

 1 / 312

AG32 MCU

Reference Manual
1.2

 2 / 312

contents

1 Device overview __ 10

1.1 Introduction ___ 10

1.1.1 System Overview ___ 10

1.1.2 Clock, reset and supply management ___ 10

1.1.3 Low-power operation __ 10

1.1.4 ADC/DAC/CMP/DMA/Timers/GPIO __ 10

1.1.5 Communication interfaces __ 11

1.1.6 Others ___ 11

1.2 Features and peripheral counts __ 12

1.3 Chip architecture ___ 13

1.4 Memory Map __ 14

1.5 System Control ___ 14

2 Pin Definition __ 22

3 Clock ___ 29

3.1 Clock sources __ 29

3.2 HSE clock __ 30

3.3 HSI clock __ 31

3.4 PLL clock __ 32

3.5 LSE clock __ 32

3.6 LSI clock __ 32

3.7 System clock (SYSCLK) selection ___ 32

3.8 RTC clock __ 32

3.9 Watchdog clock __ 33

4 Reset ___ 34

4.1 System reset ___ 34

4.2 Power reset ___ 35

4.3 Backup domain reset __ 35

5 Power control __ 36

5.1 Power supplies ___ 36

5.2 Independent ADC and DAC converter supply and reference voltage _________________ 36

5.3 Battery backup domain __ 37

5.4 Voltage regulator ___ 37

 3 / 312

5.5 Power on reset (POR)/power down reset (PDR) _________________________________ 37

5.6 Low-power modes __ 38

5.6.1 Slowing down system clocks __ 38

5.6.2 Peripheral clock gating __ 38

5.6.3 Sleep mode ___ 39

5.6.4 Stop mode __ 40

5.6.5 Standby mode ___ 41

5.6.6 Auto-wakeup (AWU) from low-power mode ___ 42

6 Interrupt Controller ___ 43

6.1 Local interrupts __ 43

6.2 External interrupts __ 43

6.3 Overall priority ___ 45

6.4 Interrupt enable __ 45

6.5 Interrupt registers __ 45

7 Dual Timer(Basic Timers) ___ 47

7.1 Introduction ___ 47

7.2 Functional Overview __ 48

7.2.1 Overview ___ 48

7.2.2 Functional description __ 49

7.3 Programmer’s Model __ 56

7.3.1 ummary of registers __ 56

7.4 Register descriptions __ 57

8 Advanced-control timers ___ 61

8.1 Introduction ___ 61

8.2 Main features __ 61

8.3 Functional description ___ 63

8.3.1 Time-base unit ___ 63

8.3.2 Counter modes __ 65

8.3.3 Repetition counter ___ 78

8.3.4 Clock selection ___ 80

8.3.5 Capture/compare channels___ 84

8.3.6 Input capture mode __ 88

8.3.7 PWM input mode __ 89

8.3.8 Forced output mode __ 90

8.3.9 Output compare mode __ 90

8.3.10 PWM mode ___ 92

8.3.11 Complementary outputs and dead-time insertion ____________________________________ 96

8.3.12 Using the break function __ 98

 4 / 312

8.3.13 Clearing the OCxREF signal on an external event ___________________________________ 101

8.3.14 6-step PWM generation ___ 102

8.3.15 One-pulse mode ___ 102

8.3.16 Encoder interface mode ___ 104

8.3.17 Timer input XOR function __ 107

8.3.18 Interfacing with Hall sensors ___ 107

8.3.19 External trigger synchronization ___ 109

8.3.20 Timer synchronization___ 113

8.3.21 Debug mode __ 113

8.4 registers ___ 114

8.4.1 control register 1 (CR1) __ 114

8.4.2 control register 2 (CR2) __ 115

8.4.3 slave mode control register (SMCR) __ 117

8.4.4 DMA/interrupt enable register (DIER) __ 120

8.4.5 status register (SR) ___ 122

8.4.6 event generation register (EGR) ___ 124

8.4.7 capture/compare mode register 1 (CCMR1) ___ 125

8.4.8 capture/compare mode register 2 (CCMR2) ___ 128

8.4.9 capture/compare enable register (CCER) __ 130

8.4.10 counter (CNT) ___ 133

8.4.11 prescaler (PSC) __ 133

8.4.12 auto-reload register (ARR) ___ 134

8.4.13 repetition counter register (RCR) __ 134

8.4.14 capture/compare register 1 (CCR0) __ 135

8.4.15 capture/compare register 2 (CCR1) __ 135

8.4.16 capture/compare register 3 (CCR2) __ 136

8.4.17 capture/compare register 4 (CCR3) __ 136

8.4.18 break and dead-time register (BDTR) ___ 137

8.4.19 register map __ 139

9 Watchdogs ___ 142

9.1 Overview __ 142

9.2 Independent watchdog (IWDG) ___ 142

9.2.1 IWDG main features __ 142

9.2.2 IWDG functional description ___ 142

9.2.3 Watchdog clock __ 143

9.2.4 Debug mode __ 143

9.2.5 IWDG registers___ 144

9.3 Functional overview __ 145

9.3.1 Features __ 145

9.3.2 Watchdog module overview __ 146

9.3.3 Functional description __ 146

9.3.4 Operation___ 147

 5 / 312

9.3.5 Summary of registers ___ 149

9.3.6 Register descriptions __ 150

10 Real-time clock (RTC) ___ 153

10.1 RTC main features: ___ 153

10.2 RTC functional description ___ 154

11 DMA __ 157

11.1 Overview __ 157

11.2 Functional Overview ___ 158

11.2.1 Functional description __ 158

11.2.2 System considerations __ 161

11.2.3 System connectivity __ 162

11.2.4 Software considerations ___ 165

11.3 Programmer’s Model ___ 167

11.3.1 About the programmer’s model ___ 167

11.3.2 Programming the DMAC ___ 167

11.3.3 Summary of registers ___ 169

11.3.4 Register descriptions __ 173

11.3.5 Test registers __ 190

12 Analog-to-digital converter (ADC) _______________________________________ 193

12.1 Overview __ 193

12.2 Pins and internal signals __ 193

12.3 Temperature sensor __ 194

12.4 ADC block pins __ 194

12.5 ADC input signals vs package pins ___ 196

12.6 ADC characteristics ___ 197

12.7 ADC timing diagram __ 197

13 Digital-to-analog converter (DAC) _______________________________________ 199

13.1 Overview __ 199

13.2 DAC block pins __ 200

13.3 DAC pins ___ 200

13.4 DACs output signals vs package pins ___ 200

13.5 DAC characteristics ___ 201

13.6 DAC output voltage __ 201

14 Comparator (CMP) ___ 202

14.1 Overview __ 202

 6 / 312

14.2 Characteristic ___ 202

14.3 CMP block pins __ 204

14.4 CMP input signals vs package pins __ 206

14.5 Comparator characteristics __ 207

15 Backup registers (BKP) __ 208

16 CRC(Cyclic redundancy check calculation unit) _____________________________ 211

16.1 Introduction __ 211

16.2 CRC main features ___ 211

16.3 CRC functional description ___ 212

16.3.1 CRC block diagram ___ 212

16.3.2 CRC internal signals ___ 212

16.3.3 CRC operation ___ 212

16.4 CRC registers __ 214

16.4.1 Data register (CRC_DR) __ 214

16.4.2 Independent data register (CRC_IDR) __ 214

16.4.3 Control register (CRC_CR) __ 215

16.4.4 Initial CRC value (CRC_INIT) __ 215

16.4.5 CRC polynomial (CRC_POL) ___ 216

16.4.6 CRC register map ___ 216

17 General-purpose input/outputs (GPIOs) __________________________________ 218

17.1 Overview __ 218

17.2 Functional description __ 218

17.3 Register descriptions ___ 220

17.3.1 Data register, GPIODATA __ 220

17.3.2 Data direction register, GPIODIR __ 220

17.3.3 Interrupt sense register, GPIOIS ___ 221

17.3.4 Interrupt both-edges register, GPIOIBE ___ 221

17.3.5 Interrupt event register, GPIOIEV ___ 221

17.3.6 Interrupt mask register, GPIOIE ___ 222

17.3.7 Raw interrupt status register, GPIORIS ___ 222

17.3.8 Masked interrupt status register, GPIOMIS __ 223

17.3.9 Interrupt clear register, GPIOIC__ 223

17.3.10 Mode control select register, GPIOAFSEL ___ 223

18 Universal asynchronous receiver transmitter (UART) ________________________ 224

18.1 UART Introduction ___ 224

18.2 UART functional description ___ 224

18.3 Operation __ 226

18.3.1 Interface reset ___ 226

 7 / 312

18.3.2 Clock signals __ 227

18.3.3 UART operation __ 227

18.3.4 UART character frame __ 230

18.4 UART modem operation __ 230

18.5 UART hardware flow control ___ 231

18.6 UART DMA interface ___ 232

18.7 Programmer’s Model ___ 234

18.7.1 Summary of registers ___ 234

18.7.2 Register descriptions __ 234

19 Inter-integrated circuit(I2C) __ 248

19.1 I2C introduction ___ 248

19.2 Architecture __ 248

19.3 Operation __ 250

19.3.1 System Configuration ___ 250

19.3.2 I2C Protocol ___ 251

19.3.3 Arbitration Procedure ___ 252

19.4 Registers ___ 253

19.4.1 Registers list __ 253

19.4.2 Register description __ 253

20 Controller area network (CAN) ___ 256

20.1 Overview __ 256

20.2 Operation __ 257

20.2.1 Configuration ___ 257

20.2.2 Bus Timing Parameters __ 257

20.2.3 Acceptance Filters __ 258

20.2.4 Interrupts __ 259

20.2.5 Error Warning Limit ___ 259

20.2.6 Output Mode ___ 259

20.2.7 CLKOUT Signal ___ 260

20.2.8 Example Configuration Steps ___ 260

20.3 Interrupt Handling ___ 260

20.3.1 Receive Interrupt __ 261

20.3.2 Transmit Interrupt __ 261

20.3.3 Error Warning Interrupt ___ 261

20.3.4 Data Overrun Interrupt __ 262

20.3.5 Wake-up Interrupt ___ 262

20.3.6 Error Passive Interrupt __ 262

20.3.7 Arbitration Loss Interrupt __ 263

20.3.8 Bus Error Interrupt ___ 263

 8 / 312

20.4 Sleep Mode __ 263

20.5 Register Description __ 264

20.5.1 Acceptance Code Registers (ACR0 – ACR3): ADDRESS 10h – 13h _______________________ 264

20.5.2 Acceptance Mask Registers (AMR0 – AMR3): ADDRESS 14h – 17h _____________________ 265

20.5.3 Arbitration Lost Capture Register (ALC): ADDRESS 0Bh _______________________________ 265

20.5.4 Bus Timing Register 0 (BTR0): ADDRESS 06h _______________________________________ 266

20.5.5 Bus Timing Register 1 (BTR1): ADDRESS 07h _______________________________________ 267

20.5.6 Clcck Divider Register (CDR): ADDRESS 1Fh __ 267

20.5.7 Command Register (CMR): ADDRESS 01h ___ 268

20.5.8 Error Code Capture Register (ECC): ADDRESS 0CH __________________________________ 269

20.5.9 Error Warning Limit Register (EWLR): ADDRESS 0Dh _________________________________ 269

20.5.10 Interrupt Register (IR): ADDRESS 03h ___ 269

20.5.11 Interrupt Enable Register(IER): ADDRESS 04h ______________________________________ 270

20.5.12 Mode Register (MOD): ADDRESS 00h __ 271

20.5.13 Output Control Register (OCR): ADDRESS 08h ______________________________________ 271

20.5.14 Receive Buffer (10h – 1Ch) ___ 272

20.5.15 Receive Buffer Start Address (RBSA): ADDRESS 1Eh _________________________________ 273

20.5.16 Receive Error Counter Register (RXERR): ADDRESS 0Eh ______________________________ 273

20.5.17 Receive Message Counter (RMC): ADDRESS 1Dh____________________________________ 274

20.5.18 Status Register(SR): ADDRESS 02h ___ 275

20.5.19 Transmit Buffer (Write: 10h – 1Ch; Read: 60h – 6Ch) ________________________________ 275

20.5.20 Transmit Error Counter Register (TXERR): ADDRESS 0Fh ______________________________ 276

21 Flash-SPI control ___ 278

21.1 Overview __ 278

21.1.1 Characteristics of this spi controller __ 278

21.1.2 The concept of PHASE ___ 279

21.1.3 Module block diagram __ 280

21.1.4 Top port __ 281

21.2 Instructions for use of the module __ 282

21.2.1 System integration method __ 282

21.2.2 register description ___ 283

21.2.3 Description of PHASE_ACTION __ 286

21.2.1 Software configuration sequence __ 288

22 Other Interfaces ___ 292

22.1 Universal serial bus full-speed device interface (USBD) __________________________ 292

22.2 Ethernet MAC interface ___ 292

22.3 Debug mode __ 293

23 Electrical characteristics ___ 294

24 Package and operation temperature _____________________________________ 307

25 Order Information ___ 311

 9 / 312

26 Revision history ___ 312

 10 / 312

1 Device overview

1.1 Introduction

The AG32 family of 32-bit microcontrollers is designed to offer new degrees of freedom and rich

compatible peripherals, and compatible pin and features to MCU users. AG32 product series offers

supreme quality, stability, and exceptional pricing value.

1.1.1 System Overview

◼ RISC-V core with RV32IMAFC support

◼ Up to 1 Mbyte of Flash memory

◼ 128KB SRAM

◼ 16KB instruction cache

1.1.2 Clock, reset and supply management

◼ 3.135 V to 3.465 V application supply and I/Os

◼ POR, PDR

◼ 4-to-26 MHz crystal oscillator

◼ Internal 20MHz oscillator

◼ 32 kHz oscillator for RTC

◼ Internal 40 kHz oscillator

1.1.3 Low-power operation

◼ Sleep, Stop and Standby modes

◼ VBAT supply for RTC

1.1.4 ADC/DAC/CMP/DMA/Timers/GPIO

◼ 3×12-bit, 1.0 MSPS A/D converters: up to 16 channels and 3 MSPS in triple interleaved mode

◼ 2×10-bit D/A converters

 11 / 312

◼ Two rail-to-rail analog comparators

◼ General-purpose DMA

◼ Advanced-control timers

◼ Up to 78 user I/O ports

1.1.5 Communication interfaces

◼ I2C interfaces

◼ UART interfaces

◼ SPI interfaces

◼ CAN interfaces

1.1.6 Others

◼ Debug mode – Serial wire debug (SWD) & JTAG interfaces

◼ USB 2.0 full-speed device/host controller with on-chip PHY

◼ 10/100 Ethernet MAC with dedicated DMA supports MII/RMII

◼ RTC: subsecond accuracy

◼ 128-bit unique ID

 12 / 312

1.2 Features and peripheral counts

Peripherals AG32VF303KCU6 AG32VF303CCT6 AG32VF303VCT6 AG32VH407RCT6 AG32VF407RGT6 AG32VF407VGT6

Flash memory in Kbytes 256K 256K 256K 256K 1024K 1024K

SRAM in Kbytes 128K

PSRAM / 8MB /

Ethernet yes

Timers 2 x Basic Timer + 5 x Advanced Timer

SPI/I²C 2

UART 5

USB FS yes

CAN 1 x CAN2.0

12-bit ADC 3 3 3 3 3 3

Number of channels 9 10 16 11 16 16

10-bit DAC
2

Number of channels

rail-to-rail analog

comparators
2 2 2 2 2 2

Maximum CPU frequency 248Mhz

Operating voltage 3.135 to 3.465 V

Package QFN32 LQFP48 LQFP100 LQFP64 LQFP64 LQFP100

AG32VH407RCT6：AG32 + PSRAM

◼ MCU + 2K CPLD + 8MB PSRAM

◼ HyperRAM high-speed interface

◼ DMA & FIFO R/W reference design

 13 / 312

1.3 Chip architecture

 14 / 312

1.4 Memory Map

 Address

ROM 0x0001 0000 - 0x0001 1FFF

System Control 0x0300 0000 - 0x0300 0FFF

PLIC 0x0C00 0000 - 0x0C20 FFFF

SRAM 0x2000 0000 - 0x2001 FFFF

FLASH (XIP) 0x8000 0000 - 0x80FF FFFF

Option bytes 0x8100 0000 - 0x8100 003F

RTC 0x4000 0000 - 0x4000 007F

FLASH control 0x4000 1000 - 0x4000 1FFF

APB Peripherals 0x4001 0000 - 0x40FF FFFF

AHB Peripherals 0x4100 0000 - 0x41FF FFFF

External AHB 0x6000 0000 - 0x7FFF FFFF

1.5 System Control

Device boot mode (BOOT_MODE)

 Address offset: 0x00

31 - 2 1 0

Reserved BOOT_MODE

 RO RO

 Bit [1:0]: Device boot mode

The values of BOOT0 and BOOT1 pins are latched on the 4th rising edge of SYSCLK after a reset

Reset control (RST_CNTL)

 Address offset: 0x04

 Bit 31 RSTF_LPWR: Reset flag by low power

 0: No reset detected

 15 / 312

 1: Low power reset detected

 Bit 30 RSTF_WDOG: Reset flag by watch dog

 0: No reset detected

 1: Watch dog reset detected

 Bit 29 RSTF_IWDG: Reset flag by independent watch dog

 0: No reset detected

 1: Independent watch dog reset detected

 Bit 28 RSTF_SFT: Reset flag by softare

 0: No reset detected

 1: Softare reset detected

 Bit 27 RSTF_POR: Reset flag by power on reset

 0: No reset detected

 1: Power on reset detected

 Bit 26 RSTF_PIN: Reset flag by NRST pin

 0: No reset detected

 1: NRST pin reset detected

 Bit 25 RSTF_EXT: Reset flag by external logic

 0: No reset detected

 1: External logic reset detected

 Bit 24 RST_REMOVE: Reset flag removal

 Write 1 to clear all reset flags

 Bit 1 RST_EXT_EN: External logic reset enable

 16 / 312

 0: Exernal logic reset disabled

 1: External logic reset enabled

 Bit 0 RST_SFT: Reset by software

 Write 1 to trigger software reset

Power control (PWR_CNTL)

 Address offset: 0x08

 Bit [1:0] LPWR_MODE: Low power mode

 00: Enter sleep mode with WFI (wait for interrupt) instruction

 01: Enter stop mode with WFI instruction

 11: Enter standby mode with WFI instruction

Clock control (CLK_CNTL)

 Address offset: 0x0C

 Bit [15:12] SCLK_DIV_HIGH: Flash SPI clock divider high

 Flash SPI clock is divided by (SCLK_DIV_HIGH + 1) from SYS_CLK, valid range is

from 0 (divided by 1) to 15 (divided by 16)

 Bit [11:8] SCLK_DIV_LOW: Flash SPI clock divider low

 Must be set to the same value as SCLK_DIV_HIGH

 Bit 6 PLL_RDY: PLL ready

 0: PLL is not ready

 1: PLL is ready

 Bit 5 PLL_ON: PLL on

 0: PLL is turned off

 1: PLL is turned on

 17 / 312

 Bit 4 HSE_RDY: HSE ready

 0: HSE is not ready

 1: HSE is ready

 Bit 3 HSE_BYP: HSE bypass

 0: HSE oscillator is not bypassed

 1: HSE oscillator is bypassed

 Bit 2 HSE_ON: HSE on

 0: HSE oscillator is turned off

 1: HSE oscillator is turned on

JTAG control (SWJ_CNTL)

 Address offset: 0x14

 Bit 4: NJTRST: Configuration for pin NJTRST

 0: NJTRST is used as a dedicated pin

 1: NJTRST is used as a user pin

 Bit 3: JTDO: Configuration for pin JTDO

 0: JTDO is used as a dedicated pin

 1: JTDO is used as a user pin

 Bit 2: JTDI: Configuration for pin JTDI

 0: JTDI is used as a dedicated pin

 1: JTDI is used as a user pin

 Bit 1: JTMS: Configuration for pin JTMS

 0: JTMS is used as a dedicated pin

 1: JTMS is used as a user pin

 18 / 312

 Bit 0: JTCK: Configuration for pin JTCK

 0: JTCK is used as a dedicated pin

 1: JTCK is used as a user pin

Debug control (DBG_CNTL)

 Address offset: 0x1C

 Bit 4 DBG_RTC_STOP: Stop RTC during debug

 Bit 3 DBG_IWDG_STOP: Stop IWDG during debug

Wake up rise triggers (WKP_RISE_TRG)

 Address offset: 0x20

 Bit [7:0] EXT_INT0-7: Wake up device from stop mode using EXT_INT0-7, rising edge

triggered

 Bit 8 ALARM: Wake up device from stop mode using RTC alaram

Wake up fall triggers (WKP_FALL_TRG)

 Address offset: 0x24

 Bit [7:0] EXT_INT0-7: Wake up device from stop mode using EXT_INT0-7, falling edge

triggered

 Bit 8 ALARM: Wake up device from stop mode using RTC alaram

Wake up pending register (WKP_PENDING)

 Address offset: 0x28

 Bits [8:0]: Correspoding bits are set when the selected triggering event occurs

PBUS clock divider (PBUS_DIVIDER)

 Address offset: 0x38

 Bits [3:0] PBUS_DIV: APB clock is divided by (PBUS_DIV + 1) from SYS_CLK, valid range

is from 0 (divided by 1) to 15 (divided by 16)

APB peripheral reset (APB_RESET)

 19 / 312

 Address offset: 0x40

 Each APB peripheral can be reset with the corresponding bit

 0: Reset is deasserted

 1: Reset is asserted

 Bit [28]: I2C1

 Bit [27]: I2C0

 Bit [26]: CAN0

 Bit [25]: UART4

 Bit [24]: UART3

 Bit [23]: UART2

 Bit [22]: UART1

 Bit [21]: UART0

 Bit [20]: GPTIMER4

 Bit [19]: GPTIMER3

 Bit [18]: GPTIMER2

 Bit [17]: GPTIMER1

 Bit [16]: GPTIMER0

 Bit [15]: TIMER1

 Bit [14]: TIMER0

 Bit [13]: GPIO9

 Bit [12]: GPIO8

 Bit [11]: GPIO7

 20 / 312

 Bit [10]: GPIO6

 Bit [9]: GPIO5

 Bit [8]: GPIO4

 Bit [7]: GPIO3

 Bit [6]: GPIO2

 Bit [5]: GPIO1

 Bit [4]: GPIO0

 Bit [3]: SPI1

 Bit [2]: SPI0

 Bit [1]: WATCHDOG0

 Bit [0]: FCB0

AHB peripheral reset (AHB_RESET)

 Address offset: 0x50

 Each AHB peripheral can be reset with the corresponding bit

 0: Reset is deasserted

 1: Reset is asserted

 Bit [3]: MAC0

 Bit [2]: CRC0

 Bit [1]: USB0

 Bit [0]: DMAC0

APB peripheral clock enable (APB_CLKENABLE)

 Address offset: 0x60

 21 / 312

 Clock must be enabled before any APB peripheral is accessed. Bit asssignment is the

same as APB_RESET register

 0: Peripheral clock is disabled

 1: Peripheral clock is enabled

AHB peripheral clock enable (AHB_CLKENABLE)

 Address offset: 0x70

 Clock must be enabled before any AHB peripheral is accessed. Bit asssignment is the

same as AHB_RESET register

 0: Peripheral clock is disabled

 1: Peripheral clock is enabled

APB peripheral clock stop during debug (APB_CLKSTOP)

 Address offset: 0x80

 Clock can be automatically stopped during debug for the following APB peripherals:

 WATCHDOG

 TIMER

 GPTIMER

 CAN

 Bit asssignment is the same as APB_RESET register

 0: Clock is not stopped during debug

 1: Clock is stopped during debug

Device ID code (DEVICE_ID)

 Address offset: 0x100

 Bit [31:0]: Returns the chip device ID: 0x40200001. Read only

 22 / 312

2 Pin Definition

LQFP-100

Pin Pin name Function

Pin
Pin

name
Function

1 PIN_1 IO 26 PIN_26 IO/ADC_IN3/CMP_PA3

2 PIN_2 IO 27 VSS33 GND

3 PIN_3 IO 28 VDD33 VDD33

4 PIN_4 IO 29 PIN_29 IO/ADC_IN4/CMP_PA4/DAC0

5 PIN_5 IO 30 PIN_30 IO/ADC_IN5/CMP_PA5/DAC1

6 VBAT VBAT 31 PIN_31 IO/ADC_IN6

7 PIN_7 IO/RTC 32 PIN_32 IO/ADC_IN7

8 OSC32_IN OSC32_IN 33 PIN_33 IO/ADC_IN14

9 OSC32_OUT OSC32_OUT 34 PIN_34 IO/ADC_IN15

10 VSS33 GND 35 PIN_35 IO/ADC_IN8

11 VDD33 VDD33 36 PIN_36 IO/ADC_IN9

12 OSC_IN OSC_IN 37 PIN_37 IO/BOOT1

13 OSC_OUT OSC_OUT 38 PIN_38 IO

14 NRST NRST 39 PIN_39 IO

15 PIN_15 IO/ADC_IN10 40 PIN_40 IO

16 PIN_16 IO/ADC_IN11 41 PIN_41 IO

17 PIN_17 IO/ADC_IN12 42 PIN_42 IO

18 PIN_18 IO/ADC_IN13 43 PIN_43 IO

19 NC NC 44 PIN_44 IO

20 VSSA GNDA 45 PIN_45 IO

21 VREFP VREFP 46 PIN_46 IO

22 VDDA VDDA 47 PIN_47 IO

23 PIN_23
IO/WKUP/ADC_IN0/C

MP_PA0
48 PIN_48 IO

24 PIN_24 IO/ADC_IN1/CMP_PA1 49 NC NC

25 PIN_25 IO/ADC_IN2/CMP_PA2 50 VDD33 VDD33

 23 / 312

Pin Pin name Function

Pin
Pin

name
Function

51 PIN_51 IO 76 PIN_76 IO/JTCK

52 PIN_52 IO 77 PIN_77 IO/JTDI

53 PIN_53 IO 78 PIN_78 IO

54 PIN_54 IO 79 PIN_79 IO

55 PIN_55 IO 80 PIN_80 IO

56 PIN_56 IO 81 PIN_81 IO

57 PIN_57 IO 82 PIN_82 IO

58 PIN_58 IO 83 PIN_83 IO

59 PIN_59 IO 84 PIN_84 IO

60 PIN_60 IO 85 PIN_85 IO

61 PIN_61 IO 86 PIN_86 IO

62 PIN_62 IO 87 PIN_87 IO

63 PIN_63 IO 88 PIN_88 IO

64 PIN_64 IO 89 PIN_89 IO/JTDO

65 PIN_65 IO 90 PIN_90 IO/JNTRST

66 PIN_66 IO 91 PIN_91 IO

67 PIN_67 IO 92 PIN_92 IO

68 PIN_68 IO/UART0_TX 93 PIN_93 IO

69 PIN_69 IO/UART0_RX 94 BOOT0 BOOT0

70 PIN_70 IO/USBDM 95 PIN_95 IO

71 PIN_71 IO/USBDP 96 PIN_96 IO

72 PIN_72 IO/JTMS 97 PIN_97 IO

73 NC NC 98 PIN_98 IO

74 VSS33 GND 99 VSS33 GND

75 VDD33 VDD33 100 VDD33 VDD33

 24 / 312

LQFP-64

Pin Pin name Function Pin Pin name Function

1 VBAT VBAT

33 PIN_33 IO

2 PIN_2 IO/RTC 34 PIN_34 IO

3 OSC32_IN OSC32_IN 35 PIN_35 IO

4 OSC32_OUT OSC32_OUT 36 PIN_36 IO

5 OSC_IN OSC_IN 37 PIN_37 IO

6 OSC_OUT OSC_OUT 38 PIN_38 IO

7 NRST NRST 39 PIN_39 IO

8 PIN_8 IO/ADC_IN10 40 PIN_40 IO

9 PIN_9 IO/ADC_IN11 41 PIN_41 IO

10 PIN_10 IO/ADC_IN12 42 PIN_42 IO/UART0_TX

11 PIN_11 IO/ADC_IN13 43 PIN_43 IO/UART0_RX

12 VSSA GNDA 44 PIN_44 IO/USBDM

13 VDDA VDDA 45 PIN_45 IO/USBDP

14 PIN_14 IO/WKUP/ADC_IN0/CMP_PA0 46 PIN_46 IO/JTMS

15 PIN_15 IO/ADC_IN1/CMP_PA1 47 PIN_47 IO

16 PIN_16 IO/ADC_IN2/CMP_PA2 48 VDD33 VDD33

17 PIN_17 IO/ADC_IN3/CMP_PA3 49 PIN_49 IO/JTCK

18 VSS33 GND 50 PIN_50 IO/JTDI

19 VDD33 VDD33 51 PIN_51 IO

20 PIN_20 IO/ADC_IN4/CMP_PA4/DAC0 52 PIN_52 IO

21 PIN_21 IO/ADC_IN5/CMP_PA5/DAC1 53 PIN_53 IO

22 PIN_22 IO/ADC_IN6 54 PIN_54 IO

23 PIN_23 IO/ADC_IN7 55 PIN_55 IO/JTDO

24 PIN_24 IO/ADC_IN14 56 PIN_56 IO/JNTRST

25 PIN_25 IO/ADC_IN15 57 PIN_57 IO

26 PIN_26 IO/ADC_IN8 58 PIN_58 IO

27 PIN_27 IO/ADC_IN9 59 PIN_59 IO

28 PIN_28 IO/BOOT1 60 BOOT0 BOOT0

29 PIN_29 IO 61 PIN_61 IO

30 PIN_30 IO 62 PIN_62 IO

31 PIN_31 IO 63 VSS33 GND

32 VDD33 VDD33 64 VDD33 VDD33

 25 / 312

LQFP-48

Pin Pin name Function

Pin Pin name Function

1 VBAT VBAT 25 PIN_25 IO

2 PIN_2 IO/RTC 26 PIN_26 IO

3 OSC32_IN OSC32_IN 27 PIN_27 IO

4 OSC32_OUT OSC32_OUT 28 PIN_28 IO

5 OSC_IN OSC_IN 29 PIN_29 IO

6 OSC_OUT OSC_OUT 30 PIN_30 IO/UART0_TX

7 NRST NRST 31 PIN_31 IO/UART0_RX

8 VSSA GNDA 32 PIN_32 IO/USBDM

9 VDDA VDDA 33 PIN_33 IO/USBDP

10 PIN_10 IO/WKUP/ADC_IN0/CMP_PA0 34 PIN_34 IO/JTMS

11 PIN_11 IO/ADC_IN1/CMP_PA1 35 PIN_35 IO

12 PIN_12 IO/ADC_IN2/CMP_PA2 36 VDD33 VDD33

13 PIN_13 IO/ADC_IN3/CMP_PA3 37 PIN_37 IO/JTCK

14 PIN_14 IO/ADC_IN4/CMP_PA4/DAC0 38 PIN_38 IO/JTDI

15 PIN_15 IO/ADC_IN5/CMP_PA5/DAC1 39 PIN_39 IO/JTDO

16 PIN_16 IO/ADC_IN6 40 PIN_40 IO/JNTRST

17 PIN_17 IO/ADC_IN7 41 PIN_41 IO

18 PIN_18 IO/ADC_IN8 42 PIN_42 IO

19 PIN_19 IO/ADC_IN9 43 PIN_43 IO

20 PIN_20 IO/BOOT1 44 BOOT0 BOOT0

21 PIN_21 IO 45 PIN_45 IO

22 PIN_22 IO 46 PIN_46 IO

23 VSS33 GND 47 VSS33 GND

24 VDD33 VDD33 48 VDD33 VDD33

 26 / 312

QFN-32

Pin Pin name Function Pin Pin name Function

1 PIN_1 IO/RTC 17 GND GND

2 PIN_2 IO/OSC_IN 18 PIN_18 IO

3 PIN_3 IO/OSC_OUT 19 PIN_19 IO

4 NRST NRST 20 PIN_20 IO_UART0_TX

5 PIN_5 IO_ADC_IN12 21 PIN_21 IO_UART0_RX

6 VDDA33 VDDA33 22 PIN_22 IO_USBDM

7 PIN_7 IO_WKUP_ADC_IN0_CMP_PA0 23 PIN_23 IO_USBDP

8 PIN_8 IO_ADC_IN1_CMP_PA1 24 PIN_24 IO_JTMS

9 PIN_9 IO_ADC_IN2_CMP_PA2 25 PIN_25 IO_JTCK

10 PIN_10 IO_ADC_IN3_CMP_PA3 26 PIN_26 IO_JTDI

11 PIN_11 IO_ADC_IN4_CMP_PA4_DAC0 27 PIN_27 IO_JTDO

12 PIN_12 IO_ADC_IN5_CMP_PA5_DAC1 28 PIN_28 IO_JNTRST

13 PIN_13 IO_ADC_IN6 29 PIN_29 IO

14 PIN_14 IO_ADC_IN7 30 BOOT0 BOOT0

15 PIN_15 IO_BOOT1 31 PIN_31 IO

16 VDD33 VDD33 32 VDD33 VDD33

 27 / 312

AG32VH407RCT6 & AG32VF407RGT6

PIN

No.
AG32VH407RCT6 AG32VF407RGT6

1 VBAT VBAT VBAT VBAT

2 PIN_2 IO_RTC PIN_2 IO_RTC

3 OSC32_IN OSC32_IN OSC32_IN OSC32_IN

4 OSC32_OUT OSC32_OUT OSC32_OUT OSC32_OUT

5 OSC_IN OSC_IN OSC_IN OSC_IN

6 OSC_OUT OSC_OUT OSC_OUT OSC_OUT

7 NRST NRST NRST NRST

8 RWDS RWDS PIN_8 IO_ADC_IN10

9 PIN_9 IO_ADC_IN11 PIN_9 IO_ADC_IN11

10 PIN_10 IO_ADC_IN12 PIN_10 IO_ADC_IN12

11 PIN_11 IO_ADC_IN13 PIN_11 IO_ADC_IN13

12 GND GND GND GND

13 VDD33 VDD33 VDD33 VDD33

14 PIN_14 IO_WKUP_ADC_IN0_CMP_PA0 PIN_14 IO_WKUP_ADC_IN0_CMP_PA0

15 PIN_15 IO_ADC_IN1_CMP_PA1 PIN_15 IO_ADC_IN1_CMP_PA1

16 PIN_16 IO_ADC_IN2_CMP_PA2 PIN_16 IO_ADC_IN2_CMP_PA2

17 PIN_17 IO_ADC_IN3_CMP_PA3 PIN_17 IO_ADC_IN3_CMP_PA3

18 GND GND GND GND

19 VDD33 VDD33 VDD33 VDD33

20 PIN_20 IO_ADC_IN5_CMP_PA5_DAC1 PIN_20 IO_ADC_IN4_CMP_PA4_DAC0

21 PIN_21 IO_ADC_IN7 PIN_21 IO_ADC_IN5_CMP_PA5_DAC1

22 RWDS RWDS PIN_22 IO_ADC_IN6

23 PIN_23 IO_ADC_IN15 PIN_23 IO_ADC_IN7

24 PIN_24 IO_ADC_IN9 PIN_24 IO_ADC_IN14

25 PIN_25 IO_BOOT1 PIN_25 IO_ADC_IN15

26 PIN_26 IO PIN_26 IO_ADC_IN8

27 PIN_27 IO PIN_27 IO_ADC_IN9

28 PIN_28 IO PIN_28 IO_BOOT1

29 PIN_29 IO PIN_29 IO

30 VDD33 VDD33 PIN_30 IO

31 GND GND PIN_31 IO

32 VDD33 VDD33 VDD33 VDD33

33 PIN_33 IO PIN_33 IO

34 PIN_34 IO PIN_34 IO

35 PIN_35 IO PIN_35 IO

36 PIN_36 IO PIN_36 IO

37 PIN_37 IO PIN_37 IO

38 PIN_38 IO PIN_38 IO

 28 / 312

39 PIN_39 IO PIN_39 IO

40 PIN_40 IO PIN_40 IO

41 PIN_41 IO PIN_41 IO

42 PIN_42 IO_UART0_TX PIN_42 IO_UART0_TX

43 PIN_43 IO_UART0_RX PIN_43 IO_UART0_RX

44 PIN_44 IO_USBDM PIN_44 IO_USBDM

45 PIN_45 IO_USBDP PIN_45 IO_USBDP

46 PIN_46 IO_JTMS PIN_46 IO_JTMS

47 PIN_47 IO PIN_47 IO

48 VDD33 VDD33 VDD33 VDD33

49 PIN_49 IO_JTCK PIN_49 IO_JTCK

50 PIN_50 IO_JTDI PIN_50 IO_JTDI

51 PIN_51 IO PIN_51 IO

52 PIN_52 IO PIN_52 IO

53 PIN_53 IO PIN_53 IO

54 PIN_54 IO PIN_54 IO

55 PIN_55 IO_JTDO PIN_55 IO_JTDO

56 PIN_56 IO_JNTRST PIN_56 IO_JNTRST

57 PIN_57 IO PIN_57 IO

58 PIN_58 IO PIN_58 IO

59 PIN_59 IO PIN_59 IO

60 BOOT0 BOOT0 BOOT0 BOOT0

61 PIN_61 IO PIN_61 IO

62 PIN_62 IO PIN_62 IO

63 GND GND GND GND

64 VDD33 VDD33 VDD33 VDD33

Note:

RWDS(PIN_8 and PIN_22) needs to be short circuited externally.VDD33 needs to be isolated from other power sources on the

PCB using magnetic beads separately.

 29 / 312

3 Clock

3.1 Clock sources

Three different clock sources can be used to drive the system clock (SYSCLK):

(1) HSI oscillator clock

(2) HSE oscillator clock

(3) PLL clock

(4) Interconnect global clocks(FPGA Core)

The devices have the following two secondary clock sources:

(1) 40 kHz low speed internal RC (LSI), which drives the independent watchdog and optionally the RTC

used for Auto-wakeup from Stop/Standby mode.

(2) 32.768 kHz low speed external crystal (LSE crystal), which optionally drives the real-time clock

(RTCCLK)

Each clock source can be switched on or off independently when it is not used, to optimize power

consumption.

 30 / 312

3.2 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock sources:

(1) HSE external crystal/ceramic resonator

(2) HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the oscillator pins in

order to minimize output distortion and startup stabilization time. The loading capacitance values must

be adjusted according to the selected oscillator.

 31 / 312

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to 100 MHz.

You select this mode by setting the HSEBYP and HSEON bits in the Clock control register (RCC_CR).

The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC_IN pin

while the OSC_OUT pin should be left hi-Z.

External crystal/ceramic resonator (HSE crystal)

The 4 to 24 MHz external oscillator has the advantage of producing a very accurate rate on the main

clock. The HSERDY flag indicates if the high-speed external oscillator is stable or not. At startup, the

clock is not released until this bit is set by hardware. The HSE Crystal can be switched on and off

using the HSEON bit.

3.3 HSI clock

The HSI clock signal is generated from an internal Oscillator and can be used directly as a system

clock. The HSI internal oscillator has the advantage of providing a clock source at low cost (no

external components). It also has a faster startup time than the HSE crystal oscillator.

 32 / 312

3.4 PLL clock

The internal PLL can be used to multiply HSE crystal output clock frequency.

If the USB interface is used in the application, the PLL must be programmed to output 48 MHz. This is

needed to provide a 48 MHz USBCLK.

3.5 LSE clock

The LSE crystal is a 32.768 kHz Low Speed External crystal or ceramic resonator. It has the

advantage providing a low-power but highly accurate clock source to the real-time clock peripheral

(RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off using the LSEON bit in Backup domain control register.

The LSERDY flag in the Backup domain control register indicates if the LSE crystal is stable or not. At

startup, the LSE crystal output clock signal is not released until this bit is set by hardware.

External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to 1MHz. The

external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC32_IN pin

while the OSC32_OUT pin should be left Hi-Z.

3.6 LSI clock

The LSI clock is HSI divided by 256. It can be kept running in Stop mode for the independent

watchdog (IWDG) and Auto-wakeup unit. The clock frequency is around 40 kHz (between 30 kHz and

60 kHz).

3.7 System clock (SYSCLK) selection

After a system reset, the HSI oscillator is selected as system clock. When a clock source is used

directly or through the PLL as system clock, it is not possible to stop it. A switch from one clock source

to another occurs only if the target clock source is ready (clock stable after startup delay or PLL

locked).

A switch from one clock source to another occurs only if the target clock source is ready (clock stable

after startup delay or PLL locked).

3.8 RTC clock

The RTCCLK clock source can be either the CLKLOCAL(from fpga core logic), LSE or LSI clocks. This

is selected by programming the RTCSEL[1:0] bits in the Backup domain control register (RCC_BDCR).

This selection cannot be modified without resetting the Backup domain.

 33 / 312

The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not.

Consequently:

(1) If LSE is selected as RTC clock:

The RTC continues to work even if the VDD supply is switched off, provided the VBAT supply is

maintained.

(2) If LSI is selected as Auto-Wakeup unit (AWU) clock:

The AWU state is not guaranteed if the VDD supply is powered off.

(3) If the CLKLOCAL is used as the RTC clock:

The RTC state is not guaranteed if the VDD supply is powered off or if the internal voltage regulator is

powered off (removing power from the 1.2 V domain).

The DPB bit (disable backup domain write protection) in the Power controller register must be set to 1.

3.9 Watchdog clock

If the Independent watchdog (IWDG) is started by either hardware option or software access,

(1) Under run or stop mode

 Select LSE or LSI clock source by setting the IWDG_STOP_CLKSEL bit in the Backup domain

control register (RCC_BDCR).

(2) Under Standby mode

 HW will select LSE as clock source for IWDG.

 34 / 312

4 Reset

There are three types of reset: system reset, power reset and backup domain reset.

4.1 System reset

A system reset is generated when one of the following events occurs:

(1) A low level on the NRST pin (external reset)

(2) Window watchdog end of count condition (WWDG reset)

(3) Independent watchdog end of count condition (IWDG reset)

(4) A software reset (SW reset)

(5) Low-power management reset

The reset source can be identified by checking the reset flags in the Control/Status register,

RCC_CSR.

Software reset

The SYSRESETREQ bit in MCU Application Interrupt and Reset Control Register must be set to force

a software reset on the device.

Low-power management reset

There are two ways to generate a low-power management reset:

(1) Reset generated when entering Standby mode:

 35 / 312

This type of reset is enabled by resetting nRST_STDBY bit in User Option Bytes. In this case,

whenever a Standby mode entry sequence is successfully executed, the device is reset instead of

entering Standby mode.

(2) Reset when entering Stop mode:

This type of reset is enabled by resetting nRST_STOP bit in User Option Bytes. In this case, whenever

a Stop mode entry sequence is successfully executed, the device is reset instead of entering Stop

mode.

4.2 Power reset

A power reset is generated when one of the following events occurs:

(1) Power-on/power-down reset (POR/PDR reset)

(2) When exiting Standby mode

4.3 Backup domain reset

The backup domain has two specific resets that affect only the backup domain.

A backup domain reset is generated when one of the following events occurs:

(1)Software reset.

(2) VDD33 or VBAT power on, if both supplies have previously been powered off.

 36 / 312

5 Power control

5.1 Power supplies

The AG32VF requires a 3.135-to-3.465V operating voltage supply (VDD33). An embedded regulator is

used to supply the internal 1.2V digital power. The real-time clock (RTC) and backup registers can be

powered from the VBAT voltage when the main VDD33 supply is powered off.

5.2 Independent ADC and DAC converter supply and reference

voltage

To improve conversion accuracy, the ADC and the DAC have an independent power supply which can

be separately filtered and shielded from noise on the PCB.

(1) The ADC and DAC voltage supply input is available on a separate VDDA pin.

(2) An isolated supply ground connection is provided on pin VSSA.

To ensure a better accuracy on low-voltage inputs and outputs, the user can connect a separate

external reference voltage on VREFP. VREFP is the highest voltage, represented by the full scale

 37 / 312

value, for an analog input (ADC) or output (DAC) signal. The voltage on VREFP can range from

3.135V to VDDA.

5.3 Battery backup domain

To retain the content of the Backup registers and supply the RTC function when VDD33 is turned off,

VBAT pin can be connected to an optional standby voltage supplied by a battery or by another source.

The VBAT pin powers the RTC unit, the LSE oscillator and the OSC32_IN and OSC32_OUT Pins,

allowing the RTC to operate even when the main digital supply (VDD33) is turned off.

If no external battery is used in the application, it is recommended to connect VBAT externally to

VDD33 with a 100nF external ceramic decoupling capacitor.

When the backup domain is supplied by VDD33 (analog switch connected to VDD33).

5.4 Voltage regulator

The voltage regulator is always enabled after Reset. It works in two different modes depending on the

application modes.

(1) In Run and Stop modes, the regulator supplies full power to the 1.2V domain (core, memories,

digital peripherals and interconnect logic).

(2) In Standby Mode, the regulator is powered off. The contents of the registers and SRAM are lost

except for the Standby circuitry and the Backup Domain.

5.5 Power on reset (POR)/power down reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting from/down to

2.2V. The device remains in Reset mode when VDD33/VDDA is below a specified threshold,

VPOR/PDR, without the need for an external reset circuit.

 38 / 312

5.6 Low-power modes

By default, the micro-controller is in Run mode after a system or a power Reset. Several low-power

modes are available to save power when the CPU does not need to be kept running. It is up to the

user to select the mode that gives the best compromise between low-power consumption, short

startup time and available wakeup sources.

The AG32VF devices feature three low-power modes:

(1) Sleep mode (CPU clock off, all peripherals including core peripherals are kept running)

(2) Stop mode (all clocks are stopped)

(3) Standby mode (1.2V domain powered-off)

In addition, the power consumption in Run mode can be reduce by one of the following means:

(1) Slowing down the system clocks.

(2) Gating the clocks to the APB and AHB peripherals when they are unused.

5.6.1 Slowing down system clocks

In Run mode the speed of the system clocks can be reduced. And also slow down peripherals before

entering Sleep mode.

5.6.2 Peripheral clock gating

In Run mode, the clocks for individual peripherals and memories can be stopped at any time to reduce

power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled prior to

executing the WFI or WFE instructions.

 39 / 312

5.6.3 Sleep mode

Entering Sleep mode

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for Event)

instructions. Two options are available to select the Sleep mode entry mechanism, depending on the

SLEEPONEXIT bit in the System Control register:

(1) Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon as WFI or

WFE instruction is executed.

(2) Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as it exits the

lowest priority ISR.

In the Sleep mode, all I/O pins keep the same state as in the Run mode.

Exiting Sleep mode

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by the

nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode. If the WFE

instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as an event occurs. The

wakeup event can be generated either by:

(1) enabling an interrupt in the peripheral control register but not in the NVIC, and enabling the

SEVONPEND bit in the System Control register. When the MCU resumes from WFE, the peripheral

interrupt pending bit and the peripheral NVIC IRQ channel pending bit (in the NVIC interrupt clear

pending register) have to be cleared.

(2) or configuring an external or internal EXTI line in event mode. When the CPU resumes from WFE,

it is not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel pending bit as

the pending bit corresponding to the event line is not set. This mode offers the lowest wakeup time as

no time is wasted in interrupt entry/exit.

Table 1. Sleep-now

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to : Interrupt and exception vectors

If WFE was used for entry

Wakeup event: Refer to : Wakeup event management

Wakeup latency None

Table 2. Sleep-on-exit

Sleep-on-exit Description

Mode entry WFI (wait for interrupt) while:

 40 / 312

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

Refer to the System Control register.

Mode exit Interrupt: refer to: Interrupt and exception vectors.

Wakeup latency None

5.6.4 Stop mode

The Stop mode is based on the MCU deep-sleep mode combined with peripheral clock gating.

In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI and the HSE oscillators are

disabled. SRAM and register contents are preserved.

In the Stop mode, all I/O pins keep the same state as in the Run mode.

 Entering Stop mode

Refer to Table 3 for details on how to enter the Stop mode.

If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory access is

finished.

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB access is

finished.

In Stop mode, the following features can be selected by programming individual control bits:

(1) Independent watchdog (IWDG): the IWDG is started by writing to its enable register or by hardware

option. Once started it cannot be stopped except by a Reset.

(2) Real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain control register

(RCC_BDCR).

(3) External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the Backup

domain control register (RCC_BDCR).

The ADC or DAC can also consume power during the Stop mode, unless they are disabled before

entering it.

 Exiting Stop mode

Refer to Table 3 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is selected

as system clock.

Table 3. Stop mode

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP bit in System Control register

– Clear PDDS bit in Power Control register (PWR_CR)

 41 / 312

Note: To enter Stop mode, all EXTI Line pending bits (in Pending register

(EXTI_PR)), all peripheral interrupt pending bits, and RTC Alarm flag must

be reset. Otherwise, the Stop mode entry procedure is ignored and

program execution continues.

Mode exit

If WFI was used for entry:

Any EXTI Line configured in Interrupt mode (the corresponding EXTI

Interrupt vector must be enabled in the NVIC). Refer to:

Interrupt and exception vectors.

If WFE was used for entry:

Any EXTI Line configured in event mode. Refer to:

Wakeup event management

Wakeup latency HSI RC wakeup time

5.6.5 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the deep-sleep

mode, with the voltage regulator disabled. The 1.2V domain is consequently powered off. The PLL,

the HSI oscillator and the HSE oscillator are also switched off. SRAM and register contents are lost

except for registers in the Backup domain and Standby circuitry.

 Entering Standby mode

Refer to Table 4 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control bits:

(1) Independent watchdog (IWDG): the IWDG is started by writing to its enable register or by hardware

option. Once started it cannot be stopped except by a reset.

(2) Real-time clock (RTC): this is configured by the RTCEN bit in the Backup domain control register

(RCC_BDCR).

(3) External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the Backup

domain control register (RCC_BDCR)

 Exiting Standby mode

The micro-controller exits the Standby mode when an external reset (NRST pin), an IWDG reset, a

rising edge or falling edge on the WKUP pin or the rising edge of an RTC alarm occurs. All registers

are reset after wakeup from Standby.

After waking up from Standby mode, program execution restarts in the same way as after a Reset.

The SBF status flag in the Power control/status register (PWR_CSR) indicates that the MCU was in

Standby mode.

Refer to Table 4 for more details on how to exit Standby mode.

Table 4. Standby mode

Stop mode Description

 42 / 312

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP in System Control register

– Set PDDS bit in Power Control register (PWR_CR)

– Clear WUF bit in Power Control/Status register (PWR_CSR)

– No interrupt (for WFI) or event (for WFI) is pending

Mode exit
WKUP pin rising edge, RTC alarm event’s rising edge, external Reset in

NRST pin, IWDG Reset.

Wakeup latency Reset phase

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except:

(1) Reset pin (still available)

(2) CLKRTCOUT pin if configured for calibration out

(3) WKUP pin, if enabled

5.6.6 Auto-wakeup (AWU) from low-power mode

The RTC can be used to wakeup the MCU from low-power mode without depending on an external

interrupt (Auto-wakeup mode). The RTC provides a programmable time base for waking up from Stop

or Standby mode at regular intervals. For this purpose, two of the three alternative RTC clock sources

can be selected by programming the RTCSEL[1:0] bits in the Backup domain control register

(RCC_BDCR):

(1) Low-power 32.768 kHz external crystal oscillator (LSE OSC).

This clock source provides a precise time base with very low-power consumption.

(2) Low-power internal RC Oscillator (LSI RC)

This clock source has the advantage of saving the cost of the 32.768 kHz crystal.

 43 / 312

6 Interrupt Controller

The AG32 device embed a nested vectored interrupt controller able to manage 16 priority levels, and

handle up to 44 maskable interrupt channels plus the 16 interrupt lines of the RISC-V core.

6.1 Local interrupts

4 local interrupts (LOCAL_INT0-3) are connected directly to the core and have lower latencies. They

have fixed priorities.

6.2 External interrupts

External interrupts are routed through the Platform-Level Interrupt Controller (PLIC). They have

programmable priority levels and a threshold. The interrupt numbers are listed below:

Interrupt Name Interrupt Number Comment

FLASH 1

RTC 2

FCB0 3

WATCHDOG0 4

SPI0 5

SPI1 6

GPIO0 7

GPIO1 8

GPIO2 9

GPIO3 10

GPIO4 11

GPIO5 12

GPIO6 13

 44 / 312

GPIO7 14

GPIO8 15

GPIO9 16

TIMER0 17

TIMER1 18

GPTIMER0 19

GPTIMER1 20

GPTIMER2 21

GPTIMER3 22

GPTIMER4 23

UART0 24

UART1 25

UART2 26

UART3 27

UART4 28

CAN0 29

I2C0 30

I2C1 31

DMAC0_INTR 32 DMA combined interrupt

DMAC0_INTTC 33 DMA terminal count interrupt

DMAC0_INTERR 34 DMA error interrupt

USB0 35

MAC0 36

EXT_INT0 37

EXT_INT1 38

EXT_INT2 39

EXT_INT3 40

EXT_INT4 41

EXT_INT5 42

EXT_INT6 43

 45 / 312

EXT_INT7 44

6.3 Overall priority

From highest priority to lowest:

◼ LOCAL_INT3

◼ LOCAL_INT2

◼ LOCAL_INT1

◼ LOCAL_INT0

◼ External interrupts from PLIC

◼ Machine software interrupt

◼ Machine timer interrupt

6.4 Interrupt enable

 The machine interrupt enable (MIE) bit of the RISC-V machine status register (mstatus) must

be set as a global enable for all interrupts.

 Corresponding bits in the RISC-V machine interrupt enable register (mie) must be set for

each type of interrupt to work:

◼ The machine external interrupt enable (MEIE) bit for external interrupts.

◼ The machine software interrupt enable (MSIE) bit for machine software interrupt.

◼ The machine timer interrupt enable (MTIE) bit for machine timer interrupt.

◼ Bits 16-19 for LOCAL_INT0-3, respectively.

6.5 Interrupt registers

⚫ Machine software interrupt pending (MSIP)

 Address: 0x2000000

 Bit 0:

◼ Write 1 to trigger machine software interrupt

◼ Write 0 to clear the pending status

⚫ Machine timer compare low (MTIMECMP_LO)

 Address: 0x2004000

 Bit [31:0]: Lower 32 bits of the machine timer compare register

⚫ Machine timer compare high (MTIMECMP_HI)

 Address: 0x2004004

 Bit [31:0]: Higher 32 bits of the machine timer compare register

 46 / 312

⚫ Machine timer low (MTIME_LO)

 Address: 0x200bFF8

 Bit [31:0] Lower 32 bits of the machine timer register

⚫ Machine timer high (MTIME_HI)

 Address: 0x200bFFC

 Bit [31:0] Higher 32 bits of the machine timer register

⚫ External interrupt priority (PRIORITY)

 Address: 0xC000000 + (interrupt number * 4)

 Each priority registers holds the priority level of the corresponding interrupt

 The valid range of priority level is from 0 (lowest, interrupt disabled) to 15 (highest).

⚫ External interrupt pending (PENDING)

 Address: 0xC001000

 Each interrupt has 1 bit pending status. The bit offset is decided by the interrupt number.

 The bit is set automatically by hardware when the corresponding interrupt is triggered and is

cleared automatically by reading the CLAIM_COMPLETE register when the corresponding

interrupt has the highest priority.

⚫ External interrupt enable (ENABLE)

 Address: 0xC002000

 Each interrupt has 1 bit enable. The bit offset is decided by the interrupt number.

 Each bit can be set or cleared by software.

⚫ External interrupt threshold (THRESHOLD)

 Address: 0xC200000

 Bit [3:0]: Can be set by software to determine the external interrupt threshold. Only those

external interrupts that have higher priority than THRESHOLD will trigger an interrupt to the

CPU core.

⚫ External interrupt claim and complete (CLAIM_COMPLETE)

 Address: 0xC200004

 Reading this register will return the highest priority pending interrupt number and clear the

corresponding pending bit (only for enabled interrupts with above threshold priority). Since

Interrupts are numbered starting from 1, a read value of 0 means no active interrupt. A write

to this register will complete the interrupt and make the written interrupt number ready to

respond again

 47 / 312

7 Dual Timer(Basic Timers)

7.1 Introduction

The Dual-Timer module consists of two programmable 32/16-bit down counters that can generate

interrupts on reaching zero.

• Two 32/16-bit down counters with free-running, periodic and one-shot modes.

• Common clock with separate clock-enables for each timer gives flexible control of the timer intervals.

• Interrupt output generation on timer count reaching zero.

• Identification registers that uniquely identify the Dual-Timer module. These can be used by software

to automatically configure itself.

Figure below shows a simplified block diagram of the module.

 48 / 312

7.2 Functional Overview

7.2.1 Overview

The Dual-Timer module consists of two identical programmable Free Running Counters (FRCs) that can

be configured for 32-bit or 16-bit operation and one of three timer modes;

• free-running

• periodic

• one-shot.

The FRCs operate from a common timer clock, TIMCLK with each FRC having its own clock enable input,

TIMCLKEN1 and TIMCLKEN2. Each FRC also has a prescaler that can divide down the enabled

TIMCLK rate by 1, 16, or 256. This enables the count rate for each FRC to be controlled independently

using their individual clock enables and prescalers.

TIMCLK can be equal to or be a submultiple of the PCLK frequency. However, the positive edges of

TIMCLK and PCLK must be synchronous and balanced.

The operation of each Timer module is identical. A Timer module can be programmed for a 32-bit or 16-

bit counter size and one of three timer modes using the Control Register. The three timer modes are:

Free-running The counter operates continuously and wraps around to its maximum value each time

that it reaches zero.

Periodic The counter operates continuously by reloading from the Load Register each time that

the counter reaches zero.

One-shot The counter is loaded with a new value by writing to the Load Register. The counter

decrements to zero and then halts until it is reprogrammed.

The timer count is loaded by writing to the Load Register and, if enabled, the timer count decrements at

a rate determined by TIMCLK, TIMCLKENX, and the prescaler setting. When the Timer counter is

already running, writing to the Load Register causes the counter to immediately restart from the new

value.

An alternative way of loading the Timer count is by writing to the Background Load Register. This has no

immediate effect on the current count but the counter continues to decrement. On reaching zero, the

Timer count is reloaded from the new load value if it is in periodic mode.

When the Timer count reaches zero an interrupt is generated. The interrupt is cleared by writing to the

Interrupt Clear Register. The external interrupt signals can be masked off by the Interrupt Mask Registers.

The current counter value can be read from the Value Register at any time.

 49 / 312

7.2.2 Functional description

The Dual-Timer module block diagram is shown in Figure below.

7.2.2.1 AMBA APB Interface

The AMBA APB slave interface generates read and write decodes for accesses to all registers in the

Dual-Timer module.

7.2.2.2 Free-running counter blocks

The two FRCs are identical and contain the 32/16-bit down counter and interrupt functionality. The counter

logic is clocked independently of PCLK by TIMCLK in conjunction with a clock enable TIMCLKENX

although there are constraints on the relationship between PCLK and TIMCLK.

Although the two FRCs are driven from a common clock, TIMCLK, each timer count rate can be

independently controlled by their respective clock enables, TIMCLKEN1 and TIMCLKEN2. The prescaler

in each FRC gives a further independent control of the count rate of each FRC.

 50 / 312

7.2.2.3 Interface reset

The Dual-Timer module is reset by the global reset signal PRESETn.

PRESETn can be asserted asynchronously to PCLK but must be deasserted synchronously to the rising

edge of PCLK. PRESETn is used to reset the state of the Dual-Timer module registers. The Dual-Timer

module requires that PRESETn is asserted LOW for at least one period of PCLK. In summary, the Timer

is initialized to the following state after reset:

• the counter is disabled

• free-running mode is selected

• 16-bit counter mode is selected

• prescalers are set to divide by 1

• interrupts are cleared but enabled

• the Load Register is set to zero

• the counter Value is set to 0xFFFFFFFF.

7.2.2.4 Clock signals and clock enables

The Dual-Timer module uses two input clocks:

• PCLK is used to time all APB accesses to the Dual-Timer module registers.

• TIMCLK is qualified by the clock enables, TIMCLKEN1 and TIMCLKEN2, and used to clock the

prescalers, counters and their associated interrupt logic. This qualified TIMCLK rate is referred to as the

effective timer clock rate. The prescaler counter only decrements on a rising edge of TIMCLK when

TIMCLKENX is HIGH. The Timer counter only decrements on a rising edge of TIMCLK when

TIMCLKENX is HIGH and the prescaler counter generates an enable.

The relationship between TIMCLK and PCLK must observe the following constraints:

• the rising edges of TIMCLK must be synchronous and balanced with a rising edge of PCLK

• TIMCLK frequency cannot be greater than PCLK frequency.

TIMCLK, TIMCLKEN1, and TIMCLKEN2 can be used in the ways described in the following sections:

• TIMCLK equals PCLK and TIMCLKENX equals one

• TIMCLK equals PCLK and TIMCLKENX is pulsed

• TIMCLK is less than PCLK and TIMCLKENX equals

• TIMCLK is less than PCLK and TIMCLKENX is pulsed.

Note:

Unless otherwise stated these examples use a prescale setting of divide by 1. The examples apply to

either Timer1 or Timer2 in the module. TIMCLKENX refers to either TIMCLKEN1 or TIMCLKEN2.

TIMCLK equals PCLK and TIMCLKENX equals one

Figure below shows the case where TIMCLK is identical to PCLK and TIMCLKENX is permanently

enabled. In this case, the counter is decremented on every TIMCLK edge.

 51 / 312

TIMCLK equals PCLK and TIMCLKENX is pulsed

Figure below shows the case where TIMCLK is identical to PCLK but TIMCLKENX only enables every

second TIMCLK edge. In this case, the counter is decremented on every second TIMCLK rising edge.

TIMCLK is less than PCLK and TIMCLKENX equals one

Figure below shows the case where TIMCLK frequency is a submultiple of the PCLK frequency but the

rising edges of TIMCLK are synchronous and balanced with PCLK edges. TIMCLKENX is permanently

enabled. In this case, the counter is decremented on every TIMCLK rising edge.

TIMCLK is less than PCLK and TIMCLKENX is pulsed

Figure below shows the case where TIMCLK frequency is a submultiple of the PCLK frequency but the

rising edges of TIMCLK are synchronous and balanced with PCLK edges. TIMCLKENX only enables

every second TIMCLK edge. In this case, the counter is decremented on every second TIMCLK rising

edge.

 52 / 312

7.2.2.5 Prescaler operation

The prescaler generates a timer clock enable that is used to enable the decrementing of the timer counter

at one of the following rates:

• the effective timer clock rate where TIMCLK is qualified by TIMCLKENX

• the effective timer clock rate divided by 16

• the effective timer clock rate divided by 256.

Figure below shows how the timer clock enable is generated by the prescaler

Figure below shows an example of how the prescaler generates the timer clock enable for a prescaler

setting of divide by 16.

7.2.2.6 Timer operation

After the initial application and release of PRESETn, the Timer state is initialized as follows:

• the counter is disabled, TimerEn=0

• free-running mode is selected, TimerMode=0 and OneShot=0

• 16-bit counter mode is selected, TimerSize=0

• prescalers are set to divide by 1, TimerPre=0x0

• interrupts are cleared but enabled, IntEnable=1

• the Load Register is set to zero

• the counter Value is set to 0xFFFFFFFF.

The operation in each of the three Timer modes is described in:

 53 / 312

• Free-running mode

• Periodic mode

• One-shot mode

Free-running mode

Free-running mode is selected by setting the following bits in the TimerControl Register:

• set TimerMode bit to 1

• set OneShot bit to 0.

The 32-bit or 16-bit counter operation is selected by setting the TimerSize bit appropriately in the

TimerControl Register.

On reset the timer value is initialized to 0xFFFFFFFF and if the counter is enabled then the count

decrements by one for each TIMCLK positive edge when TIMCLKENX is HIGH and the prescaler

generates an enable pulse. Alternatively, a new initial counter value can be loaded by writing to the

TimerXLoad Register and the counter starts decrementing from this value if the counter is enabled.

In 32-bit mode, when the count reaches zero, 0x00000000, an interrupt is generated and the counter

wraps around to 0xFFFFFFFF irrespective of the value in the TimerXLoad Register. The counter starts

to decrement again and this whole cycle repeats for as long as the counter is enabled.

In 16-bit mode, only the least significant 16-bits of the counter are decremented and when the count

reaches 0x0000, an interrupt is generated and the counter wraps round to 0xFFFF irrespective of the

value in the TimerXLoad Register.

If the counter is disabled by clearing the TimerEn bit in the TimerControl Register, the counter halts and

holds its current value. If the counter is re-enabled again then the counter continues decrementing from

the current value.

The counter value can be read at any time by reading the TimerXValue Register.

Periodic mode

Periodic mode is selected by setting the following bits in the TimerControl Register:

• set TimerMode bit to 0

• set OneShot bit to 0.

The 32-bit or 16-bit counter operation is selected by setting the TimerSize bit appropriately in the

TimerControl Register.

An initial counter value can be loaded by writing to the TimerXLoad Register and the counter starts

decrementing from this value if the counter is enabled.

In 32-bit mode, the full 32 bits of the counter are decremented and when the count reaches zero,

0x00000000, an interrupt is generated and the counter reloads with the value in the TimerXLoad Register.

The counter starts to decrement again and this whole cycle repeats for as long as the counter is enabled.

In 16-bit mode, only the least significant 16-bits of the counter are decremented and when the count

reaches 0x0000, an interrupt is generated and the counter reloads with the value in the TimerXLoad

Register. The counter starts to decrement again and this whole cycle repeats for as long as the counter

is enabled.

If a new value is loaded into the counter by writing to the TimerXLoad Register while the counter is running

then the counter values changes to the new load value on the next TIMCLK when TIMCLKENX is HIGH.

If a new value is written to the Background Load Register, TimerXBGLoad, while the counter is running

 54 / 312

then the TimerXLoad Register is also updated with the same load value but the counter continues to

decrement to zero. When it reaches zero, the counter reloads with the new load value and uses this new

load value for each subsequent reload for as long as the timer is enabled in periodic mode.

If the counter is disabled by clearing the TimerEn bit in the TimerControl Register, the counter halts and

holds its current value. If the counter is re-enabled again then the counter continues decrementing from

the current value.

One-shot mode

One-shot timer mode is selected by setting the OneShot bit in the TimerControl Register to 1. The

TimerMode bit has no effect in one-shot mode.

The 32-bit or 16-bit counter operation is selected by setting the TimerSize bit appropriately in the

TimerControl Register.

To initiate a count down sequence in one-shot mode, write a new load value to the TimerXLoad Register

and the counter starts decrementing from this value if enabled.

In 32-bit mode, the full 32-bits of the counter are decremented and when the count reaches zero,

0x00000000, an interrupt is generated and the counter halts.

In 16-bit mode, only the least significant 16-bits of the counter are decremented and when the count

reaches 0x0000, an interrupt is generated and the counter halts.

One-shot mode can be retriggered by writing a new value to the TimerXLoad Register. The counter values

changes to the new load value on the next TIMCLK when TIMCLKENX is HIGH.

7.2.2.7 Interrupt behavior

An interrupt is generated if IntEnable=1 and the counter reaches 0x00000000 in 32-bit mode or

0xXXXX0000 in 16-bit mode. The most significant 16 bits of the counter are ignored in 16-bit mode.

When the Timer module raises an interrupt by asserting TIMINTX, the timing of this signal is generated

from a rising clock edge of TIMCLK enabled by TIMCLKENX. When the interrupt is cleared by a write to

the Interrupt Clear Register, TimerXIntClr, the TIMINTX signal is deasserted immediately in the PCLK

domain rather than waiting for the next enabled TIMCLK rising edge.

Figure below illustrates an example of the timing for an interrupt being raised and cleared.

The interrupt signals generated by the Timer module, TIMINT1 and TIMINT2, can be masked by setting

the IntEnable bit to 0 in the TimerXControl Register. The raw interrupt status prior to masking can be read

 55 / 312

from the TimerXRIS Register and the masked interrupt status can be read from the TimerXMIS Register.

Figure below shows how the raw and masked interrupt status is accessed.

7.2.2.8 Programming the timer interval

Table below shows the equations that are used to calculate the timer interval generated for each timer

mode in terms of:

• TIMCLKFREQ is the frequency of TIMCLK.

• TIMCLKENXDIV is the effective division of the TIMCLK rate by the clock enable, TIMCLKENX. For

example, if TIMCLKENX enables every fourth TIMCLK edge then TIMCLKENXDIV=4.

• PRESCALEDIV is the prescaler division factor of 1, 16, or 256. Derived from Control Register bits[3:2].

• TimerXLoad is the value in the Load Register.

For example, the TimerXLoad value required for a 1ms periodic interval with TIMCLK=100MHz,

TIMCLKENXDIV=1, and PRESCALEDIV=1 is calculated as shown in Example below.

 56 / 312

Note:

The minimum valid value for TimerXLoad is 1. If TimerXload is set to 0 then an interrupt is generated

immediately.

7.3 Programmer’s Model

7.3.1 ummary of registers

Address Type Width Reset value Name Description

Base+0x00 Read/write 32 0x00000000 Timer1Load See Load Register, TimerXLoad on

Chapter 3.2.1

Base+0x04 Read 32 0xFFFFFFFF Timer1Value See Current Value Register,

TimerXValue on Chapter 3.2.2

Base+0x08 Read/write 8 0x20 Timer1Control See Control Register, TimerXControl

on Chapter 3.2.3

Base+0x0C Write - - Timer1IntClr See Interrupt Clear Register.

TimerXIntClr on Chapter 3.2.4

Base+0x10 Read 1 0x0 Timer1RIS See Raw Interrupt Status Register,

TimerXRIS on Chapter 3.2.5

Base+0x14 Read 1 0x0 Timer1MIS See Masked Interrupt Status Register,

TimerXMIS on Chapter 3.2.6

Base+0x18 Read/write 32 0x00000000 Timer1BGLoad See Background Load Register,

TimerXBGLoad on Chapter 3.2.7

Base+0x20 Read/write 32 0x00000000 Timer2Load See Load Register, TimerXLoad on

Chapter 3.2.1

Base+0x24 Read 32 0xFFFFFFFF Timer2Value See Current Value Register,

TimerXValue on Chapter 3.2.2

Base+0x28 Read/write 8 0x20 Timer2Control See Control Register, TimerXControl

on Chapter 3.2.3

Base+0x2C Write - - Timer2IntClr See Interrupt Clear Register.

TimerXIntClr on Chapter 3.2.4

 57 / 312

Base+0x30 Read 1 0x0 Timer2RIS See Raw Interrupt Status Register,

TimerXRIS on Chapter 3.2.5

Base+0x34 Read 1 0x0 Timer2MIS See Masked Interrupt Status Register,

TimerXMIS on Chapter 3.2.6

Base+0x38 Read/write 32 0x00000000 Timer2BGLoad See Background Load Register,

TimerXBGLoad on Chapter 3.2.7

7.4 Register descriptions

7.4.1.1 Load Register, TimerXLoad

The TimerXLoad Register is a 32-bit register that contains the value from which the counter is to

decrement. This is the value used to reload the counter when Periodic mode is enabled, and the current

count reaches zero.

When this register is written to directly, the current count immediately resets to the new value at the next

rising edge of TIMCLK which is enabled by TIMCLKENX.

Note:

The minimum valid value for TimerXLoad is 1. If TimerXload is set to 0 then an interrupt is generated

immediately

The value in this register is also over-written if the TimerXBGLoad Register is written to, but the current

count is not immediately affected.

If values are written to both the TimerXLoad and TimerXBGLoad Registers before an enabled rising edge

on TIMCLK, then on the next enabled TIMCLK edge the value written to the TimerXLoad value replaces

the current count value. After that, each time the counter reaches zero the current count value resets to

the value written to TimerXBGLoad.

Reading from the TimerXLoad Register at any time after the two writes have occurred retrieves the value

written to TimerXBGLoad. That is, the value read from TimerXLoad is always the value that takes effect

for Periodic mode after the next time the counter reaches zero.

7.4.1.2 Current Value Register, TimerXValue

The TimerXValue Register is a 32-bit read-only register that gives the current value of the decrementing

counter.

After a load operation has taken place by writing a new load value to TimerXLoad, the TimerXValue

register reflects the new load value immediately in the PCLK clock domain without waiting for the next

TIMCLK edge qualified by TIMCLKENX.

Note:

 58 / 312

The most significant 16 bits of the 32-bit TimerXValue Register are not automatically set to 0 when in 16-

bit timer mode. If the timer is in 16-bit mode then the most significant 16 bits of the TimerXValue Register

might have a non-zero value if the timer was previously in 32-bit mode and a write to the TimerXLoad

Register has not occurred since the change to 16-bit mode.

7.4.1.3 Control Register, TimerXControl

The bit assignments of the Control Register are listed in Table below.

Caution:

The counter mode, size or prescale settings must not be changed while the Timer module is running. If a

new configuration is required then the Timer module must be disabled and then the new configuration

values written to the appropriate registers. The Timer module must then be re-enabled after the

configuration changes are complete. Failure to follow this procedure can result in unpredictable behavior

of the device.

 59 / 312

7.4.1.4 Interrupt Clear Register. TimerXIntClr

Any write to this register, clears the interrupt output from the counter.

7.4.1.5 Raw Interrupt Status Register, TimerXRIS

The TimerXRIS Register indicates the raw interrupt status from the counter. The bit assignment is listed

in Table below.

7.4.1.6 Masked Interrupt Status Register, TimerXMIS

The TimerXMIS Register indicates the masked interrupt status from the counter. This value is the logical

AND of the raw interrupt status with the Timer Interrupt Enable bit from the control register, and is the

same value which is passed to the interrupt output pin, TIMINTX. The bit assignment is listed in Table

below.

7.4.1.7 Background Load Register, TimerXBGLoad

The TimerXBGLoad Register is a 32-bit register that contains the value from which the counter is to

decrement. This is the value used to reload the counter when Periodic mode is enabled, and the current

count reaches zero.

 60 / 312

This provides an alternative method of accessing the TimerXLoad Register. The difference is that writes

to TimerXBGLoad do not cause the counter to restart from the new value immediately.

Reading from this register returns the same value returned from TimerXLoad. See Load Register,

TimerXLoad on page before for more information.

 61 / 312

8 Advanced-control timers

8.1 Introduction

The advanced-control timers consist of a 32-bit auto-reload counter driven by a

programmable prescaler.

It may be used for a variety of purposes, including measuring the pulse lengths of input

signals (input capture) or generating output waveforms (output compare, PWM,

complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several

milliseconds using the timer prescaler and the RCC clock controller prescalers.

The advanced-control and general-purpose timers are completely independent, and do not

share any resources.

8.2 Main features

Timer features include:

• 32-bit up, down, up/down auto-reload counter.

• 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock

frequency either by any factor between 1 and 65536.

• Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge and Center-aligned Mode)

– One-pulse mode output

• Complementary outputs with programmable dead-time

• Synchronization circuit to control the timer with external signals and to interconnect

several timers together.

• Repetition counter to update the timer registers only after a given number of cycles

of the counter.

• Break input to put the timer’s output signals in reset state or in a known state.

 Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or

internal/external trigger)

 62 / 312

– Trigger event (counter start, stop, initialization or count by internal/external

trigger)

– Input capture

– Output compare

– Break input

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning

purposes

• Trigger input for external clock or cycle-by-cycle current management

Figure 1. Advanced-control timer block diagram

 63 / 312

8.3 Functional description

8.3.1 Time-base unit

The main block of the programmable advanced-control timer is a 16-bit counter with its

related auto-reload register. The counter can count up, down or both up and down. The

counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by

software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TCNT)

• Prescaler register (PSC)

• Auto-reload register (ARR)

• Repetition counter register (RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register

accesses the preload register. The content of the preload register are transferred into the

shadow register permanently or at each update event (UEV), depending on the auto-reload

preload enable bit (ARPE) in CR1 register. The update event is sent when the counter

reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the

CR1 register. It can also be generated by software. The generation of the update event is

described in detailed for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the

counter enable bit (CEN) in CR1 register is set (refer also to the slave mode controller

description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the CR1

register.

 Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536.

It is based on a 16-bit counter controlled through a 16-bit register (in the PSC register). It

can be changed on the fly as this control register is buffered. The new prescaler ratio is

taken into account at the next update event.

Figure 2 and Figure 3 give some examples of the counter behavior when the prescaler ratio

is changed on the fly:

 64 / 312

Figure 2. Counter timing diagram with prescaler division change from 1 to 2

Figure 3. Counter timing diagram with prescaler division change from 1 to 4

 65 / 312

8.3.2 Counter modes

 Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the ARR

register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is

repeated for the number of times programmed in the repetition counter register plus one

(RCR+1). Else the update event is generated at each counter overflow.

Setting the UG bit in the EGR register (by software or by using the slave mode controller)

also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the CR1 register.

This is to avoid updating the shadow registers while writing new values in the preload

registers. Then no update event occurs until the UDIS bit has been written to 0. However,

the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate

does not change). In addition, if the URS bit (update request selection) in CR1 register is

set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus

no interrupt or DMA request is sent). This is to avoid generating both update and capture

interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in

SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of RCR register,

• The auto-reload shadow register is updated with the preload value (ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the PSC

register).

The following figures show some examples of the counter behavior for different clock

frequencies when ARR=0x36.

 66 / 312

Figure 4. Counter timing diagram, internal clock divided by 1

07 06 05 04 03 02 00 33 36 35 34 31

MS31078

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

01 32

 67 / 312

Figure 5. Counter timing diagram, internal clock divided by 2

Figure 6. Counter timing diagram, internal clock divided by 4

Figure 7. Counter timing diagram, internal clock divided by N

MS31079V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0035 0034 0001 0000 0036 0003 0002

MS31080V3

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

0000 0001 0036 0035

MS31081V3

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

00 1 F 20

 68 / 312

Figure 8. Counter timing diagram, update event when ARPE=0 (ARR not preloaded)

Figure 9. Counter timing diagram, update event when ARPE=1 (ARR preloaded)

 69 / 312

 Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the ARR

register) down to 0, then restarts from the auto-reload value and generates a counter

underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting

is repeated for the number of times programmed in the repetition counter register plus one

(RCR+1). Else the update event is generated at each counter underflow.

Setting the UG bit in the EGR register (by software or by using the slave mode controller)

also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in CR1 register.

This is to avoid updating the shadow registers while writing new values in the preload

registers. Then no update event occurs until UDIS bit has been written to 0. However, the

counter restarts from the current auto-reload value, whereas the counter of the prescaler

restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in CR1 register is set, setting the

UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt

or DMA request is sent). This is to avoid generating both update and capture interrupts

when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in

SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the PSC

register)

• The auto-reload active register is updated with the preload value (content of the ARR

register). Note that the auto-reload is updated before the counter is reloaded, so that

the next period is the expected one

The following figures show some examples of the counter behavior for different clock

frequencies when ARR=0x36.

 70 / 312

Figure 10. Counter timing diagram, internal clock divided by 1

36 34 33 31 32 F 2 30 04 03 00 01 02 05

MS31184V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow
() cnt_udf

Update interrupt flag
 (UIF)

35

 71 / 312

Figure 11. Counter timing diagram, internal clock divided by 2

MS31185V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0002 0001 0000 0036 0035 0034 0033

 72 / 312

Figure 12. Counter timing diagram, internal clock divided by 4

Figure 13. Counter timing diagram, internal clock divided by N

MS40510V1

0036 0035 0001 0000

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag (UIF)

CNT_EN

00 1 F 20

MS31187V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

36

 73 / 312

Figure 14. Counter timing diagram, update event when repetition counter is not used

 Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the

ARR register) – 1, generates a counter overflow event, then counts from the autoreload

value down to 1 and generates a counter underflow event. Then it restarts counting from

0.

Center-aligned mode is active when the CMS bits in CR1 register are not equal to '00'. The

Output compare interrupt flag of channels configured in output is set when: the counter

counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned

mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS =

"11").

In this mode, the DIR direction bit in the CR1 register cannot be written. It is updated by

hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter

underflow or by setting the UG bit in the EGR register (by software or by using the slave

mode controller) also generates an update event. In this case, the counter restarts counting

from 0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in the CR1

register. This is to avoid updating the shadow registers while writing new values in the

preload registers. Then no update event occurs until UDIS bit has been written to 0.

 74 / 312

However, the counter continues counting up and down, based on the current auto-reload

value.

In addition, if the URS bit (update request selection) in CR1 register is set, setting the

UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt

or DMA request is sent). This is to avoid generating both update and capture interrupts

when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in

SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the PSC

register)

• The auto-reload active register is updated with the preload value (content of the ARR

register). Note that if the update source is a counter overflow, the autoreload is

updated before the counter is reloaded, so that the next period is the expected one

(the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock

frequencies.

Figure15. Counter timing diagram, internal clock divided by 1, ARR = 0x6

MS31189V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CEN

Counter underflow

00 02 03 04 06 05 01 02 03 04 01 05 04 03

 75 / 312

Figure16. Counter timing diagram, internal clock divided by 2

Figure17. Counter timing diagram, internal clock divided by 4, ARR=0x36

MS31190V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Update interrupt flag (UIF)

CNT_EN

Counter underflow

0003 0002 0001 0000 0001 0002 0003

Center-aligned mode 2 or 3 is used with an UIF on overflow. 1.

0035 0034

MS31191V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CNT_EN

0036 0035

 76 / 312

Figure 18. Counter timing diagram, internal clock divided by N

MS31192V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Update interrupt flag (UIF)

Counter underflow

00 1 F 20 01

 77 / 312

 Figure 19. Counter timing diagram, update event with ARPE=1 (counter underflow)

Figure 20. Counter timing diagram, Update event with ARPE=1 (counter overflow)

MS31193V3

CK_PSC

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

CEN

Auto-reload preload register

Write a new value in ARR

Auto-reload active register

FD 36

06 07 00 02 03 04 05 01 06 05 04 03 02 01

36 FD

MS31194V2

FD 36

CK_PSC

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag (UIF)

33 34 2 F 36 32 31 30 FB FC F8 F9 FA F7 35

CEN

Auto-reload preload register

Write a new value in ARR

Auto-reload active register FD 36

 78 / 312

8.3.3 Repetition counter

Time-base unit describes how the update event (UEV) is generated with respect to the

counter overflows/underflows. It is actually generated only when the repetition counter has

reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers

(ARR auto-reload register, PSC prescaler register, but also CCRx capture/compare

registers in compare mode) every N+1 counter overflows or underflows, where N is the

value in the RCR repetition counter register.

The repetition counter is decremented:

• At each counter overflow in upcounting mode,

• At each counter underflow in downcounting mode,

• At each counter overflow and at each counter underflow in center-aligned mode.

Although this limits the maximum number of repetition to 128 PWM cycles, it makes

it possible to update the duty cycle twice per PWM period. When refreshing compare

registers only once per PWM period in center-aligned mode, maximum resolution is

2xTck, due to the symmetry of the pattern.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined

by the RCR register value (refer to Figure 21). When the update event is generated by

software (by setting the UG bit in EGR register) or by hardware through the slave mode

controller, it occurs immediately whatever the value of the repetition counter is and the

repetition counter is reloaded with the content of the RCR register.

In center-aligned mode, for odd values of RCR, the update event occurs either on the

overflow or on the underflow depending on when the RCR register was written and when

the counter was started. If the RCR was written before starting the counter, the UEV occurs

on the overflow. If the RCR was written after starting the counter, the UEV occurs on the

underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or

underflow event depending on when RCR was written.

 79 / 312

Figure 21. Update rate examples depending on mode and RCR register settings

 80 / 312

8.3.4 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin

• External clock mode2: external trigger input ETR

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for

example, the user can configure Timer 1 to act as a prescaler for Timer 2. Refer to

Using one timer as prescaler for another timer for more details.

 Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the CR1 register)

and UG bits (in the EGR register) are actual control bits and can be changed only by

software (except UG which remains cleared automatically). As soon as the CEN bit is

written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 22shows the behavior of the control circuit and the upcounter in normal mode,

without prescaler.

Figure 22. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the SMCR register. The counter can count at each

rising or falling edge on a selected input.

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 07 32 33 34 3536 31 01

 81 / 312

Figure 23. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2

input, use the following procedure:

1. Configure channel 1 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in

the CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the CCMR1 register

(if no filter is needed, keep IC2F=0000).

3. Select rising edge polarity by writing CC2P=0 in the CCER register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the SMCR

register.

5. Select TI2 as the trigger input source by writing TS=110 in the SMCR register.

6. Enable the counter by writing CEN=1 in the CR1 register.

Note: The capture prescaler is not used for triggering, so the user does not need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the

resynchronization circuit on TI2 input.

External clock

mode 1

Internal clock

mode

TRGI

CK_INT

CK_PSC

SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

SMCR

TS[2:0]

TI2 0

1

CCER

CC2P

Filter

ICF[3:0]

CCMR1

Edge

detector

TI2F_Rising

TI2F_Falling

110

xx 0

100

101

MS31196V1

) internal clock (

TI1F or

or TI2F
or

Encoder

mode

ETRF
111

External clock

mode 2

ETRF

ECE

 82 / 312

Figure 24. Control circuit in external clock mode 1

 External clock source mode 2

This mode is selected by writing ECE=1 in the SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 25 gives an overview of the external trigger input block.

Counter clock = CK_CNT = CK_PSC

Counter register 35 36 34

TI2

CNT_EN

TIF

Write TIF=0

MS31087V2

 83 / 312

Figure 25. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the

following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the SMCR register

4. Enable external clock mode 2 by writing ECE=1 in the SMCR register.

5. Enable the counter by writing CEN=1 in the CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the

resynchronization circuit on the ETRP signal.

External clock

mode 1

Internal clock

mode

TRGI

CK_INT

CK_PSC

SMCR

SMS[2:0]

MS33116V1

) (internal clock

TI1F or

TI2F or
or

Encoder

mode

External clock

mode 2

ETRF

ECE

0

1

SMCR

ETP

ETR pin

ETR

Divider

/1, /2, /4, /8
Filter

downcounter f

ETRP

SMCR

ETPS[1:0]

SMCR

ETF[3:0]

DTS

 84 / 312

Figure 26. Control circuit in external clock mode 2

8.3.5 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a

shadow register), a input stage for capture (with digital filter, multiplexing and prescaler)

and an output stage (with comparator and output control).

Figure 27 to Figure 30 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then,

an edge detector with polarity selection generates a signal (TIxFPx) which can be used as

trigger input by the slave mode controller or as the capture command. It is prescaled before

the capture register (ICxPS).

MS33111V2

34 35 36

f
CK_INT

CNT_EN

ETR

ETRP

ETRF

Counter clock =

CK_INT =CK_PSC

Counter register

 85 / 312

Figure 27. Capture/compare channel (example: channel 0 input stage)

The output stage generates an intermediate waveform that is then used for reference:

OCxRef (active high). The polarity acts at the end of the chain.

0

1

Divider

/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

To the slave mode controller

TI1FP1

11

01

CC1S[1:0]

IC1 TI2FP1

TRC

from slave mode (

controller)

10
IC1PS

0

1

MS33115V1

TI1

CCER

CC1P/CC1NP

Filter

downcounter

ICF[3:0]

CCMR1

Edge

detector

TI1F_Rising

TI1F_Falling

CCMR1

CCER

TI2F_Rising

from channel 2) (

TI2F_Falling

(from channel 2)

TI1F
f

CC1E

DTS

 86 / 312

Figure 28. Capture/compare channel 0 main circuit

MS31089V3

CC1E

Capture/compareshadowregister

Comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]

CC1S[1]

Capture

Input

mode

S

R

Read CCR1H

Read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

Output

mode

UEV

OC1PE

from time (

base unit)

compare_transfer

APB Bus

8 8
hi

gh
lo

w

(

if

16

-

bit

)

MCU-peripheral interface

CCMR1

OC1PE

CNT>CCR1

CNT=CCR1

EGR

CC1G

 87 / 312

Figure 29. Output stage of capture/compare channel (channel 1 to3)

Figure 30. Output stage of capture/compare channel (channel 4)

The capture/compare block is made of one preload register and one shadow register. Write

and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into

the preload register.

In compare mode, the content of the preload register is copied into the shadow register

which is compared to the counter.

 88 / 312

8.3.6 Input capture mode

In Input capture mode, the Capture/Compare registers (CCRx) are used to latch the value

of the counter after a transition detected by the corresponding ICx signal. When a capture

occurs, the corresponding CCXIF flag (SR register) is set and an interrupt or a DMA request

can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high,

then the over-capture flag CCxOF (SR register) is set. CCxIF can be cleared by software

by writing it to ‘0’ or by reading the captured data stored in the CCRx register. CCxOF is

cleared when written to ‘0’.

The following example shows how to capture the counter value in CCR1 when TI1 input

rises. To do this, use the following procedure:

• Select the active input: CCR1 must be linked to the TI1 input, so write the CC1S bits

to 01 in the CCMR1 register. As soon as CC1S becomes different from 00, the

channel is configured in input and the CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the

timer (by programming ICxF bits in the CCMRx register if the input is a TIx input).

Let’s imagine that, when toggling, the input signal is not stable during at must five

internal clock cycles. We must program a filter duration longer than these five clock

cycles. We can validate a transition on TI1 when 8 consecutive samples with the

new level have been detected (sampled at fDTS frequency). Then write IC1F bits to

0011 in the CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in

the CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at

each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the

CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in

the CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the DIER

register, and/or the DMA request by setting the CC1DE bit in the DIER register.

When an input capture occurs:

• The CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive

captures occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the

overcapture flag. This is to avoid missing an overcapture which could happen after reading

the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the

 89 / 312

corresponding CCxG bit in the EGR register.

8.3.7 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode

controller is configured in reset mode.

For example, user can measure the period (in CCR1 register) and the duty cycle (in CCR2

register) of the PWM applied on TI1 using the following procedure (depending on CK_INT

frequency and prescaler value):

• Select the active input for CCR1: write the CC1S bits to 01 in the CCMR1 register

(TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in CCR1 and counter

clear): write the CC1P bit to ‘0’ (active on rising edge).

• Select the active input for CCR2: write the CC2S bits to 10 in the CCMR1 register

(TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in CCR2): write the CC2P bit

to ‘1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the SMCR register (TI1FP1

selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the

SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1’ in the CCER register.

 90 / 312

Figure 31. PWM input mode timing

1. The PWM input mode can be used only with the CH1/CH2 signals due to the fact that only TI1FP1 and TI2FP2

are connected to the slave mode controller.

8.3.8 Forced output mode

In output mode (CCxS bits = 00 in the CCMRx register), each output compare signal

(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,

independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs

to write 101 in the OCxM bits in the corresponding CCMRx register. Thus OCXREF is

forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity

bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the CCMRx

register.

Anyway, the comparison between the CCRx shadow register and the counter is still

performed and allows the flag to be set. Interrupt and DMA requests can be sent

accordingly. This is described in the output compare mode section below.

8.3.9 Output compare mode

This function is used to control an output waveform or indicating when a period of time has

elapsed.

 91 / 312

When a match is found between the capture/compare register and the counter, the output

compare function:

• Assigns the corresponding output pin to a programmable value defined by the output

compare mode (OCxM bits in the CCMRx register) and the output polarity (CCxP bit

in the CCER register). The output pin can keep its level (OCXM=000), be set active

(OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the

DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the DIER

register, CCDS bit in the CR2 register for the DMA request selection).

The CCRx registers can be programmed with or without preload registers using the OCxPE

bit in the CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.

The timing resolution is one count of the counter. Output compare mode can also be used

to output a single pulse (in One Pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the ARR and CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = 0 to disable preload register – Write CCxP = 0 to select active

high polarity

– Write CCxE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the CR1 register.

The CCRx register can be updated at any time by software to control the output waveform,

provided that the preload register is not enabled (OCxPE=’0’, else CCRx shadow register

is updated only at the next update event UEV). An example is given in Figure 32.

 92 / 312

Figure 32. Output compare mode, toggle on OC1.

8.3.10 PWM mode

Pulse Width Modulation mode allows generating a signal with a frequency determined by

the value of the ARR register and a duty cycle determined by the value of the CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx

output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the

CCMRx register. The corresponding preload register must be enabled by setting the

OCxPE bit in the CCMRx register, and eventually the auto-reload preload register (in

upcounting or center-aligned modes) by setting the ARPE bit in the CR1 register.

As the preload registers are transferred to the shadow registers only when an update event

occurs, before starting the counter, the user must initialize all the registers by setting the

UG bit in the EGR register.

OCx polarity is software programmable using the CCxP bit in the CCER register. It can be

programmed as active high or active low. OCx output is enabled by a combination of the

CCxE, CCxNE, MOE, OSSI and OSSR bits (CCER and BDTR registers). Refer to the

CCER register description for more details.

In PWM mode (1 or 2), CNT and CCRx are always compared to determine whether CCRx

 CNT or CNT CCRx (depending on the direction of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode

depending on the CMS bits in the CR1 register.

 PWM edge-aligned mode

 93 / 312

 Upcounting configuration

Upcounting is active when the DIR bit in the CR1 register is low. Refer to Upcounting

mode.

In the following example, we consider PWM mode 1. The reference PWM signal

OCxREF is high as long as CNT < CCRx else it becomes low. If the compare value in

CCRx is greater than the auto-reload value (in ARR) then OCxREF is held at ‘1’. If the

compare value is 0 then OCxRef is held at ‘0’. Figure 33 shows some edge-aligned

PWM waveforms in an example where ARR=8.

Figure 33. Edge-aligned PWM waveforms (ARR=8)

 Downcounting configuration

Downcounting is active when DIR bit in CR1 register is high. Refer to Downcounting

mode

In PWM mode 1, the reference signal OCxRef is low as long as

CNT > CCRx else it becomes high. If the compare value in CCRx is greater than the

auto-reload value in ARR, then OCxREF is held at ‘1’. 0% PWM is not possible in this

mode.

MS31093V1

Counter register

‘1’

0 6 5 2 4 3 8 1 1 0 7

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

‘0’

 94 / 312

 PWM center-aligned mode

Center-aligned mode is active when the CMS bits in CR1 register are different from ‘00’ (all

the remaining configurations having the same effect on the OCxRef/OCx signals). The

compare flag is set when the counter counts up, when it counts down or both when it counts

up and down depending on the CMS bits configuration. The direction bit (DIR) in the CR1

register is updated by hardware and must not be changed by software. Refer to Center-

aligned mode (up/down counting).

Figure 34 shows some center-aligned PWM waveforms in an example where:

• ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned

mode 1 selected for CMS=01 in CR1 register.

 95 / 312

Figure 34. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It

means that the counter counts up or down depending on the value written in the DIR

bit in the CR1 register. Moreover, the DIR and CMS bits must not be changed at the

same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it

can lead to unexpected results. In particular:

CCxIF

0 1 1 0 1 3 4 5 2 2 6 7 8 7 6 5 4 3 Counter register

CCRx = 4
OCxREF

CMS=01

CMS=10

CMS=11

CCxIF

CCRx = 7
OCxREF

CMS=10 or 11

CCxIF

CCRx = 8
OCxREF

CMS=01

CMS=10

CMS=11

'1'

CCxIF

CCRx > 8
OCxREF

CMS=01

CMS=10

CMS=11

'1'

CCxIF

CCRx = 0
OCxREF

CMS=01

CMS=10

CMS=11

'0'

ai14681b

 96 / 312

– The direction is not updated if the user writes a value in the counter greater

than the auto-reload value (CNT>ARR). For example, if the counter was

counting up, it will continue to count up.

– The direction is updated if the user writes 0 or write the ARR value in the

counter but no Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software

(setting the UG bit in the EGR register) just before starting the counter and not to write

the counter while it is running.

8.3.11 Complementary outputs and dead-time insertion

The advanced-control timers can output two complementary signals and manage the

switching-off and the switching-on instants of the outputs.

This time is generally known as dead-time and it has to be adjust it depending on the

devices connected to the outputs and their characteristics (intrinsic delays of level-shifters,

delays due to power switches...)

User can select the polarity of the outputs (main output OCx or complementary OCxN)

independently for each output. This is done by writing to the CCxP and CCxNP bits in the

CCER register.

The complementary signals OCx and OCxN are activated by a combination of several

control bits: the CCxE and CCxNE bits in the CCER register and the MOE, OISx, OISxN,

OSSI and OSSR bits in the BDTR and CR2 registers. In particular, the dead-time is

activated when switching to the IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if

the break circuit is present. DTG[7:0] bits of the BDTR register are used to control the

dead-time generation for all channels. From a reference waveform OCxREF, it generates

2 outputs OCx and OCxN. If OCx and OCxN are active high:

• The OCx output signal is the same as the reference signal except for the rising edge,

which is delayed relative to the reference rising edge.

• The OCxN output signal is the opposite of the reference signal except for the rising

edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the

corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time

generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,

CCxE=1 and CCxNE=1 in these examples)

 97 / 312

Figure 35. Complementary output with dead-time insertion.

Figure 36. Dead-time waveforms with delay greater than the negative pulse.

delay

delay

OCxREF

OCx

OCxN

MS31095V1

Figure 37. Dead-time waveforms with delay greater than the positive pulse.

MS31096V1

delay

OCxREF

OCx

OCxN

MS31097V1

delay

OCxREF

OCx

OCxN

 98 / 312

The dead-time delay is the same for each of the channels and is programmable with the

DTG bits in the BDTR register. Refer to break and dead-time register (BDTR) for delay

calculation.

 Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx

output or to OCxN output by configuring the CCxE and CCxNE bits in the CCER register.

This allows the user to send a specific waveform (such as PWM or static active level) on

one output while the complementary remains at its inactive level. Other possibilities are to

have both outputs at inactive level or both outputs active and complementary with dead-

time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes

active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the

other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes

active when OCxREF is high whereas OCxN is complemented and becomes active when

OCxREF is low.

8.3.12 Using the break function

When using the break function, the output enable signals and inactive levels are modified

according to additional control bits (MOE, OSSI and OSSR bits in the BDTR register, OISx

and OISxN bits in the CR2 register). In any case, the OCx and OCxN outputs cannot be

set both to active level at a given time..

The break source can be either the break input pin or a clock failure event, generated by

the Clock Security System (CSS), from the Reset Clock Controller. For further information

on the Clock Security System.

When exiting from reset, the break circuit is disabled and the MOE bit is low. User can

enable the break function by setting the BKE bit in the BDTR register. The break input

polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can

be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB

clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1

APB clock period to correctly read back the bit after the write operation.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been

inserted between the actual signal (acting on the outputs) and the synchronous control bit

(accessed in the BDTR register). It results in some delays between the asynchronous and

the synchronous signals. In particular, if MOE is written to 1 whereas it was low, a delay

(dummy instruction) must be inserted before reading it correctly. This is because the user

writes an asynchronous signal, but reads a synchronous signal.

When a break occurs (selected level on the break input):

 99 / 312

• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle

state or in reset state (selected by the OSSI bit). This feature functions even if the

MCU oscillator is off.

• Each output channel is driven with the level programmed in the OISx bit in the CR2

register as soon as MOE=0. If OSSI=0 then the timer releases the enable output

else the enable output remains high.

• When complementary outputs are used:

– The outputs are first put in reset state inactive state (depending on the polarity).

This is done asynchronously so that it works even if no clock is provided to the

timer.

– If the timer clock is still present, then the dead-time generator is reactivated in

order to drive the outputs with the level programmed in the OISx and OISxN bits

after a dead-time. Even in this case, OCx and OCxN cannot be driven to their

active level together. Note that because of the resynchronization on MOE, the

dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

– If OSSI=0 then the timer releases the enable outputs else the enable outputs

remain or become high as soon as one of the CCxE or CCxNE bits is high.

• The break status flag (BIF bit in the SR register) is set. An interrupt can be generated

if the BIE bit in the DIER register is set. A DMA request can be sent if the BDE bit in

the DIER register is set.

• If the AOE bit in the BDTR register is set, the MOE bit is automatically set again at

the next update event UEV. This can be used to perform a regulation, for instance.

Else, MOE remains low until it is written to ‘1’ again. In this case, it can be used for

security and the break input can be connected to an alarm from power drivers,

thermal sensors or any security components.

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is

active (neither automatically nor by software). In the meantime, the status flag BIF cannot

be cleared.

The break can be generated by the BRK input which has a programmable polarity and an

enable bit BKE in the BDTR register.

There are two solutions to generate a break:

• By using the BRK input which has a programmable polarity and an enable bit BKE in

the BDTR register

• By software through the BG bit of the EGR register.

In addition to the break input and the output management, a write protection has been

implemented inside the break circuit to safeguard the application. It allows freezing the

configuration of several parameters (dead-time duration, OCx/OCxN polarities and state

when disabled, OCxM configurations, break enable and polarity). The user can choose

from three levels of protection selected by the LOCK bits in the BDTR register. Refer to

Section : break and dead-time register (BDTR). The LOCK bits can be written only once

after an MCU reset.

 100 / 312

Figure 38 shows an example of behavior of the outputs in response to a break.

Figure 38. Output behavior in response to a break.

delay delay delay

delay delay delay

delay

delay

OCxREF

OCx
(OCxN not implemented, CCxP=0, OISx =1)

OCx
=0) (OCxN not implemented, CCxP=0, OISx

OCx
OCxN not implemented, CCxP=1, OISx =1) (

OCx
(OCxN not implemented, CCxP=1, OISx =0)

OCx

OCxN
=1) (CCxE=1, CCxP=0, OISx=0, CCxNE=1, CCxNP=0, OISxN

OCx

OCxN
=1) CCxE=1, CCxP=0, OISx=1, CCxNE=1, CCxNP=1, OISxN (

OCx

OCxN
(CCxE=1, CCxP=0, OISx=0, CCxNE=0, CCxNP=0, OISxN =1)

OCx

OCxN
=0) (CCxE=1, CCxP=0, OISx=1, CCxNE=0, CCxNP=0, OISxN

OCx

OCxN
(CCxE=1, CCxP=0, CCxNE=0, CCxNP=0, OISx=OISxN=0 or OISx=OISxN =1)

MS31098V1

) BREAK (MOE

 101 / 312

8.3.13 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the

ETRF input (OCxCE enable bit of the corresponding CCMRx register set to ‘1’). The

OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in

forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used

for current handling. In this case, the ETR must be configured as follow:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the SMCR

register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE of the SMCR register set to

‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be

configured according to the user needs.

Figure 39shows the behavior of the OCxREF signal when the ETRF Input becomes High,

for both values of the enable bit OCxCE. In this example, the timer is programmed in

PWM mode.

Figure 39. Clearing OCxREF

 MSv35889V1

(CCRx)

Counter (CNT)

ETRF

OCxREF (OCxCE = ‘0’)

OCxREF (OCxCE = ‘1’)

ETRF becomes high ETRF still high

 102 / 312

8.3.14 6-step PWM generation

When complementary outputs are used on a channel, preload bits are available on the

OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the

COM commutation event. The user can thus program in advance the configuration for the

next step and change the configuration of all the channels at the same time. COM can be

generated by software by setting the COM bit in the EGR register or by hardware (on TRGI

rising edge).

A flag is set when the COM event occurs (COMIF bit in the SR register), which can generate

an interrupt (if the COMIE bit is set in the DIER register) or a DMA request (if the COMDE

bit is set in the DIER register).

Figure 40 describes the behavior of the OCx and OCxN outputs when a COM event occurs,

in 3 different examples of programmed configurations.

Figure 40. 6-step generation, COM example (OSSR=1)

8.3.15 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to

be started in response to a stimulus and to generate a pulse with a programmable length

after a programmable delay.

 103 / 312

Starting the counter can be controlled through the slave mode controller. Generating the

waveform can be done in output compare mode or PWM mode. Select One-pulse mode

by setting the OPM bit in the CR1 register. This makes the counter stop automatically at

the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter

initial value. Before starting (when the timer is waiting for the trigger), the configuration

must be:

• In upcounting: CNT < CCRx ARR (in particular, 0 < CCRx)

• In downcounting: CNT > CCRx

Figure 41. Example of one pulse mode.

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE

and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 to TI2 by writing CC2S=’01’ in the CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=’0’ in the CCER register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’

in the SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110’ in the SMCR register

(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the

clock frequency and the counter prescaler).

•
The t

DELAY is defined by the value written in the CCR1 register.

 104 / 312

• The tPULSE is defined by the difference between the auto-reload value and the

compare value (ARR - CCR1).

• Let us say the user wants to build a waveform with a transition from ‘0’ to ‘1’ when a

compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the

auto-reload value. To do this, enable PWM mode 2 by writing OC1M=111 in the

CCMR1 register. The user can optionally enable the preload registers by writing

OC1PE=’1’ in the CCMR1 register and ARPE in the CR1 register. In this case the

compare value must be written in the CCR1 register, the auto-reload value in the

ARR register, generate an update by setting the UG bit and wait for external trigger

event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the CR1 register should be low.

The user only wants one pulse (Single mode), so '1’ must be written in the OPM bit in the

CR1 register to stop the counter at the next update event (when the counter rolls over from

the auto-reload value back to 0). When OPM bit in the CR1 register is set to '0', so the

Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the

counter. Then the comparison between the counter and the compare value makes the

output toggle. But several clock cycles are needed for these operations and it limits the

minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, the OCxFE bit in the

CCMRx register must be set. Then OCxRef (and OCx) are forced in response to the

stimulus, without taking in account the comparison. Its new level is the same as if a

compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or

PWM2 mode.

8.3.16 Encoder interface mode

To select Encoder Interface mode write SMS=‘001’ in the SMCR register if the counter is

counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and SMS=’011’ if

it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the CCER

register. When needed, the user can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. The counter is

clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2

after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,

TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in

CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated and

generates count pulses as well as the direction signal. Depending on the sequence the

counter counts up or down, the DIR bit in the CR1 register is modified by hardware

accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever

 105 / 312

the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This

means that the counter just counts continuously between 0 and the auto-reload value in

the ARR register (0 to ARR or ARR down to 0 depending on the direction). So user must

configure ARR before starting. in the same way, the capture, compare, prescaler, repetition

counter, trigger output features continue to work as normal. Encoder mode and External

clock mode 2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of

the incremental encoder and its content, therefore, always represents the encoder’s

position. The count direction correspond to the rotation direction of the connected sensor.

Table 1 summarizes the possible combinations, assuming TI1 and TI2 do not switch at the

same time.

Table 1. Counting direction versus encoder signals

Active

edge

Level on opposite signal

(TI1FP1 for TI2, TI2FP2 for TI1)
TI1FP1 signal TI2FP2 signal

 Rising Falling Rising Falling

Counting on

TI1 only

High Down Up No Count No Count

 Low Up Down No Count No Count

Counting on

TI2 only

High No Count No Count Up Down

 Low No Count No Count Down Up

Counting on

TI1 and TI2

High Down Up Up Down

 Low Up Down Down Up

An external incremental encoder can be connected directly to the MCU without external

interface logic. However, comparators are normally be used to convert the encoder’s

differential outputs to digital signals. This greatly increases noise immunity. The third

encoder output which indicate the mechanical zero position, may be connected to an

external interrupt input and trigger a counter reset.

Figure 42 gives an example of counter operation, showing count signal generation and

direction control. It also shows how input jitter is compensated where both edges are

selected. This might occur if the sensor is positioned near to one of the switching points.

For this example we assume that the configuration is the following:

• CC1S=’01’ (CCMR1 register, TI1FP1 mapped on TI1).

• CC2S=’01’ (CCMR2 register, TI1FP2 mapped on TI2).

• CC1P=’0’, and IC1F = ‘0000’ (CCER register, TI1FP1 non-inverted, TI1FP1=TI1).

• CC2P=’0’, and IC2F = ‘0000’ (CCER register, TI1FP2 non-inverted, TI1FP2= TI2).

 106 / 312

• SMS=’011’ (SMCR register, both inputs are active on both rising and falling edges).

• CEN=’1’ (CR1 register, Counter enabled).

Figure 42. Example of counter operation in encoder interface mode.

Figure 43 gives an example of counter behavior when TI1FP1 polarity is inverted (same

configuration as above except CC1P=’1’).

Figure 43. Example of encoder interface mode with TI1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor’s

current position.The user can obtain dynamic information (speed, acceleration,

deceleration) by measuring the period between two encoder events using a second timer

TI1

backward jitter jitter

up do wn up

TI2

Counter

forward forward

MS33107V1

TI1

backward jitter jitter

u p dow n

TI2

Counter

forward forward

MS33108V1

down

 107 / 312

configured in capture mode. The output of the encoder which indicates the mechanical zero

can be used for this purpose. Depending on the time between two events, the counter can

also be read at regular times. This can be done by latching the counter value into a third

input capture register if available (then the capture signal must be periodic and can be

generated by another timer). when available, it is also possible to read its value through a

DMA request generated by a real-time clock.

8.3.17 Timer input XOR function

The TI1S bit in the CR2 register, allows the input filter of channel 0 to be connected to the

output of a XOR gate, combining the three input pins CH1, CH2 and CH3.

The XOR output can be used with all the timer input functions such as trigger or input

capture.

8.3.18 Interfacing with Hall sensors

This is done using the advanced-control timers to generate PWM signals to drive the motor

and another timer referred to as

“interfacing timer” in Figure 44. The “interfacing timer” captures the 3 timer input pins (CH1,

CH2, and CH3) connected through a XOR to the TI1 input channel (selected by setting the

TI1S bit in the CR2 register).

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus,

each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a

time base triggered by any change on the Hall inputs.

On the “interfacing timer”, capture/compare channel 0 is configured in capture mode,

capture signal is TRC (see Figure 27). The captured value, which corresponds to the time

elapsed between 2 changes on the inputs, gives information about motor speed.

The “interfacing timer” can be used in output mode to generate a pulse which changes the

configuration of the channels of the advanced-control timer (by triggering a COM event).

The timer is used to generate PWM signals to drive the motor. To do this, the interfacing

timer channel must be programmed so that a positive pulse is generated after a

programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-

control timer through the TRGO output.

Example: the user wants to change the PWM configuration of the advanced-control timer

after a programmed delay each time a change occurs on the Hall inputs connected to one

of the timers.

• Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the

CR2 register to ‘1’,

 108 / 312

• Program the time base: write the ARR to the max value (the counter must be cleared

by the TI1 change. Set the prescaler to get a maximum counter period longer than

the time between 2 changes on the sensors,

• Program channel 0 in capture mode (TRC selected): write the CC1S bits in the

CCMR1 register to ‘11’. The user can also program the digital filter if needed,

• Program channel 1 in PWM 2 mode with the desired delay: write the OC2M bits to

‘111’ and the CC2S bits to ‘00’ in the CCMR1 register,

• Select OC2REF as trigger output on TRGO: write the MMS bits in the CR2

register to ‘101’,

In the advanced-control timer, the right ITR input must be selected as trigger input, the timer

is programmed to generate PWM signals, the capture/compare control signals are

preloaded (CCPC=1 in the CR2 register) and the COM event is controlled by the trigger

input (CCUS=1 in the CR2 register). The PWM control bits (CCxE, OCxM) are written after

a COM event for the next step (this can be done in an interrupt subroutine generated by

the rising edge of OC2REF).

Figure 44 describes this example.

 109 / 312

Figure 44. Example of Hall sensor interface

8.3.19 External trigger synchronization

The timer can be synchronized with an external trigger in several modes: Reset mode,

Gated mode and Trigger mode.

 Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.

Moreover, if the URS bit from the CR1 register is low, an update event UEV is generated.

Then all the preloaded registers (ARR, CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

 110 / 312

• Configure the channel 0 to detect rising edges on TI1. Configure the input filter

duration (in this example, we don’t need any filter, so we keep IC1F=0000). The

capture prescaler is not used for triggering, so there’s no need to configure it. The

CC1S bits select the input capture source only, CC1S = 01 in the CCMR1 register.

Write CC1P=0 in CCER register to validate the polarity (and detect rising edges

only).

• Configure the timer in reset mode by writing SMS=100 in SMCR register. Select TI1

as the input source by writing TS=101 in SMCR register.

• Start the counter by writing CEN=1 in the CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising

edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the

trigger flag is set (TIF bit in the SR register) and an interrupt request, or a DMA request can

be sent if enabled (depending on the TIE and TDE bits in DIER register).

The following figure shows this behavior when the auto-reload register ARR=0x36. The

delay between the rising edge on TI1 and the actual reset of the counter is due to the

resynchronization circuit on TI1 input.

Figure 45. Control circuit in reset mode

 Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 0 to detect low levels on TI1. Configure the input filter duration

(in this example, we don’t need any filter, so we keep IC1F=0000). The capture

prescaler is not used for triggering, so the user does not need to configure it. The

CC1S bits select the input capture source only, CC1S=01 in CCMR1 register. Write

CC1P=1 in CCER register to validate the polarity (and detect low level only).

MS31401V3

UG

TI1

00

Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 00 01 02 03 32 33 34 35 36 31 30

TIF

 111 / 312

• Configure the timer in gated mode by writing SMS=101 in SMCR register. Select TI1

as the input source by writing TS=101 in SMCR register.

• Enable the counter by writing CEN=1 in the CR1 register (in gated mode, the counter

doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon

as TI1 becomes high. The TIF flag in the SR register is set both when the counter starts or

stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the

resynchronization circuit on TI1 input.

Figure 46. Control circuit in gated mode

 Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 1 to detect rising edges on TI2. Configure the input filter

duration (in this example, we don’t need any filter, so we keep IC2F=0000). The

capture prescaler is not used for triggering, so there’s no need to configure it. The

CC2S bits are configured to select the input capture source only, CC2S=01 in

CCMR1 register. Write CC2P=1 in CCER register to validate the polarity (and detect

low level only).

• Configure the timer in trigger mode by writing SMS=110 in SMCR register. Select TI2

as the input source by writing TS=110 in SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the

TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the

resynchronization circuit on TI2 input.

MS31402V3

TI1

CNT_EN

Write TIF=0

Counter clock = ck_cnt = ck_psc

Counter register

TIF

3738 3233 34 36 35 31 30

 112 / 312

Figure 47. Control circuit in trigger mode

Slave mode: external clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external

clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock

input, and another input can be selected as trigger input (in reset mode, gated mode or

trigger mode). It is recommended not to select ETR as TRGI through the TS bits of SMCR

register.

In the following example, the upcounter is incremented at each rising edge of the ETR

signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the SMCR register as

follows:

– ETF = 0000: no filter

– ETPS = 00: prescaler disabled

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external

clock mode 2.

2. Configure the channel 0 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be

configured.

– CC1S=01 in CCMR1 register to select only the input capture source

– CC1P=0 in CCER register to validate the polarity (and detect rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in SMCR register. Select TI1

as the input source by writing TS=101 in SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on

ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is

due to the resynchronization circuit on ETRP input.

 113 / 312

Figure 48. Control circuit in external clock mode 2 + trigger mode

8.3.20 Timer synchronization

The TIM timers are linked together internally for timer synchronization or chaining.

Note: The clock of the slave timer must be enabled prior to receive events from the master timer,

and must not be changed on-the-fly while triggers are received from the master timer.

8.3.21 Debug mode

When the microcontroller enters debug mode, the counter either continues to work normally

or stops, depending on APB_CLK STOP configuration bit in the system control module.

MS33110V1

34 35 36

TIF

Counter register

Counter clock = CK_CNT = CK_PSC

ETR

CEN/CNT_EN

TI1

 114 / 312

8.4 registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

8.4.1 control register 1 (CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN

 rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and

the dead-time and sampling clock (tDTS)used by the dead-time generators and the digital

filters (ETR, TIx),

00:
 t

DTS=
t
CK_INT

01:
 t

DTS=2
*t

CK_INT

10:
 t

DTS=4
*t

CK_INT

11:
t
DTS=8

*t
CK_INT

Bit 7 ARPE: Auto-reload preload enable

0: ARR register is not buffered

1: ARR register is buffered

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).

01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare

interrupt flags of channels configured in output (CCxS=00 in CCMRx register) are set only

when the counter is counting down.

10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare

interrupt flags of channels configured in output (CCxS=00 in CCMRx register) are set only

when the counter is counting up.

11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare

interrupt flags of channels configured in output (CCxS=00 in CCMRx register) are set both

 115 / 312

when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as

the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter

1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder

mode.

Bit 3 OPM: One pulse mode

0: Counter is not stopped at update event

1: Counter stops counting at the next update event (clearing the bit CEN)

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled.

These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller Buffered registers are

then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value

(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is

set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled

1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been

previously set by software. However trigger mode can set the CEN bit automatically

by hardware.

8.4.2 control register 2 (CR2)

Address offset: 0x04

 116 / 312

Reset value: 0x0000

Bit 15 Reserved, must be kept at reset value.

Bit 14 OIS3: Output Idle state 4 (OC3 output)

refer to OIS1 bit

Bit 13 OIS2N: Output Idle state 3 (OC2N output)

 refer to OIS1N bit

Bit 12 OIS2: Output Idle state 3 (OC2 output)

 refer to OIS1 bit

Bit 11 OIS1N: Output Idle state 2 (OC1N output)

refer to OIS1N bit

Bit 10 OIS1: Output Idle state 2 (OC1 output)

 refer to OIS1 bit

Bit 9 OIS0N: Output Idle state 1 (OC0N output)

0: OC0N=0 after a dead-time when MOE=0

1: OC0N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed

(LOCK bits in BDTR register).

Bit 8 OIS0: Output Idle state 1 (OC0 output)

0: OC0=0 (after a dead-time if OC1N is implemented) when MOE=0

1: OC0=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed

(LOCK bits in BDTR register).

Bit 7 TI1S: TI1 selection

0: The CH1 pin is connected to TI1 input

1: The CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for

synchronization (TRGO). The combination is as follows:

000: Reset - the UG bit from the EGR register is used as trigger output (TRGO). If the reset

is generated by the trigger input (slave mode controller configured in reset mode) then the

signal on TRGO is delayed compared to the actual reset.

001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is

useful to start several timers at the same time or to control a window in which a slave timer

 117 / 312

is enable. The Counter Enable signal is generated by a logic OR between CEN control bit

and the trigger input when configured in gated mode. When the Counter Enable signal is

controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode

is selected (see the MSM bit description in SMCR register).

010: Update - The update event is selected as trigger output (TRGO). For instance a master

timer can then be used as a prescaler for a slave timer.

011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to

be set (even if it was already high), as soon as a capture or a compare match occurred.

(TRGO).

100: Compare - OC0REF signal is used as trigger output (TRGO)

101: Compare - OC1REF signal is used as trigger output (TRGO)

110: Compare - OC2REF signal is used as trigger output (TRGO)

111: Compare - OC3REF signal is used as trigger output (TRGO)

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from

the master timer, and must not be changed on-the-fly while triggers are received from

the master timer.

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs

1: CCx DMA requests sent when update event occurs

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting

the COMG bit only

1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting

the COMG bit or when an rising edge occurs on TRGI

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded

1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated

only when a commutation event (COM) occurs (COMG bit set or rising edge detected on

TRGI, depending on the CCUS bit).

8.4.3 slave mode control register (SMCR)

Address offset: 0x08

 118 / 312

Reset value: 0x0000

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations

0: ETR is non-inverted, active at high level or rising edge. 1: ETR

is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.

0: External clock mode 2 disabled

1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF

signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI

connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave

modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be

connected to ETRF in this case (TS bits must not be 111).

3: If external clock mode 1 and external clock mode 2 are enabled at the same time,

the external clock input is ETRF.

Bits 13:12 ETPS[1:0]: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CLK frequency. A prescaler

can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.

00: Prescaler OFF

01: ETRP frequency divided by 2

10: ETRP frequency divided by 4

11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the

digital filter applied to ETRP. The digital filter is made of an event counter in which N

consecutive events are needed to validate a transition on the output: 0000: No filter,

sampling is done at fDTS

0001: fSAMPLING=fCK_INT, N=2

0010: fSAMPLING=fCK_INT, N=4

0011: fSAMPLING=fCK_INT, N=8

0100: fSAMPLING=fDTS/2, N=6

0101: fSAMPLING=fDTS/2, N=8

0110: fSAMPLING=fDTS/4, N=6

0111: fSAMPLING=fDTS/4, N=8

1000: fSAMPLING=fDTS/8, N=6

 119 / 312

1001: fSAMPLING=fDTS/8, N=8

1010: fSAMPLING=fDTS/16, N=5

1011: fSAMPLING=fDTS/16, N=6

1100: fSAMPLING=fDTS/16, N=8

1101: fSAMPLING=fDTS/32, N=5

1110: fSAMPLING=fDTS/32, N=6

1111: fSAMPLING=fDTS/32, N=8

Bit 7 MSM: Master/slave mode

0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect

synchronization between the current timer and its slaves (through TRGO). It is useful if we

want to synchronize several timers on a single external event.

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.

000: Internal Trigger 0 (ITR0)

001: Internal Trigger 1 (ITR1)

010: Internal Trigger 2 (ITR2)

011: Internal Trigger 3 (ITR3)

100: TI1 Edge Detector (TI1F_ED)

101: Filtered Timer Input 1 (TI1FP1)

110: Filtered Timer Input 2 (TI2FP2)

111: External Trigger input (ETRF)

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to

avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to

the polarity selected on the external input (see Input Control register and Control register

description.

000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal

clock.

001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2

level.

010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1

level.

011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges

depending on the level of the other input.

100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter

and generates an update of the registers.

101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The

counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of

 120 / 312

the counter are controlled.

110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not

reset). Only the start of the counter is controlled.

111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’).

Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode

checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master

timer, and must not be changed on-the-fly while triggers are received from the master

timer.

Table 2. Internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

GPTIMER0

GPTIMER1_TRGO GPTIMER2_TRGO GPTIMER3_TRGO GPTIMER4_TRGO

GPTIMER1

GPTIMER2_TRGO GPTIMER3_TRGO GPTIMER4_TRGO GPTIMER0_TRGO

GPTIMER2

GPTIMER3_TRGO GPTIMER4_TRGO GPTIMER0_TRGO GPTIMER1_TRGO

GPTIMER3

GPTIMER4_TRGO GPTIMER0_TRGO GPTIMER1_TRGO GPTIMER2_TRGO

GPTIMER4

GPTIMER0_TRGO GPTIMER1_TRGO GPTIMER2_TRGO GPTIMER3_TRGO

8.4.4 DMA/interrupt enable register (DIER)

Address offset: 0x0C

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TDE COMDE CC3DE CC2DE CC1DE CC0DE UDE BIE TIE COMIE CC3IE CC2IE CC1IE CC0IE UIE

 rw Rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled

1: Trigger DMA request enabled

 121 / 312

Bit 13 COMDE: COM DMA request enable

0: COM DMA request disabled

1: COM DMA request enabled

Bit 12 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled

1: CC3 DMA request enabled

Bit 11 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled

1: CC2 DMA request enabled

Bit 10 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled

1: CC1 DMA request enabled

Bit 9 CC0DE: Capture/Compare 0 DMA request enable

0: CC0 DMA request disabled

1: CC0 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled

1: Update DMA request enabled

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled

1: Break interrupt enabled

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled

1: Trigger interrupt enabled

Bit 5 COMIE: COM interrupt enable

0: COM interrupt disabled

1: COM interrupt enabled

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC3 interrupt disabled

1: CC3 interrupt enabled

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC2 interrupt disabled

1: CC2 interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC1 interrupt disabled

1: CC1 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC0 interrupt disabled

 122 / 312

1: CC0 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled

1: Update interrupt enabled

8.4.5 status register (SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CC3OF CC2OF CC1OF CC0OF Res. BIF TIF COMIF CC3IF CC2IF CC1IF CC0IF UIF

 rc_w0 rc_w0 rc_w0 rc_w0 Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC3OF: Capture/Compare 3 overcapture flag

refer to CC0OF description

Bit 11 CC2OF: Capture/Compare 2 overcapture flag

refer to CC0OF description

Bit 10 CC1OF: Capture/Compare 1 overcapture flag

refer to CC0OF description

Bit 9 CC0OF: Capture/Compare 0 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input

capture mode. It is cleared by software by writing it to ‘0’.

0: No overcapture has been detected.

1: The counter value has been captured in CCR0 register while CC0IF flag was already set

Bit 8 Reserved, must be kept at reset value.

Bit 7 BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by

software if the break input is not active.

0: No break event occurred.

1: An active level has been detected on the break input.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the

slave mode controller is enabled in all modes but gated mode, both edges in case gated

mode is selected). It is cleared by software.

0: No trigger event occurred. 1:

Trigger interrupt pending.

 123 / 312

Bit 5 COMIF: COM interrupt flag

This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE,

CCxNE, OCxM - have been updated). It is cleared by software.

0: No COM event occurred. 1:

COM interrupt pending.

Bit 4 CC3IF: Capture/Compare 3 interrupt flag

refer to CC0IF description

Bit 3 CC2IF: Capture/Compare 2 interrupt flag

refer to CC0IF description

Bit 2 CC1IF: Capture/Compare 1 interrupt flag

refer to CC0IF description

Bit 1 CC0IF: Capture/Compare 0 interrupt flag

If channel CC0 is configured as output:

This flag is set by hardware when the counter matches the compare value, with some

exception in center-aligned mode (refer to the CMS bits in the CR0 register description). It

is cleared by software.

0: No match.

1: The content of the counter CNT matches the content of the CCR0 register. When the

contents of CCR0 are greater than the contents of ARR, the CC0IF bit goes high on the

counter overflow (in upcounting and up/down-counting modes) or underflow (in

downcounting mode)

If channel CC0 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the CCR0

register.

0: No input capture occurred

1: The counter value has been captured in CCR0 register (An edge has been detected on

IC0 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value (update if repetition

counter = 0) and if the UDIS=0 in the CR1 register.

– When CNT is reinitialized by software using the UG bit in EGR register, if URS=0 and

UDIS=0 in the CR0 register.

– When CNT is reinitialized by a trigger event (refer to Section: slave mode control register

(SMCR)), if URS=0 and UDIS=0 in the CR1 register.

 124 / 312

8.4.6 event generation register (EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BG TG COMG CC3G CC2G CC1G CC0G UG

 w w w w w w w w

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by

hardware.

0: No action

1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or

DMA transfer can occur if enabled.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by

hardware.

0: No action

1: The TIF flag is set in SR register. Related interrupt or DMA transfer can occur if enabled.

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware 0: No action

1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits Note: This bit acts

only on channels having a complementary output.

Bit 3 CC3G: Capture/Compare 3 generation refer to CC1G

description

Bit 2 CC2G: Capture/Compare 2 generation refer to CC1G

description

Bit 1 CC1G: Capture/Compare 1 generation refer to CC1G

description

Bit 0 CC0G: Capture/Compare 0 generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action

1: A capture/compare event is generated on channel 0:

If channel CC0 is configured as output:

CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.

If channel CC0 is configured as input:

The current value of the counter is captured in CCR0 register. The CC0IF flag is set, the corresponding

interrupt or DMA request is sent if enabled. The CC0OF flag is set if the CC0IF flag was already high.

 125 / 312

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action

1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is

cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode

is selected or if DIR=0 (upcounting), else it takes the auto-reload value (ARR) if DIR=1 (downcounting).

8.4.7 capture/compare mode register 1 (CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The

direction of a channel is defined by configuring the corresponding CCxS bits. All the other

bits of this register have a different function in input and in output mode. For a given bit,

OCxx describes its function when the channel is configured in output, ICxx describes its

function when the channel is configured in input. So the user must take care that the same

bit can have a different meaning for the input stage and for the output stage.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC1

CE
OC1M[2:0]

 OC1

PE

OC1F

E
CC1S[1:0]

OC0

CE
OC0M[2:0]

 OC0

PE

OC0

FE
CC0S[1:0]

 IC1F[3:0] IC1PSC[1:0] IC0F[3:0] IC0PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Output compare mode:

Bit 15 OC1CE: Output compare 2 clear enable

Bits 14:12 OC1M[2:0]: Output compare 2 mode

Bit 11 OC1PE: Output compare 2 preload enable

Bit 10 OC1FE: Output compare 2 fast enable

Bits 9:8 CC1S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output

01: CC1channel is configured as input, IC1 is mapped on TI1

10: CC1 channel is configured as input, IC1 is mapped on TI0

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only

if an internal trigger input is selected through the TS bit (SMCR register)

 126 / 312

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in CCER).

Bit 7 OC0CE: Output compare 1 clear enable

OC0CE: Output compare 1 Clear Enable 0:

OC0Ref is not affected by the ETRF Input

1: OC0Ref is cleared as soon as a High level is detected on ETRF input

Bits 6:4 OC0M: Output compare 1 mode

These bits define the behavior of the output reference signal OC0REF from which OC0 and OC0N are

derived. OC0REF is active high whereas OC0 and OC0N active level depends on CC0P and CC0NP

bits.

000: Frozen - The comparison between the output compare register CCR0 and the counter CNT has no

effect on the outputs.(this mode is used to generate a timing base).

001: Set channel 0 to active level on match. OC0REF signal is forced high when the counter CNT

matches the capture/compare register 1 (CCR0).

010: Set channel 0 to inactive level on match. OC1REF signal is forced low when the counter CNT

matches the capture/compare register 1 (CCR0).

011: Toggle - OC0REF toggles when CNT=CCR0.

100: Force inactive level - OC0REF is forced low.

101: Force active level - OC0REF is forced high.

110: PWM mode 1 - In upcounting, channel 0 is active as long as CNT<CCR0

else inactive. In downcounting, channel 0 is inactive (OC0REF=‘0’) as long as CNT>CCR0 else active

(OC0REF=’1’).

111: PWM mode 2 - In upcounting, channel 0 is inactive as long as CNT<CCR0 else active. In

downcounting, channel 0 is active as long as CNT>CCR0 else inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK

bits in BDTR register) and CC0S=’00’ (the channel is configured in output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes

or when the output compare mode switches from “frozen” mode to “PWM” mode.

Bit 3 OC0PE: Output compare 1 preload enable

0: Preload register on CCR0 disabled. CCR0 can be written at anytime, the new value is taken in account

immediately.

1: Preload register on CCR0 enabled. Read/Write operations access the preload register. CCR0 preload

value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in

BDTR register) and CC0S=’00’ (the channel is configured in output).

2: The PWM mode can be used without validating the preload register only in one pulse mode

(OPM bit set in CR0 register). Else the behavior is not guaranteed.

Bit 2 OC0FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.

0: CC0 behaves normally depending on counter and CCR0 values even when the trigger is ON. The

minimum delay to activate CC0 output when an edge occurs on the trigger input is 5 clock cycles.

1: An active edge on the trigger input acts like a compare match on CC0 output. Then, OC is set to the

 127 / 312

compare level independently from the result of the comparison. Delay to sample the trigger input and to

activate CC0 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1

or PWM2 mode.

Bits 1:0 CC0S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC0 channel is configured as output

01: CC0 channel is configured as input, IC0 is mapped on TI1

10: CC0 channel is configured as input, IC0 is mapped on TI2

11: CC0 channel is configured as input, IC0 is mapped on TRC. This mode is working only if an internal

trigger input is selected through TS bit (SMCR register)

Note: CC0S bits are writable only when the channel is OFF (CC0E = ‘0’ in CCER).

 Input capture mode

Bits 15:12 IC1F: Input capture 2 filter

Bits 11:10 IC1PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC1S: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output

01: CC1 channel is configured as input, IC1 is mapped on TI2

10: CC1 channel is configured as input, IC1 is mapped on TI1

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an

internal trigger input is selected through TS bit (SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in CCER).

Bits 7:4 IC0F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied

to TI1. The digital filter is made of an event counter in which N consecutive events are needed to

validate a transition on the output:

0000: No filter, sampling is done at fDTS

0001: fSAMPLING=fCK_INT, N=2

0010: fSAMPLING=fCK_INT, N=4

0011: fSAMPLING=fCK_INT, N=8

0100: fSAMPLING=fDTS/2, N=6

0101: fSAMPLING=fDTS/2, N=8

0110: fSAMPLING=fDTS/4, N=6

0111: fSAMPLING=fDTS/4, N=8

1000: fSAMPLING=fDTS/8, N=6

1001: fSAMPLING=fDTS/8, N=8

1010: fSAMPLING=fDTS/16, N=5

 128 / 312

1011: fSAMPLING=fDTS/16, N=6

1100: fSAMPLING=fDTS/16, N=8

1101: fSAMPLING=fDTS/32, N=5

1110: fSAMPLING=fDTS/32, N=6

1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC0PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC0 input (IC0).

The prescaler is reset as soon as CC0E=’0’ (CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input

01: capture is done once every 2 events

10: capture is done once every 4 events

11: capture is done once every 8 events

Bits 1:0 CC0S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC0 channel is configured as output

01: CC0 channel is configured as input, IC0 is mapped on TI1

10: CC0 channel is configured as input, IC0 is mapped on TI2

11: CC0 channel is configured as input, IC0 is mapped on TRC. This mode is working only if an

internal trigger input is selected through TS bit (SMCR register)

Note: CC0S bits are writable only when the channel is OFF (CC0E = ‘0’ in CCER).

8.4.8 capture/compare mode register 2 (CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

 Output compare mode

Bit 15 OC3CE: Output compare 4 clear enable

Bits 14:12 OC3M: Output compare 4 mode

 129 / 312

Bit 11 OC3PE: Output compare 4 preload enable

Bit 10 OC3FE: Output compare 4 fast enable

Bits 9:8 CC3S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output

01: CC3 channel is configured as input, IC3 is mapped on TI3

10: CC3 channel is configured as input, IC3 is mapped on TI2

11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if

an internal trigger input is selected through TS bit (SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in CCER).

Bit 7 OC2CE: Output compare 3 clear enable

Bits 6:4 OC2M: Output compare 3 mode

Bit 3 OC2PE: Output compare 3 preload enable

Bit 2 OC2FE: Output compare 3 fast enable

Bits 1:0 CC2S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output

01: CC2 channel is configured as input, IC2 is mapped on TI2

10: CC2 channel is configured as input, IC3 is mapped on TI3

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if

an internal trigger input is selected through TS bit (SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in CCER).

 Input capture mode

Bits 15:12 IC3F: Input capture 4 filter

Bits 11:10 IC3PSC: Input capture 4 prescaler

Bits 9:8 CC3S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output

01: CC3 channel is configured as input, IC3 is mapped on TI3

10: CC3 channel is configured as input, IC3 is mapped on T2

11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only

if an internal trigger input is selected through TS bit (SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in CCER).

Bits 7:4 IC2F: Input capture 3 filter

Bits 3:2 IC2PSC: Input capture 3 prescaler

 130 / 312

Bits 1:0 CC2S: Capture/compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output

01: CC2 channel is configured as input, IC2 is mapped on TI2

10: CC2 channel is configured as input, IC2 is mapped on TI3

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only

if an internal trigger input is selected through TS bit (SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in

CCER).

8.4.9 capture/compare enable register (CCER)

Address offset: 0x20

Reset value: 0x0000

Bit 15 CC3NP: Capture/Compare 4 complementary output polarity

refer to CC1NP description

Bit 14 CC3NE: Capture/Compare 3 complementary output enable

refer to CC0NE description

Bit 13 CC3P: Capture/Compare 4 output polarity

refer to CC0P description

Bit 12 CC3E: Capture/Compare 4 output enable

refer to CC0E description

Bit 11 CC2NP: Capture/Compare 3 complementary output polarity

refer to CC0NP description

Bit 10 CC2NE: Capture/Compare 3 complementary output enable

refer to CC0NE description

Bit 9 CC2P: Capture/Compare 3 output polarity

refer to CC0P description

Bit 8 CC2E: Capture/Compare 3 output enable

 131 / 312

refer to CC0E description

Bit 7 CC1NP: Capture/Compare 2 complementary output polarity

refer to CC0NP description

Bit 6 CC1NE: Capture/Compare 2 complementary output enable

refer to CC0NE description

Bit 5 CC1P: Capture/Compare 2 output polarity

refer to CC0P description

Bit 4 CC1E: Capture/Compare 2 output enable

refer to CC0E description

Bit 3 CC0NP: Capture/Compare 1 complementary output polarity

0: OC0N active high.

1: OC0N active low.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in

BDTR register) and CC0S=”00” (the channel is configured in output).

Bit 2 CC0NE: Capture/Compare 1 complementary output enable

0: Off - OC0N is not active. OC0N level is then function of MOE, OSSI, OSSR, OIS0,

OIS0N and CC0E bits.

1: On - OC0N signal is output on the corresponding output pin depending on MOE, OSSI,

OSSR, OIS0, OIS0N and CC0E bits.

Bit 1 CC0P: Capture/Compare 1 output polarity

CC0 channel configured as output:

0: OC0 active high

1: OC0 active low

CC0 channel configured as input:

This bit selects whether IC0 or IC0 is used for trigger or capture operations.

0: non-inverted: capture is done on a rising edge of IC0. When used as external trigger, IC0

is non-inverted.

1: inverted: capture is done on a falling edge of IC0. When used as external trigger, IC0 is

inverted.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in

BDTR register).

Bit 0 CC0E: Capture/Compare 1 output enable

CC0channel configured as output:

0: Off - OC0 is not active. OC0 level is then function of MOE, OSSI, OSSR, OIS0, OIS0N

and CC0NE bits.

1: On - OC0 signal is output on the corresponding output pin depending on MOE, OSSI,

OSSR, OIS0, OIS0N and CC0NE bits.

CC0 channel configured as input:

This bit determines if a capture of the counter value can actually be done into the input

 132 / 312

capture/compare register 1 (CCR0) or not.

0: Capture disabled.

1: Capture enabled.

Table 3. Output control bits for complementary OCx and OCxN channels with break feature

Control bits Output states(1)

MOE

bit

OSSI

bit

OSSR

bit

CCxE

bit

CCxNE

bit
OCx output state OCxN output state

1 X 0 0 0
Output Disabled (not driven by

the timer), OCx=0, OCx_EN=0

Output Disabled (not driven by the

timer), OCxN=0, OCxN_EN=0

0 0 1

Output Disabled (not driven by

the timer), OCx=0, OCx_EN=0

OCxREF + Polarity OCxN=OCxREF

xor CCxNP, OCxN_EN=1

0 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Output Disabled (not driven by the

timer)

OCxN=0, OCxN_EN=0

0 1 1
OCREF + Polarity + dead-time

OCx_EN=1

Complementary to OCREF (not

OCREF) + Polarity + dead-time

OCxN_EN=1

1 0 0

Output Disabled (not driven by

the timer)

OCx=CCxP, OCx_EN=0

Output Disabled (not driven by the

timer)

OCxN=CCxNP, OCxN_EN=0

1 0 1

Off-State (output enabled with

inactive state)

OCx=CCxP, OCx_EN=1

OCxREF + Polarity

OCxN=OCxREF xor CCxNP,

OCxN_EN=1

1 1 0

OCxREF + Polarity

OCx=OCxREF xor CCxP,

OCx_EN=1

Off-State (output enabled with

inactive state)

OCxN=CCxNP, OCxN_EN=1

1 1 1
OCREF + Polarity + dead-time

OCx_EN=1

Complementary to OCREF (not

OCREF) + Polarity + dead-time

OCxN_EN=1

0

0

X

0 0 Output Disabled (not driven by the timer)

Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP,

OCxN_EN=0

Then if the clock is present: OCx=OISx and OCxN=OISxN after a dead-

time, assuming that OISx and OISxN do not correspond to OCX and

OCxN both in active state.

 0 0 1

0 1 0

 133 / 312

0 1 1

1 0 0

1 0 1 Off-State (output enabled with inactive state)

Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP,

OCxN_EN=1

Then if the clock is present: OCx=OISx and OCxN=OISxN after a dead-

time, assuming that OISx and OISxN do not correspond to OCX and

OCxN both in active state

1 1 0

1 1 1

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept

cleared.

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels

depends on the OCx and OCxN channel state and the GPIOand AFIO registers.

8.4.10 counter (CNT)

Address offset: 0x24

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

 Bits 31:0 CNT[31:0]: Counter value

8.4.11 prescaler (PSC)

Address offset: 0x28

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PSC[15:0]

 134 / 312

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event

(including when the counter is cleared through UG bit of EGR register or through trigger

controller when configured in “reset mode”).

8.4.12 auto-reload register (ARR)

Address offset: 0x2C

Reset value: 0xFFFF

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ARR[31:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[31:0]: Auto-reload value

ARR is the value to be loaded in the actual auto-reload register.

The counter is blocked while the auto-reload value is null.

8.4.13 repetition counter register (RCR)

Address offset: 0x30

Reset value: 0x0000

 Bits 15:8 Reserved, must be kept at reset value.

 Bits 7:0 REP[7:0]: Repetition counter value

These bits allow the user to set-up the update rate of the compare registers (i.e.

periodic transfers from preload to active registers) when preload registers are

enable, as well as the update interrupt generation rate, if this interrupt is enable.

Each time the REP_CNT related downcounter reaches zero, an update event is

generated and it restarts counting from REP value. As REP_CNT is reloaded with

REP value only at the repetition update event U_RC, any write to the RCR register

 135 / 312

is not taken in account until the next repetition update event.

It means in PWM mode (REP+1) corresponds to:

 – the number of PWM periods in edge-aligned mode

 – the number of half PWM period in center-aligned mode.

8.4.14 capture/compare register 1 (CCR0)

 Address offset: 0x34

Reset value: 0x0000

Bits 31:0 CCR0[31:0]: Capture/Compare 1 value

If channel CC0 is configured as output:

CCR0 is the value to be loaded in the actual capture/compare 1 register (preload value). It

is loaded permanently if the preload feature is not selected in the CCMR0 register (bit

OC0PE). Else the preload value is copied in the active capture/compare 1 register when

an update event occurs.

The active capture/compare register contains the value to be compared to the counter CNT

and signaled on OC0 output.

If channel CC0 is configured as input:

CCR0 is the counter value transferred by the last input capture 1 event (IC0). The CCR0

register is read-only and cannot be programmed.

8.4.15 capture/compare register 2 (CCR1)

Address offset: 0x38

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CCR1[:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 31:0 CCR1[31:0]: Capture/Compare 2 value

 136 / 312

If channel CC1 is configured as output:

CCR1 is the value to be loaded in the actual capture/compare 2 register (preload value). It

is loaded permanently if the preload feature is not selected in the CCMR1 register (bit

OC1PE). Else the preload value is copied in the active capture/compare 2 register when

an update event occurs.

The active capture/compare register contains the value to be compared to the counter CNT

and signalled on OC1 output.

If channel CC1 is configured as input:

CCR1 is the counter value transferred by the last input capture 2 event (IC1). The CCR1

register is read-only and cannot be programmed.

8.4.16 capture/compare register 3 (CCR2)

Address offset: 0x3C

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CCR2[31:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

Bits 31:0 CCR2[31:0]: Capture/Compare value

If channel CC2 is configured as output:

CCR2 is the value to be loaded in the actual capture/compare 3 register (preload value). It

is loaded permanently if the preload feature is not selected in the CCMR2 register (bit

OC2PE). Else the preload value is copied in the active capture/compare 3 register when

an update event occurs.

The active capture/compare register contains the value to be compared to the counter CNT

and signalled on OC2 output.

If channel CC2 is configured as input:

CCR2 is the counter value transferred by the last input capture 3 event (IC2). The CCR2

register is read-only and cannot be programmed.

8.4.17 capture/compare register 4 (CCR3)

Address offset: 0x40

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 CCR3[31:0]

rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro rw/ro

 137 / 312

Bits 31:0 CCR3[31:0]: Capture/Compare value

If channel CC3 is configured as output:

CCR3 is the value to be loaded in the actual capture/compare 4 register (preload value). It

is loaded permanently if the preload feature is not selected in the CCMR3 register (bit

OC3PE). Else the preload value is copied in the active capture/compare 4 register when

an update event occurs.

The active capture/compare register contains the value to be compared to the counter CNT

and signalled on OC3 output.

If channel CC3 is configured as input:

CCR3 is the counter value transferred by the last input capture 4 event (IC3). The

CCR2 register is read-only and cannot be programmed.

8.4.18 break and dead-time register (BDTR)

Address offset: 0x44

Reset value: 0x0000

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw Rw rw rw rw rw rw rw rw rw rw rw rw

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on

the LOCK configuration, it can be necessary to configure all of them during the first write

access to the BDTR register.

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is

set by software or automatically depending on the AOE bit. It is acting only on the channels

which are configured in output.

0: OC and OCN outputs are disabled or forced to idle state.

1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE

in CCER register).

See OC/OCN enable description for more details (Section: capture/compare enable register

(CCER)).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software

1: MOE can be set by software or automatically at the next update event (if the break input

is not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits

in BDTR register).

Bit 13 BKP: Break polarity

0: Break input BRK is active low

 138 / 312

1: Break input BRK is active high

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in

BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 12 BKE: Break enable

0: Break inputs (BRK and CSS clock failure event) disabled

1; Break inputs (BRK and CSS clock failure event) enabled

Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in BDTR

register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are configured

as outputs. OSSR is not implemented if no complementary output is implemented in the timer.

See OC/OCN enable description for more details (Section : capture/compare enable register

(CCER)).

0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 1: When

inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1.

Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits

in BDTR register).

Bit 10 OSSI: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs.

See OC/OCN enable description for more details (Section : capture/compare enable register

(CCER)).

0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).

1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or

CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits

in BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.

00: LOCK OFF - No bit is write protected.

01: LOCK Level 1 = DTG bits in BDTR register, OISx and OISxN bits in CR2 register and

BKE/BKP/AOE bits in BDTR register can no longer be written. 10: LOCK Level 2 = LOCK Level

1 + CC Polarity bits (CCxP/CCxNP bits in CCER register, as long as the related channel is

configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be

written.

11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in CCMRx registers,

as long as the related channel is configured in output through the CCxS bits) can no longer be

written.

Note: The LOCK bits can be written only once after the reset. Once the BDTR register has been

 139 / 312

written, their content is frozen until the next reset.

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary

outputs. DT correspond to this duration.

DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS.

DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS.

DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS.

DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS.

Example if TDTS=125ns (8MHz), dead-time possible values are:

0 to 15875 ns by 125 ns steps,

16 us to 31750 ns by 250 ns steps,

32 us to 63us by 1 us steps,

64 us to 126 us by 2 us steps

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed

(LOCK bits in BDTR register).

8.4.19 register map

registers are mapped as 16-bit addressable registers as described in the table below:

Table 4. register map and reset values

 140 / 312

Table 4. register map and reset values (continued)

 141 / 312

 142 / 312

9 Watchdogs

9.1 Overview

AG32 device provide a independent watchdog, which connects to the Advanced Peripheral Bus(APB)。

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from

an independent 32 kHz internal RC and as it operates independently from the main clock, it can

operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a

problem occurs, or as a free-running timer for application timeout management. It is hardware- or

software-configurable through the option bytes.

The Watchdog module is an AMBA slave module and connects to the Advanced Peripheral Bus

(APB). The Watchdog module consists of a 32-bit down counter with a programmable timeout interval

that has the capability to generate an interrupt and a reset signal on timing out. It is intended to be

used to apply a reset to a system in the event of a software failure.

9.2 Independent watchdog (IWDG)

9.2.1 IWDG main features

(1) Free-running down-counter

(2) clocked from an LSI oscillator when Stop and normal modes and from LSE when Standby mode)

(3) Reset (if watchdog activated) when the down-counter value of 0x000 is reached

9.2.2 IWDG functional description

Figure below shows the functional blocks of the independent watchdog module.

When the independent watchdog is started, the counter starts counting down from the reset value of

0xFFF. When it reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

 143 / 312

Whenever the key value 1010 is written in the IWDG_KR register, the down-counter is initialized and

the watchdog reset is prevented.

9.2.3 Watchdog clock

If the Independent watchdog (IWDG) is started by either hardware option or software access,

(1) Under run or stop mode

Select LSE or LSI clock source by setting the IWDG_STOP_CLKSEL bit in the Backup domain control

register(RCC_BDCR).

(2) Under Standby mode

HW will select LSE as clock source for IWDG.

9.2.4 Debug mode

When the mcu enter debug mode, the IWDG counter either continues to work normally or stop,

depending on DBG_IWDG_STOP configuration bit in DBG module.

IWDG timeout period (in ms) at 40 kHz (LSI)

Pre-scaler divider PR[2:0] bits timeout (ms)

/2 0 204.8

/4 1 409.6

/8 2 819.2

/16 3 1638.4

/32 4 3276.8

/64 5 6553.6

/128 6 13107.2

/256 7 26214.4

 144 / 312

9.2.5 IWDG registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IWDG_KR[3:0]
reserved

IWDG_EN

reserv

ed

IWDG_

STOP_C

KSEL

IWDG_

STDBY

_FRZ

IWDG_

STOP_F

RZ reserved

IWDG_PR[2:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:12 IWDG_KR<3:0>: Key value (write only, read 1010h)

These bits must be written by software at regular intervals with the key value 1010h, otherwise the

watchdog generates a reset when the counter reaches 0.

Bits 8 IWDG_EN: IWDG enable control

0: IWDG disable

1: IWDG enable

Bits 6 IWDG_STOP_CKSEL: when STOP mode, select IWDG clock source.

0: select LSI

1: select LSE

note: when STANDBY mode, force to select LSI.

Bits 5 IWDG_STDBY_FRZ: when STANDBY mode, the IWDG counter either continues to work

normally or stop.

0: normal work

1: stop

Bits 4 IWDG_STOP_FRZ: when STOP mode, the IWDG counter either continues to work normally or

stop.

0: normal work

1: stop

Bits 2:0 IWDG_PR[2:0]: Pre-scaler divider

These bits are written by software to select the prescaler divider feeding the counter clock.

000: divider /2

001: divider /4

010: divider /8

011: divider /16

 145 / 312

100: divider /32

101: divider /64

110: divider /128

111: divider /256

9.3 Functional overview

9.3.1 Features

The features of the Watchdog module are:

• 32-bit down counter with a programmable timeout interval.

• Separate Watchdog clock with clock enable for flexible control of the timeout interval.

• Interrupt output generation on timeout.

• Reset signal generation on timeout if the interrupt from the previous timeout remains unserviced by

software.

• Lock register to protect registers from being altered by runaway software.

• Identification registers that uniquely identify the Watchdog module. These can be used by software to

automatically configure itself

Figure below shows a simplified block diagram of the Watchdog module.

Programmable parameters

The following Watchdog module parameters are programmable:

• interrupt generation enable/disable

• interrupt masking

• reset signal generation enable and/disable

• interrupt interval.

 146 / 312

9.3.2 Watchdog module overview

The Watchdog module is based around a 32-bit down counter that is initialized from the Reload Register,

WdogLoad. The counter decrements by one on each positive clock edge of WDOGCLK when the clock

enable WDOGCLKEN is HIGH. When the counter reaches zero, an interrupt is generated. On the next

enabled WDOGCLK clock edge the counter is reloaded from the WdogLoad Register and the count

down sequence continues. If the interrupt is not cleared by the time that the counter next reaches zero

then the Watchdog module asserts the reset signal, WDOGRES, and the counter is stopped.

WDOGCLK can be equal to or be a sub-multiple of the PCLK frequency. However, the positive edges

of WDOGCLK and PCLK must be synchronous and balanced.

The Watchdog module interrupt and reset generation can be enabled or disabled as required by use of

the Control Register, WdogControl. When the interrupt generation is disabled then the counter is

stopped. When the interrupt is re-enabled then the counter starts from the value programmed in

WdogLoad, and not from the last count value.

Write access to the registers in the Watchdog module can be disabled by the use of the Watchdog

module Lock Register, WdogLock. Writing a value of 0x1ACCE551 to the register enables write

accesses to all of the other registers. Writing any other value disables write accesses to all registers

except the Lock Register. This feature protects the Watchdog module registers from being spuriously

changed by runaway software that might otherwise disable the Watchdog module operation.

9.3.3 Functional description

The Watchdog module block diagram is shown in Figure below.

AMBA APB interface

The AMBA APB slave interface generates read and write decodes for accesses to all registers in the

Watchdog module. The Lock Register, WdogLock, is used to control the enabling of write accesses to

 147 / 312

all the other registers in order to ensure software cannot unintentionally disable the Watchdog module

operation.

Free running counter block

The free running counter block contains the 32-bit down counter functionality and generates the interrupt

and reset signal outputs. The counter and interrupt/reset logic is clocked independently of PCLK by

WDOGCLK in conjunction with a clock enable, WDOGCLKEN, although there are constraints on the

relationship between PCLK and WDOGCLK. See Clock signals for details of these constraints.

Interface resets

The Watchdog module is reset by:

• the global reset signal, PRESETn

• a block specific reset signal, WDOGRESn.

PRESETn can be asserted asynchronously to PCLK but must be deasserted synchronously to the rising

edge of PCLK. PRESETn is used to reset the state of the Watchdog module registers. The Watchdog

module requires PRESETn to be asserted LOW for at least one period of PCLK. The values of the

registers after reset are defined in Chapter 3 Programmer’s Model.

WDOGRESn can be asserted asynchronously to WDOGCLK but must be deasserted synchronously to

the rising edge of WDOGCLK. WDOGRESn is used to reset the state of registers in the WDOGCLK

domain. The Watchdog module requires WDOGRESn to be asserted LOW for at least one period of

WDOGCLK.

Clock signals

The Watchdog uses two input clocks:

PCLK This is used to time all APB accesses to the Watchdog module registers.

WDOGCLK

This clock, in conjunction with its clock enable, WDOGCLKEN, is used to clock the Watchdog module

counter and its associated interrupt and reset generation logic. The Watchdog counter only decrements

on a rising edge of WDOGCLK when WDOGCLKEN is HIGH. The relationship between WDOGCLK

and PCLK must observe the following constraints:

• the rising edges of WDOGCLK must be synchronous and balanced with a rising edge of PCLK

• the WDOGCLK frequency cannot be greater than the PCLK frequency.

9.3.4 Operation

After the initial application and release of PRESETn and WDOGRESn, the Control Register is reset and

interrupt and reset generation is disabled. The Lock Register, WdogLock, is initialized in the unlocked

state so that write access to all Watchdog module registers is enabled. The Watchdog counter remains

at its initial value (0xFFFFFFFF) until the interrupt generation is enabled by setting the INTEN bit in the

WdogControl Register.

The WdogLoad Register must be programmed with the desired timeout interval before the Watchdog

module is enabled. After the INTEN bit is set, the counter is loaded with the value in the WdogLoad

Register on the next rising edge of WDOGCLK enabled by WDOGCLKEN. On each subsequent

 148 / 312

enabled WDOGCLK rising edge the counter decrements by one. When the counter reaches zero an

interrupt is generated and the Watchdog interrupt signal, WDOGINT, is asserted. The counter is then

reloaded from the value in the WdogLoad Register and starts another count down sequence.

The interrupt is cleared by a write of any data value to the WdogIntClr Register. This causes the counter

to reload with the value held in the WdogLoad Register and another count down sequence starts. If the

interrupt is not cleared before the counter next reaches zero then the WDOGRES signal is asserted if

the reset enable bit, RESEN, in the WdogControl Register is set. After the WDOGRES signal is asserted,

the counter stops.

In a SoC, the WDOGRES signal is used to reset a system that has got into an unpredictable state.

Therefore, the Watchdog module expects to be reset by PRESETn and WDOGRESn and the

initialization procedure starts again.

To protect the Watchdog module registers from being changed unintentionally, the Lock Register,

WdogLock, must be used to disable the write access to the Watchdog module registers after registers

have been modified. To enable write access to all registers, write 0x1ACCE551 to the Lock Register,

WdogLock. After writing to the required Watchdog registers, disable write access to all registers except

the Lock Register by writing any value other than 0x1ACCE551 to the Lock Register. Reading the Lock

Register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are

disabled, reading the lock register returns 0x00000001 (locked) otherwise the return value is

0x00000000 (unlocked).

If the Load Register, WdogLoad, is written to with a new value while the Watchdog counter is

decrementing then the counter is reloaded immediately with the new load value and continues

decrementing from the new value. Writing to WdogLoad does not clear an active interrupt. An interrupt

must be specifically cleared by writing to the Interrupt Clear Register, WdogIntClr.

If the interrupt generation is disabled by clearing the INTEN bit in the Control Register, WdogControl,

the counter stops at its current value. When the interrupt generation is enabled again the counter reloads

from the Load Register, WdogLoad, and starts to decrement.

Interrupt behavior

When the Watchdog raises an interrupt by asserting WDOGINT, the timing of this signal is generated

from a rising clock edge of WDOGCLK enabled by WDOGCLKEN. When the interrupt is cleared by a

write to the Interrupt Clear Register, WdogIntClr, the WDOGINT signal is deasserted immediately in the

PCLK domain rather than waiting for the next enabled WDOGCLK rising edge.

Figure below shows an example of the timing for an interrupt being raised and cleared.

 149 / 312

Programming the timeout interval

The Watchdog module counter is clocked by the rising edge of WDOGCLK when WDOGCLKEN is

HIGH. In the case where WDOGCLKEN is permanently HIGH, the count rate is equal to the WDOGCLK

frequency. When WDOGCLKEN is periodically pulsed HIGH for one WDOGCLK rising edge then the

count rate is equal to the frequency of the WDOGCLKEN pulses. The frequency of enabled clock edges

is referred to as the effective watchdog clock frequency and the period is referred to as the effective

watchdog clock period.

The Watchdog counter is reloaded from the Load Register, WdogLoad, whenever:

• the counter reaches zero

• the interrupt generation is enabled by setting the INTEN bit in the Control Register, WdogControl,

when it was previously disabled

• an interrupt is cleared by writing to the Interrupt Clear register, WdogIntClr

• a new value is written to the Load Register, WdogLoad.

The time interval between the counter load occurring, and the counter reaching zero and generating an

interrupt is given by the following expression:

Interrupt interval = (WdogLoad+1) x effective watchdog clock period

The initial reset value for WdogLoad is 0xFFFFFFFF and for an example effective watchdog frequency

of 1MHz (period of 1ms) the interrupt interval is 4295 seconds.

The minimum valid value for WdogLoad is 0x00000001. If WdogLoad is set to 0x00000000, an interrupt

is always generated immediately.

Table below shows examples of WdogLoad values required for a variety of interrupt intervals when the

effective watchdog clock frequency is 1MHz.

9.3.5 Summary of registers

Summary of Watchdog module registers

 150 / 312

Address Type Width Reset

value

Name

Base + 0x00 Read/write 32 0xFFFFFFFF WdogLoad

Base + 0x04 Read-only 32 0xFFFFFFFF WdogValue

Base + 0x08 Read/write 2 0x0 WdogControl

Base + 0x0C Write-only - - WdogIntClr

Base + 0x10 Read-only 1 0x0 WdogRIS

Base + 0x14 Read-only 1 0x0 WdogMIS

Base + 0x18-0xBFC - - - -

Base + 0xC00 Read/write 32 0x0 WdogLock

9.3.6 Register descriptions

Load Register, WdogLoad

This is a 32-bit read/write register that contains the value from which the counter is to decrement. When

this register is written to, the count is immediately restarted from the new value. The minimum valid

value for WdogLoad is 1. If WdogLoad is set to 0 then an interrupt is generated immediately.

Value Register, WdogValue

This read-only 32-bit register gives the current value of the decrementing counter.

Control register, WdogControl

This is a read/write register that enables the software to control the Watchdog module. Table below

shows the bit assignment of the WdogControl Register.

Interrupt Clear Register, WdogIntClr

A write of any value to this location clears the Watchdog module interrupt, and reloads the counter from

the value in the WdogLoad Register.

Raw Interrupt Status Register, WdogRIS

 151 / 312

This register indicates the raw interrupt status from the counter. The Raw Interrupt Status Register

indicates that an interrupt has been raised by the Watchdog counter reaching zero. Table below shows

the bit assignment of the WdogRIS Register

Masked Interrupt Status Register, WdogMIS

This register indicates the masked interrupt status from the counter. This value is the logical AND of the

raw interrupt status with the INTEN bit from the Control Register, and is the same value that is passed

to the interrupt output pin WDOGINT. Table below shows the bit assignment of the WdogMIS Register.

Lock Register, WdogLock

This register allows write-access to all other registers to be disabled. This is to prevent rogue software

from disabling the Watchdog module operation. Writing a value of 0x1ACCE551 enables write access

to all other registers. Writing any other value disables write accesses. A read from this register returns

the lock status rather than the value written:

• 0 indicates that write access is enabled (not locked)

• 1 indicates that write access is disabled (locked).

Table below shows the bit assignment of the WdogLock Register.

 152 / 312

Appendix A

Signal Descriptions

A.1 AMBA APB signals

The Watchdog module is connected to the AMBA APB as a bus slave. Table A-1 describes the APB

interface signals.

A.2 Non-AMBA signals

Table A-2 describes the Watchdog module non-AMBA signals.

 153 / 312

10 Real-time clock (RTC)

The real-time clock is an independent timer. The RTC provides a set of continuously running counters

which can be used, with suitable software, to provide a clock-calendar function. The counter values

can be written to set the current time/date of the system.

The RTC core and clock configuration are in the Backup domain, which means that RTC setting and

time are kept after reset or wakeup from Standby mode. After reset, access to the Backup registers

and RTC is disabled and the Backup domain (BKP) is protected against possible parasitic write

access.

To enable access to the Backup registers and the RTC, proceed as follows:

(1) Enable the power and backup interface clocks by setting the PWREN and BKPEN bits in the

RCC_APB1ENR register

(2) Set the DBP bit the Power Control Register (PWR_CR) to enable access to the Backup registers

and RTC.

10.1 RTC main features:

Programmable pre-scaler : division factor up to 2^20

32-bit programmable counter for long-term measurement

The RTC clock source could be any of the following ones:

(1) CLKLOCAL from interconnect logic

(2) LSE oscillator clock

(3) LSI oscillator clock

Two separate reset types:

(1) The APB interface is reset by system reset

(2) The RTC Core (Pre-scaler, Alarm, Counter and Divider) is reset only by a Backup domain reset.

Three dedicate interrupt lines:

(1) Alarm interrupt, for generating a software programmable alarm interrupt.

(2) Seconds interrupt, for generating a periodic interrupt signal with a programmable period length.(up

to 1 second).

(3) Overflow interrupt, to detect when the internal programmable counter rolls over to zero.

 154 / 312

10.2 RTC functional description

The RTC consists of two main units. The first one (APB1 Interface) is used to interface with the APB1

bus. This unit also contains a set of 16-bit registers accessible from the APB1 bus in read or write

mode. The APB1 interface is clocked by the APB1 bus clock in order to interface with the APB1 bus.

The other unit (RTC Core) consists of a chain of programmable counters made of two main blocks.

The first block is the RTC pre-scaler block, which generates the RTC time base TR_CLK that can be

programmed to have a period of up to 1 second. It includes a 20-bit programmable divider (RTC Pre-

scaler). Every TR_CLK period, the RTC generates an interrupt (Second Interrupt) if it is enabled in the

RTC_CR register. The second block is a 32-bit programmable counter that can be initialized to the

current system time. The system time is incremented at the TR_CLK rate and compared with a

programmable date (stored in the RTC_ALR register) in order to generate an alarm interrupt, if

enabled in the RTC_CR control register.

RTC simplified block diagram

Resetting RTC registers

All system registers are asynchronously reset by a System Reset or Power Reset, except for RTC_PRL,

RTC_CAL

RTC_PRL

RTC_DIV
RTC_CLK

LSE

LSI

CLK_LOCAL

RTC pre-scaler

Powered in standby

RTC_CNT

RTC_CLR

TR_CLK

Powered in standby

32 bit counter

WKUP pin
Powered in standby

Exit standby mode

Backup domain

RTC_second RTC_overflow RTC_alarm

Not powered in standby

APB1 interface

APB1 bus

PCLK1

 155 / 312

RTC_ALR, RTC_CNT, and RTC_DIV.

The RTC_PRL, RTC_ALR, RTC_CNT, and RTC_DIV registers are reset only by a Backup Domain reset.

Reading RTC registers

The RTC core is completely independent from the RTC APB1 interface.

Software accesses the RTC pre-scaler, counter and alarm values through the APB1 interface but the

associated readable registers are internally updated at each rising edge of the RTC clock

resynchronized by the RTC APB1 clock. This is also true for the RTC flags.

This means that the first read to the RTC APB1 registers may be corrupted (generally read as 0) if the

APB1 interface has previously been disabled and the read occurs immediately after the APB1 interface

is enabled but before the first internal update of the registers. This can occur if:

(1) A system reset or power reset has occurred

(2) The MCU has just woken up from Standby mode

(3) The MCU has just woken up from Stop mode

In all the above cases, the RTC core has been kept running while the APB1 interface was disabled

(reset, not clocked or unpowered).

Consequently when reading the RTC registers, after having disabled the RTC APB1 interface, the

software must first wait for the RSF bit (Register Synchronized Flag) in the RTC_CRL register to be set

by hardware.

Note that the RTC APB1 interface is not affected by WFI and WFE low-power modes.

Configuring RTC registers

To write in the RTC_PRL, RTC_CNT, RTC_ALR registers, the peripheral must enter Configuration Mode.

This is done by setting the CNF bit in the RTC_CRL register.

In addition, writing to any RTC register is only enabled if the previous write operation is finished. To

enable the software to detect this situation, the RTOFF status bit is provided in the RTC_CR register to

indicate that an update of the registers is in progress. A new value can be written to the RTC registers

only when the RTOFF status bit value is ’1’.

Configuration procedure

1. Poll RTOFF, wait until its value goes to ‘1’

2. Set the CNF bit to enter configuration mode

3. Write to one or more RTC registers

4. Clear the CNF bit to exit configuration mode

5. Poll RTOFF, wait until its value goes to ‘1’ to check the end of the write operation.

The write operation only executes when the CNF bit is cleared; it takes at least three RTCCLK cycles to

complete.

RTC flag assertion

The RTC Second flag (SECF) is asserted on each RTC Core clock cycle before the update

of the RTC Counter.

The RTC Overflow flag (OWF) is asserted on the last RTC Core clock cycle before the

counter reaches 0x0000.

The RTC_Alarm and RTC Alarm flag (ALRF) are asserted on the last RTC Core clock cycle before the

counter reaches the RTC Alarm value stored in the Alarm register increased by one (RTC_ALR + 1).

 156 / 312

The write operation in the RTC Alarm and RTC Second flag must be synchronized by using one of the

following sequences:

(1) Use the RTC Alarm interrupt and inside the RTC interrupt routine, the RTC Alarm and/or RTC

Counter registers are updated.

(2) Wait for SECF bit to be set in the RTC Control register. Update the RTC Alarm and/or

the RTC Counter register.

RTC second and alarm waveform example with PR=0003, ALARM=00004

RTC Overflow waveform example with PR=0003

RTC_Secon

RTC_CNT

0002 0001 0000 0003 0002 0001 0000 0003 0001 0003 0001 0003 0002 0001 0000 0003 0002 0001 0000 0003

FFFFFFFB

1 RTCCLK

RTC_P

RTC_Overflow

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003

RTCCLK

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003

FFFFFFFC FFFFFFFD FFFFFFFE FFFFFFFF 00000000

RTC_Second

RTC_Alarm

0002 0001 0000 0003 0002 0001 0000 0003 0001 0003 0001 0003 0002 0001 0000 0003 0002 0001 0000 0003

0000 0001 0002 0003 0004 0005

1 RTCCLK

RTC_PR

RTC_CNT

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003

RTCCLK

0002 0001 0000 0003 0002 0001 0000 0003 0002 0001 0000 0003

 157 / 312

11 DMA

11.1 Overview

The flexible general-purpose DMA controllers provide a hardware method of transferring data between

peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other

system functions. Three types of access method are supported: peripheral to memory, memory to

peripheral, memory to memory.

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests

are determined by software configuration and hardware channel number. Transfer size of source and

destination are independent and configurable.

Features of the DMAC

The DMAC offers:

• Eight DMA channels. Each channel can support a unidirectional transfer.

• 16 DMA requests. The DMAC provides 16 peripheral DMA request lines.

• Single DMA and burst DMA request signals. Each peripheral connected to the DMAC can assert

either a burst DMA request or a single DMA request. You set the DMA burst size by programming the

DMAC.

• Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral

transfers.

• Scatter or gather DMA support through the use of linked lists.

• Hardware DMA channel priority. Each DMA channel has a specific hardware priority. DMA channel 0

has the highest priority and channel 7 has the lowest priority. If requests from two channels become

active at the same time, the channel with the highest priority is serviced first.

• AHB slave DMA programming interface. You program the DMAC by writing to the DMA control

registers over the AHB slave interface.

• Two AHB bus masters for transferring data. Use these interfaces to transfer data when a DMA

request goes active.

• 32-bit AHB master bus width.

• Incrementing or non-incrementing addressing for source and destination.

• Programmable DMA burst size. You can programme the DMA burst size to transfer data more

efficiently. The burst size is usually set to half the size of the FIFO in the peripheral.

• Internal four word FIFO per channel.

• Supports eight, 16, and 32-bit wide transactions.

• Big-endian and little-endian support. The DMAC defaults to little-endian mode on reset

Raw interrupt status. You can read the DMA error and DMA count raw interrupt status prior to

masking.

• Test registers for use in block and integration system level testing.

• Identification registers that uniquely identify the DMAC. An operating system can use these to

automatically configure itself

 158 / 312

11.2 Functional Overview

11.2.1 Functional description

The DMAC enables the following transactions:

• memory-to-memory

• memory-to-peripheral

• peripheral-to-memory

• peripheral-to-peripheral.

Each DMA stream provides unidirectional serial DMA transfers for a single source and destination. For

example, a bidirectional port requires one stream for transmit and one for receive. The source and

destination areas can each be either a memory region or a peripheral, and you can access them

through the same AHB master, or one area by each master. Figure 2-1 shows a block diagram of the

DMAC.

 159 / 312

11.2.1.1 AHB slave interface

All transactions on the AHB slave programming bus of the DMAC are 32 bits. This eliminates endian

issues when programming the DMAC.

11.2.1.2 Control logic and register bank

The register block stores data written, or to be read across the AMBA AHB interface. Program the

DMAC with this block using an AMBA AHB slave interface.

11.2.1.3 DMA request and response interface

DMA request mapping

Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3

Channel 0 FLASH_DMA_REQ GPTIMER0_TRIGGER_DMA_REQ GPTIMER3_CC_DMA0_REQ UART1_RX_DMA_REQ

Channel 1 EXT_DMA0_REQ GPTIMER1_UPDATE_DMA_REQ GPTIMER3_CC_DMA1_REQ UART2_TX_DMA_REQ

Channel 2 EXT_DMA1_REQ GPTIMER1_CC_DMA0_REQ GPTIMER3_CC_DMA2_REQ UART2_RX_DMA_REQ

Channel 3 EXT_DMA2_REQ GPTIMER1_CC_DMA1_REQ GPTIMER3_CC_DMA3_REQ UART3_TX_DMA_REQ

Channel 4 EXT_DMA3_REQ GPTIMER1_CC_DMA2_REQ GPTIMER3_COM_DMA_REQ UART3_RX_DMA_REQ

Channel 5 FCB0_DMA_REQ GPTIMER1_CC_DMA3_REQ GPTIMER3_TRIGGER_DMA_REQ UART4_TX_DMA_REQ

Channel 6 GPTIMER1_COM_DMA_REQ GPTIMER4_UPDATE_DMA_REQ SPI0_TX_DMA_REQ UART4_RX_DMA_REQ

Channel 7 GPTIMER1_TRIGGER_DMA_REQ GPTIMER4_CC_DMA0_REQ SPI0_RX_DMA_REQ

Channel 8 GPTIMER2_UPDATE_DMA_REQ GPTIMER4_CC_DMA1_REQ SPI1_TX_DMA_REQ

Channel 9 GPTIMER2_CC_DMA0_REQ GPTIMER4_CC_DMA2_REQ SPI1_RX_DMA_REQ

Channel 10 GPTIMER0_UPDATE_DMA_REQ GPTIMER2_CC_DMA1_REQ GPTIMER4_CC_DMA3_REQ

Channel 11 GPTIMER0_CC_DMA0_REQ GPTIMER2_CC_DMA2_REQ GPTIMER4_COM_DMA_REQ

Channel 12 GPTIMER0_CC_DMA1_REQ GPTIMER2_CC_DMA3_REQ GPTIMER4_TRIGGER_DMA_REQ

Channel 13 GPTIMER0_CC_DMA2_REQ GPTIMER2_COM_DMA_REQ UART0_TX_DMA_REQ

Channel 14 GPTIMER0_CC_DMA3_REQ GPTIMER2_TRIGGER_DMA_REQ UART0_RX_DMA_REQ

Channel 15 GPTIMER0_COM_DMA_REQ GPTIMER3_UPDATE_DMA_REQ UART1_TX_DMA_REQ

11.2.1.4 Channel logic and channel register bank

The channel logic and channel register bank contains registers and logic that each DMA channel

requires.

11.2.1.5 Interrupt request

The interrupt request generates interrupts to the core processor.

 160 / 312

11.2.1.6 AHB master interfaces

The DMAC contains two full AHB masters. Figure below shows a block diagram of the two masters

connected into a system. This enables, for example, the DMAC to transfer data directly from the

memory connected to AHB port 1 to any AHB peripheral connected to AHB port 2. It also enables

transactions between the DMAC and any APB peripheral to occur independently of transactions on

AHB bus 1.

The two AHB masters are each capable of dealing with all types of AHB transactions, including:

• Split, retry, and error responses from slaves. If a peripheral performs a split or retry, the DMAC stalls

and waits until the transaction can complete.

• Locked transfers for source and destination of each stream.

• Setting of protection bits for transfers on each stream.

All AHB signals are connected as defined in the AHB Specification. The two AHB masters must be

synchronous. They must use the same HCLK. Support for asynchronous AHB buses is not defined

within the DMAC, and you must implement it by using wrappers, if required.

Bus and transfer widths

The two AHB masters are connected to buses of the same width. The default is a 32-bit bus. Source

and destination transfers can be different widths, and can be the same width or narrower than the

physical bus width. The DMAC packs or unpacks data as appropriate. The DMAC uses HSIZE1 or

HSIZE2 to indicate the width of a transfer, and if this fails to match the width expected by the

peripheral, then the peripheral can assert an error on HRESP1 or HRESP2.

Endian behavior

The DMAC can cope with both little-endian and big-endian addressing. You can set the endianness of

each AHB master individually.

Internally, the DMAC treats all data as a stream of bytes instead of 16-bit or 32-bit quantities. This

means that when performing mixed-endian activity, where the endianness of the source and

destination are different, byte swapping of the data within the 32-bit data bus occurs.

Note:

If you do not require byte swapping, avoid using different endianness between the source and

destination addresses.

 161 / 312

Error conditions

An error during a DMA transfer is flagged directly by the peripheral by asserting an Error response on

the AHB bus during the transfer. The DMAC automatically disables the DMA stream after the current

transfer has completed, and optionally generates an error interrupt to the CPU. You can mask this

error interrupt.

11.2.1.7 Channel hardware

A dedicated hardware channel supports each stream, including source and destination controllers,

and a FIFO. This enables better latency than a DMAC with only a single hardware channel shared

between several DMA streams, and also simplifies the control logic.

11.2.1.8 Test registers

Test registers are provided for integration testing. You must not read or write to test registers during

normal use. The integration testing verifies that the DMAC is connected into a system correctly,

enabling you to write to and read each input and output.

11.2.1.9 DMA request priority

DMA channel priority is fixed. DMA channel 0 has the highest priority and DMA channel 7 has the

lowest priority.

If the DMAC is transferring data for a lower priority channel, and then a higher priority channel goes

active, it completes the number of transfers delegated to the master interface by the lower priority

channel before switching over to transfer data for the higher priority channel. In the worst case, this is

as large as one quadword.

The two lowest priority channels in the DMAC, 6 and 7, are designed so that they cannot saturate the

AHB bus. If one of these lower priority channels goes active, the DMAC relinquishes the bus for one

cycle each four transfers of the programmed WIDTH irrespective of the size of the transfer. For

example, if the programmed size WIDTH is 8, then after four transfers of 8 bits the DMAC relinquishes

the bus. This enables other AHB masters to access the bus.

It is recommended that memory-to-memory transactions use one of these low-priority channels or

other lower priority AHB bus masters cannot access the bus during DMAC memory-to-memory

transfer.

11.2.2 System considerations

Reducing the number of transactions that occur on the buses reduces the latency on the bus,

improves system performance, and reduces power consumption. Therefore, the following design

considerations are recommended:

• All memory transactions are, in the standard configuration, 32 bits wide to improve bus efficiency.

 162 / 312

• Peripherals with natural word sizes that are less than 32 bits must contain byte or halfword packing

hardware so that all transactions can be made 32 bits wide.

• Slow peripherals that normally use wait states must contain FIFOs so you can transfer data at full

speed using burst transfers.

11.2.3 System connectivity

Figure below shows how the DMAC connects to a system

 163 / 312

11.2.3.1 AHB interfaces

The AHB slave and master interfaces all execute from the same clock, HCLK. Each master is entirely

separate and there is no shared logic between them.

11.2.3.2 AHB slave interface

The AHB slave interface programs the DMAC. Figure 2-3 on page 2-13 shows the port-level

connections of the AHB slave interface module.

11.2.3.3 AHB master interface

Unless otherwise stated, you must connect this interface as the AMBA Specification describes. You

can set the AHB signals while performing DMA transfers.

Protection control

Software programs HPROT[3:0] bits for each DMA channel. The bits are set as follows:

HPROT[0] Opcode, or data. This bit is hardcoded to Data-1.

HPROT[1] User or privileged:

user = 0

privileged = 1.

Programmed by software. See Channel Control Registers. During LLI

loads, HPROT[1] is made 1, privileged.

HPROT[2] Bufferable or non-bufferable:

non-bufferable = 0

bufferable = 1.

Programmed by software. See Channel Control Registers. During LLI

loads, HPROT[2] is made 0.

HPROT[3] Cacheable or non-cacheable:

non-cacheable = 0

cacheable = 1.

Programmed by software. See Channel Control Registers. During LLI

loads, HPROT[3] is made 1.

Peripherals can interpret the HPROT information as required to help perform efficient transactions. For

example:

• You can use the HPROT[1] user or privileged bit to protect certain peripherals or memory spaces

from user mode transactions.

• You can use the HPROT[2] bufferable or nonbufferable bit to indicate to an AMBA bridge that the

write can complete in zero wait states on the source bus. This is without waiting for it to arbitrate for

the destination bus, and for the slave to accept the data.

 164 / 312

• An AMBA bridge can use the HPROT[3] cacheable or noncacheable bit so that on the first read of a

burst of eight, it can transfer the whole burst of eight reads on the destination bus, rather than pass the

transactions through one at a time.

Lock control

Set the lock bit by programming bit 16 in the DMACCxConfiguration Register. See Channel

Configuration Registers.

When a burst occurs, the AHB arbiter must not degrant the master during the burst until the lock is

deasserted. You can lock the DMAC for a single burst such as a long source fetch burst or a long

destination drain burst. The DMAC does not usually assert the lock continuously for a source fetch

burst followed by a destination drain burst.

There are situations when the DMAC asserts the lock for source transfers followed by destination

transfers. This is possible when internal conditions in the DMAC enable it to perform a source fetch

followed by a destination drain back-to-back, and when the following conditions are both met:

• Source width = destination width, and,

• Source burst size is a minimum of 4.

Bus width

The source width, SWidth, or destination width, DWidth, values in the DMACCxControl Register

program the HSIZE[1:0] bits.

11.2.3.4 Interrupt generation logic

The DMAC generates the individual maskable active HIGH interrupts. A combined interrupt output is

also generated as an OR function of the individual interrupt requests.

You can use the single combined interrupt with a system interrupt controller that provides another level

of masking on a per-peripheral basis. This enables you to use modular device drivers that always

know where to find the interrupt source control register bits.

You can also use the individual interrupt requests with a system interrupt controller that provides

masking for the outputs of each peripheral. In this way, a global interrupt service routine can read the

entire set of sources from one wide register in the system interrupt controller. This is useful when the

time to read from the peripheral registers is significant compared to the CPU clock speed in a real-time

system.

The peripheral supports both of these methods.

11.2.3.5 Interrupt controller connectivity

You can connect the interrupt request signals of the DMAC to an interrupt controller in one of two

ways.

• For higher performance systems, you must connect the DMACINTERR and DMACINTTC interrupt

request signals to the interrupt controller. Figure below shows connections to higher performance

systems.

 165 / 312

For lower performance systems, where the interrupt controller has fewer interrupt request input lines,

you can use the DMACINTR interrupt request signal. Figure below shows connections to lower

performance systems.

11.2.3.6 DMA request and response connectivity

Figure below shows how you can connect the DMA request and response signals to a peripheral.

However, some peripherals do not use all of these signals. You can leave output signals that are not

required unconnected and you can tie input signals that are not required LOW. See Appendix B DMA

Interface for more information on the DMA request and response interface.

Figure below shows an example of a peripheral that uses all of the DMA request and grant signals

Figure below shows a simple example of connectivity.

11.2.4 Software considerations

You must take into account the following software considerations when programming the DMAC:

• There must not be any write-operation to Channel registers in an active channel after the channel

enable is made HIGH. If you must reprogram any DMAC channel parameters, you must reprogram

after disabling the DMAC channel.

 166 / 312

• If the source width is less than the destination width, the TransferSize value multiplied by the source

width must be an integral multiple of the destination width.

• When the source peripheral is the flow controller and the source width is less than the destination

width, the number of transfers that the source peripheral performs, before asserting an DMACLSREQ

or DMACLBREQ, must be so that the number of transfers multiplied by the source width is an integral

multiple of the destination width. If this case is violated, the data can get stuck and lost in the FIFO

causing UNPREDICTABLE results. You can abort the transfer by disabling the relevant DMAC

channel.

• You must not program the SrcPeripheral and DestPeripheral bit fields in the DMACCxConfig

Register with any value greater than 15.

• The SWidth and DWidth bit fields in the DMACCxControl Register must not indicate more than a 32-

bit wide peripheral.

• After the software disables a channel by clearing the ChannelEnable bit in the DMACCxConfig

Register, see Channel Configuration Registers on page 3-27, it must re-enable the bit only after it has

polled a 0 in the corresponding DMACEnbldChns Register bit, see Enabled Channel Register. This is

because the actual disabling does not immediately happen with the clearing of ChannelEnable bit.

You must accommodate the latency of the ongoing AHB burst.

• The LLI field in the DMACCxLLIReg Register must not indicate an address greater than

0xFFFFFFF0, otherwise the four-word LLI burst wraps over at 0x00000000 and the LLI data structure

is not in contiguous memory locations. See Channel Linked List Item Registers.

• When the transfer size programmed in the DMAC is greater than the depth of the FIFO in a source

or destination peripheral, you must only program the DMAC for non-incrementing address generation.

• A peripheral is expected to deassert any DMACSREQ, DMACBREQ, DMACLSREQ, or

DMACLBREQ signals on receiving the DMACCLR signal irrespective of the request the DMACCLR

was asserted in response to. This is because DMACCLR is not specific to a single-request signal,

DMACSREQ, or burst-request signal, DMACSBEQ. The handshaking of DMACCLR is achieved with

a logical OR of all the DMA requests in the DMAC.

• If you program the TransferSize field in the DMACCxControl Register, see Channel Control

Registers, as zero, and the DMAC is the flow controller, the TransferSize field has no meaning in other

flow-control modes, then the channel does not initiate any transfers. It is your responsibility to disable

the channel by writing into the channel enable bit of the DMACCxConfig Register and reprogramming

the channel again.

• You must not run the normal read-write tests on the DMACCxControl Register, see Channel Control

Registers, because the TransferSize field is not a typical write and read-back register field. While

writing, the TransferSize bit-field is like a control register because it determines how many transfers

the DMAC performs. However, during read-back, TransferSize behaves like a status register because

it returns the number of remaining transfers in terms of source width. So when TransferSize is read

back, it returns the number of destination-transfer-completed stored in a separate counter called

TrfSizeDst multiplied by a factor. The same physical register is not being written into and read from,

and normal write and read-back tests are not applicable.

• In the destination flow control mode, with peripheral-to-peripheral transfer, if sufficient data is present

in the channel FIFO to service a DMACLSREQ or DMACLBREQ request raised by a destination

peripheral without requiring data to be fetched from the source peripheral, then the source peripheral

is issued a DMACTC.

• For destination flow controlled case, peripheral-to-peripheral transfer, with DWidth < SWidth, the

number of data bytes requested by the destination peripheral must be an integral multiple of Swidth

expressed in bytes. If you do not ensure this, then the DMAC might fetch more data from the source

peripheral than is required. This can result in data loss

• At the end of accesses corresponding to low-priority channels, an IDLE cycle is inserted on the AHB

bus to enable other masters to access the bus. This ensures that a low-priority channel does not

 167 / 312

monopolize the bus. It does, however, mean that the bus might be occupied by transactions

corresponding to a low priority for up to 16 cycles in the worst case. This applies to all transfer

configurations, including memory-to-memory transfers.

11.3 Programmer’s Model

11.3.1 About the programmer’s model

The DMAC enables the following types of transactions:

• memory-to-memory

• memory-to-peripheral

• peripheral-to-memory

• peripheral-to-peripheral.

Each DMA stream is configured to provide unidirectional DMA transfers for a single source and

destination.

For example, a bidirectional serial port requires one stream for transmit and one for receive. The

source and destination areas can each be either a memory region or a peripheral, and you can access

them through the same AHB master, or one area by each master.

The base address of the DMAC is not fixed, and can be different for any particular system

implementation. However, the offset of any particular register from the base address is fixed.

11.3.2 Programming the DMAC

11.3.2.1 Enabling the DMAC

Enable the DMAC by setting the DMA Enable, E, bit in the DMACConfiguration Register. See

Configuration Register

11.3.2.2 Disabling the DMAC

To disable the DMAC:

1. Read the DMACEnbldChns Register and ensure that you have disabled all the DMA channels. If

any channels are active, see Disabling a DMA channel.

2. Disable the DMAC by writing 0 to the DMA Enable bit in the DMACConfiguration Register. See

Configuration Register.

11.3.2.3 Enabling a DMA channel

Enable the DMA channel by setting the Channel Enable bit in the relevant DMA channel Configuration

Register. See Channel Configuration Registers.

Note:

 168 / 312

You must fully initialize the channel before you enable it. Additionally, you must set the Enable bit of

the DMAC before you enable any channels.

11.3.2.4 Disabling a DMA channel

You can disable a DMA channel in the following ways:

• Write directly to the Channel Enable bit

• Use the Active and Halt bits in conjunction with the Channel Enable bit.

• Wait until the transfer completes. The channel is then automatically disabled.

Disabling a DMA channel and losing data in the FIFO

Clear the relevant Channel Enable bit in the relevant channel Configuration Register. See Channel

Configuration Registers. The current AHB transfer, if one is in progress, completes and the channel is

disabled.

Disabling a DMA channel without losing data in the FIFO

To disable a DMA channel without losing data in the FIFO:

1. Set the Halt bit in the relevant channel Configuration Register. See Channel Configuration

Registers. This causes any subsequent DMA requests to be ignored.

2. Poll the Active bit in the relevant channel Configuration Register until it reaches 0. This bit indicates

whether there is any data in the channel that has to be transferred.

3. Clear the Channel Enable bit in the relevant channel Configuration Register.

11.3.2.5 Setting up a new DMA transfer

To set up a new DMA transfer:

1. If the channel is not set aside for the DMA transaction:

a. Read the DMACEnbldChns Register and determine the channels that are inactive. See

Enabled Channel Register.

b. Choose an inactive channel that has the necessary priority.

2. Program the DMAC.

11.3.2.6 Halting a DMA channel

Set the Halt bit in the relevant DMA channel Configuration Register. The current source request is

serviced. Any subsequent source DMA requests are ignored until the Halt bit is cleared.

11.3.2.7 Programming a DMA channel

To program a DMA channel:

1. Choose a free DMA channel with the necessary priority. DMA channel 0 has the highest priority and

DMA channel 7 has the lowest priority.

 169 / 312

2. Clear any pending interrupts on the channel you want to use by writing to the DMACIntTCClear and

DMACIntErrClr Registers. See Interrupt Terminal Count Clear Register and Interrupt Error Clear

Register. The previous channel operation might have left interrupts active.

3. Write the source address into the DMACCxSrcAddr Register. See Channel Source Address

Registers.

4. Write the destination address into the DMACCxDestAddr Register. See Channel Destination

Address Registers.

5. Write the address of the next LLI into the DMACCxLLI Register. See Channel Linked List Item

Registers. If the transfer consists of a single packet of data, you must write 0 into this register.

6. Write the control information into the DMACCxControl Register. See Channel Control Registers.

7. Write the channel configuration information into the DMACCxConfiguration Register. See Channel

Configuration Registers. If the Enable bit is set, then the DMA channel is automatically enabled.

11.3.3 Summary of registers

Name

Ad

dress

(base+)

Ty

pe

Re

set

value

Description

DMACIntStatus 0x000 RO
0x

00

See Interrupt Status

Register

DMACIntTCStatus 0x004 RO
0x

00

See Interrupt Terminal

Count Status Register

DMACIntTCClear 0x008 WO -
See Interrupt Terminal

Count Clear Register

DMACIntErrorStatus 0x00C RO
0x

00

See Interrupt Error Status

Register

DMACIntErrClr 0x010 WO -
See Interrupt Error Clear

Register

DMACRawIntTCStatus 0x014 RO -
See Raw Interrupt

Terminal Count Status Register

DMACRawIntErrorStat

us
0x018 RO -

See Raw Error Interrupt

Status Register

DMACEnbldChns 0x01C RO
0x

00

See Enabled Channel

Registe

DMACSoftBReq 0x020 R/W
0x

0000

See Software Burst

Request Register

DMACSoftSReq 0x024 R/W
0x

0000

See Software Single

Request Register

DMACSoftLBReq 0x028 R/W
0x

0000

See Software Last Burst

Request Register

DMACSoftLSReq 0x02C R/W 0x See Software Last Single

 170 / 312

0000 Request Register

DMACConfiguration 0x030 R/W
0b

000

See Configuration

Register

DMACSync 0x34 R/W
0x

0000

See Synchronization

Register

0x38 –

0x0EC-
 Reserved

From 0x100, 8 channel

of each below

DMACC0SrcAddr 0x100 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC0DestAddr 0x104 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC0LLI 0x108 R/W

0x

000000

00

See Channel Linked List

Item Registers

DMACC0Control 0x10C R/W

0x

000000

00

See Channel Control

Registers

DMACC0Configuration 0x110 R/W
0x

00000

See Channel

Configuration Registers

DMACC1SrcAddr 0x120 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC1DestAddr 0x124 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC1LLI 0x128 R/W

0x

000000

00

See Channel Linked List

Item Registers

DMACC1Control 0x12C R/W

0x

000000

00

See Channel Control

Registers

DMACC1Configuration 0x130 R/W
0x

00000

See Channel

Configuration Registers

DMACC2SrcAddr 0x140 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC2DestAddr
0x144

R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC2LLI 0x148 R/W 0x See Channel Linked List

 171 / 312

000000

00

Item Registers

DMACC2Control 0x14C R/W

0x

000000

00

See Channel Control

Registers

DMACC2Configuration 0x150 R/W
0x

00000

See Channel

Configuration Registers

DMACC3SrcAddr 0x160 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC3DestAddr 0x164 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC3LLI 0x168 R/W

0x

000000

00

See Channel Linked List

Item Registers

DMACC3Control 0x16C R/W

0x

000000

00

See Channel Control

Registers

DMACC3Configuration 0x170 R/W
0x

00000

See Channel

Configuration Registers

DMACC4SrcAddr 0x180 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC4DestAddr 0x184 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC4LLI 0x188 R/W

0x

000000

00

See Channel Linked List

Item Registers

DMACC4Control 0x18C R/W

0x

000000

00

See Channel Control

Registers

DMACC4Configuration 0x190 R/W
0x

00000

See Channel

Configuration Registers

DMACC5SrcAddr 0x1A0 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC5DestAddr 0x1A4 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC5LLI 0x1A8 R/W

0x

000000

00

See Channel Linked List

Item Registers

 172 / 312

DMACC5Control 0x1AC R/W

0x

000000

00

See Channel Control

Registers

DMACC5Configuration 0x1B0 R/W
0x

00000

See Channel

Configuration Registers on

page 3-27

DMACC6SrcAddr 0x1C0 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC6DestAddr 0x1C4 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC6LLI 0x1C8 R/W

0x

000000

00

See Channel Linked List

Item Registers

DMACC6Control 0x1CC R/W

0x

000000

00

See Channel Control

Registers

DMACC6Configuration 0x1D0 R/W
0x

00000

See Channel

Configuration Registers

DMACC7SrcAddr 0x1E0 R/W

0x

000000

00

See Channel Source

Address Registers

DMACC7DestAddr 0x1E4 R/W

0x

000000

00

See Channel Destination

Address Registers

DMACC7LLI 0x1E8 R/W

0x

000000

00

See Channel Linked List

Item Registers

DMACC7Control 0x1EC R/W

0x

000000

00

See Channel Control

Registers

DMACC7Configuration 0x1F0 R/W
0x

00000

ee Channel Configuration

Registers

DMACPeriphID0 0xFE0 RO
0x

80

See DMACPeriphID0

Register

DMACPeriphID1 0xFE4 RO
0x

10

See DMACPeriphID1

Register

DMACPeriphID2 0xFE8 RO
0x

04

See DMACPeriphID2

Register

DMACPeriphID3 0xFEC RO
0x

0A

See DMACPeriphID3

Register

DMACPCellID0 0xFF0 RO
0x

0D

See DMACPCellID0

Register

 173 / 312

DMACPCellID1 0xFF4 RO
0x

F0

See DMACPCellID1

Register

DMACPCellID2 0xFF8 RO
0x

05

See DMACPCellID2

Register

DMACPCellID3 0xFFC RO
0x

B1

See DMACPCellID3

Register

DMACITCR 0x500 R/W
0x

0
See Test Control Register

DMACITOP1 0x504 R/W
0x

0000

See Integration Test

Output Register 1

DMACITOP2 0x508 R/W
0x

0000

See Integration Test

Output Register 2

DMACITOP3 0x50C R/W
0x

0

See Integration Test

Output Register 3

11.3.4 Register descriptions

11.3.4.1 Interrupt Status Register

The read-only DMACIntStatus Register, with address offset of 0x000, shows the status of the

interrupts after masking. A HIGH bit indicates that a specific DMA channel interrupt request is active.

You can generate the request from either the error or terminal count interrupt requests. Figure below

shows the register bit assignments.

11.3.4.2 Interrupt Terminal Count Status Register

The read-only DMACIntTCStatus Register, with address offset of 0x004, indicates the status of the

terminal count after masking. You must use this register in conjunction with the DMACIntStatus

Register if you use the combined interrupt request, DMACINTR, to request interrupts. If you use the

DMACINTTC interrupt request, then you only have to read the DMACIntTCStatus Register to

ascertain the source of the interrupt request. Figure below shows the register bit assignments.

 174 / 312

11.3.4.3 nterrupt Terminal Count Clear Register

The write-only DMACIntTCClear Register, with address offset of 0x008, clears a terminal count

interrupt request. When writing to this register, each data bit that is set HIGH causes the

corresponding bit in the Status Register to be cleared. Data bits that are LOW have no effect on the

corresponding bit in the register. Figure below shows the register bit assignments.

11.3.4.4 Interrupt Error Status Register

The read-only DMACIntErrorStatus Register, with address offset of 0x00C, indicates the status of the

error request after masking. You must use this register in conjunction with the DMACIntStatus

Register if you use the combined interrupt request, DMACINTR, to request interrupts. If you use the

DMACINTERR interrupt request, then only read the DMACIntErrorStatus Register. Figure below

shows the register bit assignments.

 175 / 312

11.3.4.5 Interrupt Error Clear Register

The write-only DMACIntErrClr Register, with address offset of 0x010, clears the error interrupt

requests. When writing to this register, each data bit that is HIGH causes the corresponding bit in the

Status Register to be cleared. Data bits that are LOW have no effect on the corresponding bit in the

register. Figure below shows the register bit assignments.

11.3.4.6 Raw Interrupt Terminal Count Status Register

The read-only DMACRawIntTCStatus Register, with address offset of 0x014, indicates the DMA

channels that are requesting a transfer complete, terminal count interrupt, prior to masking. A HIGH bit

indicates that the terminal count interrupt request is active prior to masking. Figure below shows the

register bit assignments.

 176 / 312

11.3.4.7 Raw Error Interrupt Status Register

The read-only DMACRawIntErrorStatus Register, with address offset of 0x018, indicates the DMA

channels that are requesting an error interrupt prior to masking. A HIGH bit indicates that the error

interrupt request is active prior to masking. Figure below shows the register bit assignments.

11.3.4.8 Enabled Channel Register

The read-only DMACEnbldChns Register, with address offset of 0x01C, indicates the DMA channels

that are enabled, as indicated by the Enable bit in the DMACCxConfiguration Register. A HIGH bit

indicates that a DMA channel is enabled. A bit is cleared on completion of the DMA transfer. Figure 3-

8 shows the register bit assignments.

11.3.4.9 Software Burst Request Register

The read/write DMACSoftBReq Register, with address offset of 0x020, enables DMA burst requests to

be generated by software. You can generate a DMA request for each source by writing a 1 to the

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to

this register has no effect. Reading the register indicates the sources that are requesting DMA burst

transfers. You can generate a request from either a peripheral or the software request register. Figure

below shows the register bit assignments.

 177 / 312

11.3.4.10 Software Single Request Register

The read/write DMACSoftSReq Register, with address offset of 0x024, enables DMA single requests

to be generated by software. You can generate a DMA request for each source by writing a 1 to the

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to

this register has no effect. Reading the register indicates the sources that are requesting single DMA

transfers. You can generate a request from either a peripheral or the software request register. Figure

below shows the register bit assignments.

11.3.4.11 Software Last Burst Request Register

The read/write DMACSoftLBReq Register, with address offset of 0x028, enables software to generate

DMA last burst requests. You can generate a DMA request for each source by writing a 1 to the

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to

this register has no effect. Reading the register indicates the sources that are requesting last burst

DMA transfers. You can generate a request from either a peripheral or the software request register.

Figure below shows the register bit assignments.

11.3.4.12 Software Last Single Request Register

The read/write DMACSoftLSReq Register, with address offset of 0x02C, enables software to generate

DMA last single requests. You can generate a DMA request for each source by writing a 1 to the

corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to

this register has no effect. Reading the register indicates the sources that are requesting last single

 178 / 312

DMA transfers. You can generate a request from either a peripheral or the software request register.

Figure below shows the register bit assignments.

 179 / 312

11.3.4.13 Configuration Register

The read/write DMACConfiguration Register, with address offset of 0x030, configures the operation of

the DMAC. You can alter the endianness of the individual AHB master interfaces by writing to the M1

and M2 bits of this register. The M1 bit enables you to alter the endianness of AHB master interface 1.

The M2 bit enables you to alter the endianness of AHB master interface 2. The AHB master interfaces

are set to little-endian mode on reset.

 180 / 312

11.3.4.14 Synchronization Register

The read/write DMACSync Register, with address offset of 0x034, enables or disables synchronization

logic for the DMA request signals.

The DMA request signals consist of:

• DMACBREQ[15:0]

• DMACSREQ[15:0]

• DMACLBREQ[15:0]

• DMACLSREQ[15:0].

A bit set to 0 enables the synchronization logic for a particular group of DMA requests. A bit set to 1

disables the synchronization logic for a particular group of DMA requests. This register is reset to 0,

and synchronization logic enabled

Note:

1. It is illegal for a peripheral to give a new DMACSREQ or DMACBREQ signal while DMACCLR is

HIGH.

2. You must use synchronization logic when the peripheral generating the DMA request runs on a

different clock to the DMAC. For peripherals running on the same clock as the DMAC, disabling the

synchronization logic improves the DMA request response time. If necessary, synchronize the DMA

response signals, DMACCLR and DMACTC, in the peripheral.

11.3.4.15 Channel registers

The channel registers are for programming a DMA channel. These registers consist of:

• eight DMACCxSrcAddr Registers

• eight DMACCxDestAddr Registers

• eight DMACCxLLI Registers

• eight DMACCxControl Registers

• eight DMACCxConfiguration Registers.

When performing scatter/gather DMA, the first four registers are automatically updated.

 181 / 312

Note：

Unpredictable behavior can result if you update the channel registers when a transfer is taking place. If

you want to change the channel configurations, you must disable the channel first and then

reconfigure the relevant register.

Channel Source Address Registers

The eight read/write DMACCxSrcAddr Registers, with address offsets of 0x100, 0x120, 0x140, 0x160,

0x180, 0x1A0, 0x1C0, and 0x1E0 respectively, contain the current source address, byte-aligned, of

the data to be transferred. Software programs each register directly before the appropriate channel is

enabled

When the DMA channel is enabled, this register is updated:

• as the source address is incremented

• by following the linked list when a complete packet of data has been transferred.

Reading the register when the channel is active does not provide useful information. This is because

by the time the software has processed the value read, the channel might have progressed. It is

intended to be read-only when the channel has stopped, and in such case, it shows the source

address of the last item read.

Channel Destination Address Registers

The eight read/write DMACCxDestAddr Registers, with address offsets of 0x104, 0x124, 0x144,

0x164, 0x184, 0x1A4, 0x1C4, and 0x1E4 respectively, contain the current destination address, byte-

aligned, of the data to be transferred.

Software programs each register directly before the channel is enabled. When the DMA channel is

enabled, the register is updated as the destination address is incremented and by following the linked

list when a complete packet of data has been transferred. Reading the register when the channel is

active does not provide useful information. This is because by the time the software has processed the

value read, the channel might have progressed. It is intended to be read-only when a channel has

stopped. In this case, it shows the destination address of the last item read.

Channel Linked List Item Registers

The eight read/write DMACCxLLI Registers, with address offsets of 0x108, 0x128, 0x148, 0x168,

0x188, 0x1A8, 0x1C8, and 0x1E8 respectively, contain a word-aligned address of the next LLI. If the

LLI is 0, then the current LLI is the last in the chain, and the DMA channel is disabled after all DMA

transfers associated with it are completed.

Note：

 182 / 312

Programming this register when the DMA channel is enabled has unpredictable results.

Channel Control Registers

The eight read/write DMACCxControl Registers, with address offsets of 0x010C, 0x12C, 0x14C,

0x16C, 0x18C, 0x1AC, 0x1CC, and 0x1EC respectively, contain DMA channel control information

such as the transfer size, burst size, and transfer width. Software programs each register directly

before the DMA channel is enabled.

When the channel is enabled, the register is updated by following the linked list when a complete

packet of data has been transferred. Reading the register while the channel is active does not give

useful information. This is because by the time that software has processed the value read, the

channel might have progressed. It is intended to be read-only when a channel has stopped.

 183 / 312

Table below lists the values of the DBSize or SBSsize bits and their corresponding burst sizes.

 184 / 312

Table below lists the value of the SWidth or DWidth bits and their corresponding widths

Protection and access information

AHB access information is provided to the source and destination peripherals when a transfer occurs.

The transfer information is provided by programming the DMA channel, the Prot bit of the

DMACCxControl Register, and the Lock bit of the DMACCxConfiguration Register. Software programs

these bits, and peripherals can use this information if necessary. Three bits of information are

provided. Table below lists the purposes of the three protection bits.

 185 / 312

Channel Configuration Registers

The eight DMACCxConfiguration Registers, with address offsets of 0x110, 0x130, 0x150, 0x170,

0x190, 0x1B0, 0x1D0, and 0x1F0 respectively, are read/write and configure the DMA channel. The

registers are not updated when a new LLI is requested.

Figure below shows the bit assignments for these registers

Table below lists the bit assignments for these registers

 186 / 312

Table below lists the bit values of the three flow control and transfer type bits.

 187 / 312

11.3.4.16 Peripheral Identification Registers 0-3

The DMACPeriphID0-3 Registers are four 8-bit registers, that span address locations 0xFE0-0xFEC.

You can treat the registers conceptually as a 32-bit register. These read-only registers provide the

following peripheral options:

PartNumber[11:0]

This identifies the peripheral. The three digit product code 0x080 is used.

Designer ID[19:12]

This is the identification of the designer. (ASCII A).

Revision[23:20]

This is the revision number of the peripheral. The revision number starts from 0.

Configuration[31:24]

This is the configuration option of the peripheral.

Figure below shows the bit assignments for these registers

DMACPeriphID0 Register

The read-only DMACPeriphID0 Register, with address offset of 0xFE0, is hard-coded and the fields in

the register determine the reset value. Figure 3-19 shows the register bit assignments.

DMACPeriphID1 Register

The read-only DMACPeriphID1 Register, with address offset of 0xFE4, is hard-coded and the fields in

the register determine the reset value. Figure 3-20 shows the register bit assignments.

 188 / 312

DMACPeriphID2 Register

The read-only DMACPeriphID2 Register, with address offset of 0xFE8, is hard-coded and the fields

within the register determine the reset value. Figure 3-21 shows the register bit assignments.

DMACPeriphID3 Register

The read-only DMACPeriphID3 Register, with address offset of 0xFEC, is hard-coded and the fields in

the register determine the reset value. Figure 3-22 shows the register bit assignments.

 189 / 312

11.3.4.17 PrimeCell Identification Registers 0-3

The DMACPCellID0-3 Registers are four 8-bit wide read-only registers that span address locations

0xFF0-0xFFC. You can treat the registers conceptually as a 32-bit register. The register is a standard

cross-peripheral identification system. The DMACPCellID Register is set to 0xB105F00D. Figure

below shows the bit assignments for these registers.

DMACPCellID0 Register

The read-only DMACPCellID0 Register, with address offset of 0xFF0, is hard-coded and the fields in

the register determine the reset value. Figure below shows the register bit assignments.

DMACPCellID1 Register

The read-only DMACPCellID1 Register, with address offset of 0xFF4, is hard-coded and the fields

within the register determine the reset value. Figure below shows the register bit assignments.

DMACPCellID2 Register

The read-only DMACPCellID2 Register, with address offset of 0xFF8, is hard-coded and the fields in

the register determine the reset value. Figure below shows the register bit assignments.

 190 / 312

DMACPCellID3 Register

The read-only DMACPCellID3 Register, with address offset of 0xFFC, is hard-coded and the fields in

the register determine the reset value. Figure below shows the register bit assignments.

11.3.5 Test registers

11.3.5.1 Test Control Register

The read/write DMACITCR Register, with address offset of 0x500, is a 16-bit register that selects the

various test modes and is cleared on reset. This register enables you to test the DMAC using TIC

block-level tests and Built-In Self-Test (BIST) integration and system level tests. Figure below shows

the register bit assignments.

 191 / 312

11.3.5.2 Integration Test Output Register 1

The read/write DMACITOP1 Register, with address offset of 0x504, is a 16-bit register that controls

and reads the DMACCLR[15:0] output lines in test mode. Figure 4-2 shows the register bit

assignments.

11.3.5.3 Integration Test Output Register 2

The read/write DMACITOP2 Register, with address offset of 0x508, is a 16-bit register that controls

and reads the DMACTC[15:0] output lines in test mode. Figure 4-3 shows the register bit assignments.

 192 / 312

11.3.5.4 Integration Test Output Register 3

The read/write DMACITOP3 Register, with address offset of 0x50C, is a 16-bit register that controls

and reads the interrupt request output lines in test mode. Figure 4-4 shows the register bit

assignments

 193 / 312

12 Analog-to-digital converter (ADC)

12.1 Overview

3×12-bit, 1.0 MSPS A/D converters are embedded and each ADC has up to 17 multiplexed channels

allowing it measure signals from sixteen external and one internal sources,and 3 MSPS in triple

interleaved mode

A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous

mode.

The analog watchdog feature allows the application to detect if the input voltage goes outside the

user-defined high or low thresholds.

The ADC input clock is generated from the inter-connection logic clock.

Characteristics

(1) ADC sampling rate: 1 MSPS for 12-bit resolution

(2) Programmable sampling time

(3) 16 external analog inputs and 1 channel for internal temperature sensor

(4) Converts a single channel or scans a sequence of channels

(5) Single mode converts selected inputs once per trigger

(6) Continuous mode converts selected inputs continuously

(7) Discontinuous mode

(8) Analog watchdog

(9) ADC supply requirements: 3.135V to 3.465V, and typical power supply voltage is 3.3V

(10) ADC input range: VSSA ≤VIN ≤VREFP

12.2 Pins and internal signals

ADC internal signals

Internal signal name Signal type Description

Vtemp-sense(ADC1) input Internal temperature sensor output voltage

 194 / 312

ADC pins definition

Name Signal type Description

VDDA Analog power supply Analog power supply equal to VDD33 and

3.135 V ≤ VDDA≤3.465 V

VSSA Analog power ground Ground for analog power supply equal to VSS33

VREFP Analog

reference positive

The positive reference voltage for the

ADC, 3.135 V ≤ VREFP ≤ VDDA

IN[15:0] Input, Analog signals Up to 16 external channels

12.3 Temperature sensor

The temperature sensor can be used to measure the ambient temperature of the device. The sensor

output voltage can be converted into a digital value by ADC. The sampling time for the temperature

sensor is recommended to be set to at least 10μs.

The output voltage of the temperature sensor changes linearly with temperature. Because there is an

offset, varies from chip to chip due to process variation, the internal temperature sensor is more suited

for applications that detect temperature variations instead of absolute temperature.

12.4 ADC block pins

 195 / 312

ADC block diagram

ADC block pins Descriptions

in0~in16 Analog input channel

insel1[4:0] input channel selection

00001: in0

00010: in1

00011: in2

00100: in3

00101: in4

00110: in5

00111: in6

01000: in7

01001: in8

01010: in9

01011: in10

01100: in11

01101: in12

01110: in13

01111: in14

10000: in15

10001: in16(internal source)

for ADC1, inter source is Vtemp-sense

enb Used to enable adc

0: adc enable

1: adc disable

stop Stop mode enable

0: disable

1: enable, when stop enable, power down ADC block.

db[11:0] adc 12 bits output data

eoc adc end of conversion flag.

when rising edge, adc output data will ready

 196 / 312

12.5 ADC input signals vs package pins

ADC IP input pins LQFP64

IN0 PIN14(WKUP_ADC_IN0_CMP_PA0)

IN1 PIN15 (ADC_IN1_CMP_PA1)

IN2 PIN16(ADC_IN2_CMP_PA2)

IN3 PIN17(ADC_IN3_CMP_PA3)

IN4 PIN20(ADC_IN4_CMP_PA4_DAC0)

IN5 PIN21(ADC_IN5_CMP_PA5_DAC1)

IN6 PIN22(ADC_IN6)

IN7 PIN23(ADC_IN7)

IN8 PIN26(ADC_IN8)

IN9 PIN27(ADC_IN9)

IN10 PIN8(ADC_IN10)

IN11 PIN9(ADC_IN11)

IN12 PIN10(ADC_IN12)

IN13 PIN11(ADC_IN13)

IN14 PIN24(ADC_IN14)

IN15 PIN25(ADC_IN15)

ADC IP input pins LQFP100

IN0 PIN23(WKUP_ADC_IN0_CMP_PA0)

IN1 PIN24 (ADC_IN1_CMP_PA1)

IN2 PIN25(ADC_IN2_CMP_PA2)

IN3 PIN26(ADC_IN3_CMP_PA3)

IN4 PIN29(ADC_IN4_CMP_PA4_DAC0)

IN5 PIN30(ADC_IN5_CMP_PA5_DAC1)

IN6 PIN31(ADC_IN6)

IN7 PIN32(ADC_IN7)

 197 / 312

IN8 PIN35(ADC_IN8)

IN9 PIN36(ADC_IN9)

IN10 PIN15(ADC_IN10)

IN11 PIN16(ADC_IN11)

IN12 PIN17(ADC_IN12)

IN13 PIN18(ADC_IN13)

IN14 PIN33(ADC_IN14)

IN15 PIN34(ADC_IN15)

12.6 ADC characteristics

Symbol Parameter MIN TYP MAX Unit

VDDA Operating voltage 3.135 3.3 3.465 V

VIN ADC input voltage range 0 ----- VREFP V

fADC ADC clock 0.5 ----- 14 MHz

fs Sampling rate ----- ----- 1 MHz

tconv ADC conversion time 1 ----- 20 μs

RADC Input sampling switch resistance ----- ----- 2 kΩ

CADC Input sampling capacitance ----- 10 ----- pF

tsu Startup time ----- ----- 10 μs

12.7 ADC timing diagram

After the start of ADC conversion and after 13 clock cycles, the EOC flag is set and the 12-bit

Data is ready.

 198 / 312

Parameter Limit Unit Description

sclk 14 MHz System Clock Frequency

tcon 13 Cycles Time for a data conversion

tACQ 1 Cycles Time for signal acquisition

t1 10 ns ENB to SCLK Setup Time

 199 / 312

13 Digital-to-analog converter (DAC)

13.1 Overview

The Digital-to-analog converter converts 10-bit digital data to a voltage on the external pins. The

output voltage can be optionally buffered for higher drive capability. The two DACs can work

independently or concurrently.

DAC main features

(1) Two DAC converters: one output channel each

(2) Conversion triggered by external triggers

(3) Dual DAC channel independent or simultaneous conversions

(4) Configurable internal buffer

(5) External triggers for conversion

(6) Input voltage reference VREFP

 200 / 312

13.2 DAC block pins

DAC block pins Descriptions

enb Used to enable dac

0: dac enable

1: dac disable

bufenb Used to enable output buffer

0: buffer enable

1: buffer disable

stop Stop mode enable

0: disable

1: enable, when stop enable, power down DAC blocks

din[9:0] 10 bits dac input data

dout Analog dac output signal to IOs

13.3 DAC pins

Name Signal type Remarks

VDDA Analog power supply Analog power supply equal to VDD and

3.135 V ≤ VDDA≤3.465 V

VSSA Analog power ground Ground for analog power supply equal to

VSS33

VREFP Analog reference positive The positive reference voltage for the

ADC, 3.135 V ≤ VREFP ≤ VDDA

DOUT DAC analog output Analog output signal

13.4 DACs output signals vs package pins

DAC output pins qfp100

dout_dac0 PIN_29(ADC_IN4_CMP_PA4_DAC0)

dout_dac1 PIN_30(ADC_IN5_CMP_PA5_DAC1)

DAC output pins qfp64

dout_dac0 PIN_20(ADC_IN4_CMP_PA4_DAC0)

dout_dac1 PIN_21(ADC_IN5_CMP_PA5_DAC1)

 201 / 312

13.5 DAC characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDA Operating voltage 3.135 3.3 3.465 V

VREFP Reference supply

voltage

VREFP should always below

VDDA
3.135 3.3 3.3 V

RLOAD Load resistance Resistive load vs. VSSA with

buffer ON
5 kΩ

CLOAD Load capacitance No pin/pad capacitance

included
 50 pF

DAC_OUTm

in

Lower DAC_OUT

voltage

with buffer ON

DAC_OUTm

ax

Lower DAC_OUT

voltage

with buffer ON

VDDA-

0.2
V

Update rate Max frequency for

a correct DAC_OUT

change from code i

to i±1LSBs

CLOAD≤50pF, RLOAD≥5kΩ

 2 MS/s

13.6 DAC output voltage

 The analog output voltage on the DAC pin is determined by the following equation:

 DACoutput = VREFP ∗ DAC_Dout/1024

The digital input is linearly converted to an analog output voltage, its range is 0 to VREFP。

 202 / 312

14 Comparator (CMP)

14.1 Overview

The general purpose comparators, CMP0 and CMP1, can work either standalone or together with the timers.

It could be used to wake up the MCU from low-power mode by an analog signal, provide a trigger source

when an analog signal is in a certain condition, achieves some current control by working together with a

PWM output of a timer and the DAC.

14.2 Characteristic

(1) Rail-to-rail comparators

(2) Configurable hysteresis

(3) Configurable speed and consumption

(4) Each comparator has configurable analog input source

(5) The whole or sub-multiple values of internal reference voltage Window comparator

(6) Outputs to I/O

(7) Outputs to timers for triggering

 203 / 312

 204 / 312

14.3 CMP block pins

CMP block pins Descriptions

INP1_1

INP1_2

Non-inverting input signals of cmp1

ipsel1[1:0] cmp1_IP input selection

01: INP1_1

10: INP1_2

INM1_1

INM1_2

INM1_3

Inverting input signals of cmp1

imsel1[2:0] cmp1_IM input selection

001: INM1_1

010: INM1_2

011: INM1_3

100: ¼ VREF

101: ½ VREF

110: ¾ VREF

111: VREF

 205 / 312

mode1 Control the operating mode of the cmp1 adjust the speed /consumption.

0: High speed / full power

1: Low speed / low power

hyst1 Used to set the hysteresis of cmp1

0: no hysteresis

1: have hysteresis

enb1 Used to enable cmp1

0: cmp1 enable

1: cmp1 disable

out1 cmp1 output

INP2_1

INP2_2

Non-inverting input signals of cmp2

ipsel2[1:0] cmp2_IP input selection

01: INP2_1

10: INP2_2

INM2_1

INM2_2

INM2_3

Inverting input signals of cmp2

imsel2[2:0] cmp2_IM input selection

001: INM2_1

010: INM2_2

011: INM2_3

100: ¼ VREF

101: ½ VREF

110: ¾ VREF

111: VREF

mode2 Control the operating mode of the cmp2 adjust the speed /consumption.

0: High speed / full power

1: Low speed / low power

hyst2 Used to set the hysteresis of cmp2

0: no hysteresis

1: have hysteresis

enb2 Used to enable cmp2

0: cmp2 enable

1: cmp2 disable

out2 cmp2 output

stop Stop mode enable

0: disable

1: enable, when stop enable, power down CMP block.

 206 / 312

14.4 CMP input signals vs package pins

CMP IP input pins Lqfp64

INP1_1 PIN_15 (ADC_IN1_CMP_PA1)

INP1_2 PIN_20(ADC_IN4_CMP_PA4_DAC0)

INM1_1 PIN_20(ADC_IN4_CMP_PA4_DAC0)

INM1_2 PIN_14(WKUP_ADC_IN0_CMP_PA0)

INM1_3 PIN_21(ADC_IN5_CMP_PA5_DAC1)

INP2_1 PIN_15 (ADC_IN1_CMP_PA1)

INP2_2 PIN_17(ADC_IN3_CMP_PA3)

INM2_1 PIN_20(ADC_IN4_CMP_PA4_DAC0)

INM2_2 PIN_16(ADC_IN2_CMP_PA2)

INM2_3 PIN_21(ADC_IN5_CMP_PA5_DAC1)

CMP IP input pins Lqfp100

INP1_1 PIN_24 (ADC_IN1_CMP_PA1)

INP1_2 PIN_29(ADC_IN4_CMP_PA4_DAC0)

INM1_1 PIN_29(ADC_IN4_CMP_PA4_DAC0)

INM1_2 PIN_23(WKUP_ADC_IN0_CMP_PA0)

INM1_3 PIN_30(ADC_IN5_CMP_PA5_DAC1)

INP2_1 PIN_24 (ADC_IN1_CMP_PA1)

INP2_2 PIN_26(ADC_IN3_CMP_PA3)

INM2_1 PIN_29(ADC_IN4_CMP_PA4_DAC0)

INM2_2 PIN_25(ADC_IN2_CMP_PA2)

INM2_3 PIN_30(ADC_IN5_CMP_PA5_DAC1)

 207 / 312

14.5 Comparator characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDA Analog supply voltage 3.135 3.3 3.3 V

VIN Comparator input voltage

 range

0 VDDA V

tstart Comparator startup time VDDA ≥3.135 V 10 us

tD Propagation delay for full

 range step with 100 mV

overdrive

VDDA ≥3.135 V

 50 ns

VOFFSET Comparator offset error VDDA ≥3.135 V ±30 mV

 208 / 312

15 Backup registers (BKP)

BKP introduction

The backup registers are sixteen two 16-bit registers for storing 32 bytes of user application data.

They are implemented in the backup domain that remains powered on by VBAT when the VDD33

power is switched off. They are not reset when the device wakes up from Standby mode or by a

system reset or power reset.

In addition, the BKP control registers are used to manage the RTC calibration.

After reset, access to the Backup registers and RTC is disabled and the Backup domain (BKP) is

protected against possible parasitic write access.

To enable access to the Backup registers and the RTC, proceed as follows:

(1) enable the power and backup interface clocks by setting the PWREN and BKPEN bits in the

RCC_APB1ENR register

(2) set the DBP bit the Power Control Register (PWR_CR) to enable access to the Backup registers

and RTC.

BKP main features

(1) 32-byte data registers

(2) Calibration register for storing the RTC calibration value

(3) Possibility to output the RTC Calibration Clock, RTC Alarm pulse or Second pulse.

RTC calibration

For measurement purposes, the RTC clock with a frequency divided by 64 can be output on the pin.

The clock can be slowed down by up to 121 ppm by configuring CAL[6:0] bits.

BKP registers

Backup data register x (BKP_DRx) (x = 1 ..17)

Address offset:

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D<15:0>

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0: D[15:0] Backup data

 209 / 312

These bits can be written with user data.

Note: The BKP_DRx registers are not reset by a System reset or Power reset or when the device

wakes up from Standby mode.

They are reset by a Backup Domain reset.

RTC clock calibration register (BKP_RTCCR)

Address offset:

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ASOS ASOE COO CAL<6:0>

rw rw rw rw rw rw rw rw rw rw

Bit 9 ASOS: Alarm or second output selection

When the ASOE bit is set, the ASOS bit can be used to select whether the signal output on IO_RTC is

the RTC Second pulse signal or the Alarm pulse signal:

0: RTC Alarm pulse output selected

1: RTC Second pulse output selected

Note: This bit is reset only by a Backup domain reset.

Bit 8 ASOE: Alarm or second output enable

Setting this bit outputs either the RTC Alarm pulse signal or the Second pulse signal on IO_RTC

depending on the ASOS bit.

0: output disable

1: output enable

The output pulse duration is one RTC clock period. IO_RTC must not be enabled while the ASOE bit

is set.

Note: This bit is reset only by a Backup domain reset.

Bit 7 CCO: Calibration clock output

0: No effect

1: Setting this bit outputs the RTC clock with a frequency divided by 64 on IO_RTC.

Note: This bit is reset when the VDD supply is powered off.

Bit 6:0 CAL[6:0]: Calibration value

 210 / 312

This value indicates the number of clock pulses that will be ignored every 2^20 clock pulses.

This allows the calibration of the RTC, slowing down the clock by steps of 1000000/2^20PPM.

The clock of the RTC can be slowed down from 0 to 121PPM.

 211 / 312

16 CRC(Cyclic redundancy check calculation unit)

16.1 Introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16- or 32-bit

data word and a generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage

integrity. In the scope of the functional safety standards, they offer a means of verifying the Flash

memory integrity. The CRC calculation unit helps compute a signature of the software during runtime,

to be compared with a reference signature generated at link time and stored at a given memory

location.

16.2 CRC main features

⚫ Fully programmable polynomial with programmable size (7, 8, 16, 32 bits)

⚫ Handles 8-,16-, 32-bit data size

⚫ Programmable CRC initial value

⚫ Single input/output 32-bit data register

⚫ Input buffer to avoid bus stall during calculation

⚫ CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size

⚫ General-purpose 8-bit register (can be used for temporary storage)

⚫ Reversibility option on I/O data

 212 / 312

16.3 CRC functional description

16.3.1 CRC block diagram

Figure 7. CRC calculation unit block diagram

16.3.2 CRC internal signals

Table 15. CRC internal input/output signals

16.3.3 CRC operation

The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to input new

data (write access), and holds the result of the previous CRC calculation (read access).

Signal name Signal type Description

crc_hclk Digital input AHB clock

 213 / 312

Each write operation to the data register creates a combination of the previous CRC value (stored in

CRC_DR) and the new one. CRC computation is done on the whole 32-bit data word or byte by byte

depending on the format of the data being written.

The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned byte. For

the other registers only 32-bit access is allowed.

The duration of the computation depends on data width:

⚫ 4 AHB clock cycles for 32-bit

⚫ 2 AHB clock cycles for 16-bit

⚫ 1 AHB clock cycles for 8-bit

An input buffer allows to immediately write a second data without waiting for any wait states due to the

previous CRC calculation.

The data size can be dynamically adjusted to minimize the number of write accesses for a given

number of bytes. For instance, a CRC for 5 bytes can be computed with a word write followed by a

byte write.

The input data can be reversed, to manage the various endianness schemes. The reversing operation

can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits in the CRC_CR

register.

For example: input data 0x1A2B3C4D is used for CRC calculation as:

0x58D43CB2 with bit-reversal done by byte

0xD458B23C with bit-reversal done by half-word

0xB23CD458 with bit-reversal done on the full word

The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register.

The operation is done at bit level: for example, output data 0x11223344 is converted into

0x22CC4488.

The CRC calculator can be initialized to a programmable value using the RESET control bit in the

CRC_CR register (the default value is 0xFFFFFFFF).

The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR register is

automatically initialized upon CRC_INIT register write access.

The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It is not

affected by the RESET bit in the CRC_CR register.

Polynomial programmability

The polynomial coefficients are fully programmable through the CRC_POL register, and the

polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the

POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported.

If the CRC data is less than 32-bit, its value can be read from the least significant bits of the CRC_DR

register.

To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can not be

performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the application must

either reset it or perform a CRC_DR read before changing the polynomial.

The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11D

 214 / 312

16.4 CRC registers

16.4.1 Data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

Bits 31:0 DR[31:0]: Data register bits

This register is used to write new data to the CRC calculator.

It holds the previous CRC calculation result when it is read.

If the data size is less than 32 bits, the least significant bits are used to write/read the correct value.

16.4.2 Independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

Bits 31:8 Reserved, must be kept cleared.

Bits 7:0 IDR[7:0]: General-purpose 8-bit data register bits

These bits can be used as a temporary storage location for one byte.

This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register

 215 / 312

16.4.3 Control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

Bits 31:8 Reserved, must be kept cleared.

Bit 7 REV_OUT: Reverse output data

This bit controls the reversal of the bit order of the output data. 0: Bit order not affected

1: Bit-reversed output format

Bits 6:5 REV_IN[1:0]: Reverse input data

These bits control the reversal of the bit order of the input data 00: Bit order not affected

01: Bit reversal done by byte

10: Bit reversal done by half-word 11: Bit reversal done by word

Bits 4:3 POLYSIZE[1:0]: Polynomial size

These bits control the size of the polynomial.

00: 32 bit polynomial

01: 16 bit polynomial

10: 8 bit polynomial

11: 7 bit polynomial

Bits 2:1 Reserved, must be kept cleared.

Bit 0 RESET: RESET bit

This bit is set by software to reset the CRC calculation unit and set the data register to the value stored in

the CRC_INIT register. This bit can only be set, it is automatically cleared by hardware

16.4.4 Initial CRC value (CRC_INIT)

Address offset: 0x10

 216 / 312

Reset value: 0xFFFF FFFF

Bits 31:0 CRC_INIT: Programmable initial CRC value

This register is used to write the CRC initial value.

16.4.5 CRC polynomial (CRC_POL)

Address offset: 0x14

Reset value: 0x04C11DB7

Bits 31:0 POL[31:0]: Programmable polynomial

This register is used to write the coefficients of the polynomial to be used for CRC calculation.

If the polynomial size is less than 32 bits, the least significant bits have to be used to program the correct value.

16.4.6 CRC register map

 Table 16. CRC register map and reset values

 217 / 312

 218 / 312

17 General-purpose input/outputs (GPIOs)

17.1 Overview

AG32 device provides up to 78 user I/O ports(GPIOs).

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or

without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral

alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All

GPIOs are high-current-capable and have speed selection to better manage internal noise, power

consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid

spurious writing to the I/Os registers.

17.2 Functional description

Basic structure of a user I/O

 219 / 312

User IOs offers a range of programmable features for an I/O pin. These features increase the flexibility

of I/O utilization and provide a way to reduce the usage of external discrete components, such as pull-

up resistors.

Programmable Current Strength

The output buffer for each I/O pin has a programmable current strength control for certain I/O

standards. The LVTTL, LVCMOS standards have several levels of current strength that you can

control.

Slew Rate Control

The output buffer for each I/O pin provides optional programmable output slew-rate control. However,

these fast transitions may introduce noise transients in the system. A slower slew rate reduces system

noise, but adds a nominal delay to rising and falling edges. Because each I/O pin has an individual

slew-rate control, you can specify the slew rate on a pin-by-pin basis. The slew-rate control affects

both the rising and falling edges.

Open-Drain Output

Each I/O pin provide an optional open-drain (equivalent to an open-collector) output. This open-drain

output enables the device to provide system-level control signals (for example, interrupt and write

enable signals) that are asserted by multiple devices in your system.

Bus Hold

Each user I/O pin provides an optional bus-hold feature. The bus-hold circuitry holds the signal on an

I/O pin at its last-driven state. Because the bus-hold feature holds the last-driven state of the pin until

 220 / 312

the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a

signal level when the bus is tri-stated.

Programmable Pull-Up Resistor

Each I/O pin provides an optional programmable pull-up resistor while in user mode. If you enable this

feature for an I/O pin, the pull-up resistor holds the output to the VDD level.

During and just after reset, the user IOs are configured in Input Floating mode.

The JTAG pins are in input PU/PD after reset:

◼ JTDI in PU

◼ JTCK in PD

◼ JTMS in PU

◼ NJTRST in PU

17.3 Register descriptions

17.3.1 Data register, GPIODATA

The GPIODATA register is the data register. In software control mode, values written in the GPIODATA

register are transferred onto the GPOUT pins if the respective pins have been configured as outputs

through the GPIODIR register.

In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus,

PADDR[9:2], must be HIGH. Otherwise the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit, by the mask bit derived from the

address used to access the data register, PADDR[9:2]. Bits that are 1 in the address mask cause the

corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask cause the

corresponding bits in GPIODATA to be read as 0, regardless of their value.

A read from GPIODATA returns the last bit value written if the respective pins are configured as output,

or it returns the value on the corresponding input GPIN bit when these are configured as inputs. All bits

are cleared by a reset.

Table below shows the bit assignment of the GPIODATA register.

17.3.2 Data direction register, GPIODIR

The GPIODIR register is the data direction register. Bits set to HIGH in the GPIODIR configure

corresponding pin to be an output. Clearing a bit configures the pin to be input. All bits are cleared by a

 221 / 312

reset. Therefore, the GPIO pins are input by default.

Table below shows the bit assignment of the GPIODIR register

17.3.3 Interrupt sense register, GPIOIS

The GPIOIS register is the interrupt sense register. Bits set to HIGH in GPIOIS configure the

corresponding pins to detect levels. Clearing a bit configures the pin to detect edges. All bits are cleared

by a reset.

Table below shows the bit assignment of the GPIOIS register.

17.3.4 Interrupt both-edges register, GPIOIBE

The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in GPIOIS is set

to detect edges, bits set to HIGH in GPIOIBE configure the corresponding pin to detect both rising and

falling edges, regardless of the corresponding bit in the GPIOIEV (interrupt event register). Clearing a

bit configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.

Table below shows the bit assignment of the GPIOIBE register.

17.3.5 Interrupt event register, GPIOIEV

The GPIOIEV register is the interrupt event register. Bits set to HIGH in GPIOIEV configure the

corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in

GPIOIS. Clearing a bit configures the pin to detect falling edges or low levels, depending on the

 222 / 312

corresponding bit value in GPIOIS. All bits are cleared by a reset.

Table below shows the bit assignment of the GPIOIEV register.

17.3.6 Interrupt mask register, GPIOIE

The GPIOIE register is the interrupt mask register. Bits set to HIGH in GPIOIE allow the corresponding

pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables

interrupt triggering on that pin. All bits are cleared by a reset.

Table below shows the bit assignment of the GPIOIE register.

17.3.7 Raw interrupt status register, GPIORIS

The GPIORIS register is the raw interrupt status register. Bits read HIGH in GPIORIS reflect the status

of interrupts trigger conditions detected (raw, prior to masking), indicating that all the requirements have

been met, before they are finally allowed to trigger by GPIOIE. Bits read as zero indicate that

corresponding input pins have not initiated an interrupt. This register is read only, and bits are cleared

by a reset.

Table below shows the bit assignment of the GPIORIS register.

 223 / 312

17.3.8 Masked interrupt status register, GPIOMIS

The GPIOMIS register is the masked interrupt status register. Bits read HIGH in GPIOMIS reflect the

status of input lines triggering an interrupt. Bits read as LOW indicate that either no interrupt has been

generated, or the interrupt is masked. GPIOMIS is the state of the interrupt after masking. This register

is read-only, and all bits are cleared by a reset.

The contents of this register are made available externally through the intra-chip (or on-chip)

GPIOMIS[7:0] signals.

Table below shows the bit assignment of the GPIOMIS register.

17.3.9 Interrupt clear register, GPIOIC

The GPIOIC register is the interrupt clear register. Writing a 1 to a bit in this register clears the

corresponding interrupt edge detection logic register. Writing a 0 has no effect. This register is write-

only and all bits are cleared by a reset.

Table below shows the bit assignment of the GPIOIC register.

17.3.10 Mode control select register, GPIOAFSEL

The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register selects

the hardware control for the corresponding PrimeCell GPIO line. All bits are cleared by a reset, therefore

no PrimeCell GPIO line is set to hardware control by default.

Table below shows the bit assignment of the GPIOAFSEL register.

 224 / 312

18 Universal asynchronous receiver transmitter (UART)

18.1 UART Introduction

The UART is an AMBA slave module that connects to the Advanced Peripheral Bus (APB).

The UART (UART0 - UART4) are used to translate data between parallel and serial interfaces,

provides a flexible full duplex data exchange using asynchronous transfer. It is also commonly used

for RS-232 standard communication.

The UART includes a programmable baud rate generator which is capable of dividing the system clock

to produce a dedicated clock for the UART transmitter and receiver. The UART also supports DMA

function for high speed data communication except UART4.

Programmable parameters

The following key parameters are programmable:

• communication baud rate, integer, and fractional parts

• number of data bits

• number of stop bits

• parity mode

• FIFO enable (16 deep) or disable (1 deep)

• FIFO trigger levels selectable between 1/8, 1/4, 1/2, 3/4, and 7/8.

• internal nominal 1.8432MHz clock frequency (1.42–2.12MHz) to generate low-power mode shorter

bit duration

• hardware flow control.

Additional test registers and modes are implemented for integration testing.

18.2 UART functional description

The UART performs:

• serial-to-parallel conversion on data received from a peripheral device

• parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the AMBA APB interface. The

transmit and receive paths are buffered with internal FIFO memories enabling up to 16-bytes to be

stored independently in both transmit and receive modes.

The UART:

 225 / 312

• includes a programmable baud rate generator that generates a common transmit and receive

internal clock from the UART internal reference clock input, UARTCLK

• offers similar functionality to the industry-standard 16C550 UART device

• supports baud rates of up to 460.8Kbits/s, subject to UARTCLK reference clock frequency

The UART operation and baud rate values are controlled by the line control register (UARTLCR_H)

and the baud rate divisor registers (UARTIBRD and UARTFBRD).

The UART can generate:

•individually-maskable interrupts from the receive (including timeout), transmit, modem status and

error conditions

• a single combined interrupt so that the output is asserted if any of the individual interrupts are

asserted, and unmasked

• DMA request signals for interfacing with a Direct Memory Access (DMA) controller

If a framing, parity, or break error occurs during reception, the appropriate error bit is set, and is stored

in the FIFO. If an overrun condition occurs, the overrun register bit is set immediately and FIFO data is

prevented from being overwritten.

You can program the FIFOs to be 1-byte deep providing a conventional double-buffered UART

interface.

The modem status input signals Clear To Send (CTS), Data Carrier Detect (DCD), Data Set Ready

(DSR), and Ring Indicator (RI) are supported. The output modem control lines, Request To Send

(RTS), and Data Terminal Ready (DTR) are also supported.

There is a programmable hardware flow control feature that uses the nUARTCTS input and the

nUARTRTS output to automatically control the serial data flow.

 226 / 312

Figure below shows a block diagram of the UART.

18.3 Operation

18.3.1 Interface reset

The UART are reset by the global reset signal PRESETn and a block-specific reset signal

nUARTRST. An external reset controller must use PRESETn to assert nUARTRST asynchronously

 227 / 312

and negate it synchronously to UARTCLK. PRESETn must be asserted LOW for a period long enough

to reset the slowest block in the on-chip system, and then be taken HIGH again. The UART requires

PRESETn to be asserted LOW for at least one period of PCLK.

The values of the registers after reset are detailed in the next Chapter.

18.3.2 Clock signals

The frequency selected for UARTCLK must accommodate the desired range of baud rates:

FUARTCLK (min) >= 16 x baud_rate (max)

FUARTCLK (max) <= 16 x 65535 x baud_rate (min)

For example, for a range of baud rates from 110 baud to 460800 baud the UARTCLK frequency must

be within the range 7.3728MHz to 115MHz.

The frequency of UARTCLK must also be within the required error limits for all baud rates to be used.

There is also a constraint on the ratio of clock frequencies for PCLK to UARTCLK. The frequency of

UARTCLK must be no more than 5/3 times faster than the frequency of PCLK:

FUARTCLK <= 5/3 x FPCLK

This allows sufficient time to write the received data to the receive FIFO.

18.3.3 UART operation

Control data is written to the UART line control register, UARTLCR_H. This register is 29 bits wide

internally, but is externally accessed through the AMBA APB bus by three writes to register locations,

UARTLCR_H, UARTIBRD, and UARTFBRD. UARTLCR_H defines:

• transmission parameters

• word length

• buffer mode

• number of transmitted stop bits

• parity mode

• break generation.

UARTIBRD and UARTFBRD together define the baud rate divisor

Fractional baud rate divider

The baud rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. This is

used by the baud rate generator to determine the bit period. The fractional baud rate divider enables

the use of any clock with a frequency >3.6864MHz to act as UARTCLK, while it is still possible to

generate all the standard baud rates.

The 16-bit integer is loaded through the UARTIBRD register. The 6-bit fractional part is loaded into the

UARTFBRD register. The Baud Rate Divisor has the following relationship to UARTCLK:

Baud Rate Divisor = UARTCLK/(16xBaud Rate) = BRDI + BRDF

 228 / 312

where BRDI is the integer part and BRDF is the fractional part separated by a decimal point as shown

in Figure below.

Figure: Baud rate divisor

You can calculate the 6-bit number (m) by taking the fractional part of the required baud rate divisor

and multiplying it by 64 (that is, 2n, where n is the width of the UARTFBRD register) and adding 0.5 to

account for rounding errors:

m = integer(BRDF * 2n + 0.5)

An internal clock enable signal, Baud16, is generated, and is a stream of one UARTCLK wide pulses

with an average frequency of 16 times the desired baud rate. This signal is then divided by 16 to give

the transmit clock. A low number in the baud rate divisor gives a short bit period, and a high number in

the baud rate divisor gives a long bit period.

Data transmission or reception

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four

bits per character for status information.

For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame

to start transmitting with the parameters indicated in UARTLCR_H. Data continues to be transmitted

until there is no data left in the transmit FIFO. The BUSY signal goes HIGH as soon as data is written

to the transmit FIFO (that is, the FIFO is non-empty) and remains asserted HIGH while data is being

transmitted. BUSY is negated only when the transmit FIFO is empty, and the last character has been

transmitted from the shift register, including the stop bits. BUSY can be asserted HIGH even though

the UART might no longer be enabled.

For each sample of data, three readings are taken and the majority value is kept. In the following

paragraphs the middle sampling point is defined, and one sample is taken either side of it.

When the receiver is idle (UARTRXD continuously 1, in the marking state) and a LOW is detected on

the data input (a start bit has been received), the receive counter, with the clock enabled by Baud16,

begins running and data is sampled on the eighth cycle of that counter in normal UART mode, or the

fourth cycle of the counter in SIR mode to allow for the shorter logic 0 pulses (half way through a bit

period).

The start bit is valid if UARTRXD is still LOW on the eighth cycle of Baud16, otherwise a false start bit

is detected and it is ignored.

If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one

bit period later) according to the programmed length of the data characters. The parity bit is then

checked if parity mode was enabled.

Lastly, a valid stop bit is confirmed if UARTRXD is HIGH, otherwise a framing error has occurred.

When a full word is received, the data is stored in the receive FIFO, with any error bits associated with

that word.

Error bits

Three error bits are stored in bits [10:8] of the receive FIFO, and are associated with a particular

character. There is an additional error that indicates an overrun error and this is stored in bit 11 of the

receive FIFO.

 229 / 312

Overrun bit

The overrun bit is not associated with the character in the receive FIFO. The overrun error is set when

the FIFO is full, and the next character is completely received in the shift register. The data in the shift

register is overwritten, but it is not written into the FIFO. When an empty location is available in the

receive FIFO, and another character is received, the state of the overrun bit is copied into the receive

FIFO along with the received character. The overrun state is then cleared. Table below shows the bit

functions of the receive FIFO.

Disabling the FIFOs

Additionally, you can disable the FIFOs. In this case, the transmit and receive sides of the UART have

1-byte holding registers (the bottom entry of the FIFOs). The overrun bit is set when a word has been

received, and the previous one was not yet read. In this implementation, the FIFOs are not physically

disabled, but the flags are manipulated to give the illusion of a 1-byte register. When the FIFOs are

disabled, a write to the data register bypasses the holding register unless the transmit shift register is

already in use.

System and diagnostic loopback testing

You can perform loopback testing for UART data by setting the Loop Back Enable (LBE) bit to 1 in the

control register UARTCR (bit 7).

Data transmitted on UARTTXD is received on the UARTRXD input.

 230 / 312

18.3.4 UART character frame

18.4 UART modem operation

You can use the UART to support both the Data Terminal Equipment (DTE) and Data Communication

Equipment (DCE) modes of operation. Figure on page 2-3 shows the modem signals in the DTE

mode. For DCE mode, Table 2-2 shows the meaning of the signals.

 231 / 312

18.5 UART hardware flow control

The hardware flow control feature is fully selectable, and enables you to control the serial data flow by

using the nUARTRTS output and nUARTCTS input signals. Figure below shows how two devices can

communicate with each other using hardware flow control.

When the RTS flow control is enabled, the nUARTRTS signal is asserted until the receive FIFO is

filled up to the programmed watermark level. When the CTS flow control is enabled, the transmitter

can only transmit data when the nUARTCTS signal is asserted.

The hardware flow control is selectable through bits 14 (RTSEn) and 15 (CTSEn) in the UART control

register (UARTCR). Table below shows how you must set the bits to enable RTS and CTS flow control

both simultaneously, and independently.

RTS flow control

The RTS flow control logic is linked to the programmable receive FIFO watermark levels. When RTS

flow control is enabled, the nUARTRTS is asserted until the receive FIFO is filled up to the watermark

level. When the receive FIFO watermark level is reached, the nUARTRTS signal is deasserted,

indicating that there is no more room to receive any more data. The transmission of data is expected

to cease after the current character has been transmitted.

The nUARTRTS signal is reasserted when data has been read out of the receive FIFO so that it is

filled to less than the watermark level. If RTS flow control is disabled and the UART is still enabled,

then data is received until the receive FIFO is full, or no more data is transmitted to it.

 232 / 312

CTS flow control

If CTS flow control is enabled, then the transmitter checks the nUARTCTS signal before transmitting

the next byte. If the nUARTCTS signal is asserted, it transmits the byte otherwise transmission does

not occur.

The data continues to be transmitted while nUARTCTS is asserted, and the transmit FIFO is not

empty. If the transmit FIFO is empty and the nUARTCTS signal is asserted no data is transmitted.

If the nUARTCTS signal is deasserted and CTS flow control is enabled, then the current character

transmission is completed before stopping. If CTS flow control is disabled and the UART is enabled,

then the data continues to be transmitted until the transmit FIFO is empty.

18.6 UART DMA interface

The UART provides an interface to connect to the DMA controller. The DMA operation of the UART is

controlled through the UART DMA control register, UARTDMACR. The DMA interface includes the

following signals:

For receive:

UARTRXDMASREQ

Single character DMA transfer request, asserted by the UART. For receive, one character consists of

up to 12 bits. This signal is asserted when the receive FIFO contains at least one character.

UARTRXDMABREQ

Burst DMA transfer request, asserted by the UART. This signal is asserted when the receive FIFO

contains more characters than the programmed watermark level. You can program the watermark

level for each FIFO through the UARTIFLS register.

UARTRXDMACLR

DMA request clear, asserted by the DMA controller to clear the receive request signals. If DMA burst

transfer is requested, the clear signal is asserted during the transfer of the last data in the burst.

For transmit:

UARTTXDMASREQ

Single character DMA transfer request, asserted by the UART. For transmit one character consists of

up to eight bits. This signal is asserted when there is at least one empty location in the transmit FIFO.

UARTTXDMABREQ

Burst DMA transfer request, asserted by the UART. This signal is asserted when the transmit FIFO

contains less characters than the watermark level. You can program the watermark level for each

FIFO through the UARTIFLS register.

UARTTXDMACLR

DMA request clear, asserted by the DMA controller to clear the transmit request signals. If DMA burst

transfer is requested, the clear signal is asserted during the transfer of the last data in the burst.

The burst transfer and single transfer request signals are not mutually exclusive, they can both be

asserted at the same time. For example, when there is more data than the watermark level in the

receive FIFO, the burst transfer request and the single transfer request are asserted. When the

amount of data left in the receive FIFO is less than the watermark level, the single request only is

asserted. This is useful for situations where the number of characters left to be received in the stream

is less than a burst.

 233 / 312

For example, say 19 characters have to be received and the watermark level is programmed to be

four. The DMA controller then transfers four bursts of four characters and three single transfers to

complete the stream.

Each request signal remains asserted until the relevant DMACLR signal is asserted. After the request

clear signal is deasserted, a request signal can become active again, depending on the conditions

described above. All request signals are deasserted if the UART is disabled or the DMA enable signal

is cleared.

When the UART is in the FIFO disabled mode, only the DMA single transfer mode can operate, since

only one character can be transferred to, or from the FIFOs at any time. UARTRXDMASREQ and

UARTTXDMASREQ are the only request signals that can be asserted. When the UART is in the FIFO

enabled mode, data transfers can be made by either single or burst transfers depending on the

programmed watermark level and the amount of data in the FIFO. Table below shows the trigger

points for DMABREQ depending on the watermark level, for both the transmit and receive FIFOs.

In addition to the above, the DMAONERR bit in the DMA control register supports the use of the

receive error interrupt, UARTEINTR. It enables the DMA receive request outputs, UARTRXDMASREQ

or UARTRXDMABREQ, to be masked out when the UART error interrupt, UARTEINTR, is asserted.

The DMA receive request outputs remain inactive until the UARTEINTR is cleared. The DMA transmit

request outputs are unaffected.

Figure below shows the timing diagram for both a single transfer request and a burst transfer request

with the appropriate DMA clear signal. The signals are all synchronous to PCLK. For the sake of clarity

it is assumed that there is no synchronization of the request signals in the DMA controller.

 234 / 312

18.7 Programmer’s Model

18.7.1 Summary of registers

Offset Type Width
Reset

value
Name Description

0x000 RW 12/8 0x--- UARTDR Data register

0x004 RW 4/0 0x0
UARTRSR/

UARTECR

Receive status register/error clear

register

0x008-

0x014
- - - - Reserved

0x018 RO 9
0b-

10010---
UARTFR Flag register

0x01C-

0x020
- - - - Reserved

0x024 RW 16 0x0000 UARTIBRD Integer baud rate register

0x028 RW 6 0x00 UARTFBRD Fractional baud rate register

0x02C RW 8 0x00 UARTLCR_H Line control register

0x030 RW 16 0x0300 UARTCR Control register

0x034 RW 6 0x12 UARTIFLS Interrupt FIFO level select register

0x038 RW 11 0x000 UARTIMSC Interrupt mask set/clear register

0x03C RO 11 0x00- UARTRIS Raw interrupt status register

0x040 RO 11 0x00- UARTMIS Masked interrupt status register

0x044 WO 11 - UARTICR Interrupt clear register

0x048 RW 3 0x00 UARTDMACR DMA control register

18.7.2 Register descriptions

18.7.2.1 Data register, UARTDR

The UARTDR register is the data register.

For words to be transmitted:

• if the FIFOs are enabled, data written to this location is pushed onto the transmit FIFO

• if the FIFOs are not enabled, data is stored in the transmitter holding register (the bottom word

of the transmit FIFO).

The write operation initiates transmission from the UART. The data is prefixed with a start bit,

appended with the appropriate parity bit (if parity is enabled), and a stop bit. The resultant word is then

transmitted.

 235 / 312

For received words:

• if the FIFOs are enabled, the data byte and the 4-bit status (break, frame, parity, and overrun)

is pushed onto the 12-bit wide receive FIFO

• if the FIFOs are not enabled, the data byte and status are stored in the receiving holding

register (the bottom word of the receive FIFO).

The received data byte is read by performing reads from the UARTDR register along with the

corresponding status information. The status information can also be read by a read of the

UARTRSR/UARTECR register as shown in Table on the next page.

Note:

You must disable the UART before any of the control registers are reprogrammed. When the UART is

disabled in the middle of transmission or reception, it completes the current character before stopping.

18.7.2.2 Receive status register/error clear register, UARTRSR/UARTECR

The UARTRSR/UARTECR register is the receive status register/error clear register.

Receive status can also be read from UARTRSR. If the status is read from this register, then the

status information for break, framing and parity corresponds to the data character read from UARTDR

prior to reading UARTRSR. The status information for overrun is set immediately when an overrun

condition occurs.

A write to UARTECR clears the framing, parity, break, and overrun errors. All the bits are cleared to 0

on reset. Table below shows the bit assignment of the UARTRSR/UARTECR register.

 236 / 312

Note:

The received data character must be read first from UARTDR before reading the error status

associated with that data character from UARTRSR. This read sequence cannot be reversed, because

the status register UARTRSR is updated only when a read occurs from the data register UARTDR.

However, the status information can also be obtained by reading the UARTDR register.

18.7.2.3 Flag register, UARTFR

The UARTFR register is the flag register. After reset TXFF, RXFF, and BUSY are 0, and TXFE and

RXFE are 1. Table below shows the bit assignment of the UARTFR register.

 237 / 312

18.7.2.4 Integer baud rate register, UARTIBRD

The UARTIBRD register is the integer part of the baud rate divisor value. All the bits are cleared to 0

on reset. Table below shows the bit assignment of the UARTIBRD register.

 238 / 312

18.7.2.5 Fractional baud rate register, UARTFBRD

The UARTFBRD register is the fractional part of the baud rate divisor value. All the bits are cleared to

0 on reset. Table below shows the bit assignment of register of the UARTFBRD register.

The baud rate divisor is calculated as follows:

Baud rate divisor BAUDDIV = (FUARTCLK/ {16 * Baud rate})

where FUARTCLK is the UART reference clock frequency.

The BAUDDIV is comprised of the integer value (BAUD DIVINT) and the fractional value (BAUD

DIVFRAC).

Note:

The contents of the UARTIBRD and UARTFBRD registers are not updated until transmission or

reception of the current character is complete.

The minimum divide ratio possible is 1 and the maximum is 65535(216 - 1). That is, UARTIBRD = 0 is

invalid and UARTFBRD is ignored when this is the case.

Similarly, when UARTIBRD = 65535 (that is 0xFFFF), then UARTFBRD must not be greater than zero.

If this is exceeded it results in an aborted transmission or reception.

This is an example of how to calculate the divisor value.

If the required baud rate is 230400 and UARTCLK = 4MHz then:

Baud Rate Divisor = (4 * 106)/(16 * 230400) = 1.085

Therefore, BRDI = 1 and BRDF = 0.085,

Therefore, fractional part, m = integer((0.085 * 64) + 0.5) = 5

Generated baud rate divider = 1 + 5/64 = 1.078

Generated baud rate = (4 * 106)/(16 * 1.078) = 231911

Error = (231911 - 230400)/230400 * 100 = 0.656%

The maximum error using a 6-bit UARTFBRD register = 1/64 * 100 = 1.56%. This occurs when m = 1, and
the error is cumulative over 64 clock ticks.

Table below shows some typical bit rates and their corresponding divisors, given the UART clock

frequency of 7.3728MHz. These values do not use the fractional divider so the value in the

UARTFBRD register is zero.

 239 / 312

Table below shows some required bit rates and their corresponding integer and fractional divisor

values and generated bit rates given a clock frequency of 4MHz.

18.7.2.6 Line control register, UARTLCR_H

The UARTLCR_H register is the line control register. This register accesses bits 29 to 22 of the UART

bit rate and line control register, UARTLCR.

All the bits are cleared to 0 when reset. Table 3-10 shows the bit assignment of the UARTCR_H

register.

 240 / 312

UARTLCR_H, UARTIBRD and UARTFBRD form a single 30-bit wide register (UARTLCR) which is

updated on a single write strobe generated by a UARTLCR_H write. So, in order to internally update

the contents of UARTIBRD or UARTFBRD, a UARTLCR_H write must always be performed at the

end.

Note:

To update the three registers there are two possible sequences:

• UARTIBRD write, UARTFBRD write and UARTLCR_H write

• UARTFBRD write, UARTIBRD write and UARTLCR_H write.

To update UARTIBRD or UARTFBRD only:

• UARTIBRD write (or UARTFBRD write) and UARTLCR_H write.

Table below is a truth table for the Stick Parity Select (SPS), Even Parity Select (EPS), and Parity

ENable (PEN) bits of the UARTLCR_H register.

 241 / 312

Note:

The baud rate and line control registers must not be changed:

• when the UART is enabled

• when completing a transmission or a reception when it has been programmed to become disabled.

The FIFO integrity is not guaranteed under the following conditions:

• after the BRK bit has been initiated

• if the software disables the UART in the middle of a transmission with data in the FIFO, and then re-

enables it.

 242 / 312

18.7.2.7 Control register, UARTCR

The UARTCR register is the control register. All the bits are cleared to 0 on reset except for bits 9 and

8 which are set to 1. Table 3-12 shows the bit assignment of the UARTCR register.

Note:

 243 / 312

To enable transmission, both TXE, bit 8, and UARTEN, bit 0, must be set. Similarly, to enable

reception, RXE, bit 9, and UARTEN, bit 0, must be set.

Note:

Program the control registers as follows:

1. Disable the UART.

2. Wait for the end of transmission or reception of the current character.

3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTCLR_H).

4. Reprogram the control register.

5. Enable the UART

18.7.2.8 Interrupt FIFO level select register, UARTIFLS

The UARTIFLS register is the interrupt FIFO level select register. You can use the UARTIFLS register

to define the FIFO level at which the UARTTXINTR and UARTRXINTR are triggered.

The interrupts are generated based on a transition through a level rather than being based on the

level. That is, the design is such that the interrupts are generated when the fill level progresses

through the trigger level.

The bits are reset so that the trigger level is when the FIFOs are at the half-way mark. Table below

shows the bit assignment of the UARTIFLS register.

18.7.2.9 Interrupt mask set/clear register, UARTIMSC

The UARTIMSC register is the interrupt mask set/clear register.

 244 / 312

It is a read/write register. On a read this register gives the current value of the mask on the relevant

interrupt. On a write of 1 to the particular bit, it sets the corresponding mask of that interrupt. A write of

0 clears the corresponding mask.

All the bits are cleared to 0 when reset. Table below shows the bit assignment of the UARTIMSC

register.

18.7.2.10 Raw interrupt status register, UARTRIS

The UARTRIS register is the raw interrupt status register. It is a read-only register. On a read this

register gives the current raw status value of the corresponding interrupt. A write has no effect.

Caution: All the bits, except for the modem status interrupt bits (bits 3 to 0), are cleared to 0 when

reset. The modem status interrupt bits are undefined after reset.

Table below shows the bit assignment of the UARTRIS register.

 245 / 312

18.7.2.11 Masked interrupt status register, UARTMIS

The UARTMIS register is the masked interrupt status register. It is a read-only register. On a read this

register gives the current masked status value of the corresponding interrupt. A write has no effect.

All the bits except for the modem status interrupt bits (bits 3 to 0) are cleared to 0 when reset. The

modem status interrupt bits are undefined after reset. Table below shows the bit assignment of the

UARTMIS register.

 246 / 312

 247 / 312

18.7.2.12 Interrupt clear register, UARTICR

The UARTICR register is the interrupt clear register and is write-only. On a write of 1, the

corresponding interrupt is cleared. A write of 0 has no effect. Table below shows the bit assignment of

the UARTICR register.

18.7.2.13 DMA control register, UARTDMACR

The UARTDMACR register is the DMA control register. It is a read/write register. All the bits are

cleared to 0 on reset. Table below shows the bit assignment of the UARTDMACR register.

 248 / 312

19 Inter-integrated circuit(I2C)

19.1 I2C introduction

The I2C interface is an internal circuit allowing communication with an external I2C interface which is

an industry standard two line serial interface used for connection to external hardware.

These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C

module provides several data transfer rates of up to 100 kHz in standard mode, up to 400 kHz in the

fast mode and up to 1 MHz in the fast mode plus .

The I2C module also has an arbitration detect function to prevent the situation where more than one

master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided

in I2C interface to perform packet error checking for I2C data.

AG32 device provide:

◼ Up to two I2C bus interfaces can support master mode with a frequency up to 1 MHz (Fast mode

plus)

◼ Provide arbitration function, optional PEC (packet error checking) generation and checking

◼ Supports 7-bit and 10-bit addressing mode and general call addressing mode

19.2 Architecture

The I2C core is built around four primary blocks; the Clock Generator, the Byte Command Controller,

the Bit Command Controller and the DataIO Shift Register. All other blocks are used for interfacing or

for storing temporary values.

Clock Generator

The Clock Generator generates an internal 4*Fscl clock enable signal that triggers all synchronous

elements in the Bit Command Controller. It also handles clock stretching needed by some slaves.

Byte Command Controller

 249 / 312

The Byte Command Controller handles I2C traffic at the byte level. It takes data from the Command

Register and translates it into sequences based on the transmission of a single byte. By setting the

START, STOP, and READ bit in the Command Register, for example, the Byte Command Controller

generates a sequence that results in the generation of a START signal, the reading of a byte from the

slave device, and the generation of a STOP signal. It does this by dividing each byte operation into

separate bit-operations, which are then sent to the Bit Command Controller.

 250 / 312

Bit Command Controller

The Bit Command Controller handles the actual transmission of data and the generation of the specific

levels for START, Repeated START, and STOP signals by controlling the SCL and SDA lines. The Byte

Command Controller tells the Bit Command Controller which operation has to be performed. For a single

byte read, the Bit Command Controller receives 8 separate read commands. Each bit-operation is

divided into 5 pieces (idle and A, B, C, and D), except for a STOP operation which is divided into 4

pieces (idle and A, B, and C).

DataIO Shift Register

The DataIO Shift Register contains the data associated with the current transfer. During a read action,

data is shifted in from the SDA line. After a byte has been read the contents are copied into the Receive

Register. During a write action, the Transmit Register’s contents are copied into the DataIO Shift

Register and are then transmitted onto the SDA line.

19.3 Operation

19.3.1 System Configuration

The I2C system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers. All devices

connected to these two signals must have open drain or open collector outputs. The logic AND function

 251 / 312

is exercised on both lines with external pull-up resistors.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-by-

byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB

being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the

high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must

be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted

as a command (see START and STOP signals).

19.3.2 I2C Protocol

Normally, a standard communication consists of four parts:

1) START signal generation

2) Slave address transfer

3) Data transfer

4) STOP signal generation

START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are

high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to

as the S-bit, is defined as a high-to-low transition of SDA while SCL is high. The START signal denotes

the beginning of a new data transfer. A Repeated START is a START signal without first generating a

STOP signal. The master uses this method to communicate with another slave or the same slave in a

different transfer direction (e.g. from writing to a device to reading from a device) without releasing the

bus. The core generates a START signal when the STA-bit in the Command Register is set and the RD

or WR bits are set. Depending on the current status of the SCL line, a START or Repeated START is

generated.

Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address.

This is a seven-bits calling address followed by a RW bit. The RW bit signals the slave the data transfer

direction. No two slaves in the system can have the same address. Only the slave with an address that

matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the

SDA low at the 9th SCL clock cycle.

Note: The core supports 10bit slave addresses by generating two address transfers. See the Philips I2C

specifications for more details.

The core treats a Slave Address Transfer as any other write action. Store the slave device’s address

in the Transmit Register and set the WR bit. The core will then transfer the slave address on the bus.

 252 / 312

Data Transfer

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-by-byte

basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by

an acknowledge bit on the 9th SCL clock cycle. If the slave signals a No Acknowledge, the master can

generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a

new transfer cycle.

If the master, as the receiving device, does not acknowledge the slave, the slave releases the SDA line

for the master to generate a STOP or Repeated START signal.

To write data to a slave, store the data to be transmitted in the Transmit Register and set the WR bit. To

read data from a slave, set the RD bit. During a transfer the core set the TIP flag, indicating that a

Transfer is In Progress. When the transfer is done the TIP flag is reset, the IF flag set and, when enabled,

an interrupt generated. The Receive Register contains valid data after the IF flag has been set. The user

may issue a new write or read command when the TIP flag is reset.

STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually

referred to as the P-bit, is defined as a low-to-high transition of SDA while SCL is at logical ‘1’.

19.3.3 Arbitration Procedure

Clock Synchronization

The I2C bus is a true multimaster bus that allows more than one master to be connected on it. If two or

more masters simultaneously try to control the bus, a clock synchronization procedure determines the

bus clock. Because of the wired-AND connection of the I2C signals a high to low transition affects all

devices connected to the bus. Therefore a high to low transition on the SCL line causes all concerned

devices to count off their low period. Once a device clock has gone low it will hold the SCL line in that

state until the clock high state is reached. Due to the wired-AND connection the SCL line will therefore

be held low by the device with the longest low period, and held high by the device with the shortest high

period.

Clock Stretching

Slave devices can use the clock synchronization mechanism to slow down the transfer bit rate. After the

 253 / 312

master has driven SCL low, the slave can drive SCL low for the required period and then release it. If

the slave’s SCL low period is greater than the master’s SCL low period, the resulting SCL bus signal

low period is stretched, thus inserting wait-states.

19.4 Registers

19.4.1 Registers list

19.4.2 Register description

Prescale Register

This register is used to prescale the SCL clock line. Due to the structure of the I2C interface, the core

uses a 5*SCL clock internally. The prescale register must be programmed to this 5*SCL frequency

(minus 1). Change the value of the prescale register only when the ‘EN’ bit is cleared.

Control register

The core responds to new commands only when the ‘EN’ bit is set. Pending commands are finished.

 254 / 312

Clear the ‘EN’ bit only when no transfer is in progress, i.e. after a STOP command, or when the

command register has the STO bit set. When halted during a transfer, the core can hang the I2 C bus.

Transmit register

Receive register

Command register

The STA, STO, RD, WR, and IACK bits are cleared automatically. These bits are always read as zeros.

Status register

 255 / 312

Please note that all reserved bits are read as zeros. To ensure forward compatibility, they should be

written as zeros.

 256 / 312

20 Controller area network (CAN)

20.1 Overview

AG32 device provides:

◼ One CAN2.0B interface with communication frequency up to 1 Mbit/s

◼ Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN

protocol has been used extensively in industrial automation and automotive applications. It can

receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit

identifiers. The CAN has three mailboxes for transmission and two FIFOs of three message deep for

reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming

messages needed and discarding the others.

AG32 support The Inventra™ MCAN2 standard.

The MCAN2 has two main modes of operation: an Operating Mode in which data may be transmitted

and received, and a Reset Mode in which bus timing parameters and message acceptance filters can

be set. Reset Mode also allows the Receive and Transmit Error Counters and the Error Warning Limit

to be changed.

Reset Mode is selected either by executing a hardware reset or by setting the Reset Mode bit in the

Mode Register (MOD.0) to ‘1’. The MCAN2 is returned to Operating Mode by clearing the MOD.0 bit.

The MCAN2 also supports a Listen Only Mode and a Self Test Mode, selectable through the Mode

Register in either Operating Mode or Reset Mode.

In Listen Only Mode, the MCAN2 is only able to receive data: no transmission is possible. The MCAN2

does not even transmit any acknowledgement of data being successfully received. It is also forced to

be ‘error passive’.

In Self Test Mode, the MCAN2 sends and receives a message using the MCAN2’s Self Reception

feature without looking for any acknowledgement from any remote node.

The device also offers a Clock Output Mode, only selectable within Reset Mode, in which TX1 is used

to output the Transmit clock rather than a second copy of the transmission data.

 257 / 312

20.2 Operation

20.2.1 Configuration

The way in which the MCAN2 is configured to operate is set within its Reset Mode, into which it is

placed both immediately following a hardware reset (NRST taken low) and as a result of setting the

Reset Mode bit in the Mode register (MOD.0) to 1 (software reset).

The details of the register settings following both these events are given in an Appendix at the end of

this document.

While in Reset Mode, you may wish to set the following aspects of the MCAN2’s operation:

• The bus timing parameters to be applied (These select the baud rate used on the CAN bus)

• The acceptance filters to be applied to received messages

• The required interrupts

• The desired error warning limit

• The required output mode – with either a copy of the transmission bit stream or the Transmit clock

on TX1

• The relationship of the CLKOUT signal to the input clock.

20.2.2 Bus Timing Parameters

The bus timing parameters configure the MCAN2 for the bit rate used on the CAN bus and set the

point within each bit period at which the received bit stream is to be sampled. They also specify the

degree to which the MCAN2 may compensate for variations in the bit rates generated by other nodes

by re-synchronizing to the bit stream.

To cater for variations in the bit rate generated by other nodes and for physical delay times both on the

bus and within the CAN nodes, the bit period is seen as being composed of a Synchronization

segment, a Propagation segment and two Phase Buffers. The Synchronization segment represents

the part of the bit period in which the bit edge is expected to arrive. The Propagation segment

represents the part of the bit time that is allowed to compensate for physical delay times. The two

Phase Buffers surround the sampling point and are shortened or lengthened as necessary to re-

synchronize to the incoming bit stream when the bit edge arrives outside of the Synchronization

segment.

The length of each of these segments is defined as a number of ‘Time Quanta’ (TQ). The

Synchronization segment is always 1 TQ, the Propagation segment may be 1 – 8 TQ, and the two

Phase Buffers may be 1 – 8 TQ. The maximum amount by which the Phase Buffers can be lengthened

or shortened is also defined – as the Synchronization Jump Width. This is limited to 1 – 4 TQ and is

also required to not be longer than either of the two Phase Buffers.

The timing parameters used on the MCAN2 are selected through the two Bus Timing Registers: BTR0

and BRT1.

BTR0 defines the time quantum to be used in terms of periods of the XTAL1 input clock, together with

the Synchronization Jump Width (in time quanta). Time quanta between 2 x the XTAL1 clock period

and 128 x the XTAL1 clock period are supported.

 258 / 312

BTR1 defines the lengths in time quanta of two time segments, TSEG1 and TSEG2, and the number

of samples made of each bit period – 1 or 3 (1 is recommended for high-speed (class C) buses; 3 is

recommended for low/medium (class A or B) buses). TSEG1 represents the time between the

Synchronization segment and the sample point (i.e. the Propagation segment plus the first Phase

Buffer). TSEG2 represents the time between the sample point and the end of the bit period (i.e. the

second Phase Buffer).

General Structure of a Bit Period

TSEG1 can be between 1 and 16 TQ long while TSEG2 can be between 1 and 8 TQ long. In theory,

bit periods can therefore be defined between 3 and 25 TQ in length. In practice, however, they are

required to be in the range 8 and 25 TQ picked out by the BOSCH standard.

20.2.3 Acceptance Filters

Within a CAN network, all nodes receive all messages transmitted on the bus.

To allow a node to ignore messages that are not relevant to it, the MCAN2 provides a 4-byte

Acceptance Filter, which can be used to pick out only those messages with an appropriate identifier.

Any message that does not pass though this filter can be discarded as not applicable to the receiving

CAN node.

Normally message filtering is based upon the whole identifier, which can be 11 or 29 bits long

depending if the received message is a standard or extended frame format. However, in the MCAN2,

optional mask registers allow groups of identifiers to be received and placed into the Receive FIFO by

setting particular identifier bits to be ‘don’t care’.

The filter can be applied either as a single 4-byte filter or as two shorter filters. The selection is made

through the AFM bit of the Mode register (bit 3). If AFM = ‘1’, a single filter will be applied; if AFM = ‘0’,
two filters will be applied. Where two filters are used, the incoming message is accepted if its identifier

matches either filter.

The filters applied are defined in a set of Acceptance Code Registers ACR0 – 3, used in conjunction

with a corresponding set of Acceptance Mask Registers AMR0 – 3 (see Sections 10.1 and 10.2). The

bit pattern against which the message identifier is matched is recorded in the ACR registers, masked

by the values recorded in the AMR registers. ‘0’s in AMR0 – 3 identify the bits at the corresponding

positions in ACR0 – 3 which must be matched in the message identifier, ‘1’s identify the corresponding

bits as ‘don’t care’. Both groups of registers are set to zero by a hardware reset (i.e. set to accept only

messages with a zero identifier) but are left unchanged by a software reset.

The way in which the bit patterns defined by ACR0 – 3 are applied further depend on whether the

incoming message is in Standard Frame Format (SFF) or Extended Frame Format (EFF).

 259 / 312

20.2.4 Interrupts

The MCAN2 supports the generation of an interrupt for any of the following conditions:

• Bus activity while the MCAN2 is in Sleep Mode (Wake-Up Interrupt)

• Receipt of a message (Receive Interrupt)

• Completion of the current transmission (Transmit Interrupt)

• Loss of Received data through the FIFO being full (Data Overrun Interrupt)

• Loss of Arbitration on the CAN bus* (Arbitration Loss Interrupt)

• Error on the CAN bus* (Bus Error Interrupt)

• MCAN2 coming out of ‘Error Passive’ state (Error Passive Interrupt)

• The number of errors either exceeding the Error Warning Limit or causing the device to go into Bus

Off state (Error Warning Interrupt)

Following a hardware reset, these interrupts are disabled. The user therefore needs to enable the

ones they require in the Interrupt Enable Register. The selection of interrupts that are enabled is not

however affected by a software reset.

20.2.5 Error Warning Limit

The Error Warning Limit (EWL) represents the number of errors in either reception or transmission at

which a warning should be generated. When either the Transmit Error Counter or the Receive Error

Counter passes this value, the Error Status bit in the Status Register (SR.6) is set and an Error

Warning Interrupt is generated (if enabled).

The value for the EWL is recorded in the Error Warning Limit Register (described in Section 10.9). The

value selected following a hardware reset is 96 which, if reached, would indicate a seriously disturbed

bus.

The current setting is left unchanged by a software reset.

20.2.6 Output Mode

The MCAN2 supports two possible output driver configurations: ‘Normal Output’ and ‘Clock Output’.
Note: The additional driver configurations available in the SJA1000 through this register are not

supported by the MCAN2.

In Normal Output Mode, the bit sequence (TXD) is sent to TX0 with an inverse copy sent to TX1. In

Clock Output Mode, the bit sequence is output on the TX0 signal as in Normal Output Mode but the

data stream to TX1 is replaced by a copy of the Transmit clock (TXCLK), the rising edge of which

marks the beginning of a bit period.

Normal Output Mode is automatically selected following a hardware reset. If Clock Output Mode is

required, it may be selected through the Output Control Register.

The selected mode is left unchanged by a software reset.

 260 / 312

20.2.7 CLKOUT Signal

The CLKOUT signal is derived from the XTAL1 input clock.

The relationship between the CLKOUT signal and the XTAL1 clock is defined by the Clock Divider

Register. The bottom three bits of this register specify a divisor for the XTAL1 clock between 2 and 14,

while bit 3 of the register enables or disables the CLKOUT signal as required.

After a hardware reset, the Clock Divider Register is set so that the CLKOUT signal is enabled and

equal to XTAL1 divided by 2. The current setting is left unchanged by a software reset.

20.2.8 Example Configuration Steps

20.3 Interrupt Handling

When the CPU is interrupted (NINT going low), it needs to read the interrupt register to determine

which type of event caused the interrupt.

The possible interrupts are (in the order they appear in the Interrupt register):

• Receive Interrupt (IR.0 set)

• Transmit Interrupt (IR.1 set)

• Error Warning Interrupt (IR.2 set)

• Data Overrun Interrupt (IR.3 set)

• Wake-Up Interrupt (IR.4 set)

• Error Passive Interrupt (IR.5 set)

• Arbitration Loss Interrupt (IR.6 set)

• Bus Error Interrupt (IR.7 set)

The following sections describe the actions to be taken in response to each type of interrupt.

 261 / 312

20.3.1 Receive Interrupt

The generation of a Receive Interrupt indicates the availability of a message to be read in the Receive

FIFO.

The message is read through a 13-byte window onto the Receive FIFO referred the Receive Buffer,

which is located at CAN addresses 10h – 1Ch.

Once the message currently accessible through the Receive Buffer has been read, the CPU needs to

release the window it currently has on the FIFO by issuing a Release Receive Buffer command

(CMR.2 = ‘1’). The RX FIFO Read Pointer (and hence the Receive Buffer Start Address) then moves

to the position in the Receive FIFO at which the next message will start.

If there is an unread message at this position, this becomes immediately available to read through the

Receive Buffer. If no message is available, the Receive Interrupt (IR.0) and Receive Buffer Status

(SR.0) bits will be cleared.

20.3.2 Transmit Interrupt

The generation of a Transmit Interrupt indicates the readiness of the Transmit Buffer to receive

another message for transmission. The response made to this interrupt simply depends on whether

there is further data to be sent. If there is, the transmission procedure outlined in Section 4 needs to

be repeated. If not, the interrupt may be ignored.

20.3.3 Error Warning Interrupt

The generation of an Error Warning interrupt indicates either that the count of transmission errors or

the count of reception errors has passed the EWL value recorded in the Error Warning Limit register,

or that the MCAN2 has been put into Bus Off state because the number of transmission errors has

exceeded 255.

The count of reception errors is recorded in the RXERR register, the count of transmission errors is

recorded in the TXERR register.

If the MCAN2 has been placed in Bus Off state, the Bus Status bit (SR.7) will be set to ‘1’ (Bus Off). In

addition, the Reset Mode bit (MOD.0) will have been set, causing a software reset and placing the

MCAN2 in Reset Mode where it will then stay until the host CPU clears the Reset Mode bit in the

Mode Register (MOD.0).

Furthermore, on its return to Operating Mode, the MCAN2 will wait for 128 occurrences of the Bus

Free sequence of 11 successive recessive bits (the minimum time defined by the CAN protocol)

before becoming ‘Bus On’ again. Note: During this period, the progress that is being made towards

Bus On can be monitored by reading the TXERR register. On leaving Reset Mode, this is initially set to

127. It then counts down through the required number of Bus Free sequences to become zero at the

point when the device is allowed to become Bus On again.

If the interrupt has been generated as a result of the EWL value being exceeded, it is up to the

programmer what action is taken in response to the generation of this interrupt.

 262 / 312

20.3.4 Data Overrun Interrupt

A Data Overrun Interrupt is only generated when the required storage space for the received message

is greater than the number of free bytes in the Receive FIFO. The Data Overrun Status bit (SR.1) will

also be set.

The required storage space is determined from the RTR, FF and DLC bits of the received message

which respectively define whether the message is a Remote Transmission Request, whether it is a

standard frame format or extended frame format message, and the number of bytes included in the

message.

The assessment of the space required is made after the message has been received. If insufficient

space is available to store the message, the message will be lost.

The recovery that can be made when messages are lost will depend on the system design. However,

experiencing significant numbers of Data Overrun events would suggest that the volume of data traffic

has been under-estimated and that the system would benefit from a larger memory buffer for incoming

messages.

20.3.5 Wake-up Interrupt

A Wake-Up Interrupt is generated when the MCAN2 is awakened from Sleep Mode.

Any of the following events will cause the MCAN2 to ‘wake up’ from Sleep Mode:

• Clearing the Sleep Mode bit (MOD.4)

• A low on NINT_IN

• Activity on the CAN bus input (RX0)

It is up to the CPU to identify why the device has been awoken, for example by first reading the Mode

register then testing the level of NINT_IN.

20.3.6 Error Passive Interrupt

The Receive Error (RXERR) and Transmit Error (TXERR) counters are respectively automatically

incremented by one each time a Receive error or Transmit error occurs, and decremented by one by

each successful reception or transmission.

If the accumulated total of either Receive or Transmit Errors goes over 127, the MCAN2 goes into

state in which further errors continue to be counted but individual interrupts are no longer generated.

This state is described as ‘Error Passive’ and an Error Passive Interrupt is generated (if enabled) to

signal that the Error Passive state has been entered.

The MCAN2 remains in Error Passive state while either error count remains over 127. The

Transmission Error count continues to be incremented and decremented while it remains over 127.

The Receive Error count, however, is automatically reduced to a value between 119 and 127 by each

message that is successfully received, potentially taking the MCAN2 out of Error Passive state.

 263 / 312

20.3.7 Arbitration Loss Interrupt

The generation of an Arbitration Loss Interrupt indicates that the MCAN2 has lost control of the CAN

bus while it was in the process of transmitting a message.

Normally, there is no need for any special action to be taken as the MCAN2 will automatically try again

to transmit the current message. The fact that arbitration has been lost may however be of importance

if the option of a One-Shot transmission has been taken .

 The bit position at which arbitration was lost will be recorded in the Arbitration Lost Capture (ALC)

Register. For details of the way in which this bit position is recorded.

20.3.8 Bus Error Interrupt

The generation of a Bus Error Interrupt indicates the occurrence of a transmission error on the CAN

bus.

Normally, there is no need for any special action to be taken as the MCAN2 will automatically discard

any incoming message in which bus errors have occurred and it will automatically try to send again

any transmit message that experienced bus errors. However, should additional information on a bus

error be required, the type of error (bit/form/stuff/other) and the location of the each error are captured

in an Error Code Capture Register (described in Section 10.8) where they remain until this register is

read.

Experiencing significant numbers of such errors may however indicate that corrective action should be

taken, so the MCAN2 maintains two error counters – one for reception errors (RXERR) and one for

transmission errors (TXERR) – which are automatically incremented whenever an error occurs. Should

either counter exceed the value recorded in the Error Warning Limit register, an Error Warning

interrupt is generated (if enabled) while if either counter exceeds a count of 127, an Error Passive

interrupt is generated (if enabled). An Error Warning interrupt will also be generated if the MCAN2

goes into Bus Off state as a result of the count of transmission errors exceeding 255.

20.4 Sleep Mode

When there is no bus activity and no interrupts are pending, power can be saved by putting the

MCAN2 into a Sleep Mode in which XTAL1_IN is turned off. This is selected by setting the Sleep

Mode bit in the Mode Register (MOD.4) to ‘1’.

Any of the following events will cause the MCAN2 to ‘wake up’ from Sleep Mode:

• Setting the Sleep Mode bit to ‘0’

• Activity on the CAN bus input (RX0)

• A low on NINT_IN

On waking up, the MCAN2 will generate a Wake-Up Interrupt.

Note: If the MCAN2 is awakened by bus activity, it cannot receive any message until after it has

detected a Bus-Free sequence of 11 recessive bits on the bus. You should also note that it is not

possible to select Sleep Mode while the MCAN2 is in Reset Mode.

 264 / 312

20.5 Register Description

The registers used in the MCAN2 are listed below, with detailed information about the individual

registers given in the following sections (referenced in the table). Note: Different Read/Write

permissions apply depending on whether the MCAN2 is in Operating Mode or Reset Mode.

20.5.1 Acceptance Code Registers (ACR0 – ACR3): ADDRESS 10h – 13h

These 8-bit registers record the bit patterns used by the Acceptance Filter in conjunction with the

masks provided by AMR0 – AMR3 in filtering received data.

The way in which these bit patterns are applied depends on whether a single filter or dual filters are

being used and on whether the data is in Standard Frame Format (SFF) or Extended Frame Format

(EFF).

These registers can only be accessed in Reset Mode.

 265 / 312

20.5.2 Acceptance Mask Registers (AMR0 – AMR3): ADDRESS 14h – 17h

These 8-bit registers record the mask patterns applied by the Acceptance Filter in filtering the data

received. ‘0’s in these registers identify the bits of the incoming data bytes that are required to match

the bit values in the corresponding Acceptance Code Registers. ‘1’s mark individual bits as ‘don’t
care’.

The bits of the incoming data picked out by these masks depends on whether a single filter or dual

filters are being used and on whether the data is in Standard Frame Format (SFF) or Extended Frame

Format (EFF).

The registers can only be accessed in Reset Mode.

20.5.3 Arbitration Lost Capture Register (ALC): ADDRESS 0Bh

This read-only register records the bit position at which arbitration was lost.

When bus arbitration lost, an Arbitration Lost Interrupt is generated (if enabled) and the current

position of the Bit Processor is captured into this Arbitration Lost Capture Register. The contents of

this register are then maintained until the register has been read by the user’s software. The capture

mechanism is then activated again.

 266 / 312

20.5.4 Bus Timing Register 0 (BTR0): ADDRESS 06h

Bus Timing Register 0 defines the values of the Synchronization Jump Width (SJW) and the Baud

Rate Prescaler (BRP).

SYNCHRONIZATION JUMP WIDTH (SJW): BTR0[7:6].

The Synchronization Jump Width defines the maximum number of time quanta by which a bit period

may be shortened or lengthened in attempting to re-synchronize on the relevant signal edge

(recessive to dominant) of the current transmission.

BAUD RATE PRESCALER (BRP): BTR0[5:0]

The Baud Rate Prescaler defines the ‘time quantum’ TQ of the CAN clock as a multiple of the XTAL1

input clock period. The time quantum of the CAN clock is given by:

TQ =2 x tclk x (32 x BRP.5 + 16 x BRP.4 + 8 x BRP.3 + 4 x BRP.2 + 2 x BRP.1 + BRP.0 + 1) where tclk

= time period of the XTAL1 frequency = 1/fxtal1

 267 / 312

20.5.5 Bus Timing Register 1 (BTR1): ADDRESS 07h

Bus Timing Register 1 defines the length of the bit period, the location of the sample point and the

number of samples to be taken at each sample point.

SAMPLING (SAM): BTR1.7

TSEG1 AND TSEG2: BTR1[3:0], BTR1[6:4]

TSEG1 and TSEG2 define the length of the bit period by giving the number of time quanta up to and
after the point(s) at which incoming data will be sampled. In terms of TSEG1 and TSEG2, the
parameters tsyncseg, ttseg1 and ttseg2 shown in the diagram are:

tsyncseg =1 x TQ

ttseg1 = TQ x (8 x TSEG1.3 + 4 x TSEG1.2 + 2 x TSEG1.1 + TSEG1.0 + 1)

ttseg2= TQ x (4 x TSEG2.2 + 2 x TSEG2.1 + TSEG2.0 + 1)

20.5.6 Clcck Divider Register (CDR): ADDRESS 1Fh

The Clock Divider Register controls the CLKOUT signal. The default state of the register after a
hardware reset is 11000000 (divide by 2 and CLKOUT signal enabled). The register is not changed by
a software reset.

 268 / 312

CDR[2:0]

The bits CD.2 to CD.0 define the frequency at the external CLKOUT pin as shown in the following
table (fosc is the frequency of the external oscillator (XTAL1)). These bits may be accessed from
either Reset Mode or Operating Mode.

CLOCKOFF (CDR.3)

Setting this bit allows the external CLKOUT signal to be disabled.

20.5.7 Command Register (CMR): ADDRESS 01h

Setting one or more bits within the Command Register initiates an action within the transfer layer of
the CAN controller.

Note: This register is write only. When read, all bits return ‘0’. You should also note that there must
be at least one external clock cycle between consecutive commands.

 269 / 312

20.5.8 Error Code Capture Register (ECC): ADDRESS 0CH

This read-only register may be used to obtain detailed information about the type and location of bus
errors.

When a bus error occurs, a Bus Error Interrupt is generated (if enabled) and the current bit position
of the Bit Processor is captured into this Error Code Capture Register. The contents of this register
are then maintained until the register has been read by the user’s software. The capture mechanism
is then activated again.

20.5.9 Error Warning Limit Register (EWLR): ADDRESS 0Dh

This register defines the number of errors after which an Error Warning Interrupt should be
generated (if enabled).

This register is read only in Operating Mode but may be written in Reset Mode. You should note that
changes made within Reset Mode are only put into effect on return to Operating Mode.

The default value of this register (after hardware reset) is 0110000 (i.e. 96). An error count of this
level suggests a significantly disturbed bus, the causes of which should be investigated.

20.5.10 Interrupt Register (IR): ADDRESS 03h

The Interrupt Register allows the source of an interrupt to be identified. When one or more bits of
this register are set, the MCAN2 sends an interrupt to the CPU. The way the different interrupts
should be handled.

Note: The Interrupt Register is read-only. After the register has been read by the CPU, all except the
Receive Interrupt bit are reset.

 270 / 312

20.5.11 Interrupt Enable Register(IER): ADDRESS 04h

This read/write register is used to select the events that are indicated to the CPU through an
interrupt being generated.

 271 / 312

20.5.12 Mode Register (MOD): ADDRESS 00h

This read/write register is used to set the behavior of the CAN controller.

20.5.13 Output Control Register (OCR): ADDRESS 08h

The Output Control Register allows the selection of two possible output driver configurations:
‘Normal Output’ and ‘Clock Output’.

In Normal Output Mode, the bit sequence (TXD) is sent to TX0 with the inverse sent to TX1.

In Clock Output Mode, the bit sequence is output on the TX0 signal as in normal output mode but the
data stream on TX1 is replaced by a copy of the Transmit clock (TXCLK), the rising edge of which
marks the beginning of a bit period. The pulse width of this clock is one Time Quantum (TQ).

Note: The additional driver configurations available in the SJA1000 through this register are not
supported by the MCAN2.

 272 / 312

Interpretation of OCMODE bits

Note: The Output Control Register may only be written in Reset Mode. In Operating Mode, this
register is read only. The Reserved bits return ‘0’ when read.

20.5.14 Receive Buffer (10h – 1Ch)

The Receive Buffer provides the window through which the CPU accesses the Receive FIFO. Like the
Transmit Buffer, the Receive Buffer has a length of 13 bytes (enough to accommodate one Receive
message of up to eight data bytes).

Read-only access to the Receive Buffer is provided in Operating Mode using CAN addresses 10h – 1Ch

The layout of the Receive Buffer is similar to the Transmit Buffer described in the previous section.
Indeed, the configuration used was chosen specifically to be compatible with the layout of the
Transmit Buffer. Again, it is important to distinguish between Standard Frame Format (SFF) messages
and the Extended Frame Format (EFF) messages.

Receive Buffer Layout

The Receive Buffer is subdivided into descriptor and data fields. The first byte of the descriptor field
holds frame information. It describes the frame format (SFF or EFF), specifies remote or data frame
and gives the data length. This is then followed by either two identifier bytes for SFF or four bytes for
EFF messages. The data field contains up to eight data bytes.

 273 / 312

20.5.15 Receive Buffer Start Address (RBSA): ADDRESS 1Eh

The Receive Buffer Start Address register records the current location of the RX FIFO Read Pointer
within the 64-byte Receive FIFO as a value between 0 and 63. Location 0 maps to CAN address 20h:
Location 63 maps to CAN address 5Fh.

This register is reset to 00h by a hardware reset but is left unchanged by a software reset (which also
does not change the FIFO contents). However, the software reset sets the RX FIFO Write Pointer to
the value of the RX FIFO Read Pointer with the result that the data currently accessed by the Receive
Buffer following a software reset will be overwritten by the next message to be recorded in the
Receive FIFO.

Note: It is only possible to write to this register in Reset Mode.

20.5.16 Receive Error Counter Register (RXERR): ADDRESS 0Eh

The Receive Error Counter Register records the current value of the Receive Error Counter. This
counter is incremented when errors are experienced in the Receive bit stream and decremented
when messages are received without error, in line with the rules given in the CAN 2.0 specification.
Together with the associated Transmit Error Counter (see Section 10.20), it provides an indication of
the quality of transmission being experienced on the CAN bus.

An outline of the rules by which the counter is incremented and decremented is given in the table
below. For full details, you should refer to the CAN 2.0 specification.

Two levels of the counter trigger specific events.

• When the counter reaches the level set in the Error Warning Limit register (see Section 10.9), an
Error Warning Interrupt is generated (if enabled) unless this has previously been triggered by the
Transmit Error Counter.

• When the counter goes over 127, the device is put into Error Passive state in accordance with the
CAN 2.0 specification(unless previously triggered by the Transmit Error Counter) and an Active error
is sent. An Error Passive Interrupt is also generated (if enabled).

After a hardware reset or when a Bus Off event occurs (see Transmit Error Counter – see Section
10.20), the counter is automatically set to ‘0’.

The register is read only in Operating Mode but may be written in Reset Mode. You should note,
however, that writing to this register has no effect when the MCAN2 is in Bus Off state and that any
change made within Reset Mode will in any case only come into effect on return to Operating Mode.

 274 / 312

20.5.17 Receive Message Counter (RMC): ADDRESS 1Dh

The Receive Message Counter register records the number of messages currently available in the
Receive FIFO. It is automatically incremented by each Receive event and decremented by each
Release Receive Buffer command. It is available for Read only access in both Operating Mode and
Reset Mode.

The register is reset to 00h by either a hardware or a software reset.

 275 / 312

20.5.18 Status Register(SR): ADDRESS 02h

This read-only register reflects the status of the MCAN2 controller.

20.5.19 Transmit Buffer (Write: 10h – 1Ch; Read: 60h – 6Ch)

The Transmit Buffer has a length of 13 bytes. It accommodates one Transmit message of up to eight
data bytes.

Access to the Transmit Buffer in Operating Mode is write-only and is provided using CAN addresses
10h – 1Ch.

The global layout of the Transmit Buffer is shown below. It is important to distinguish between
Standard Frame Format (SFF) messages and the Extended Frame Format (EFF) messages.

Note: Read access to the Transmit Buffer is possible using CAN addresses 60h – 6Ch.

Transmit Buffer Layout

The Transmit Buffer is subdivided into descriptor and data fields. The first byte of the descriptor field
holds frame information. It describes the frame format (SFF or EFF), remote or data frame and the
data length. This is then followed by either two identifier bytes for SFF or four bytes for EFF
messages. The data field contains up to eight data bytes.

 276 / 312

20.5.20 Transmit Error Counter Register (TXERR): ADDRESS 0Fh

The Transmit Error Counter Register records the current value of the Transmit Error Counter. This
counter is incremented when Transmission errors are experienced and decremented when messages
are transmitted without error, in line with the rules given in the CAN 2.0 specification. Together with
the associated Receive Error Counter (see Section 10.16), it provides an indication of the quality of
transmission being experienced on the CAN bus.

An outline of the rules by which the counter is incremented and decremented is given in the table in
Section 10.16. For full details, you should refer to the CAN 2.0 specification.

Three levels of the counter trigger specific events.

• When the counter reaches the level set in the Error Warning Limit register (see Section 10.9), an
Error Warning Interrupt is generated (if enabled) unless this has previously been triggered by the
Receive Error Counter.

• When the counter goes over 127, the device is put into Error Passive state in accordance with the
CAN 2.0 specification (unless previously triggered by the Receive Error Counter), an Active error is
sent and an Error Passive Interrupt is generated (if enabled).

• When the counter goes over 255, the device is put into Bus Off state in accordance with the CAN
2.0 specification and is automatically put into Reset mode (except during start-up when there is only
one node on the CAN bus). An Error Warning Interrupt is also generated (if enabled).

After a hardware reset, the Transmit Error Counter is automatically set to ‘0’.

After a ‘Bus Off’ event, the register is initialized to 127 in order to count the minimum protocol-
defined time before the MCAN2 can take part in further transmission on the CAN bus (128
occurrences of the ‘Bus-Free’ sequence of 11 consecutive recessive bits). Reading the Transmit Error
Counter during this time will give the status of the Bus Off recovery. Note: If the Reset Mode is re-
entered before the Bus Off recovery has been completed (TXERR > 0), Bus Off will stay active with
TXERR frozen until the MCAN2 is taken back into Operating Mode.

 277 / 312

It is possible to write to this register but only in Reset Mode. In Operating Mode, this register appears
as read only memory to the CPU.

While in Bus Off state, writing a value in the range from 0 to 254 to TXERR clears the Bus Off flag. The
MCAN2 will then wait for just one Bus Free sequence after the Reset Mode has been cleared.

Writing 255 to TXERR in Reset Mode initiates a CPU-driven Bus Off event. No error or bus status
change happens in response to the new TXERR value until the MCAN2 is taken back into Operating
Mode when a Bus Off event will be performed exactly as if it had been forced by a bus error. This
means Reset Mode is entered again, the Transmit Error Counter is initialized to 127, the Receive
counter is cleared and the relevant Status and Interrupt register bits are set. Clearing Reset Mode
now will perform the protocol-defined Bus Off recovery sequence (waiting for 128 occurrences of the
bus-free signal).

 278 / 312

21 Flash-SPI control

21.1 Overview

21.1.1 Characteristics of this spi controller

The FlashSpi module is an spi master controller that can be configured through AHB bus. It is suitable

for wifi chips based on AHB bus architecture like S902, and is used to read and write off-chip flash

chips such as S25FL116K of Spansion, W25Q20CL of Winbond or similar off-chip flash chips that

provide spi slave interface. This module has the following features:

1) provide a set of AHB slave interfaces, a set of DMA Single request interfaces and an interrupt

request in the chip, and provide spi master interfaces outside the chip.

2) It can provide spi clock with the fastest half of the system clock frequency.

3) For a communication, it starts automatically after the register is configured. After the communication

is completely finished, the register flag bit is displayed, and the completion interrupt can also be

generated.

4) One communication can contain up to 8 independently configurable phase, which is enough to

flexibly correspond to various situations contained in one spi communication of flash chip.

5) The whole module adopts synchronous clock design, and all signals belong to CLK clock domain.

 279 / 312

21.1.2 The concept of PHASE

The following figure is a typical timing diagram of reading FLASH data through SPI.

The process from CSn falling to CSn rising is called an SPI communication. In the SPI communication

shown above, Instruction, A, M and Dummy should be sent in turn, and then data should be received.

And Instruction only uses one line, while the subsequent processes all use four lines. Aiming at this kind

of timing, this module puts forward the concept of PHASE. A communication can contain up to 8

PHASEs, and each phase can independently set parameters such as read-write operation, 1/2/4 line

mode, communication data volume, etc. After the first SPI communication starts, this module will finish

the tasks set by each PHASE in the order of PHASE0→PHASE7, and then end the SPI communication.

For example, for the timing of the above figure, it can be divided into 4 PHASE.

PHASE0 PHASE1 PHASE2 PHASE3

 280 / 312

21.1.3 Module block diagram

The following figure is a block diagram of this spi controller:

FlashSpiAhbIf: an AHB Slave interface controller, which is responsible for converting the AHB bus signal

into the internal read-write signal of the module and interacting with the register module FlashSpiReg to

complete the read-write operation.

Flaspireg: register module of SPI controller, in which all registers are located. At the same time, the

generation and processing of DMA interface signals and the generation of interrupts are also in this

module.

Flaspictrl: the core control module of SPI controller. When it is detected that the SPI_START bit in

FlashSpiReg is written as 1, the phase set in the register is analyzed to generate control and data for

FlashSpiDataPump.

FlashSpiPsc：spi sck clock controller, used to control the frequency of sck clock.

FlashSpimaster: Spimaster interface controller, which controls the spi bus to send and receive according

to the control signal sent by FlashSpiCtrl.

FlashSpi

FlashSpi

AhbIf

FlashSpi

Reg

FlashSpi

Ctrl

FlashSpi

Master

FlashSpi

Psc

AHB bus

DMA interface

SPI bus

suspe

nd

 281 / 312

21.1.4 Top port

The following is a list of top-level ports and functions of this module:

Signal name directi

on

bit

wide

Connecting

objects

explain

CLK I 1 ClockGen Module clock

RST_n I 1 ResetGen Module reset

HSEL I 1 BusMatrix AHB Slave bus signal

HWRITE I 1 BusMatrix AHB Slave bus signal

HADDR I 32 BusMatrix AHB Slave bus signal

HTRANS I 2 BusMatrix AHB Slave bus signal

HSIZE I 3 BusMatrix AHB Slave bus signal

HWDATA I 32 BusMatrix AHB Slave bus signal

HREADYIN I 1 BusMatrix AHB Slave bus signal

DMA_TX_SREQ_CLR I 1 Dma Clear TX_DMA request signal

DMA_RX_SREQ_CLR I 1 Dma Clear RX_DMA request signal

IO0_I I 1 Pad Spiio0 input of bus

SO_IO1_I I 1 Pad Spiso _ io1 input of bus

IO2_I I 1 Pad Spiio2 input of bus

IO3_I I 1 Pad Spiio3 input of bus

HREADYOUT O 1 BusMatrix AHB Slave bus signal

HRDATA O 32 BusMatrix AHB Slave bus signal

HRESP O 2 BusMatrix AHB Slave bus signal

DMA_TX_SREQ O 1 Dma TX_DMA request signal

DMA_RX_SREQ O 1 Dma RX_DMA request signal

SPI_DONE_INT O 1 Cpu SPI completion interrupt

SCK O 1 Pad Spisck signal of bus

CSn O 1 Pad Spicsn bus signal

SI_IO0_O O 1 Pad SPI bus SI_IO0 output data

SI_IO0_OE O 1 Pad SPI bus SI_IO0 output enable

IO1_O O 1 Pad Spiio1 bus output data

SO_IO1_OE O 1 Pad Spiio1 output enable for bus

WPn_IO2_O O 1 Pad Spiwpn _ io2 bus output data

WPn_IO2_OE O 1 Pad Spiwpn _ io2 bus output enable

HOLDn_IO3_O O 1 Pad Spiholdn _ io3 bus output data

HOLDn_IO3_OE O 1 Pad Spiholdn _ io3 bus output enable

 282 / 312

21.2 Instructions for use of the module

21.2.1 System integration method

The integration of AHB bus, DMA interface and interrupt interface is relatively simple, which will not be

described here. The integration of SPI bus should be equivalent to the following logic:

In addition, in order to prevent the input from floating, it is best to add a pull up resistor between Wifi

Chip and Flash Chip.

Wifi Chip

FlashSpi

SI_IO0_O

PAD Flash Chip

SI_IO0_OE

IO1_O

SO_IO1_OE

WPn_IO2_O

WPn_IO2_OE

HOLDn_IO3_O

HOLDn_IO3_OE

SCK

CSn

SI_IO0

SO_IO1

WPn_IO2

HOLDn_IO3

SCK

CSn
IO0_I

SO_IO1_I

IO2_I

IO3_I

 283 / 312

21.2.2 register description

SPCR register (address: BASE_ADDR+8'h00)

SPCR is the global control register of SPI communication, and its bit configuration is as follows:

bit31 bit24

RESET Reserved

bit23 bit16

Reserved INT_EN SCK_DIV_VAL[7:4]

bit15 bit8

SCK_DIV_VAL[3:0] Reserved LE WP USE_DMA

bit7 bit0

Reserved PHASE_CNT Reserved SPI_ERROR SPI_DONE SPI_START

The function of each bit is defined in the following table:

 284 / 312

bit Bitname initial

value

read

and

write

describe

31 RESET 1'b0 W/R Software reset of SPI controller. 1, all registers and all internal

circuits except this bit are reset.

30-21 Reserved 10'h000 R Keep.

20 INT_EN 1'b0 W/R Interrupt enable. When set to 1, if SPI_DONE is 1, an interrupt will

be sent to the CPU.

19-12 SCK_DIV_VAL 8'h08 W/R SPI communication frequency setting. SPI communication rate is the

frequency division of this value of the system clock. Even number

must be filled in. Fill in 8'h00 to represent 256 frequency division.

11 Reserved 1'b0 R Keep.

10 LE 1'b0 W/R Small start. Because the data register is 32 bits, and SPI sends one

byte at a time, when LE is set to 1, SPI will first send and receive [7:0]

bits of the data register, then [15:8] until [31: 24]; When LE is set to

0, the order is reversed.

9 WP 1'b1 W/R When SPI communication is in single or dual mode, WPn is valid

when WP is 1, that is, 0; WPn is 1 when WP is 0.

8 USE_DMA 1'b0 W/R Use DMA transfer for data of the last phase.

Note: If there is only one phase in one spi communication, it is

forbidden to set USE_DMA to 1.

7 Reserved 1'b0 R Keep.

6-4 PHASE_CNT 3'h0 W/R Number of PHASE included in one spi communication.

0: contains 1 phase.

1: contains 2 phase.

……

7: contains 8 phase.

3 Reserved 1'b0 R Keep.

2 SPI_ERROR 1'b0 W0/R When a communication is over, if any of the phase is wrong, this bit

is set to one.

Clear condition: software writes 0, or software writes SPI_START to

1 (that is, it is automatically cleared when the next communication

starts).

1 SPI_DONE 1'b0 W0/R SPI transmission and DMA transmission of the first communication

have all ended.

Clear condition: software writes 0, or software writes SPI_START to

1 (that is, it is automatically cleared when the next communication

starts).

0 SPI_START 1'b0 W/R Communication begins. Please set the ratio close to 1 after all the

phase configurations of one communication.

Clear condition: automatically clear after SPI communication ends.

Please do not write 0 in the software.

phase _ ctrl0 ~ phase _ ctrl7 registers (address: base _ addr+8' h10 ~ 8' h2c)

 285 / 312

The PHASE_CTRL register is used to individually configure each phase in an SPI

communication. There are eight PHASE_CTRL registers, phase _ ctrl0 ~ phase _ ctrl7, which

control each phase in turn. The bit configuration of the PHASE_CTRL register is as follows:

bit31 bit24

Reserved

bit23 bit16

Reserved SPI_MODE BYTE_CNT[11:8]

bit15 bit8

BYTE_CNT[7:0]

bit7 bit0

Reserved PHASE_ACTION Reserved
PHASE_ERR

OR

PHASE_DO

NE

PHASE_STA

RT

The function of each bit is defined in the following table:

bit Bitname initial

value

read

and

write

describe

31-22 Reserved 10'h000 R Keep.

21-20 SPI_MODE 2'h0 W/R Current SPI bus mode of PHASE:

2' H0: Single mode

2' H1: Dual mode

2' H2: quad mode

2'h3: setting is prohibited.

19-8 BYTE_CNT 12'h000 W/R Number of data byte in current PHASE communication.

The value is invalid when PHASE_ACTION is set to POLL.

7-6 Reserved 1'b0 R Keep.

5-4 PHASE_ACTION 2'h0 W/R Action of current PHASE SPI:

2'h0：TX

2'h1：DUMMY TX

2'h2：RX

2'h3：POLL

Please refer to section 2.3 for details.

3 Reserved 1'b0 R Keep.

2 PHASE_ERROR 1'b0 R PHASE_ACTION is POLL, and it exceeds the number of attempts that

need to be unread.

Clear condition: SPCR writes SPI_START to 1 (that is, it is

automatically cleared when the next communication starts).

1 PHASE_DONE 1'b0 R The current PHASE has been completed.

Clear condition: SPCR writes SPI_START to 1 (that is, it is

 286 / 312

automatically cleared when the next communication starts).

0 PHASE_START 1'b0 R PHASE is currently in progress. The hardware is automatically set

and cleared according to the running situation.

phase _ data0 ~ phase _ data7 registers (address: base _ addr+8' h30 ~ 8' h4c)

Data register for each PHASE. The bit definition of the PHASE_DATA register is related to the

PHASE _ action set by the current phase.

The details are as follows:

When PHASE_ACTION is POLL, it is used to save the configuration related to POLL:

bit31 bit23 bit15 bit7 bit0

POLL_LIMIT POLL_MASK POLL_EXPECT POLL_READ

When (POLL _ read & poll _ mask) = = poll _ expect, and the number of attempts is less than

POLL_LIMIT, poll succeeds; Otherwise, the POLL fails and the PHASE_ERROR is set to one.

When the PHASE_ACTION is not POLL, the PHASE_DATA register is used to store the

sent/received data, with a maximum of 4 byte.

If SPCR.LE is 0, the functions are as follows:

bit31 bit23 bit15 bit7 bit0

data byte 0 data byte 1 data byte 2 data byte 3

 If SPCR.LE is 1, the functions are as follows:

bit31 bit23 bit15 bit7 bit0

data byte 3 data byte 2 data byte 1 data byte 0

 That is, if sending data, SPI will first send data byte0, then data byte 1, until data byte 3.

On the contrary, when receiving data, the position of data byte 0 will be written first until data

byte 3.

21.2.3 Description of PHASE_ACTION

When SPCR.SPI_START=1, the hardware will automatically install PHASE0 → phase1 ...

phase7 to execute the transactions in each phase until the number specified in

SPCR.PHASE_CNT is completed. According to the functions of common flash chips, there are

four kinds of ACTION that SPI needs to perform in this module: TX, DUMMY TX, RX and POLL.

Here's a detailed description of the definition of each operation.

 287 / 312

TX

When PHASE_ACTION is TX, SPI will circularly send the data in PHASE_DATA in the order

of data byte0 ~ data byte3 according to the bus mode configured by SPI_MODE until all the

specified phase _ byte _ CNTs are sent. Therefore, when the PHASE_BYTE_CNT is less than

5, the software can directly match the data into the PHASE_DATA ； . Otherwise, it is

recommended to configure DMA, so that SPI will automatically call DMA to write new data into

PHASE_DATA at the end of a cycle.

DUMMY TX

DUMMY TX is similar to TX except that SPI will no longer send data in PHASE_DATA, but will

send 8'hFF. Therefore, even if the PHASE_BYTE_CNT is greater than 4, there is no need to

configure DMA.

RX

When PHASE_ACTION is RX, SPI will receive data according to the bus mode configured by

SPI_MODE, and write it into PHASE_DATA circularly in the order of data byte0 ~ data byte3.

Therefore, when the PHASE_BYTE_CNT is less than 5, the software can read the data in the

PHASE_DATA after the SPI communication. Otherwise, it is recommended to configure DMA,

so that SPI will automatically call DMA to send away the data in PHASE_DATA at the end of a

cycle to avoid being overwritten by new data.

POLL

When PHASE_ACTION is POLL, SPI will continue to receive data according to the bus mode

configured by SPI_MODE, and do the comparison operation of (poll _ read & poll _ mask) = =

poll _ expect. If it is successful within the number of times specified in POLL_LIMIT, the POLL

operation is completed; Otherwise, after the specified number of times of POLL_LIMIT is

reached, the POLL operation is forcibly completed, and the PHASE_ERROR is set to one.

Note: If the POLL_LIMIT is set to 8'h00, the infinite POLL mode will be entered. SPI will perform

the POLL operation indefinitely until the comparison is successful, otherwise it cannot be

stopped. The only way to stop is SOFT_RESET.

Pay attention.

1)RX and POLL must be the last PHASE of an SPI communication and not the first PHASE.

2) If the PHASE is set to use DMA, its PHASE_ACTION cannot be POLL.

3) If it is set to the PHASE using DMA, and its PHASE_ACTION is RX, it may happen that SPI

communication has been completed, but DMA has not yet been completed. At this time,

SPCR.SPI_START will be cleared, but SPCR.SPI_DONE will not be set. SPCR.SPI_DONE

will not be set until the DMA transfer is complete.

 288 / 312

21.2.1 Software configuration sequence

The software can configure the registers in the following order during each SPI communication:

Example of software configuration

This section will introduce how to configure this module in combination with the common

operations of common FLASH chips.

Send the Write Enable(06h) command.

 The format of this command is as follows:

The following configuration is recommended:

begin

Configure DMA (not in this

module)

Use DMA?

Configure each

PHASE_CTRL

Configure SPCR

Wait for interruption

or

SPCR.DONE is 1

accompli

sh

be

no

 289 / 312

seque

nce

Register name Configuration value

one PHASE_CTRL0 SPI_MODE=2'h0

BYTE_CNT=12'h001

PHASE_ACTION=2'h0

2 PHASE_DATA0 32'h0600_0000(SPCR.LE=0)/32'h0000_0006(SPCR.LE=1)

3 SPCR USE_DMA=1'b0

PHASE_CNT=3'h0

WP=1'b0

SPI_START=1'b1

After configuration, SPI will start communication, and software can wait for interrupt or

SPCR.SPI_START=0.

Send the Read Status Register-1(05h) command.

 The sequence of this command is as follows:

 Until CSn becomes 1, the value of Read Status Register-1 will be read repeatedly.

 Example: read the value of Read Status Register-1 four times.

 The following configuration is recommended:

seque

nce

Register name Configuration value

one PHASE_CTRL0 SPI_MODE=2'h0

BYTE_CNT=12'h001

PHASE_ACTION=2'h0

2 PHASE_DATA0 32'h0500_0000(SPCR.LE=0)/32'h0000_0005(SPCR.LE=1)

3 PHASE_CTRL1 SPI_MODE=2'h0

BYTE_CNT=12'h004

PHASE_ACTION=2'h2

4 SPCR USE_DMA=1'b0

PHASE_CNT=3'h1

WP=1'b1

SPI_START=1'b1

After configuration, SPI will first run PHASE0, send 05h, then run PHASE1, read 4 byte, and

store the read value in the PHASE_DATA1 register. The software can read the value in

 290 / 312

PHASE_DATA1 after waiting for SPI_START=0.

Example: wait for the 0th bit of Read Status Register-1 to be 0, but try to read it 100 times at

most.

 The following configuration is recommended:

seque

nce

Register name Configuration value

1 PHASE_CTRL0 SPI_MODE=2'h0

BYTE_CNT=12'h001

PHASE_ACTION=2'h0

2 PHASE_DATA0 32'h0500_0000(SPCR.LE=0)/32'h0000_0005(SPCR.LE=1)

3 PHASE_CTRL1 SPI_MODE=2'h0

PHASE_ACTION=2'h3

4 PHASE_DATA1 32'h64010000

5 SPCR USE_DMA=1'b0

PHASE_CNT=3'h1

WP=1'b1

SPI_START=1'b1

After the configuration is completed, spi will first run PHASE0, send 05h, then run phase1,

constantly read data through SPI, compare the result with 0x00 and then compare it with 0x00

until the comparison is successful or exceeds 0x64 times. After waiting for SPI_START=0, the

software can judge whether SPI_ERROR is 1 or not until the waiting is successful.

Read data with Fast Read Quad IO(EBh) command.

 The timing diagram of this command is as follows:

 Suppose the address is A=24'h123456 and M=78, and 100 data are read.

 The recommended configuration is as follows:

 291 / 312

seque

nce

Register name Configuration value

1 DMA source

address

PHASE_DATA3

2 PHASE_CTRL0 SPI_MODE=2'h0

BYTE_CNT=12'h001

PHASE_ACTION=2'h0

3 PHASE_DATA0 32'hEB00_0000(SPCR.LE=0)/32'h0000_00EB(SPCR.LE=1)

4 PHASE_CTRL1 SPI_MODE=2'h2

BYTE_CNT=12'h004

PHASE_ACTION=2'h0

5 PHASE_DATA1 32'h1234_5678(SPCR.LE=0)/32'h7856_3412(SPCR.LE=1)

6 PHASE_CTRL2 SPI_MODE=2'h2

BYTE_CNT=12'h002

PHASE_ACTION=2'h1

7 PHASE_CTRL3 SPI_MODE=2'h2

BYTE_CNT=12'h064

PHASE_ACTION=2'h2

8 SPCR USE_DMA=1'b1

PHASE_CNT=3'h3

WP=1'b1

SPI_START=1'b1

After the communication starts, SPI first communicates with PHASE0 and sends 0xEB. Then

send 0x12345678 of PHASE1. When configuring here, send A and M in one PHASE, because

for SPI, A and M are the same sending data. Then send two dummy byte of PHASE2. At last,

the one running PHASE3 charges 100 byte, and since SPCR.USE_DMA is set to 1, when

PHASE_DATA3 is written, a DMA request will be sent to read the data in PHASE_DATA3.

 292 / 312

22 Other Interfaces

22.1 Universal serial bus full-speed device interface (USBD)

◼ One full-speed USB Interface with frequency up to 12 Mbit/s

◼ Internal 60 MHz oscillator support crystal-less operation

◼ Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device

controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction

formatting is performed by the hardware, including CRC generation and checking. It supports

device modes. Transaction formatting is performed by the hardware, including CRC

generation and checking.

The status of a completed USB transfer or error condition is indicated by status registers. An

interrupt is also generated if enabled. The required precise 48 MHz clock which can be

generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator)

or by the internal 48 MHz oscillator in automatic trimming mode that allows crystal-less

operation.

AG32 has been integrated with tinyUSB in the project and can be used independently. The

pins used by USB are fixed pins and cannot be changed in VE. In the routine, USB is

enumerated as both cdc and msc (also supports HID and MIDI).

In the routine, the USB descriptor, callback, and configuration (CDC, HID, MSC, MIDI) have

all been opened through the interface in. c.h under the src path. Users can customize or

modify according to their own needs. For a detailed explanation of the configuration section

and the use of the USB interface, please refer to the file description under the tinyUSB path

under sdk, or refer to tinyUSB

22.2 Ethernet MAC interface

Peripheral available only on the AG32 devices.

The AG32 devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for

ethernet LAN communications through an industry-standard medium-independent interface

(MII) or a reduced medium-independent interface (RMII). The AG32 requires an external

physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.).

the PHY is connected to the AG32 MII port using 17 signals for MII or 9 signals for RMII, and

can be clocked using the 25 MHz (MII) from the AG32.

AG32 supports MAC modules. Supports RMII/MII interfaces. Currently, Lwip2.1.0 version is

integrated into the SDK. In the example, the server-side functionality was used.

 293 / 312

22.3 Debug mode

◼ Serial wire JTAG debug port (SWJ-DP)

The SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that

enables either a serial wire debug or a JTAG probe to be connected to the target.

 294 / 312

23 Electrical characteristics

⚫ Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently

damaging the device. Note that the device is not guaranteed to operate properly at the

maximum ratings. Exposure to the absolute maximum rating conditions for extended periods

may affect device reliability.

Table 1. Absolute maximum rating

Symbol Parameter Min Max Unit

VDD External voltage range VSS - 0.3 VSS + 3.465 V

VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.465 V

VBAT External battery supply voltage VSS - 0.3 VSS + 3.465 V

VIN Input voltage on I/O VSS - 0.3 VSS + 3.465 V

Iio Maximum current for GPIO pins — 25 mA

Iinj Injected current on I/O — ±5 mA

TA Operating temperature range -40 +85 °C

TSTG Storage temperature range -55 +150 °C

TJ Maximum junction temperature — 125 °C

⚫ Recommended DC characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDD Supply voltage — 3.135 3.3 3.465 V

VDDA Analog Supply voltage — 3.135 3.3 3.465 V

VBAT Battery supply voltage — 2.2 — 3.465 V

 295 / 312

⚫ Electrostatic discharge(ESD) & Latch-up

Parameter Description Conditions Maximum value Unit

VESD(HBM) Maximum ESD Electrostatic discharge

voltage (human body model)

2000 V

VESD(CDM) Maximum ESD Electrostatic discharge voltage

(charge device model)

500 V

LU Latch-up 100 mA

⚫ Power consumption

The power measurements specified in the tables represent that code with data executing from

on- chip Flash with the following specifications.

Symbol Parameter Conditions Min Typ Max Unit

Idd

Supply current

(Run mode)

VDD=VBAT=3.3V, HSE=8MHz, System

clock=108 MHz, All peripherals enabled
— — mA

VDD=VBAT=3.3V, HSE=8MHz, System clock

=108 MHz, All peripherals disabled
— — mA

VDD=VBAT=3.3V, HSE=8MHz, System clock

=72MHz, All peripherals enabled
— — mA

VDD=VBAT=3.3V, HSE=8MHz, System

Clock =72 MHz, All peripherals disabled
— — mA

Supply current

(Sleep mode)

VDD=VBAT=3.3V, HSE=8MHz, CPU clock

off, All peripherals enabled
— — mA

VDD=VBAT=3.3V, HSE=8MHz, CPU clock

off, All peripherals disabled
— — mA

Supply current

(Deep-Sleep

mode)

VDD=VBAT=3.3V, All clock off, LSI on, RTC

on, All IOs analog mode
— —— mA

Supply current

(Standby mode)

VDD=VBAT=3.3V, LDO off, LSE off, LSI on,

RTC on
— — μA

Ibat

Battery supply

current

(Standby mode)

VDD not available, VBAT=3.3V, LDO off,

LSE on, LSI off, RTC on
— — μA

VDD not available, VBAT=3.3 V, LDO off,

LSE off, LSI on, RTC on
— — μA

 296 / 312

⚫ Power up/down

Symbol Parameter Conditions Min Typ Max Unit

Vpor Power on reset threshold 2.0 2.2 2.4 V

Vpdr power down reset threshold 1.8 2.0 2.2 V

Vhyst PDR hysteresis — 0.2 — V

Trsttemp Reset temporization — 4 — ms

⚫ External clock characteristics

High-speed external clock generated from a crystal/ceramic resonator. The high-speed

external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator.

All the information given in this paragraph are based on characterization results obtained with

typical external components specified in Table. In the application, the resonator and the load

capacitors have to be placed as close as possible to the oscillator pins in order to minimize

output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for

more details on the resonator characteristics (frequency, package, accuracy).

HSE 4-26 MHz oscillator characteristics

Symbol Parameter Conditions Min Typ Max Unit

f_OSC_IN Oscillator frequency VDD=3.3V 4 8 26 MHz

RF Feedback resistor — — 1 — MΩ

C
Recommended load capacitance

 on OSC_IN and OSC_OUT
— — 20 30 pF

gm Oscillator transconductance — 25 — — mA/V

Dosc_out Oscillator oscillator duty cycle — 45 50 55 %

T_su_hse startup time VDD is stabilized — 2 — mS

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the

5pF to 25pF range (typ.), designed for high-frequency applications, and selected to match the

requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the same

size. The crystal manufacturer typically specifies a load capacitance which is the series

combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10pF can be

used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and

CL2.

 297 / 312

 Typical application with an 8 MHz crystal

REXT value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator The low-speed external

(LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the

information given in this paragraph are based on characterization results obtained with typical

external components specified in Table. In the application, the resonator and the load

capacitors have to be placed as close as possible to the oscillator pins in order to minimize

output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for

more details on the resonator characteristics (frequency, package, accuracy).

Symbol Parameter Conditions Min Typ Max Unit

f_LSE Oscillator frequency VDD=VBAT=3.3V 32.768 1000 KHz

RF Feedback resistor — — 10 — MΩ

C
Recommended load capacitance

 on OSC32_IN and OSC32_OUT
— — — 15 pF

gm Oscillator transconductance — 10 — — uA/V

Dosc_out Oscillator oscillator duty cycle — 45 50 55 %

T_su_lse startup time VDD is stabilized — 3 — S

CL1

OSCIN

OSCOUT

RF fHSE
Bias

controlled

gain

CL2

8 MHz

resonator

REXT

 298 / 312

Typical application with a 32.768 kHz crystal

⚫ Internal clock source characteristics

High-speed internal (HSI) RC oscillator

Symbol Parameter Conditions Min Typ Max Unit

f_HSI Oscillator frequency VDD=3.3V 10 20 40 MHz

Duty_HSI Duty cycle 45 50 55 %

T_su_HSI
 HSI oscillator

 startup time
 1 — 2 μs

PLL characteristics

Symbol Parameter Min Typ Max Unit

fPLL_IN
PLL input clock 4 20 50 MHz

PLL input clock duty cycle 40 50 60 %

fPLL_OUT PLL multiplier output clock 2 200 300 MHz

tLOCK PLL lock time — — 400 μs

Jitter Cycle-to-cycle jitter — — 400 ps

CL1

OSC32_IN

OSC32_OUT

RF fLSE
Bias

controlled

gain

CL2

32.768 kHz

resonator

 299 / 312

⚫ Memory characteristics

Flash memory characteristics

Symbol Parameter Conditions Min Typ Max Unit

PECYC

Number of guaranteed

program /erase cycles

before failure (Endurance)

TA=-40°C ~ +85°C 100 — —

kcycles

tRET Data retention time TA=125°C 20 — — years

tPROG Word programming time TA=-40°C ~ +85°C — 2 3 ms

tERASE Page erase time TA=-40°C ~ +85°C — 8 20 ms

tMERASE Mass erase time TA=-40°C ~ +85°C — 8 20 ms

⚫ IO characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIL
Standard IO Low level

input voltage
VDD ≥3.135V -0.3 — 0.8 V

VIH
Standard IO High level

input voltage
VDD ≥3.135V 1.5 —

3.46

5
V

VOL Low level output voltage VDD ≥3.135V — — 0.2 V

VOH High level output voltage VDD ≥3.135V 2.8 — — V

RPU Internal pull-up resistor VIN=VSS 30 40 50 kΩ

RPD Internal pull-down resistor VIN=VDD 30 40 50 kΩ

 300 / 312

⚫ ADC characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDA Operating voltage 3.135 3.3 3.465 V

VIN ADC input voltage range 0 — VREFP V

fADC ADC clock 0.5 — 13 MHz

fs Sampling rate — — 1 MHz

tconv ADC conversion time 1 — 20 μs

RADC
Input sampling switch

 resistance
 — — 0.5 kΩ

CADC Input sampling capacitance — 8 — pF

tsu Startup time — — 2 μs

⚫ DAC characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDA Operating voltage 3.135 3.3 3.465 V

VREFP Reference supply voltage

VREFP should

always below

 VDDA

3.135 3.3 3.465 V

RLOAD Load resistance

Resistive load vs.

VSSA with

 buffer ON

5 — — kΩ

CLOAD Load capacitance

No pin/pad

capacitance

 included

— — 50 pF

 301 / 312

⚫ Comparator characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDA Analog supply voltage — 3.135 3.3 3.465 V

VIN
Comparator input voltage

 range
— 0 — VDDA V

tstart Comparator startup time VDDA ≥3.135 V — — 10 μs

tD

Propagation delay for full

range step with 100 mV

overdrive

VDDA ≥3.135 V — — 40 ns

VOFFSET Comparator offset error
VDDA

≥3.135VDD V
— — ±25 mV

⚫ I²C characteristics

Symbol Parameter Conditions Min Typ Max Unit

fSCL SCL clock frequency — 0 — 100 KHz

tSCL(H) SCL clock high time — 4.0 — 0.6 ns

tSCL(L) SCL clock low time — 4.7 — 1.3 ns

 302 / 312

⚫ SPI characteristics

Symbol Parameter Conditions Min Typ Max Unit

fSCK SCK clock frequency — — — 40/100

(with logic)

MHz

tSCK(H) SCK clock high time — 5 — — ns

tSCK(L) SCK clock low time — 5 — — ns

SPI master mode

tV(MO) Data output valid time — — — 5 ns

 tH(MO) Data output hold time — 2 — — ns

 tSU(MI) Data input setup time — 5 — — ns

 tH(MI) Data input hold time — 5 — — ns

 303 / 312

⚫ NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up

resistor, RPU.

 NRST pin characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIL(NRST) NRST Input low level voltage — — — 0.2VDD V

VIH(NRST) NRST Input high level voltage — 0.5VDD — — V

Vhys(NRST)
NRST Schmitt trigger voltage

hysteresis
— — 200 — mV

RPU Weak pull-up equivalent resistor VIN = VSS 30 40 50 kΩ

VF(NRST) NRST Input filtered pulse — — — 100 ns

VNF(NRST) NRST Input not filtered pulse — 500 — — ns

Recommended NRST pin protection

NRST Internal reset

VDD

Filter

0.1µF

External

reset circuit Rpu

 304 / 312

⚫ UART characteristics

Symbol Parameter Conditions Min Typ Max Unit

fSCK SCK clock frequency fPCLK = 120 MHz — — 60 MHz

tSCK(H) SCK clock high time fPCLK = 120 MHz 7.5 — — ns

tSCK(L) SCK clock low time fPCLK = 120 MHz 7.5 — — ns

Symbol Parameter Conditions Min Typ Max Unit

fPP Clock frequency in data transfer mode — 0 — 48 MHz

tW(CKL) Clock low time fpp = 48 MHz 10.5 11 — ns

tW(CKH) Clock high time fpp = 48 MHz 9.5 10 — ns

CMD, D inputs (referenced to CK) in MMC and SD HS mode

tISU Input setup time HS fpp = 48 MHz 4 — — ns

tIH Input hold time HS fpp = 48 MHz 3 — — ns

CMD, D outputs (referenced to CK) in MMC and SD HS mode

tOV Output valid time HS fpp = 48 MHz — — 13.8 ns

tOH Output hold time HS fpp = 48 MHz 12 — — ns

CMD, D inputs (referenced to CK) in SD default mode

tISUD Input setup time SD fpp = 24 MHz 3 — — ns

tIHD Input hold time SD fpp = 24 MHz 3 — — ns

CMD, D outputs (referenced to CK) in SD default mode

tOVD Output valid default time SD fpp = 24 MHz — 2.4 2.8 ns

tOHD Output hold default time SD fpp = 24 MHz 0.8 — — ns

 305 / 312

⚫ USB characteristics

 USB DC electrical characteristics

Symbol Parameter Conditions Min Typ Max Unit

Input

 levels

VDD USB operating voltage — 3 — 3.3 V

VDI Differential input sensitivity
 I(USBDP,

USBDM)
0.2 — — V

VCM Differential common mode range
 Includes VDI

range
0.8 — 2.5 V

VSE Single ended receiver threshold — 1.3 — 2.0 V

Output

 Levels

 VOL Static output level low
 RL of 1.5 kΩ to

3.465 V
— — 0.3 V

VOH Static output level high
RL of 15 kΩ to

VSS
2.8 3.3 3.465 V

tSTARTUP USBFS startup time — — — 1 μs

USB full speed-electrical characteristics

Symbol Parameter Conditions Min Typ Max Unit

tR Rise time CL = 50 pF 4 — 20 ns

tF Fall time CL = 50 pF 4 — 20 ns

tRFM Rise/ fall time matching tR/tF 90 — 110 %

vCRS Output signal crossover voltage — 1.3 — 2.0 V

USB timings: definition of data signal rise and fall time

tf tr

vss

Vcrs

Crossover

 points

 306 / 312

⚫ TIMER characteristics

TIMER characteristics

Symbol Parameter Conditions Min Max Unit

tres Timer resolution time
— 1 —

tTIMERxCLK

fTIMERxCLK = 240MHz 4.2 — ns

fEXT
Timer external clock

frequency

— 0 fTIMERxCLK/2 MHz

fTIMERxCLK = 240MHz 0 120 MHz

RES Timer resolution — — 32 bit

tCOUNTER

16-bit counter clock period

when internal clock is

selected

— 1 65536 tTIMERxCLK

fTIMERxCLK = 240MHz 0.0084 546 μs

tMAX_COUNT Maximum possible count
— — 65536x65536 tTIMERxCLK

fTIMERxCLK = 240MHz — 35.7 s

 307 / 312

24 Package and operation temperature

LQFP100 (AG32VF303Vx,AG32VF407Vx), LQFP64(AG32VF407Rx), AG32VH407Rx)

and LQFP48 (AG32VF303Cx)

Operation temperature range: -40 °C to +85 °C

LQFP100 Package diagram

 308 / 312

LQFP64 Package diagram

 309 / 312

LQFP48 Package diagram

 310 / 312

QFN32 Package diagram

 311 / 312

25 Order Information

Ordering code Flash (KB) Package Package type
Temperature

operating range

AG32VF303KCU6 256 QFN32 Green
Industrial

-40°C to +85°C

AG32VF303CCT6 256 LQFP48 Green
Industrial

-40°C to +85°C

AG32VF303VCT6 256 LQFP100 Green
Industrial

-40°C to +85°C

AG32VH407RCT6 256 LQFP64 Green
Industrial

-40°C to +85°C

AG32VF407RGT6 1024 LQFP64 Green
Industrial

-40°C to +85°C

AG32VF407VGT6 1024 LQFP100 Green
Industrial

-40°C to +85°C

 312 / 312

26 Revision history

Revision No. Description Date

1.0 Initial Release Apr.20,2022

1.1 Second Edition May.10,2023

1.2 Version Update Nov.20,2024

