through the UARTIBRD register. The 6-bit fractional part is loaded into the 

UARTFBRD register. The Baud Rate Divisor has the following relationship to UARTCLK:  

Baud Rate Divisor = UARTCLK/(16xBaud Rate) = BRDI + BRDF  
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where BRDI is the integer part and BRDF is the fractional part separated by a decimal point as shown 

in Figure below.  

Figure: Baud rate divisor  

You can calculate the 6-bit number (m) by taking the fractional part of the required baud rate divisor 

and multiplying it by 64 (that is, 2n, where n is the width of the UARTFBRD register) and adding 0.5 to 

account for rounding errors:  

m = integer(BRDF * 2n + 0.5)  

An internal clock enable signal, Baud16, is generated, and is a stream of one UARTCLK wide pulses 

with an average frequency of 16 times the desired baud rate. This signal is then divided by 16 to give 

the transmit clock. A low number in the baud rate divisor gives a short bit period, and a high number in 

the baud rate divisor gives a long bit period. 

 

Data transmission or reception 

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four 

bits per character for status information.  

For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame 

to start transmitting with the parameters indicated in UARTLCR_H. Data continues to be transmitted 

until there is no data left in the transmit FIFO. The BUSY signal goes HIGH as soon as data is written 

to the transmit FIFO (that is, the FIFO is non-empty) and remains asserted HIGH while data is being 

transmitted. BUSY is negated only when the transmit FIFO is empty, and the last character has been 

transmitted from the shift register, including the stop bits. BUSY can be asserted HIGH even though 

the UART might no longer be enabled.  

For each sample of data, three readings are taken and the majority value is kept. In the following 

paragraphs the middle sampling point is defined, and one sample is taken either side of it.  

When the receiver is idle (UARTRXD continuously 1, in the marking state) and a LOW is detected on 

the data input (a start bit has been received), the receive counter, with the clock enabled by Baud16, 

begins running and data is sampled on the eighth cycle of that counter in normal UART mode, or the 

fourth cycle of the counter in SIR mode to allow for the shorter logic 0 pulses (half way through a bit 

period).  

The start bit is valid if UARTRXD is still LOW on the eighth cycle of Baud16, otherwise a false start bit 

is detected and it is ignored.  

If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one 

bit period later) according to the programmed length of the data characters. The parity bit is then 

checked if parity mode was enabled.  

Lastly, a valid stop bit is confirmed if UARTRXD is HIGH, otherwise a framing error has occurred. 

When a full word is received, the data is stored in the receive FIFO, with any error bits associated with 

that word. 

 

Error bits  

Three error bits are stored in bits [10:8] of the receive FIFO, and are associated with a particular 

character. There is an additional error that indicates an overrun error and this is stored in bit 11 of the 

receive FIFO. 
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Overrun bit  

The overrun bit is not associated with the character in the receive FIFO. The overrun error is set when 

the FIFO is full, and the next character is completely received in the shift register. The data in the shift 

register is overwritten, but it is not written into the FIFO. When an empty location is available in the 

receive FIFO, and another character is received, the state of the overrun bit is copied into the receive 

FIFO along with the received character. The overrun state is then cleared. Table below shows the bit 

functions of the receive FIFO. 

 

Disabling the FIFOs  

Additionally, you can disable the FIFOs. In this case, the transmit and receive sides of the UART have 

1-byte holding registers (the bottom entry of the FIFOs). The overrun bit is set when a word has been 

received, and the previous one was not yet read. In this implementation, the FIFOs are not physically 

disabled, but the flags are manipulated to give the illusion of a 1-byte register. When the FIFOs are 

disabled, a write to the data register bypasses the holding register unless the transmit shift register is 

already in use. 

 

System and diagnostic loopback testing 

You can perform loopback testing for UART data by setting the Loop Back Enable (LBE) bit to 1 in the 

control register UARTCR (bit 7).  

Data transmitted on UARTTXD is received on the UARTRXD input. 
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18.3.4 UART character frame 

 

 

 

18.4 UART modem operation 

You can use the UART to support both the Data Terminal Equipment (DTE) and Data Communication 

Equipment (DCE) modes of operation. Figure on page 2-3 shows the modem signals in the DTE 

mode. For DCE mode, Table 2-2 shows the meaning of the signals. 
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18.5 UART hardware flow control 

The hardware flow control feature is fully selectable, and enables you to control the serial data flow by 

using the nUARTRTS output and nUARTCTS input signals. Figure below shows how two devices can 

communicate with each other using hardware flow control. 

 

When the RTS flow control is enabled, the nUARTRTS signal is asserted until the receive FIFO is 

filled up to the programmed watermark level. When the CTS flow control is enabled, the transmitter 

can only transmit data when the nUARTCTS signal is asserted.  

The hardware flow control is selectable through bits 14 (RTSEn) and 15 (CTSEn) in the UART control 

register (UARTCR). Table below shows how you must set the bits to enable RTS and CTS flow control 

both simultaneously, and independently. 

 

 

RTS flow control 

The RTS flow control logic is linked to the programmable receive FIFO watermark levels. When RTS 

flow control is enabled, the nUARTRTS is asserted until the receive FIFO is filled up to the watermark 

level. When the receive FIFO watermark level is reached, the nUARTRTS signal is deasserted, 

indicating that there is no more room to receive any more data. The transmission of data is expected 

to cease after the current character has been transmitted. 

The nUARTRTS signal is reasserted when data has been read out of the receive FIFO so that it is 

filled to less than the watermark level. If RTS flow control is disabled and the UART is still enabled, 

then data is received until the receive FIFO is full, or no more data is transmitted to it. 
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CTS flow control 

If CTS flow control is enabled, then the transmitter checks the nUARTCTS signal before transmitting 

the next byte. If the nUARTCTS signal is asserted, it transmits the byte otherwise transmission does 

not occur.  

The data continues to be transmitted while nUARTCTS is asserted, and the transmit FIFO is not 

empty. If the transmit FIFO is empty and the nUARTCTS signal is asserted no data is transmitted.  

If the nUARTCTS signal is deasserted and CTS flow control is enabled, then the current character 

transmission is completed before stopping. If CTS flow control is disabled and the UART is enabled, 

then the data continues to be transmitted until the transmit FIFO is empty. 

 

18.6 UART DMA interface 

The UART provides an interface to connect to the DMA controller. The DMA operation of the UART is 

controlled through the UART DMA control register, UARTDMACR. The DMA interface includes the 

following signals: 

For receive: 

UARTRXDMASREQ  

Single character DMA transfer request, asserted by the UART. For receive, one character consists of 

up to 12 bits. This signal is asserted when the receive FIFO contains at least one character. 

UARTRXDMABREQ 

Burst DMA transfer request, asserted by the UART. This signal is asserted when the receive FIFO 

contains more characters than the programmed watermark level. You can program the watermark 

level for each FIFO through the UARTIFLS register. 

UARTRXDMACLR 

DMA request clear, asserted by the DMA controller to clear the receive request signals. If DMA burst 

transfer is requested, the clear signal is asserted during the transfer of the last data in the burst. 

For transmit: 

UARTTXDMASREQ 

Single character DMA transfer request, asserted by the UART. For transmit one character consists of 

up to eight bits. This signal is asserted when there is at least one empty location in the transmit FIFO. 

UARTTXDMABREQ 

Burst DMA transfer request, asserted by the UART. This signal is asserted when the transmit FIFO 

contains less characters than the watermark level. You can program the watermark level for each 

FIFO through the UARTIFLS register. 

UARTTXDMACLR 

DMA request clear, asserted by the DMA controller to clear the transmit request signals. If DMA burst 

transfer is requested, the clear signal is asserted during the transfer of the last data in the burst. 

The burst transfer and single transfer request signals are not mutually exclusive, they can both be 

asserted at the same time. For example, when there is more data than the watermark level in the 

receive FIFO, the burst transfer request and the single transfer request are asserted. When the 

amount of data left in the receive FIFO is less than the watermark level, the single request only is 

asserted. This is useful for situations where the number of characters left to be received in the stream 

is less than a burst. 
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For example, say 19 characters have to be received and the watermark level is programmed to be 

four. The DMA controller then transfers four bursts of four characters and three single transfers to 

complete the stream. 

Each request signal remains asserted until the relevant DMACLR signal is asserted. After the request 

clear signal is deasserted, a request signal can become active again, depending on the conditions 

described above. All request signals are deasserted if the UART is disabled or the DMA enable signal 

is cleared. 

When the UART is in the FIFO disabled mode, only the DMA single transfer mode can operate, since 

only one character can be transferred to, or from the FIFOs at any time. UARTRXDMASREQ and 

UARTTXDMASREQ are the only request signals that can be asserted. When the UART is in the FIFO 

enabled mode, data transfers can be made by either single or burst transfers depending on the 

programmed watermark level and the amount of data in the FIFO. Table below shows the trigger 

points for DMABREQ depending on the watermark level, for both the transmit and receive FIFOs. 

 

In addition to the above, the DMAONERR bit in the DMA control register supports the use of the 

receive error interrupt, UARTEINTR. It enables the DMA receive request outputs, UARTRXDMASREQ 

or UARTRXDMABREQ, to be masked out when the UART error interrupt, UARTEINTR, is asserted. 

The DMA receive request outputs remain inactive until the UARTEINTR is cleared. The DMA transmit 

request outputs are unaffected. 

Figure below shows the timing diagram for both a single transfer request and a burst transfer request 

with the appropriate DMA clear signal. The signals are all synchronous to PCLK. For the sake of clarity 

it is assumed that there is no synchronization of the request signals in the DMA controller. 
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18.7 Programmer’s Model 

18.7.1 Summary of registers 

 

Offset Type Width 
Reset 

value 
Name Description 

0x000 RW 12/8 0x--- UARTDR Data register 

0x004 RW 4/0 0x0 
UARTRSR/ 

UARTECR 

Receive status register/error clear 

register 

0x008-

0x014 
- - - - Reserved 

0x018 RO 9 
0b-

10010--- 
UARTFR Flag register 

0x01C-

0x020 
- - - - Reserved 

0x024 RW 16 0x0000 UARTIBRD Integer baud rate register 

0x028 RW 6 0x00 UARTFBRD Fractional baud rate register 

0x02C RW 8 0x00 UARTLCR_H Line control register 

0x030 RW 16 0x0300 UARTCR Control register 

0x034 RW 6 0x12 UARTIFLS Interrupt FIFO level select register 

0x038 RW 11 0x000 UARTIMSC Interrupt mask set/clear register 

0x03C RO 11 0x00- UARTRIS Raw interrupt status register 

0x040 RO 11 0x00- UARTMIS Masked interrupt status register 

0x044 WO 11 - UARTICR Interrupt clear register 

0x048 RW 3 0x00 UARTDMACR DMA control register 

 

18.7.2 Register descriptions 

18.7.2.1 Data register, UARTDR 

The UARTDR register is the data register.  

For words to be transmitted:  

• if the FIFOs are enabled, data written to this location is pushed onto the transmit FIFO  

• if the FIFOs are not enabled, data is stored in the transmitter holding register (the bottom word 

of the transmit FIFO). 

The write operation initiates transmission from the UART. The data is prefixed with a start bit, 

appended with the appropriate parity bit (if parity is enabled), and a stop bit. The resultant word is then 

transmitted.  
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For received words: 

• if the FIFOs are enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) 

is pushed onto the 12-bit wide receive FIFO  

• if the FIFOs are not enabled, the data byte and status are stored in the receiving holding 

register (the bottom word of the receive FIFO). 

The received data byte is read by performing reads from the UARTDR register along with the 

corresponding status information. The status information can also be read by a read of the 

UARTRSR/UARTECR register as shown in Table on the next page. 

Note: 

You must disable the UART before any of the control registers are reprogrammed. When the UART is 

disabled in the middle of transmission or reception, it completes the current character before stopping. 

 

18.7.2.2 Receive status register/error clear register, UARTRSR/UARTECR 

The UARTRSR/UARTECR register is the receive status register/error clear register.  

Receive status can also be read from UARTRSR. If the status is read from this register, then the 

status information for break, framing and parity corresponds to the data character read from UARTDR 

prior to reading UARTRSR. The status information for overrun is set immediately when an overrun 

condition occurs. 

A write to UARTECR clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 

on reset. Table below shows the bit assignment of the UARTRSR/UARTECR register. 
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Note: 

The received data character must be read first from UARTDR before reading the error status 

associated with that data character from UARTRSR. This read sequence cannot be reversed, because 

the status register UARTRSR is updated only when a read occurs from the data register UARTDR. 

However, the status information can also be obtained by reading the UARTDR register. 

 

18.7.2.3 Flag register, UARTFR 

 

The UARTFR register is the flag register. After reset TXFF, RXFF, and BUSY are 0, and TXFE and 

RXFE are 1. Table below shows the bit assignment of the UARTFR register. 
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18.7.2.4 Integer baud rate register, UARTIBRD 

The UARTIBRD register is the integer part of the baud rate divisor value. All the bits are cleared to 0 

on reset. Table below shows the bit assignment of the UARTIBRD register. 
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18.7.2.5 Fractional baud rate register, UARTFBRD  

The UARTFBRD register is the fractional part of the baud rate divisor value. All the bits are cleared to 

0 on reset. Table below shows the bit assignment of register of the UARTFBRD register. 

The baud rate divisor is calculated as follows:  

Baud rate divisor BAUDDIV = (FUARTCLK/ {16 * Baud rate})  

where FUARTCLK is the UART reference clock frequency.  

The BAUDDIV is comprised of the integer value (BAUD DIVINT) and the fractional value (BAUD 

DIVFRAC). 

 

Note: 

The contents of the UARTIBRD and UARTFBRD registers are not updated until transmission or 

reception of the current character is complete. 

The minimum divide ratio possible is 1 and the maximum is 65535(216 - 1). That is, UARTIBRD = 0 is 

invalid and UARTFBRD is ignored when this is the case.  

Similarly, when UARTIBRD = 65535 (that is 0xFFFF), then UARTFBRD must not be greater than zero. 

If this is exceeded it results in an aborted transmission or reception. 

 

This is an example of how to calculate the divisor value. 

If the required baud rate is 230400 and UARTCLK = 4MHz then:  

Baud Rate Divisor = (4 * 106)/(16 * 230400) = 1.085  

Therefore, BRDI = 1 and BRDF = 0.085,  

Therefore, fractional part, m = integer((0.085 * 64) + 0.5) = 5  

Generated baud rate divider = 1 + 5/64 = 1.078  

Generated baud rate = (4 * 106)/(16 * 1.078) = 231911  

Error = (231911 - 230400)/230400 * 100 = 0.656%  

The maximum error using a 6-bit UARTFBRD register = 1/64 * 100 = 1.56%. This occurs when m = 1, and 
the error is cumulative over 64 clock ticks. 

 

Table below shows some typical bit rates and their corresponding divisors, given the UART clock 

frequency of 7.3728MHz. These values do not use the fractional divider so the value in the 

UARTFBRD register is zero. 
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Table below shows some required bit rates and their corresponding integer and fractional divisor 

values and generated bit rates given a clock frequency of 4MHz. 

 

18.7.2.6 Line control register, UARTLCR_H 

The UARTLCR_H register is the line control register. This register accesses bits 29 to 22 of the UART 

bit rate and line control register, UARTLCR. 

All the bits are cleared to 0 when reset. Table 3-10 shows the bit assignment of the UARTCR_H 

register. 
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UARTLCR_H, UARTIBRD and UARTFBRD form a single 30-bit wide register (UARTLCR) which is 

updated on a single write strobe generated by a UARTLCR_H write. So, in order to internally update 

the contents of UARTIBRD or UARTFBRD, a UARTLCR_H write must always be performed at the 

end. 

 

Note: 

To update the three registers there are two possible sequences:  

• UARTIBRD write, UARTFBRD write and UARTLCR_H write  

• UARTFBRD write, UARTIBRD write and UARTLCR_H write.  

To update UARTIBRD or UARTFBRD only:  

• UARTIBRD write (or UARTFBRD write) and UARTLCR_H write. 

 

Table below is a truth table for the Stick Parity Select (SPS), Even Parity Select (EPS), and Parity 

ENable (PEN) bits of the UARTLCR_H register. 
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Note: 

The baud rate and line control registers must not be changed:  

• when the UART is enabled  

• when completing a transmission or a reception when it has been programmed to become disabled.  

The FIFO integrity is not guaranteed under the following conditions:  

• after the BRK bit has been initiated  

• if the software disables the UART in the middle of a transmission with data in the FIFO, and then re-

enables it. 
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18.7.2.7 Control register, UARTCR 

The UARTCR register is the control register. All the bits are cleared to 0 on reset except for bits 9 and 

8 which are set to 1. Table 3-12 shows the bit assignment of the UARTCR register. 

Note: 
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To enable transmission, both TXE, bit 8, and UARTEN, bit 0, must be set. Similarly, to enable 

reception, RXE, bit 9, and UARTEN, bit 0, must be set. 

Note: 

Program the control registers as follows:  

1. Disable the UART.  

2. Wait for the end of transmission or reception of the current character.  

3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTCLR_H).  

4. Reprogram the control register.  

5. Enable the UART 

 

18.7.2.8 Interrupt FIFO level select register, UARTIFLS 

The UARTIFLS register is the interrupt FIFO level select register. You can use the UARTIFLS register 

to define the FIFO level at which the UARTTXINTR and UARTRXINTR are triggered.  

The interrupts are generated based on a transition through a level rather than being based on the 

level. That is, the design is such that the interrupts are generated when the fill level progresses 

through the trigger level.  

The bits are reset so that the trigger level is when the FIFOs are at the half-way mark. Table below 

shows the bit assignment of the UARTIFLS register. 

 

 

18.7.2.9 Interrupt mask set/clear register, UARTIMSC 

The UARTIMSC register is the interrupt mask set/clear register.  
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It is a read/write register. On a read this register gives the current value of the mask on the relevant 

interrupt. On a write of 1 to the particular bit, it sets the corresponding mask of that interrupt. A write of 

0 clears the corresponding mask. 

All the bits are cleared to 0 when reset. Table below shows the bit assignment of the UARTIMSC 

register. 

 

18.7.2.10 Raw interrupt status register, UARTRIS 

The UARTRIS register is the raw interrupt status register. It is a read-only register. On a read this 

register gives the current raw status value of the corresponding interrupt. A write has no effect. 

Caution: All the bits, except for the modem status interrupt bits (bits 3 to 0), are cleared to 0 when 

reset. The modem status interrupt bits are undefined after reset. 

Table below shows the bit assignment of the UARTRIS register. 
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18.7.2.11 Masked interrupt status register, UARTMIS 

The UARTMIS register is the masked interrupt status register. It is a read-only register. On a read this 

register gives the current masked status value of the corresponding interrupt. A write has no effect.  

All the bits except for the modem status interrupt bits (bits 3 to 0) are cleared to 0 when reset. The 

modem status interrupt bits are undefined after reset. Table below shows the bit assignment of the 

UARTMIS register. 
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18.7.2.12 Interrupt clear register, UARTICR 

The UARTICR register is the interrupt clear register and is write-only. On a write of 1, the 

corresponding interrupt is cleared. A write of 0 has no effect. Table below shows the bit assignment of 

the UARTICR register. 

 

 

18.7.2.13 DMA control register, UARTDMACR 

The UARTDMACR register is the DMA control register. It is a read/write register. All the bits are 

cleared to 0 on reset. Table below shows the bit assignment of the UARTDMACR register. 
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19 Inter-integrated circuit(I2C) 

 

19.1 I2C introduction 

The I2C interface is an internal circuit allowing communication with an external I2C interface which is 

an industry standard two line serial interface used for connection to external hardware.  

These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C 

module provides several data transfer rates of up to 100 kHz in standard mode, up to 400 kHz in the 

fast mode and up to 1 MHz in the fast mode plus .  

The I2C module also has an arbitration detect function to prevent the situation where more than one 

master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided 

in I2C interface to perform packet error checking for I2C data. 

AG32 device provide: 

◼ Up to two I2C bus interfaces can support master mode with a frequency up to 1 MHz (Fast mode 

plus) 

◼ Provide arbitration function, optional PEC (packet error checking) generation and checking 

◼ Supports 7-bit and 10-bit addressing mode and general call addressing mode 

 

19.2 Architecture 

The I2C core is built around four primary blocks; the Clock Generator, the Byte Command Controller, 

the Bit Command Controller and the DataIO Shift Register. All other blocks are used for interfacing or 

for storing temporary values. 

 

Clock Generator  

The Clock Generator generates an internal 4*Fscl clock enable signal that triggers all synchronous 

elements in the Bit Command Controller. It also handles clock stretching needed by some slaves. 

 

Byte Command Controller 
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The Byte Command Controller handles I2C traffic at the byte level. It takes data from the Command 

Register and translates it into sequences based on the transmission of a single byte. By setting the 

START, STOP, and READ bit in the Command Register, for example, the Byte Command Controller 

generates a sequence that results in the generation of a START signal, the reading of a byte from the 

slave device, and the generation of a STOP signal. It does this by dividing each byte operation into 

separate bit-operations, which are then sent to the Bit Command Controller. 
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Bit Command Controller 

The Bit Command Controller handles the actual transmission of data and the generation of the specific 

levels for START, Repeated START, and STOP signals by controlling the SCL and SDA lines. The Byte 

Command Controller tells the Bit Command Controller which operation has to be performed. For a single 

byte read, the Bit Command Controller receives 8 separate read commands. Each bit-operation is 

divided into 5 pieces (idle and A, B, C, and D), except for a STOP operation which is divided into 4 

pieces (idle and A, B, and C). 

 

 

 

DataIO Shift Register 

The DataIO Shift Register contains the data associated with the current transfer. During a read action, 

data is shifted in from the SDA line. After a byte has been read the contents are copied into the Receive 

Register. During a write action, the Transmit Register’s contents are copied into the DataIO Shift 

Register and are then transmitted onto the SDA line. 

 

19.3 Operation 

19.3.1 System Configuration 

The I2C system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers. All devices 

connected to these two signals must have open drain or open collector outputs. The logic AND function 
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is exercised on both lines with external pull-up resistors.  

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-by-

byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB 

being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the 

high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must 

be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted 

as a command (see START and STOP signals). 

 

19.3.2 I2C Protocol 

Normally, a standard communication consists of four parts:  

1) START signal generation  

2) Slave address transfer  

3) Data transfer 

4) STOP signal generation 

 

 

START signal 

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are 

high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to 

as the S-bit, is defined as a high-to-low transition of SDA while SCL is high. The START signal denotes 

the beginning of a new data transfer. A Repeated START is a START signal without first generating a 

STOP signal. The master uses this method to communicate with another slave or the same slave in a 

different transfer direction (e.g. from writing to a device to reading from a device) without releasing the 

bus. The core generates a START signal when the STA-bit in the Command Register is set and the RD 

or WR bits are set. Depending on the current status of the SCL line, a START or Repeated START is 

generated. 

 

Slave Address Transfer 

The first byte of data transferred by the master immediately after the START signal is the slave address. 

This is a seven-bits calling address followed by a RW bit. The RW bit signals the slave the data transfer 

direction. No two slaves in the system can have the same address. Only the slave with an address that 

matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the 

SDA low at the 9th SCL clock cycle.  

Note: The core supports 10bit slave addresses by generating two address transfers. See the Philips I2C 

specifications for more details.  

The core treats a Slave Address Transfer as any other write action. Store the slave device’s address 

in the Transmit Register and set the WR bit. The core will then transfer the slave address on the bus. 
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Data Transfer 

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-by-byte 

basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by 

an acknowledge bit on the 9th SCL clock cycle. If the slave signals a No Acknowledge, the master can 

generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a 

new transfer cycle.  

If the master, as the receiving device, does not acknowledge the slave, the slave releases the SDA line 

for the master to generate a STOP or Repeated START signal.  

To write data to a slave, store the data to be transmitted in the Transmit Register and set the WR bit. To 

read data from a slave, set the RD bit. During a transfer the core set the TIP flag, indicating that a 

Transfer is In Progress. When the transfer is done the TIP flag is reset, the IF flag set and, when enabled, 

an interrupt generated. The Receive Register contains valid data after the IF flag has been set. The user 

may issue a new write or read command when the TIP flag is reset. 

 

STOP signal 

The master can terminate the communication by generating a STOP signal. A STOP signal, usually 

referred to as the P-bit, is defined as a low-to-high transition of SDA while SCL is at logical ‘1’. 

 

19.3.3 Arbitration Procedure 

 

Clock Synchronization 

The I2C bus is a true multimaster bus that allows more than one master to be connected on it. If two or 

more masters simultaneously try to control the bus, a clock synchronization procedure determines the 

bus clock. Because of the wired-AND connection of the I2C signals a high to low transition affects all 

devices connected to the bus. Therefore a high to low transition on the SCL line causes all concerned 

devices to count off their low period. Once a device clock has gone low it will hold the SCL line in that 

state until the clock high state is reached. Due to the wired-AND connection the SCL line will therefore 

be held low by the device with the longest low period, and held high by the device with the shortest high 

period. 

 

 
 

Clock Stretching 

Slave devices can use the clock synchronization mechanism to slow down the transfer bit rate. After the 
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master has driven SCL low, the slave can drive SCL low for the required period and then release it. If 

the slave’s SCL low period is greater than the master’s SCL low period, the resulting SCL bus signal 

low period is stretched, thus inserting wait-states. 

 

 

19.4 Registers 

19.4.1 Registers list 

 

19.4.2 Register description 

Prescale Register 

This register is used to prescale the SCL clock line. Due to the structure of the I2C interface, the core 

uses a 5*SCL clock internally. The prescale register must be programmed to this 5*SCL frequency 

(minus 1). Change the value of the prescale register only when the ‘EN’ bit is cleared. 

 

 

Control register 

 

 

The core responds to new commands only when the ‘EN’ bit is set. Pending commands are finished. 



 
 

 254 / 312 

 

Clear the ‘EN’ bit only when no transfer is in progress, i.e. after a STOP command, or when the 

command register has the STO bit set. When halted during a transfer, the core can hang the I2 C bus. 

 

Transmit register 

 

 

Receive register 

 

 

Command register 

 

The STA, STO, RD, WR, and IACK bits are cleared automatically. These bits are always read as zeros. 

 

Status register 
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Please note that all reserved bits are read as zeros. To ensure forward compatibility, they should be 

written as zeros. 
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20 Controller area network (CAN) 

 

20.1 Overview 

AG32 device provides: 

◼ One CAN2.0B interface with communication frequency up to 1 Mbit/s 

◼ Internal main PLL for CAN CLK compliantly 

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN 

protocol has been used extensively in industrial automation and automotive applications. It can 

receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit 

identifiers. The CAN has three mailboxes for transmission and two FIFOs of three message deep for 

reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming 

messages needed and discarding the others. 

 

AG32 support The Inventra™ MCAN2 standard. 

The MCAN2 has two main modes of operation: an Operating Mode in which data may be transmitted 

and received, and a Reset Mode in which bus timing parameters and message acceptance filters can 

be set. Reset Mode also allows the Receive and Transmit Error Counters and the Error Warning Limit 

to be changed. 

Reset Mode is selected either by executing a hardware reset or by setting the Reset Mode bit in the 

Mode Register (MOD.0) to ‘1’. The MCAN2 is returned to Operating Mode by clearing the MOD.0 bit. 

The MCAN2 also supports a Listen Only Mode and a Self Test Mode, selectable through the Mode 

Register in either Operating Mode or Reset Mode.  

In Listen Only Mode, the MCAN2 is only able to receive data: no transmission is possible. The MCAN2 

does not even transmit any acknowledgement of data being successfully received. It is also forced to 

be ‘error passive’.  

In Self Test Mode, the MCAN2 sends and receives a message using the MCAN2’s Self Reception 

feature without looking for any acknowledgement from any remote node.  

The device also offers a Clock Output Mode, only selectable within Reset Mode, in which TX1 is used 

to output the Transmit clock rather than a second copy of the transmission data. 
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20.2 Operation 

20.2.1 Configuration 

The way in which the MCAN2 is configured to operate is set within its Reset Mode, into which it is 

placed both immediately following a hardware reset (NRST taken low) and as a result of setting the 

Reset Mode bit in the Mode register (MOD.0) to 1 (software reset). 

The details of the register settings following both these events are given in an Appendix at the end of 

this document. 

While in Reset Mode, you may wish to set the following aspects of the MCAN2’s operation:  

• The bus timing parameters to be applied (These select the baud rate used on the CAN bus)  

• The acceptance filters to be applied to received messages  

• The required interrupts  

• The desired error warning limit  

• The required output mode – with either a copy of the transmission bit stream or the Transmit clock 

on TX1  

• The relationship of the CLKOUT signal to the input clock. 

 

20.2.2 Bus Timing Parameters 

The bus timing parameters configure the MCAN2 for the bit rate used on the CAN bus and set the 

point within each bit period at which the received bit stream is to be sampled. They also specify the 

degree to which the MCAN2 may compensate for variations in the bit rates generated by other nodes 

by re-synchronizing to the bit stream. 

To cater for variations in the bit rate generated by other nodes and for physical delay times both on the 

bus and within the CAN nodes, the bit period is seen as being composed of a Synchronization 

segment, a Propagation segment and two Phase Buffers. The Synchronization segment represents 

the part of the bit period in which the bit edge is expected to arrive. The Propagation segment 

represents the part of the bit time that is allowed to compensate for physical delay times. The two 

Phase Buffers surround the sampling point and are shortened or lengthened as necessary to re-

synchronize to the incoming bit stream when the bit edge arrives outside of the Synchronization 

segment. 

The length of each of these segments is defined as a number of ‘Time Quanta’ (TQ). The 

Synchronization segment is always 1 TQ, the Propagation segment may be 1 – 8 TQ, and the two 

Phase Buffers may be 1 – 8 TQ. The maximum amount by which the Phase Buffers can be lengthened 

or shortened is also defined – as the Synchronization Jump Width. This is limited to 1 – 4 TQ and is 

also required to not be longer than either of the two Phase Buffers. 

The timing parameters used on the MCAN2 are selected through the two Bus Timing Registers: BTR0 

and BRT1. 

BTR0 defines the time quantum to be used in terms of periods of the XTAL1 input clock, together with 

the Synchronization Jump Width (in time quanta). Time quanta between 2 x the XTAL1 clock period 

and 128 x the XTAL1 clock period are supported. 
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BTR1 defines the lengths in time quanta of two time segments, TSEG1 and TSEG2, and the number 

of samples made of each bit period – 1 or 3 (1 is recommended for high-speed (class C) buses; 3 is 

recommended for low/medium (class A or B) buses). TSEG1 represents the time between the 

Synchronization segment and the sample point (i.e. the Propagation segment plus the first Phase 

Buffer). TSEG2 represents the time between the sample point and the end of the bit period (i.e. the 

second Phase Buffer). 

General Structure of a Bit Period 

TSEG1 can be between 1 and 16 TQ long while TSEG2 can be between 1 and 8 TQ long. In theory, 

bit periods can therefore be defined between 3 and 25 TQ in length. In practice, however, they are 

required to be in the range 8 and 25 TQ picked out by the BOSCH standard. 

 

20.2.3 Acceptance Filters 

Within a CAN network, all nodes receive all messages transmitted on the bus.  

To allow a node to ignore messages that are not relevant to it, the MCAN2 provides a 4-byte 

Acceptance Filter, which can be used to pick out only those messages with an appropriate identifier. 

Any message that does not pass though this filter can be discarded as not applicable to the receiving 

CAN node. 

Normally message filtering is based upon the whole identifier, which can be 11 or 29 bits long 

depending if the received message is a standard or extended frame format. However, in the MCAN2, 

optional mask registers allow groups of identifiers to be received and placed into the Receive FIFO by 

setting particular identifier bits to be ‘don’t care’.  

The filter can be applied either as a single 4-byte filter or as two shorter filters. The selection is made 

through the AFM bit of the Mode register (bit 3). If AFM = ‘1’, a single filter will be applied; if AFM = ‘0’, 
two filters will be applied. Where two filters are used, the incoming message is accepted if its identifier 

matches either filter. 

The filters applied are defined in a set of Acceptance Code Registers ACR0 – 3, used in conjunction 

with a corresponding set of Acceptance Mask Registers AMR0 – 3 (see Sections 10.1 and 10.2). The 

bit pattern against which the message identifier is matched is recorded in the ACR registers, masked 

by the values recorded in the AMR registers. ‘0’s in AMR0 – 3 identify the bits at the corresponding 

positions in ACR0 – 3 which must be matched in the message identifier, ‘1’s identify the corresponding 

bits as ‘don’t care’. Both groups of registers are set to zero by a hardware reset (i.e. set to accept only 

messages with a zero identifier) but are left unchanged by a software reset. 

The way in which the bit patterns defined by ACR0 – 3 are applied further depend on whether the 

incoming message is in Standard Frame Format (SFF) or Extended Frame Format (EFF). 
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20.2.4 Interrupts 

The MCAN2 supports the generation of an interrupt for any of the following conditions:  

• Bus activity while the MCAN2 is in Sleep Mode (Wake-Up Interrupt)  

• Receipt of a message (Receive Interrupt)  

• Completion of the current transmission (Transmit Interrupt)  

• Loss of Received data through the FIFO being full (Data Overrun Interrupt)  

• Loss of Arbitration on the CAN bus* (Arbitration Loss Interrupt)  

• Error on the CAN bus* (Bus Error Interrupt)  

• MCAN2 coming out of ‘Error Passive’ state (Error Passive Interrupt)  

• The number of errors either exceeding the Error Warning Limit or causing the device to go into Bus 

Off state (Error Warning Interrupt) 

Following a hardware reset, these interrupts are disabled. The user therefore needs to enable the 

ones they require in the Interrupt Enable Register. The selection of interrupts that are enabled is not 

however affected by a software reset. 

 

20.2.5 Error Warning Limit 

The Error Warning Limit (EWL) represents the number of errors in either reception or transmission at 

which a warning should be generated. When either the Transmit Error Counter or the Receive Error 

Counter passes this value, the Error Status bit in the Status Register (SR.6) is set and an Error 

Warning Interrupt is generated (if enabled). 

The value for the EWL is recorded in the Error Warning Limit Register (described in Section 10.9). The 

value selected following a hardware reset is 96 which, if reached, would indicate a seriously disturbed 

bus.  

The current setting is left unchanged by a software reset. 

 

20.2.6 Output Mode 

The MCAN2 supports two possible output driver configurations: ‘Normal Output’ and ‘Clock Output’. 
Note: The additional driver configurations available in the SJA1000 through this register are not 

supported by the MCAN2.  

In Normal Output Mode, the bit sequence (TXD) is sent to TX0 with an inverse copy sent to TX1. In 

Clock Output Mode, the bit sequence is output on the TX0 signal as in Normal Output Mode but the 

data stream to TX1 is replaced by a copy of the Transmit clock (TXCLK), the rising edge of which 

marks the beginning of a bit period.  

Normal Output Mode is automatically selected following a hardware reset. If Clock Output Mode is 

required, it may be selected through the Output Control Register.  

The selected mode is left unchanged by a software reset. 
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20.2.7 CLKOUT Signal 

The CLKOUT signal is derived from the XTAL1 input clock.  

The relationship between the CLKOUT signal and the XTAL1 clock is defined by the Clock Divider 

Register. The bottom three bits of this register specify a divisor for the XTAL1 clock between 2 and 14, 

while bit 3 of the register enables or disables the CLKOUT signal as required.  

After a hardware reset, the Clock Divider Register is set so that the CLKOUT signal is enabled and 

equal to XTAL1 divided by 2. The current setting is left unchanged by a software reset. 

 

20.2.8 Example Configuration Steps 

 

20.3 Interrupt Handling 

When the CPU is interrupted (NINT going low), it needs to read the interrupt register to determine 

which type of event caused the interrupt. 

The possible interrupts are (in the order they appear in the Interrupt register):  

• Receive Interrupt (IR.0 set)  

• Transmit Interrupt (IR.1 set)  

• Error Warning Interrupt (IR.2 set)  

• Data Overrun Interrupt (IR.3 set)  

• Wake-Up Interrupt (IR.4 set)  

• Error Passive Interrupt (IR.5 set)  

• Arbitration Loss Interrupt (IR.6 set)  

• Bus Error Interrupt (IR.7 set)  

The following sections describe the actions to be taken in response to each type of interrupt. 
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20.3.1 Receive Interrupt 

The generation of a Receive Interrupt indicates the availability of a message to be read in the Receive 

FIFO.  

The message is read through a 13-byte window onto the Receive FIFO referred the Receive Buffer, 

which is located at CAN addresses 10h – 1Ch. 

Once the message currently accessible through the Receive Buffer has been read, the CPU needs to 

release the window it currently has on the FIFO by issuing a Release Receive Buffer command 

(CMR.2 = ‘1’). The RX FIFO Read Pointer (and hence the Receive Buffer Start Address) then moves 

to the position in the Receive FIFO at which the next message will start. 

If there is an unread message at this position, this becomes immediately available to read through the 

Receive Buffer. If no message is available, the Receive Interrupt (IR.0) and Receive Buffer Status 

(SR.0) bits will be cleared. 

 

20.3.2 Transmit Interrupt 

The generation of a Transmit Interrupt indicates the readiness of the Transmit Buffer to receive 

another message for transmission. The response made to this interrupt simply depends on whether 

there is further data to be sent. If there is, the transmission procedure outlined in Section 4 needs to 

be repeated. If not, the interrupt may be ignored. 

 

20.3.3 Error Warning Interrupt 

The generation of an Error Warning interrupt indicates either that the count of transmission errors or 

the count of reception errors has passed the EWL value recorded in the Error Warning Limit register, 

or that the MCAN2 has been put into Bus Off state because the number of transmission errors has 

exceeded 255.  

The count of reception errors is recorded in the RXERR register, the count of transmission errors is 

recorded in the TXERR register.  

If the MCAN2 has been placed in Bus Off state, the Bus Status bit (SR.7) will be set to ‘1’ (Bus Off). In 

addition, the Reset Mode bit (MOD.0) will have been set, causing a software reset and placing the 

MCAN2 in Reset Mode where it will then stay until the host CPU clears the Reset Mode bit in the 

Mode Register (MOD.0).  

Furthermore, on its return to Operating Mode, the MCAN2 will wait for 128 occurrences of the Bus 

Free sequence of 11 successive recessive bits (the minimum time defined by the CAN protocol) 

before becoming ‘Bus On’ again. Note: During this period, the progress that is being made towards 

Bus On can be monitored by reading the TXERR register. On leaving Reset Mode, this is initially set to 

127. It then counts down through the required number of Bus Free sequences to become zero at the 

point when the device is allowed to become Bus On again. 

If the interrupt has been generated as a result of the EWL value being exceeded, it is up to the 

programmer what action is taken in response to the generation of this interrupt. 
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20.3.4 Data Overrun Interrupt 

A Data Overrun Interrupt is only generated when the required storage space for the received message 

is greater than the number of free bytes in the Receive FIFO. The Data Overrun Status bit (SR.1) will 

also be set.  

The required storage space is determined from the RTR, FF and DLC bits of the received message 

which respectively define whether the message is a Remote Transmission Request, whether it is a 

standard frame format or extended frame format message, and the number of bytes included in the 

message.  

The assessment of the space required is made after the message has been received. If insufficient 

space is available to store the message, the message will be lost.  

The recovery that can be made when messages are lost will depend on the system design. However, 

experiencing significant numbers of Data Overrun events would suggest that the volume of data traffic 

has been under-estimated and that the system would benefit from a larger memory buffer for incoming 

messages. 

 

20.3.5 Wake-up Interrupt 

A Wake-Up Interrupt is generated when the MCAN2 is awakened from Sleep Mode.  

Any of the following events will cause the MCAN2 to ‘wake up’ from Sleep Mode:  

• Clearing the Sleep Mode bit (MOD.4)  

• A low on NINT_IN  

• Activity on the CAN bus input (RX0)  

It is up to the CPU to identify why the device has been awoken, for example by first reading the Mode 

register then testing the level of NINT_IN. 

 

20.3.6 Error Passive Interrupt 

The Receive Error (RXERR) and Transmit Error (TXERR) counters are respectively automatically 

incremented by one each time a Receive error or Transmit error occurs, and decremented by one by 

each successful reception or transmission.  

If the accumulated total of either Receive or Transmit Errors goes over 127, the MCAN2 goes into 

state in which further errors continue to be counted but individual interrupts are no longer generated. 

This state is described as ‘Error Passive’ and an Error Passive Interrupt is generated (if enabled) to 

signal that the Error Passive state has been entered.  

The MCAN2 remains in Error Passive state while either error count remains over 127. The 

Transmission Error count continues to be incremented and decremented while it remains over 127. 

The Receive Error count, however, is automatically reduced to a value between 119 and 127 by each 

message that is successfully received, potentially taking the MCAN2 out of Error Passive state. 

 



 
 

 263 / 312 

 

20.3.7 Arbitration Loss Interrupt 

The generation of an Arbitration Loss Interrupt indicates that the MCAN2 has lost control of the CAN 

bus while it was in the process of transmitting a message.  

Normally, there is no need for any special action to be taken as the MCAN2 will automatically try again 

to transmit the current message. The fact that arbitration has been lost may however be of importance 

if the option of a One-Shot transmission has been taken . 

 The bit position at which arbitration was lost will be recorded in the Arbitration Lost Capture (ALC) 

Register. For details of the way in which this bit position is recorded. 

 

20.3.8 Bus Error Interrupt 

The generation of a Bus Error Interrupt indicates the occurrence of a transmission error on the CAN 

bus.  

Normally, there is no need for any special action to be taken as the MCAN2 will automatically discard 

any incoming message in which bus errors have occurred and it will automatically try to send again 

any transmit message that experienced bus errors. However, should additional information on a bus 

error be required, the type of error (bit/form/stuff/other) and the location of the each error are captured 

in an Error Code Capture Register (described in Section 10.8) where they remain until this register is 

read. 

Experiencing significant numbers of such errors may however indicate that corrective action should be 

taken, so the MCAN2 maintains two error counters – one for reception errors (RXERR) and one for 

transmission errors (TXERR) – which are automatically incremented whenever an error occurs. Should 

either counter exceed the value recorded in the Error Warning Limit register, an Error Warning 

interrupt is generated (if enabled) while if either counter exceeds a count of 127, an Error Passive 

interrupt is generated (if enabled). An Error Warning interrupt will also be generated if the MCAN2 

goes into Bus Off state as a result of the count of transmission errors exceeding 255. 

 

20.4 Sleep Mode 

When there is no bus activity and no interrupts are pending, power can be saved by putting the 

MCAN2 into a Sleep Mode in which XTAL1_IN is turned off. This is selected by setting the Sleep 

Mode bit in the Mode Register (MOD.4) to ‘1’.  

Any of the following events will cause the MCAN2 to ‘wake up’ from Sleep Mode:  

• Setting the Sleep Mode bit to ‘0’  

• Activity on the CAN bus input (RX0)  

• A low on NINT_IN  

On waking up, the MCAN2 will generate a Wake-Up Interrupt. 

 

Note: If the MCAN2 is awakened by bus activity, it cannot receive any message until after it has 

detected a Bus-Free sequence of 11 recessive bits on the bus. You should also note that it is not 

possible to select Sleep Mode while the MCAN2 is in Reset Mode. 
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20.5 Register Description 

The registers used in the MCAN2 are listed below, with detailed information about the individual 

registers given in the following sections (referenced in the table). Note: Different Read/Write 

permissions apply depending on whether the MCAN2 is in Operating Mode or Reset Mode. 

 

20.5.1 Acceptance Code Registers (ACR0 – ACR3): ADDRESS 10h – 13h 

These 8-bit registers record the bit patterns used by the Acceptance Filter in conjunction with the 

masks provided by AMR0 – AMR3 in filtering received data.  

The way in which these bit patterns are applied depends on whether a single filter or dual filters are 

being used and on whether the data is in Standard Frame Format (SFF) or Extended Frame Format 

(EFF).  

These registers can only be accessed in Reset Mode. 
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20.5.2 Acceptance Mask Registers (AMR0 – AMR3): ADDRESS 14h – 17h 

These 8-bit registers record the mask patterns applied by the Acceptance Filter in filtering the data 

received. ‘0’s in these registers identify the bits of the incoming data bytes that are required to match 

the bit values in the corresponding Acceptance Code Registers. ‘1’s mark individual bits as ‘don’t 
care’.  

The bits of the incoming data picked out by these masks depends on whether a single filter or dual 

filters are being used and on whether the data is in Standard Frame Format (SFF) or Extended Frame 

Format (EFF).  

The registers can only be accessed in Reset Mode. 

 

20.5.3 Arbitration Lost Capture Register (ALC): ADDRESS 0Bh 

This read-only register records the bit position at which arbitration was lost.  

When bus arbitration lost, an Arbitration Lost Interrupt is generated (if enabled) and the current 

position of the Bit Processor is captured into this Arbitration Lost Capture Register. The contents of 

this register are then maintained until the register has been read by the user’s software. The capture 

mechanism is then activated again. 
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20.5.4 Bus Timing Register 0 (BTR0): ADDRESS 06h 

Bus Timing Register 0 defines the values of the Synchronization Jump Width (SJW) and the Baud 

Rate Prescaler (BRP). 

 

SYNCHRONIZATION JUMP WIDTH (SJW): BTR0[7:6]. 

The Synchronization Jump Width defines the maximum number of time quanta by which a bit period 

may be shortened or lengthened in attempting to re-synchronize on the relevant signal edge 

(recessive to dominant) of the current transmission. 

BAUD RATE PRESCALER (BRP): BTR0[5:0] 

The Baud Rate Prescaler defines the ‘time quantum’ TQ of the CAN clock as a multiple of the XTAL1 

input clock period. The time quantum of the CAN clock is given by:  

TQ =2 x tclk x (32 x BRP.5 + 16 x BRP.4 + 8 x BRP.3 + 4 x BRP.2 + 2 x BRP.1 + BRP.0 + 1) where tclk 

= time period of the XTAL1 frequency = 1/fxtal1 
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20.5.5 Bus Timing Register 1 (BTR1): ADDRESS 07h 

Bus Timing Register 1 defines the length of the bit period, the location of the sample point and the 

number of samples to be taken at each sample point. 

 

 

SAMPLING (SAM): BTR1.7 

 

TSEG1 AND TSEG2: BTR1[3:0], BTR1[6:4] 

TSEG1 and TSEG2 define the length of the bit period by giving the number of time quanta up to and 
after the point(s) at which incoming data will be sampled. In terms of TSEG1 and TSEG2, the 
parameters tsyncseg, ttseg1 and ttseg2 shown in the diagram are:  

tsyncseg =1 x TQ  

ttseg1 = TQ x (8 x TSEG1.3 + 4 x TSEG1.2 + 2 x TSEG1.1 + TSEG1.0 + 1)  

ttseg2= TQ x (4 x TSEG2.2 + 2 x TSEG2.1 + TSEG2.0 + 1) 

 

 

20.5.6 Clcck Divider Register (CDR): ADDRESS 1Fh 

The Clock Divider Register controls the CLKOUT signal. The default state of the register after a 
hardware reset is 11000000 (divide by 2 and CLKOUT signal enabled). The register is not changed by 
a software reset. 
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CDR[2:0] 

The bits CD.2 to CD.0 define the frequency at the external CLKOUT pin as shown in the following 
table (fosc is the frequency of the external oscillator (XTAL1)). These bits may be accessed from 
either Reset Mode or Operating Mode. 

CLOCKOFF (CDR.3) 

Setting this bit allows the external CLKOUT signal to be disabled. 

 

20.5.7 Command Register (CMR): ADDRESS 01h 

Setting one or more bits within the Command Register initiates an action within the transfer layer of 
the CAN controller.  

Note: This register is write only. When read, all bits return ‘0’. You should also note that there must 
be at least one external clock cycle between consecutive commands. 
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20.5.8 Error Code Capture Register (ECC): ADDRESS 0CH 

This read-only register may be used to obtain detailed information about the type and location of bus 
errors.  

When a bus error occurs, a Bus Error Interrupt is generated (if enabled) and the current bit position 
of the Bit Processor is captured into this Error Code Capture Register. The contents of this register 
are then maintained until the register has been read by the user’s software. The capture mechanism 
is then activated again. 

 

20.5.9 Error Warning Limit Register (EWLR): ADDRESS 0Dh 

This register defines the number of errors after which an Error Warning Interrupt should be 
generated (if enabled).  

This register is read only in Operating Mode but may be written in Reset Mode. You should note that 
changes made within Reset Mode are only put into effect on return to Operating Mode.  

The default value of this register (after hardware reset) is 0110000 (i.e. 96). An error count of this 
level suggests a significantly disturbed bus, the causes of which should be investigated. 

 

20.5.10 Interrupt Register (IR): ADDRESS 03h 

The Interrupt Register allows the source of an interrupt to be identified. When one or more bits of 
this register are set, the MCAN2 sends an interrupt to the CPU. The way the different interrupts 
should be handled.  

Note: The Interrupt Register is read-only. After the register has been read by the CPU, all except the 
Receive Interrupt bit are reset. 
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20.5.11 Interrupt Enable Register(IER): ADDRESS 04h 

This read/write register is used to select the events that are indicated to the CPU through an 
interrupt being generated. 
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20.5.12 Mode Register (MOD): ADDRESS 00h 

This read/write register is used to set the behavior of the CAN controller. 

 

 

 

20.5.13 Output Control Register (OCR): ADDRESS 08h 

The Output Control Register allows the selection of two possible output driver configurations: 
‘Normal Output’ and ‘Clock Output’.  

In Normal Output Mode, the bit sequence (TXD) is sent to TX0 with the inverse sent to TX1.  

In Clock Output Mode, the bit sequence is output on the TX0 signal as in normal output mode but the 
data stream on TX1 is replaced by a copy of the Transmit clock (TXCLK), the rising edge of which 
marks the beginning of a bit period. The pulse width of this clock is one Time Quantum (TQ).  

Note: The additional driver configurations available in the SJA1000 through this register are not 
supported by the MCAN2. 
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Interpretation of OCMODE bits 

 

Note: The Output Control Register may only be written in Reset Mode. In Operating Mode, this 
register is read only. The Reserved bits return ‘0’ when read. 

 

20.5.14 Receive Buffer (10h – 1Ch) 

The Receive Buffer provides the window through which the CPU accesses the Receive FIFO. Like the 
Transmit Buffer, the Receive Buffer has a length of 13 bytes (enough to accommodate one Receive 
message of up to eight data bytes).  

Read-only access to the Receive Buffer is provided in Operating Mode using CAN addresses 10h – 1Ch  

The layout of the Receive Buffer is similar to the Transmit Buffer described in the previous section. 
Indeed, the configuration used was chosen specifically to be compatible with the layout of the 
Transmit Buffer. Again, it is important to distinguish between Standard Frame Format (SFF) messages 
and the Extended Frame Format (EFF) messages. 

 

Receive Buffer Layout 

The Receive Buffer is subdivided into descriptor and data fields. The first byte of the descriptor field 
holds frame information. It describes the frame format (SFF or EFF), specifies remote or data frame 
and gives the data length. This is then followed by either two identifier bytes for SFF or four bytes for 
EFF messages. The data field contains up to eight data bytes. 
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20.5.15 Receive Buffer Start Address (RBSA): ADDRESS 1Eh 

The Receive Buffer Start Address register records the current location of the RX FIFO Read Pointer 
within the 64-byte Receive FIFO as a value between 0 and 63. Location 0 maps to CAN address 20h: 
Location 63 maps to CAN address 5Fh.  

This register is reset to 00h by a hardware reset but is left unchanged by a software reset (which also 
does not change the FIFO contents). However, the software reset sets the RX FIFO Write Pointer to 
the value of the RX FIFO Read Pointer with the result that the data currently accessed by the Receive 
Buffer following a software reset will be overwritten by the next message to be recorded in the 
Receive FIFO.  

Note: It is only possible to write to this register in Reset Mode. 

 

20.5.16 Receive Error Counter Register (RXERR): ADDRESS 0Eh 

The Receive Error Counter Register records the current value of the Receive Error Counter. This 
counter is incremented when errors are experienced in the Receive bit stream and decremented 
when messages are received without error, in line with the rules given in the CAN 2.0 specification. 
Together with the associated Transmit Error Counter (see Section 10.20), it provides an indication of 
the quality of transmission being experienced on the CAN bus.  

An outline of the rules by which the counter is incremented and decremented is given in the table 
below. For full details, you should refer to the CAN 2.0 specification. 

Two levels of the counter trigger specific events.  

• When the counter reaches the level set in the Error Warning Limit register (see Section 10.9), an 
Error Warning Interrupt is generated (if enabled) unless this has previously been triggered by the 
Transmit Error Counter.  

• When the counter goes over 127, the device is put into Error Passive state in accordance with the 
CAN 2.0 specification(unless previously triggered by the Transmit Error Counter) and an Active error 
is sent. An Error Passive Interrupt is also generated (if enabled). 

After a hardware reset or when a Bus Off event occurs (see Transmit Error Counter – see Section 
10.20), the counter is automatically set to ‘0’.  

The register is read only in Operating Mode but may be written in Reset Mode. You should note, 
however, that writing to this register has no effect when the MCAN2 is in Bus Off state and that any 
change made within Reset Mode will in any case only come into effect on return to Operating Mode. 
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20.5.17 Receive Message Counter (RMC): ADDRESS 1Dh 

The Receive Message Counter register records the number of messages currently available in the 
Receive FIFO. It is automatically incremented by each Receive event and decremented by each 
Release Receive Buffer command. It is available for Read only access in both Operating Mode and 
Reset Mode.  

The register is reset to 00h by either a hardware or a software reset. 
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20.5.18 Status Register(SR): ADDRESS 02h 

This read-only register reflects the status of the MCAN2 controller. 

 

20.5.19 Transmit Buffer (Write: 10h – 1Ch; Read: 60h – 6Ch) 

The Transmit Buffer has a length of 13 bytes. It accommodates one Transmit message of up to eight 
data bytes.  

Access to the Transmit Buffer in Operating Mode is write-only and is provided using CAN addresses 
10h – 1Ch.  

The global layout of the Transmit Buffer is shown below. It is important to distinguish between 
Standard Frame Format (SFF) messages and the Extended Frame Format (EFF) messages.  

Note: Read access to the Transmit Buffer is possible using CAN addresses 60h – 6Ch. 

 

Transmit Buffer Layout 

The Transmit Buffer is subdivided into descriptor and data fields. The first byte of the descriptor field 
holds frame information. It describes the frame format (SFF or EFF), remote or data frame and the 
data length. This is then followed by either two identifier bytes for SFF or four bytes for EFF 
messages. The data field contains up to eight data bytes. 
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20.5.20 Transmit Error Counter Register (TXERR): ADDRESS 0Fh 

The Transmit Error Counter Register records the current value of the Transmit Error Counter. This 
counter is incremented when Transmission errors are experienced and decremented when messages 
are transmitted without error, in line with the rules given in the CAN 2.0 specification. Together with 
the associated Receive Error Counter (see Section 10.16), it provides an indication of the quality of 
transmission being experienced on the CAN bus.  

An outline of the rules by which the counter is incremented and decremented is given in the table in 
Section 10.16. For full details, you should refer to the CAN 2.0 specification. 

Three levels of the counter trigger specific events.  

• When the counter reaches the level set in the Error Warning Limit register (see Section 10.9), an 
Error Warning Interrupt is generated (if enabled) unless this has previously been triggered by the 
Receive Error Counter.  

• When the counter goes over 127, the device is put into Error Passive state in accordance with the 
CAN 2.0 specification (unless previously triggered by the Receive Error Counter), an Active error is 
sent and an Error Passive Interrupt is generated (if enabled).  

• When the counter goes over 255, the device is put into Bus Off state in accordance with the CAN 
2.0 specification and is automatically put into Reset mode (except during start-up when there is only 
one node on the CAN bus). An Error Warning Interrupt is also generated (if enabled). 

After a hardware reset, the Transmit Error Counter is automatically set to ‘0’.  

After a ‘Bus Off’ event, the register is initialized to 127 in order to count the minimum protocol-
defined time before the MCAN2 can take part in further transmission on the CAN bus (128 
occurrences of the ‘Bus-Free’ sequence of 11 consecutive recessive bits). Reading the Transmit Error 
Counter during this time will give the status of the Bus Off recovery. Note: If the Reset Mode is re-
entered before the Bus Off recovery has been completed (TXERR > 0), Bus Off will stay active with 
TXERR frozen until the MCAN2 is taken back into Operating Mode.  
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It is possible to write to this register but only in Reset Mode. In Operating Mode, this register appears 
as read only memory to the CPU.  

While in Bus Off state, writing a value in the range from 0 to 254 to TXERR clears the Bus Off flag. The 
MCAN2 will then wait for just one Bus Free sequence after the Reset Mode has been cleared.  

Writing 255 to TXERR in Reset Mode initiates a CPU-driven Bus Off event. No error or bus status 
change happens in response to the new TXERR value until the MCAN2 is taken back into Operating 
Mode when a Bus Off event will be performed exactly as if it had been forced by a bus error. This 
means Reset Mode is entered again, the Transmit Error Counter is initialized to 127, the Receive 
counter is cleared and the relevant Status and Interrupt register bits are set. Clearing Reset Mode 
now will perform the protocol-defined Bus Off recovery sequence (waiting for 128 occurrences of the 
bus-free signal). 
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21 Flash-SPI control  

21.1 Overview 

21.1.1  Characteristics of this spi controller 

The FlashSpi module is an spi master controller that can be configured through AHB bus. It is suitable 

for wifi chips based on AHB bus architecture like S902, and is used to read and write off-chip flash 

chips such as S25FL116K of Spansion, W25Q20CL of Winbond or similar off-chip flash chips that 

provide spi slave interface. This module has the following features: 

1) provide a set of AHB slave interfaces, a set of DMA Single request interfaces and an interrupt 

request in the chip, and provide spi master interfaces outside the chip. 

2) It can provide spi clock with the fastest half of the system clock frequency. 

3) For a communication, it starts automatically after the register is configured. After the communication 

is completely finished, the register flag bit is displayed, and the completion interrupt can also be 

generated. 

4) One communication can contain up to 8 independently configurable phase, which is enough to 

flexibly correspond to various situations contained in one spi communication of flash chip. 

5) The whole module adopts synchronous clock design, and all signals belong to CLK clock domain. 
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21.1.2 The concept of PHASE 

The following figure is a typical timing diagram of reading FLASH data through SPI. 

 

  

The process from CSn falling to CSn rising is called an SPI communication. In the SPI communication 

shown above, Instruction, A, M and Dummy should be sent in turn, and then data should be received. 

And Instruction only uses one line, while the subsequent processes all use four lines. Aiming at this kind 

of timing, this module puts forward the concept of PHASE. A communication can contain up to 8 

PHASEs, and each phase can independently set parameters such as read-write operation, 1/2/4 line 

mode, communication data volume, etc. After the first SPI communication starts, this module will finish 

the tasks set by each PHASE in the order of PHASE0→PHASE7, and then end the SPI communication. 

For example, for the timing of the above figure, it can be divided into 4 PHASE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHASE0 PHASE1 PHASE2 PHASE3 
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21.1.3 Module block diagram 

The following figure is a block diagram of this spi controller: 

 

  

 

 

 

 

FlashSpiAhbIf: an AHB Slave interface controller, which is responsible for converting the AHB bus signal 

into the internal read-write signal of the module and interacting with the register module FlashSpiReg to 

complete the read-write operation. 

  

Flaspireg: register module of SPI controller, in which all registers are located. At the same time, the 

generation and processing of DMA interface signals and the generation of interrupts are also in this 

module. 

  

Flaspictrl: the core control module of SPI controller. When it is detected that the SPI_START bit in 

FlashSpiReg is written as 1, the phase set in the register is analyzed to generate control and data for 

FlashSpiDataPump. 

  

FlashSpiPsc：spi sck clock controller, used to control the frequency of sck clock. 

  

FlashSpimaster: Spimaster interface controller, which controls the spi bus to send and receive according 

to the control signal sent by FlashSpiCtrl.  
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21.1.4 Top port 

The following is a list of top-level ports and functions of this module: 

Signal name directi

on 

bit 

wide 

Connecting 

objects 

explain 

CLK I 1 ClockGen Module clock 

RST_n I 1 ResetGen Module reset 

HSEL I 1 BusMatrix AHB Slave bus signal 

HWRITE I 1 BusMatrix AHB Slave bus signal 

HADDR I 32 BusMatrix AHB Slave bus signal 

HTRANS I 2 BusMatrix AHB Slave bus signal 

HSIZE I 3 BusMatrix AHB Slave bus signal 

HWDATA I 32 BusMatrix AHB Slave bus signal 

HREADYIN I 1 BusMatrix AHB Slave bus signal 

DMA_TX_SREQ_CLR I 1 Dma Clear TX_DMA request signal 

DMA_RX_SREQ_CLR I 1 Dma Clear RX_DMA request signal 

IO0_I I 1 Pad Spiio0 input of bus 

SO_IO1_I I 1 Pad Spiso _ io1 input of bus 

IO2_I I 1 Pad Spiio2 input of bus 

IO3_I I 1 Pad Spiio3 input of bus 

HREADYOUT O 1 BusMatrix AHB Slave bus signal 

HRDATA O 32 BusMatrix AHB Slave bus signal 

HRESP O 2 BusMatrix AHB Slave bus signal 

DMA_TX_SREQ O 1 Dma TX_DMA request signal 

DMA_RX_SREQ O 1 Dma RX_DMA request signal 

SPI_DONE_INT O 1 Cpu SPI completion interrupt 

SCK O 1 Pad Spisck signal of bus 

CSn O 1 Pad Spicsn bus signal 

SI_IO0_O O 1 Pad SPI bus SI_IO0 output data 

SI_IO0_OE O 1 Pad SPI bus SI_IO0 output enable 

IO1_O O 1 Pad Spiio1 bus output data 

SO_IO1_OE O 1 Pad Spiio1 output enable for bus 

WPn_IO2_O O 1 Pad Spiwpn _ io2 bus output data 

WPn_IO2_OE O 1 Pad Spiwpn _ io2 bus output enable 

HOLDn_IO3_O O 1 Pad Spiholdn _ io3 bus output data 

HOLDn_IO3_OE O 1 Pad Spiholdn _ io3 bus output enable 
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21.2 Instructions for use of the module 

21.2.1 System integration method 

The integration of AHB bus, DMA interface and interrupt interface is relatively simple, which will not be 

described here. The integration of SPI bus should be equivalent to the following logic: 

 

  

In addition, in order to prevent the input from floating, it is best to add a pull up resistor between Wifi 

Chip and Flash Chip. 
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21.2.2 register description 

SPCR register (address: BASE_ADDR+8'h00) 

SPCR is the global control register of SPI communication, and its bit configuration is as follows: 

bit31       bit24 

RESET Reserved 

bit23       bit16 

Reserved INT_EN SCK_DIV_VAL[7:4] 

bit15       bit8 

SCK_DIV_VAL[3:0] Reserved LE WP USE_DMA 

bit7       bit0 

Reserved PHASE_CNT Reserved SPI_ERROR SPI_DONE SPI_START 

  

The function of each bit is defined in the following table: 
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bit Bitname initial 

value 

read 

and 

write 

describe 

31 RESET 1'b0 W/R Software reset of SPI controller. 1, all registers and all internal 

circuits except this bit are reset. 

30-21 Reserved 10'h000 R Keep. 

20 INT_EN 1'b0 W/R Interrupt enable. When set to 1, if SPI_DONE is 1, an interrupt will 

be sent to the CPU. 

19-12 SCK_DIV_VAL 8'h08 W/R SPI communication frequency setting. SPI communication rate is the 

frequency division of this value of the system clock. Even number 

must be filled in. Fill in 8'h00 to represent 256 frequency division. 

11 Reserved 1'b0 R Keep. 

10 LE 1'b0 W/R Small start. Because the data register is 32 bits, and SPI sends one 

byte at a time, when LE is set to 1, SPI will first send and receive [7:0] 

bits of the data register, then [15:8] until [31: 24]; When LE is set to 

0, the order is reversed. 

9 WP 1'b1 W/R When SPI communication is in single or dual mode, WPn is valid 

when WP is 1, that is, 0; WPn is 1 when WP is 0. 

8 USE_DMA 1'b0 W/R Use DMA transfer for data of the last phase. 

Note: If there is only one phase in one spi communication, it is 

forbidden to set USE_DMA to 1. 

7 Reserved 1'b0 R Keep. 

6-4 PHASE_CNT 3'h0 W/R Number of PHASE included in one spi communication. 

0: contains 1 phase. 

1: contains 2 phase. 

…… 

7: contains 8 phase. 

3 Reserved 1'b0 R Keep. 

2 SPI_ERROR 1'b0 W0/R When a communication is over, if any of the phase is wrong, this bit 

is set to one. 

Clear condition: software writes 0, or software writes SPI_START to 

1 (that is, it is automatically cleared when the next communication 

starts). 

1 SPI_DONE 1'b0 W0/R SPI transmission and DMA transmission of the first communication 

have all ended. 

Clear condition: software writes 0, or software writes SPI_START to 

1 (that is, it is automatically cleared when the next communication 

starts). 

0 SPI_START 1'b0 W/R Communication begins. Please set the ratio close to 1 after all the 

phase configurations of one communication. 

Clear condition: automatically clear after SPI communication ends. 

Please do not write 0 in the software. 

phase _ ctrl0 ~ phase _ ctrl7 registers (address: base _ addr+8' h10 ~ 8' h2c) 
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The PHASE_CTRL register is used to individually configure each phase in an SPI 

communication. There are eight PHASE_CTRL registers, phase _ ctrl0 ~ phase _ ctrl7, which 

control each phase in turn. The bit configuration of the PHASE_CTRL register is as follows: 

  

bit31       bit24 

Reserved 

bit23       bit16 

Reserved SPI_MODE BYTE_CNT[11:8] 

bit15       bit8 

BYTE_CNT[7:0] 

bit7       bit0 

Reserved PHASE_ACTION Reserved 
PHASE_ERR

OR 

PHASE_DO

NE 

PHASE_STA

RT 

  

The function of each bit is defined in the following table: 

bit Bitname initial 

value 

read 

and 

write 

describe 

31-22 Reserved 10'h000 R Keep. 

21-20 SPI_MODE 2'h0 W/R Current SPI bus mode of PHASE: 

2' H0: Single mode 

2' H1: Dual mode 

2' H2: quad mode 

2'h3: setting is prohibited. 

19-8 BYTE_CNT 12'h000 W/R Number of data byte in current PHASE communication. 

The value is invalid when PHASE_ACTION is set to POLL. 

7-6 Reserved 1'b0 R Keep. 

5-4 PHASE_ACTION 2'h0 W/R Action of current PHASE SPI: 

2'h0：TX 

2'h1：DUMMY TX 

2'h2：RX 

2'h3：POLL 

Please refer to section 2.3 for details. 

3 Reserved 1'b0 R Keep. 

2 PHASE_ERROR 1'b0 R PHASE_ACTION is POLL, and it exceeds the number of attempts that 

need to be unread. 

Clear condition: SPCR writes SPI_START to 1 (that is, it is 

automatically cleared when the next communication starts). 

1 PHASE_DONE 1'b0 R The current PHASE has been completed. 

Clear condition: SPCR writes SPI_START to 1 (that is, it is 
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automatically cleared when the next communication starts). 

0 PHASE_START 1'b0 R PHASE is currently in progress. The hardware is automatically set 

and cleared according to the running situation. 

phase _ data0 ~ phase _ data7 registers (address: base _ addr+8' h30 ~ 8' h4c) 

Data register for each PHASE. The bit definition of the PHASE_DATA register is related to the 

PHASE _ action set by the current phase. 

The details are as follows: 

When PHASE_ACTION is POLL, it is used to save the configuration related to POLL: 

 

bit31  bit23  bit15  bit7 bit0 

POLL_LIMIT POLL_MASK POLL_EXPECT POLL_READ 

  

When (POLL _ read & poll _ mask) = = poll _ expect, and the number of attempts is less than 

POLL_LIMIT, poll succeeds; Otherwise, the POLL fails and the PHASE_ERROR is set to one. 

  

When the PHASE_ACTION is not POLL, the PHASE_DATA register is used to store the 

sent/received data, with a maximum of 4 byte. 

  

If SPCR.LE is 0, the functions are as follows: 

bit31  bit23  bit15  bit7 bit0 

data byte 0 data byte 1 data byte 2 data byte 3 

 If SPCR.LE is 1, the functions are as follows:  

bit31  bit23  bit15  bit7 bit0 

data byte 3 data byte 2 data byte 1 data byte 0 

 That is, if sending data, SPI will first send data byte0, then data byte 1, until data byte 3. 

On the contrary, when receiving data, the position of data byte 0 will be written first until data 

byte 3. 

 

21.2.3 Description of PHASE_ACTION 

When SPCR.SPI_START=1, the hardware will automatically install PHASE0 → phase1 ... 

phase7 to execute the transactions in each phase until the number specified in 

SPCR.PHASE_CNT is completed. According to the functions of common flash chips, there are 

four kinds of ACTION that SPI needs to perform in this module: TX, DUMMY TX, RX and POLL. 

Here's a detailed description of the definition of each operation. 
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TX 

When PHASE_ACTION is TX, SPI will circularly send the data in PHASE_DATA in the order 

of data byte0 ~ data byte3 according to the bus mode configured by SPI_MODE until all the 

specified phase _ byte _ CNTs are sent. Therefore, when the PHASE_BYTE_CNT is less than 

5, the software can directly match the data into the PHASE_DATA ； . Otherwise, it is 

recommended to configure DMA, so that SPI will automatically call DMA to write new data into 

PHASE_DATA at the end of a cycle. 

 

DUMMY TX 

DUMMY TX is similar to TX except that SPI will no longer send data in PHASE_DATA, but will 

send 8'hFF. Therefore, even if the PHASE_BYTE_CNT is greater than 4, there is no need to 

configure DMA. 

 

RX 

When PHASE_ACTION is RX, SPI will receive data according to the bus mode configured by 

SPI_MODE, and write it into PHASE_DATA circularly in the order of data byte0 ~ data byte3. 

Therefore, when the PHASE_BYTE_CNT is less than 5, the software can read the data in the 

PHASE_DATA after the SPI communication. Otherwise, it is recommended to configure DMA, 

so that SPI will automatically call DMA to send away the data in PHASE_DATA at the end of a 

cycle to avoid being overwritten by new data. 

 

POLL 

When PHASE_ACTION is POLL, SPI will continue to receive data according to the bus mode 

configured by SPI_MODE, and do the comparison operation of (poll _ read & poll _ mask) = = 

poll _ expect. If it is successful within the number of times specified in POLL_LIMIT, the POLL 

operation is completed; Otherwise, after the specified number of times of POLL_LIMIT is 

reached, the POLL operation is forcibly completed, and the PHASE_ERROR is set to one. 

Note: If the POLL_LIMIT is set to 8'h00, the infinite POLL mode will be entered. SPI will perform 

the POLL operation indefinitely until the comparison is successful, otherwise it cannot be 

stopped. The only way to stop is SOFT_RESET. 

 

Pay attention. 

1)RX and POLL must be the last PHASE of an SPI communication and not the first PHASE. 

2) If the PHASE is set to use DMA, its PHASE_ACTION cannot be POLL. 

3) If it is set to the PHASE using DMA, and its PHASE_ACTION is RX, it may happen that SPI 

communication has been completed, but DMA has not yet been completed. At this time, 

SPCR.SPI_START will be cleared, but SPCR.SPI_DONE will not be set. SPCR.SPI_DONE 

will not be set until the DMA transfer is complete. 
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21.2.1 Software configuration sequence 

The software can configure the registers in the following order during each SPI communication: 

 

 

Example of software configuration 

This section will introduce how to configure this module in combination with the common 

operations of common FLASH chips. 

Send the Write Enable(06h) command. 

 The format of this command is as follows: 

 

  

 

 

 

 

The following configuration is recommended: 

begin 

Configure DMA (not in this 

module) 

Use DMA? 

Configure each 

PHASE_CTRL 

 

Configure SPCR 

Wait for interruption 

or 

SPCR.DONE is 1 

accompli

sh 

be 

no 
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seque

nce 

Register name Configuration value 

one PHASE_CTRL0 SPI_MODE=2'h0 

BYTE_CNT=12'h001 

PHASE_ACTION=2'h0 

2 PHASE_DATA0 32'h0600_0000(SPCR.LE=0)/32'h0000_0006(SPCR.LE=1) 

3 SPCR USE_DMA=1'b0 

PHASE_CNT=3'h0 

WP=1'b0 

SPI_START=1'b1 

  

After configuration, SPI will start communication, and software can wait for interrupt or 

SPCR.SPI_START=0. 

Send the Read Status Register-1(05h) command. 

 The sequence of this command is as follows: 

 

 Until CSn becomes 1, the value of Read Status Register-1 will be read repeatedly. 

 

 Example: read the value of Read Status Register-1 four times. 

 The following configuration is recommended: 

seque

nce 

Register name Configuration value 

one PHASE_CTRL0 SPI_MODE=2'h0 

BYTE_CNT=12'h001 

PHASE_ACTION=2'h0 

2 PHASE_DATA0 32'h0500_0000(SPCR.LE=0)/32'h0000_0005(SPCR.LE=1) 

3 PHASE_CTRL1 SPI_MODE=2'h0 

BYTE_CNT=12'h004 

PHASE_ACTION=2'h2 

4 SPCR USE_DMA=1'b0 

PHASE_CNT=3'h1 

WP=1'b1 

SPI_START=1'b1 

 

After configuration, SPI will first run PHASE0, send 05h, then run PHASE1, read 4 byte, and 

store the read value in the PHASE_DATA1 register. The software can read the value in 
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PHASE_DATA1 after waiting for SPI_START=0. 

Example: wait for the 0th bit of Read Status Register-1 to be 0, but try to read it 100 times at 

most. 

 The following configuration is recommended: 

seque

nce 

Register name Configuration value 

1 PHASE_CTRL0 SPI_MODE=2'h0 

BYTE_CNT=12'h001 

PHASE_ACTION=2'h0 

2 PHASE_DATA0 32'h0500_0000(SPCR.LE=0)/32'h0000_0005(SPCR.LE=1) 

3 PHASE_CTRL1 SPI_MODE=2'h0 

PHASE_ACTION=2'h3 

4 PHASE_DATA1 32'h64010000 

5 SPCR USE_DMA=1'b0 

PHASE_CNT=3'h1 

WP=1'b1 

SPI_START=1'b1 

 

After the configuration is completed, spi will first run PHASE0, send 05h, then run phase1, 

constantly read data through SPI, compare the result with 0x00 and then compare it with 0x00 

until the comparison is successful or exceeds 0x64 times. After waiting for SPI_START=0, the 

software can judge whether SPI_ERROR is 1 or not until the waiting is successful. 

 

Read data with Fast Read Quad IO(EBh) command. 

 The timing diagram of this command is as follows: 

 

 Suppose the address is A=24'h123456 and M=78, and 100 data are read. 

 

 

 

 The recommended configuration is as follows: 
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seque

nce 

Register name Configuration value 

1 DMA source 

address 

PHASE_DATA3 

2 PHASE_CTRL0 SPI_MODE=2'h0 

BYTE_CNT=12'h001 

PHASE_ACTION=2'h0 

3 PHASE_DATA0 32'hEB00_0000(SPCR.LE=0)/32'h0000_00EB(SPCR.LE=1) 

4 PHASE_CTRL1 SPI_MODE=2'h2 

BYTE_CNT=12'h004 

PHASE_ACTION=2'h0 

5 PHASE_DATA1 32'h1234_5678(SPCR.LE=0)/32'h7856_3412(SPCR.LE=1) 

6 PHASE_CTRL2 SPI_MODE=2'h2 

BYTE_CNT=12'h002 

PHASE_ACTION=2'h1 

7 PHASE_CTRL3 SPI_MODE=2'h2 

BYTE_CNT=12'h064 

PHASE_ACTION=2'h2 

8 SPCR USE_DMA=1'b1 

PHASE_CNT=3'h3 

WP=1'b1 

SPI_START=1'b1 

 

 

After the communication starts, SPI first communicates with PHASE0 and sends 0xEB. Then 

send 0x12345678 of PHASE1. When configuring here, send A and M in one PHASE, because 

for SPI, A and M are the same sending data. Then send two dummy byte of PHASE2. At last, 

the one running PHASE3 charges 100 byte, and since SPCR.USE_DMA is set to 1, when 

PHASE_DATA3 is written, a DMA request will be sent to read the data in PHASE_DATA3. 
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22  Other Interfaces 

 

22.1 Universal serial bus full-speed device interface (USBD) 

◼ One full-speed USB Interface with frequency up to 12 Mbit/s 

◼ Internal 60 MHz oscillator support crystal-less operation 

◼ Internal main PLL for USB CLK compliantly 

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device 

controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction 

formatting is performed by the hardware, including CRC generation and checking. It supports 

device modes. Transaction formatting is performed by the hardware, including CRC 

generation and checking.  

The status of a completed USB transfer or error condition is indicated by status registers. An 

interrupt is also generated if enabled. The required precise 48 MHz clock which can be 

generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) 

or by the internal 48 MHz oscillator in automatic trimming mode that allows crystal-less 

operation. 

AG32 has been integrated with tinyUSB in the project and can be used independently. The 

pins used by USB are fixed pins and cannot be changed in VE. In the routine, USB is 

enumerated as both cdc and msc (also supports HID and MIDI). 

In the routine, the USB descriptor, callback, and configuration (CDC, HID, MSC, MIDI) have 

all been opened through the interface in. c.h under the src path. Users can customize or 

modify according to their own needs. For a detailed explanation of the configuration section 

and the use of the USB interface, please refer to the file description under the tinyUSB path 

under sdk, or refer to tinyUSB 

 

22.2 Ethernet MAC interface  

Peripheral available only on the AG32 devices.  

The AG32 devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for 

ethernet LAN communications through an industry-standard medium-independent interface 

(MII) or a reduced medium-independent interface (RMII). The AG32 requires an external 

physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). 

the PHY is connected to the AG32 MII port using 17 signals for MII or 9 signals for RMII, and 

can be clocked using the 25 MHz (MII) from the AG32. 

AG32 supports MAC modules. Supports RMII/MII interfaces. Currently, Lwip2.1.0 version is 

integrated into the SDK. In the example, the server-side functionality was used. 
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22.3 Debug mode 

◼ Serial wire JTAG debug port (SWJ-DP)  

The SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that 

enables either a serial wire debug or a JTAG probe to be connected to the target. 
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23 Electrical characteristics 

⚫ Absolute maximum ratings 

The maximum ratings are the limits to which the device can be subjected without permanently 

damaging the device. Note that the device is not guaranteed to operate properly at the 

maximum ratings. Exposure to the absolute maximum rating conditions for extended periods 

may affect device reliability. 

 

 

Table 1. Absolute maximum rating 

Symbol Parameter Min Max Unit 

VDD External voltage range VSS - 0.3  VSS + 3.465 V 

VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.465 V 

VBAT External battery supply voltage VSS - 0.3 VSS + 3.465 V 

VIN Input voltage on I/O VSS - 0.3 VSS + 3.465 V 

Iio Maximum current for GPIO pins — 25 mA 

Iinj Injected current on I/O — ±5 mA 

TA Operating temperature range -40 +85  °C 

TSTG Storage temperature range -55 +150  °C 

TJ Maximum junction temperature — 125  °C 

 

 

⚫  Recommended DC characteristics 

Symbol  Parameter Conditions Min Typ Max Unit 

VDD  Supply voltage — 3.135 3.3 3.465 V 

VDDA  Analog Supply voltage — 3.135 3.3 3.465 V 

VBAT  Battery supply voltage — 2.2 — 3.465 V 
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⚫ Electrostatic discharge(ESD) & Latch-up 

Parameter Description Conditions Maximum value Unit 

VESD(HBM) Maximum ESD Electrostatic discharge 

voltage (human body model) 

2000 V 

VESD(CDM) Maximum ESD Electrostatic discharge voltage 

(charge device model) 

500 V 

LU Latch-up  100 mA 

 

 

⚫  Power consumption 

The power measurements specified in the tables represent that code with data executing from 

on- chip Flash with the following specifications. 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

Idd 

Supply current 

(Run mode) 

VDD=VBAT=3.3V, HSE=8MHz, System 

clock=108 MHz, All peripherals enabled 
—  — mA 

VDD=VBAT=3.3V, HSE=8MHz, System clock 

=108 MHz, All peripherals disabled 
—  — mA 

VDD=VBAT=3.3V, HSE=8MHz, System clock 

=72MHz, All peripherals enabled 
—  — mA 

VDD=VBAT=3.3V, HSE=8MHz, System 

Clock =72 MHz, All peripherals disabled 
—  — mA 

Supply current 

(Sleep mode) 

VDD=VBAT=3.3V, HSE=8MHz, CPU clock 

off, All peripherals enabled 
—  — mA 

VDD=VBAT=3.3V, HSE=8MHz, CPU clock 

off, All peripherals disabled 
—  — mA 

Supply current 

(Deep-Sleep 

mode) 

VDD=VBAT=3.3V, All clock off, LSI on, RTC 

on, All IOs analog mode 
—  —— mA 

Supply current 

(Standby mode) 

VDD=VBAT=3.3V, LDO off, LSE off, LSI on, 

RTC on 
—  —  μA 

Ibat 

Battery supply 

current 

(Standby mode) 

VDD not available, VBAT=3.3V, LDO off, 

LSE on, LSI off, RTC on 
—  —  μA 

VDD not available, VBAT=3.3 V, LDO off, 

LSE off, LSI on, RTC on 
—  —  μA 
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⚫  Power up/down 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

Vpor  Power on reset threshold  2.0 2.2 2.4  V 

Vpdr  power down reset threshold  1.8 2.0 2.2 V 

Vhyst  PDR hysteresis  — 0.2 — V 

Trsttemp  Reset temporization  — 4 — ms 

 

 

⚫  External clock characteristics 

High-speed external clock generated from a crystal/ceramic resonator. The high-speed 

external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. 

All the information given in this paragraph are based on characterization results obtained with 

typical external components specified in Table. In the application, the resonator and the load 

capacitors have to be placed as close as possible to the oscillator pins in order to minimize 

output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for 

more details on the resonator characteristics (frequency, package, accuracy). 

 

HSE 4-26 MHz oscillator characteristics 

Symbol  Parameter  Conditions Min Typ Max Unit 

f_OSC_IN Oscillator frequency  VDD=3.3V  4 8 26 MHz 

RF Feedback resistor — — 1 — MΩ 

C 
Recommended load capacitance 

 on OSC_IN and OSC_OUT 
— — 20 30 pF 

gm Oscillator transconductance — 25 — — mA/V 

Dosc_out  Oscillator oscillator duty cycle — 45 50 55 % 

T_su_hse startup time  VDD is stabilized — 2 — mS 

 

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 

5pF to 25pF range (typ.), designed for high-frequency applications, and selected to match the 

requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the same 

size. The crystal manufacturer typically specifies a load capacitance which is the series 

combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10pF can be 

used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and 

CL2. 
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 Typical application with an 8 MHz crystal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REXT value depends on the crystal characteristics. 

Low-speed external clock generated from a crystal/ceramic resonator The low-speed external 

(LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the 

information given in this paragraph are based on characterization results obtained with typical 

external components specified in Table. In the application, the resonator and the load 

capacitors have to be placed as close as possible to the oscillator pins in order to minimize 

output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for 

more details on the resonator characteristics (frequency, package, accuracy). 

 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

f_LSE Oscillator frequency  VDD=VBAT=3.3V  32.768 1000  KHz 

RF Feedback resistor — — 10 — MΩ 

C 
Recommended load capacitance 

 on OSC32_IN and OSC32_OUT 
— — — 15 pF 

gm Oscillator transconductance — 10 — — uA/V 

Dosc_out  Oscillator oscillator duty cycle — 45 50 55 % 

T_su_lse startup time  VDD is stabilized — 3 — S 

 

 

 

 

 

 

CL1 

OSCIN 

OSCOUT 

RF fHSE 
Bias  

controlled 

gain 

CL2 

8 MHz  

resonator 

REXT 
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Typical application with a 32.768 kHz crystal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⚫ Internal clock source characteristics 

 

High-speed internal (HSI) RC oscillator 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

f_HSI  Oscillator frequency  VDD=3.3V 10 20 40  MHz 

Duty_HSI   Duty cycle  45 50 55 % 

T_su_HSI 
 HSI oscillator 

 startup time 
 1 — 2  μs 

 

PLL characteristics 

 

Symbol  Parameter Min Typ Max Unit 

fPLL_IN 
PLL input clock 4 20 50 MHz 

PLL input clock duty cycle 40 50 60 % 

fPLL_OUT  PLL multiplier output clock 2 200 300 MHz 

tLOCK PLL lock time — — 400 μs 

Jitter Cycle-to-cycle jitter — — 400 ps 

CL1 

OSC32_IN 

OSC32_OUT 

RF fLSE 
Bias  

controlled 

gain 

CL2 

32.768 kHz  

resonator 
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⚫ Memory characteristics 

  

Flash memory characteristics 

Symbol  Parameter  Conditions Min Typ Max Unit 

PECYC  

Number of guaranteed 

program /erase cycles 

before failure (Endurance) 

TA=-40°C ~ +85°C 100 — — 
 

kcycles 

tRET Data retention time  TA=125°C 20 — — years 

tPROG  Word programming time  TA=-40°C ~ +85°C — 2 3 ms 

tERASE Page erase time   TA=-40°C ~ +85°C — 8 20 ms 

tMERASE Mass erase time  TA=-40°C ~ +85°C — 8 20 ms 

 

⚫ IO characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

VIL 
Standard IO Low level 

input voltage 
VDD ≥3.135V -0.3 — 0.8 V 

VIH 
Standard IO High level 

input voltage 
VDD ≥3.135V 1.5 — 

3.46

5 
V 

VOL Low level output voltage VDD ≥3.135V — — 0.2 V 

VOH High level output voltage VDD ≥3.135V 2.8 — — V 

RPU Internal pull-up resistor  VIN=VSS 30 40 50  kΩ 

RPD Internal pull-down resistor  VIN=VDD 30 40 50  kΩ 

 

 

 

 

 

 

 

 

 



 
 

 300 / 312 

 

 

⚫ ADC characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

VDDA Operating voltage  3.135 3.3 3.465 V 

VIN ADC input voltage range  0 — VREFP V 

fADC ADC clock  0.5 — 13 MHz 

fs Sampling rate  — — 1 MHz 

tconv ADC conversion time  1 — 20 μs 

RADC 
Input sampling switch 

 resistance 
 — — 0.5 kΩ 

CADC Input sampling capacitance  — 8 — pF 

tsu Startup time  — — 2 μs 

 

 

⚫ DAC characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

VDDA  Operating voltage  3.135 3.3 3.465 V 

VREFP  Reference supply voltage 

VREFP should 

always below 

 VDDA 

3.135 3.3 3.465 V 

RLOAD  Load resistance 

Resistive load vs. 

VSSA with 

 buffer ON 

5 — — kΩ 

CLOAD  Load capacitance  

No pin/pad 

capacitance 

 included 

— — 50 pF 
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⚫ Comparator characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

VDDA Analog supply voltage — 3.135 3.3 3.465 V 

VIN 
Comparator input voltage 

 range 
— 0 — VDDA V 

tstart Comparator startup time VDDA ≥3.135 V — — 10 μs 

tD 

Propagation delay for full 

range step with 100 mV 

overdrive 

VDDA ≥3.135 V — — 40 ns 

VOFFSET Comparator offset error 
VDDA 

≥3.135VDD V 
— — ±25 mV 

 

 

⚫ I²C characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

fSCL   SCL clock frequency — 0 — 100 KHz 

tSCL(H)  SCL clock high time — 4.0 — 0.6 ns 

tSCL(L)  SCL clock low time — 4.7 — 1.3 ns 

 

  



 
 

 302 / 312 

 

 

⚫ SPI characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

fSCK SCK clock frequency — — — 40/100 

(with logic) 

MHz 

tSCK(H) SCK clock high time — 5 — — ns 

tSCK(L) SCK clock low time — 5 — — ns 

SPI master mode 

tV(MO) Data output valid time — — — 5 ns 

 tH(MO) Data output hold time — 2 — — ns 

 tSU(MI) Data input setup time — 5 — — ns 

 tH(MI) Data input hold time — 5 — — ns 
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⚫ NRST pin characteristics 

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up 

resistor, RPU. 

 NRST pin characteristics 

Symbol  Parameter  Conditions Min Typ Max Unit 

VIL(NRST)  NRST Input low level voltage — — — 0.2VDD V 

VIH(NRST) NRST Input high level voltage  — 0.5VDD — — V 

Vhys(NRST) 
NRST Schmitt trigger voltage 

hysteresis 
— — 200 — mV 

RPU Weak pull-up equivalent resistor  VIN = VSS 30 40 50 kΩ 

VF(NRST) NRST Input filtered pulse — — — 100 ns 

VNF(NRST) NRST Input not filtered pulse — 500 — — ns 

 

Recommended NRST pin protection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NRST Internal reset 

VDD 

Filter 

0.1µF 

External  

reset circuit Rpu 
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⚫ UART characteristics 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

fSCK SCK clock frequency fPCLK = 120 MHz — — 60 MHz 

tSCK(H) SCK clock high time fPCLK = 120 MHz 7.5 — — ns 

tSCK(L) SCK clock low time fPCLK = 120 MHz 7.5 — — ns 

 

 

 

 

 

 

Symbol  Parameter  Conditions Min Typ Max Unit 

fPP Clock frequency in data transfer mode — 0 — 48 MHz 

tW(CKL) Clock low time  fpp = 48 MHz 10.5 11 — ns 

tW(CKH) Clock high time  fpp = 48 MHz 9.5 10 — ns 

CMD, D inputs (referenced to CK) in MMC and SD HS mode 

tISU Input setup time HS   fpp = 48 MHz 4 — — ns 

tIH Input hold time HS fpp = 48 MHz 3 — — ns 

CMD, D outputs (referenced to CK) in MMC and SD HS mode 

tOV Output valid time HS  fpp = 48 MHz — — 13.8 ns 

tOH Output hold time HS fpp = 48 MHz 12 — — ns 

CMD, D inputs (referenced to CK) in SD default mode 

tISUD  Input setup time SD  fpp = 24 MHz 3 — — ns 

tIHD Input hold time SD fpp = 24 MHz 3 — — ns 

CMD, D outputs (referenced to CK) in SD default mode 

tOVD Output valid default time SD fpp = 24 MHz — 2.4 2.8 ns 

tOHD Output hold default time SD fpp = 24 MHz 0.8 — — ns 
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⚫ USB characteristics 

 USB DC electrical characteristics 

Symbol  Parameter  Conditions Min Typ Max Unit 

Input 

 levels 

VDD  USB operating voltage — 3 — 3.3 V 

VDI Differential input sensitivity 
 I(USBDP, 

USBDM) 
0.2 — — V 

VCM Differential common mode range 
 Includes VDI 

range 
0.8 — 2.5 V 

VSE Single ended receiver threshold — 1.3 — 2.0 V 

Output 

 Levels  

 VOL  Static output level low  
 RL of 1.5 kΩ to 

3.465 V  
— — 0.3 V 

VOH Static output level high 
RL of 15 kΩ to 

VSS 
2.8 3.3 3.465 V 

tSTARTUP  USBFS startup time — — — 1 μs 

 

USB full speed-electrical characteristics 

Symbol  Parameter  Conditions Min Typ Max Unit 

tR  Rise time  CL = 50 pF 4 — 20 ns 

tF  Fall time CL = 50 pF 4 — 20 ns 

tRFM Rise/ fall time matching  tR/tF 90 — 110 % 

vCRS Output signal crossover voltage — 1.3 — 2.0 V 

 

 

 

USB timings: definition of data signal rise and fall time 

 

 

 

 

 

 

 

 

 

 

 

 

 

tf tr 
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Vcrs 

Crossover 

  points 
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⚫ TIMER characteristics 

TIMER characteristics  

Symbol  Parameter  Conditions Min Max Unit 

tres  Timer resolution time 
— 1 — 

 

tTIMERxCLK 

fTIMERxCLK = 240MHz  4.2 — ns 

fEXT 
Timer external clock 

frequency 

— 0  fTIMERxCLK/2 MHz 

fTIMERxCLK = 240MHz 0 120 MHz 

RES Timer resolution — — 32 bit 

tCOUNTER 

16-bit counter clock period 

when internal clock is 

selected 

— 1 65536 tTIMERxCLK 

fTIMERxCLK = 240MHz 0.0084 546 μs 

tMAX_COUNT Maximum possible count 
— — 65536x65536 tTIMERxCLK 

fTIMERxCLK = 240MHz — 35.7 s 
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24 Package and operation temperature 

 

LQFP100 (AG32VF303Vx,AG32VF407Vx), LQFP64(AG32VF407Rx), AG32VH407Rx) 

and LQFP48 (AG32VF303Cx) 

Operation temperature range: -40 °C to +85 °C   

 

 

 

LQFP100 Package diagram 
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LQFP64 Package diagram 
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LQFP48 Package diagram 
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QFN32 Package diagram 
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25 Order Information 

 

Ordering code  Flash (KB) Package Package type 
Temperature 

operating range 

AG32VF303KCU6 256 QFN32 Green 
Industrial 

-40°C to +85°C 

AG32VF303CCT6 256 LQFP48 Green 
Industrial 

-40°C to +85°C 

AG32VF303VCT6 256 LQFP100 Green 
Industrial 

-40°C to +85°C 

AG32VH407RCT6 256 LQFP64 Green 
Industrial 

-40°C to +85°C 

AG32VF407RGT6 1024 LQFP64 Green 
Industrial 

-40°C to +85°C 

AG32VF407VGT6 1024 LQFP100 Green 
Industrial 

-40°C to +85°C 
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