

Reference Specification

150°C Operation Leaded MLCC for Automotive with AEC-Q200 RH Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to 150°C Operation Leaded MLCC RHE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

Applied maximum temperature up to 150°C

Note: Maximum accumulative time to 150°C is within 2000 hours.

• Part Number Configuration

ex.)	RHE	L8	_1E_	104	K	0	A2	H03	B
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

Series

Code	Content
RHE	Epoxy coated, 150°C max.

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range	
1.0	X8L	-55∼125°C	+/-15%	25°C	-55∼150°C	
18	(Murata code)	125∼150°C	+15/-40%	25 C	-55~150°C	

Rated Voltage

Code	Rated voltage
1E	DC25V
1H	DC50V
2A	DC100V

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 104

$$10 \times 10^4 = 100000 pF$$

• Capacitance Tolerance

Code	Capacitance Tolerance						
K	+/-10%						
M	+/-20%						

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
DB	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

Please refer to [Part number list].

Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

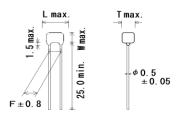
3. Marking

Temp. char. : Letter code : 8 (X8L char.)

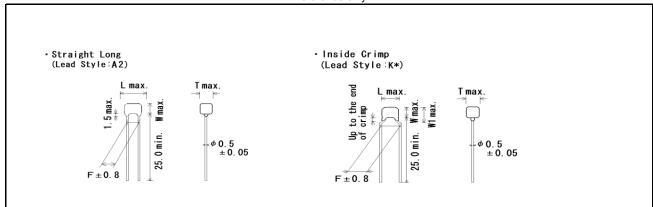
Capacitance : 3 digit numbers

Capacitance tolerance : Code

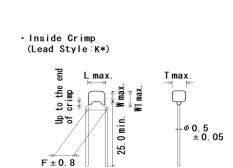
Rated voltage : Letter code : 2 (DC25V. Except dimension code : 0,1)


Letter code: 5 (DC50V. Except dimension code: 0,1) Letter code: 1 (DC100V. Except dimension code: 0,1)

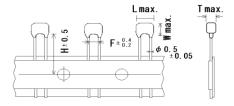
Company name code : Abbreviation : (Except dimension code : 0,1)


(Ex.)			
Rated voltage Dimension code	DC25V	DC50V	DC100V
0,1	8 105K	8 102K	8 103K
2	(M 475 K28	€ 225 K58	(M ²²⁴ K18
3,W	(106 K28	(4335 K58	-

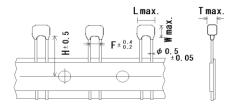
4. Part number list


 Straight Long (Lead Style: A2)

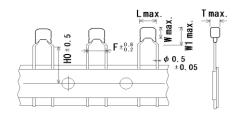
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	ension ((mm)		Dimension (LxW)	Pack qty.
Part Number	Marata Fart Namber	1.0.	Volt. (V)	оар.	Tol.	L	W	W1	F	Т	Lead Style	
	RHEL81E104K0A2H03B	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E154K0A2H03B	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E224K0A2H03B	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E334K1A2H03B	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E474K1A2H03B	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E684K1A2H03B	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E105K1A2H03B	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E155K2A2H03B	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E225K2A2H03B	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E335K2A2H03B	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E475K2A2H03B	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E106K3A2H03B	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H221K0A2H03B	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H331K0A2H03B	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H471K0A2H03B	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H681K0A2H03B	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H102K0A2H03B	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H152K0A2H03B	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H222K0A2H03B	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H332K0A2H03B	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H472K0A2H03B	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H682K0A2H03B	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H103K0A2H03B	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H153K0A2H03B	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H223K0A2H03B	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H333K0A2H03B	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H473K0A2H03B	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H683K0A2H03B	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H104K0A2H03B	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H154K1A2H03B	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H224K1A2H03B	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H334K1A2H03B	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H474K2A2H03B	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H684K2A2H03B	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H105K2A2H03B	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H155K2A2H03B	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5		2A2	500
	RHEL81H225K2A2H03B	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H335K3A2H03B	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H475K3A2H03B	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL82A221K0A2H03B	X8L	100	220pF	±10%	3.6	3.5	_	2.5	2.5	0A2	500



Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	ension ((mm)		Dimension (LxW)	Pack qty.
Part Number	Wardia Fart Wallisel	1.0.	Volt. (V)	оар.	Tol.	L	W	W1	F	Т	Lead Style	
	RHEL82A331K0A2H03B	X8L	100	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A471K0A2H03B	X8L	100	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A681K0A2H03B	X8L	100	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A102K0A2H03B	X8L	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A152K0A2H03B	X8L	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A222K0A2H03B	X8L	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A332K0A2H03B	X8L	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A472K0A2H03B	X8L	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A682K0A2H03B	X8L	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A103K0A2H03B	X8L	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A153K0A2H03B	X8L	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A223K0A2H03B	X8L	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A333K1A2H03B	X8L	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL82A473K1A2H03B	X8L	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL82A683K1A2H03B	X8L	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL82A104K1A2H03B	X8L	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL82A154K2A2H03B	X8L	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL82A224K2A2H03B	X8L	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E104K0K1H03B	X8L	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81E154K0K1H03B	X8L	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81E224K0K1H03B	X8L	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81E334K1K1H03B	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E474K1K1H03B	X8L	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E684K1K1H03B	X8L	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E105K1K1H03B	X8L	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E155K2K1H03B	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E225K2K1H03B	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E335K2K1H03B	X8L	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E475K2K1H03B	X8L	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E106K3K1H03B	X8L	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81E226MWK1H03B	X8L	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RHEL81H221K0K1H03B	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H331K0K1H03B	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H471K0K1H03B	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H681K0K1H03B	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H102K0K1H03B	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H152K0K1H03B	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H222K0K1H03B	X8L	50	2200pF	±10%	3.6	3.5	6.0		2.5	0K1	500
	RHEL81H332K0K1H03B	X8L	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H472K0K1H03B	X8L	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500

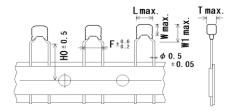

						1					OTHE . ITHII	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	ension ((mm)		Dimension (LxW)	Pack qty.
Part Number	Murata Fatt Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	
	RHEL81H682K0K1H03B	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H103K0K1H03B	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H153K0K1H03B	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H223K0K1H03B	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H333K0K1H03B	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H473K0K1H03B	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H683K0K1H03B	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H104K0K1H03B	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H154K1K1H03B	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H224K1K1H03B	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H334K1K1H03B	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H474K2K1H03B	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H684K2K1H03B	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H105K2K1H03B	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H155K2K1H03B	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H225K2K1H03B	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H335K3K1H03B	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H475K3K1H03B	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H106MWK1H03B	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RHEL82A221K0K1H03B	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A331K0K1H03B	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A471K0K1H03B	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A681K0K1H03B	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A102K0K1H03B	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A152K0K1H03B	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A222K0K1H03B	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A332K0K1H03B	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A472K0K1H03B	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A682K0K1H03B	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A103K0K1H03B	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A153K0K1H03B	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A223K0K1H03B	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A333K1K1H03B	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A473K1K1H03B	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A683K1K1H03B	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A104K1K1H03B	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A154K2K1H03B	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL82A224K2K1H03B	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500

Straight Taping (Lead Style:D*)



Customer			DC Rated Volt. (V)		Ca.	Dimension (mm)						Dimension	Pack
Customer Part Number	Murata Part Number	T.C.		Cap.	Cap. Tol.	L	W	W1	F	Т	H/H0	(LxW) Lead Style	qty. (pcs)
	DIJELO4E 40 4KODDIJOOA	\/O!	, ,	0.4.5	100/		0.5		0.5	0.5	40.0	000	2000
	RHEL81E104K0DBH03A	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E154K0DBH03A	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E224K0DBH03A	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E334K1DBH03A	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E474K1DBH03A	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E684K1DBH03A	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E105K1DBH03A	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E155K2DBH03A	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E225K2DBH03A	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E335K2DBH03A	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E475K2DBH03A	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E106K3DBH03A	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RHEL81H221K0DBH03A	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H331K0DBH03A	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H471K0DBH03A	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H681K0DBH03A	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H102K0DBH03A	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H152K0DBH03A	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H222K0DBH03A	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H332K0DBH03A	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H472K0DBH03A	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H682K0DBH03A	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H103K0DBH03A	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H153K0DBH03A	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H223K0DBH03A	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H333K0DBH03A	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H473K0DBH03A	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H683K0DBH03A	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H104K0DBH03A	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H154K1DBH03A	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H224K1DBH03A	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H334K1DBH03A	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H474K2DBH03A	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H684K2DBH03A	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H105K2DBH03A	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H155K2DBH03A	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15			2000
	RHEL81H225K2DBH03A	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15			2000
	RHEL81H335K3DBH03A	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0			2000
	RHEL81H475K3DBH03A	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0			2000
	RHEL82A221K0DBH03A	X8L	100	220pF	±10%	3.6	3.5		2.5	2.5			2000

 Straight Taping (Lead Style:D*)



 Inside Crimp Taping (Lead Style: M*)

Murala Part Number		_					1				•			
Part Number		Murata Part Number	T.C.	Rated	Cap			D	imensi	on (mr	n)			
RHELB2A471K0DBH03A	Part Number	Warata Fart Namber	1.0.		Оар.	Tol.	L	W	W1	F	Т	H/H0	1 06.4-	
RHELB2A6B1K0DBH03A XBL 100 680pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A152K0DBH03A XBL 100 1500pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A152K0DBH03A XBL 100 1500pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A322K0DBH03A XBL 100 2200pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A323K0DBH03A XBL 100 2300pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A732K0DBH03A XBL 100 3300pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A732K0DBH03A XBL 100 4700pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A732K0DBH03A XBL 100 6800pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A103K0DBH03A XBL 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A103K0DBH03A XBL 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A103K0DBH03A XBL 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A103K0DBH03A XBL 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A33SK1DBH03A XBL 100 22000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A73SK1DBH03A XBL 100 22000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A73SK1DBH03A XBL 100 3000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 0DB 2000 RHELB2A73SK1DBH03A XBL 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHELB2A73SK1DBH03A XBL 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHELB2A104K1DBH03A XBL 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHELB2A104K1DBH03A XBL 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHELB2A104K1DBH03A XBL 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHELB2A104K1DBH03A XBL 100 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHELB21634KK1DBH03A XBL 100 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHELB1E104K0M1H03A XBL 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHELB1E104K0M1H03A XBL 25 0.3µF ±10% 5.5 4.0 - 2.5 3.15 16.0 0M1 2000 RHELB1E134KVM1H03A XBL 25 0.3µF ±10% 5.5 4.0 - 2.5 3.15 16.0 0M1 2000 RHELB1E134KVM1H03A XBL 25 0.3µF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 0M1 2000 RHELB1E364KVM1H03A XBL 25 0.3µF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 0M1 2000 RHELB1E136KXM1H03A XBL 25 0.4µF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 0M1 2000 RHELB1E136KXM1H03A XBL 25 0.4µF ±10% 5.5 4.0 6.0 5.0 2		RHEL82A331K0DBH03A	X8L	100	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A102K0DBH03A X8L 100 1000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A222K0DBH03A X8L 100 1500pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A232K0DBH03A X8L 100 2200pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A32K0DBH03A X8L 100 3300pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A32K0DBH03A X8L 100 4700pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A372K0DBH03A X8L 100 4700pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A103K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A103K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A153K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A13SK0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33K1DBH03A X8L 100 33000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33K1DBH03A X8L 100 33000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A473K1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 0.15µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 0.12µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 0.12µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A224K2DBH03A X8L 100 0.12µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E154K0M1H03A X8L 25 0.15µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E334K1MH03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E334K1MH03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E334K1MH03A X8L 25 0.15µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E334K1MH03A X8L 25 0.47µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E334K1MH03A X8L 25 0.50µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1MH03A X8L 25 0.50µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E165K2MH03A X8L 25 0.50µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E165K2MH03A X8L 25 0.50µF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H205K0MH03A X8L 25 0.50µF ±10% 5.5 5.0 5.		RHEL82A471K0DBH03A	X8L	100	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A152KODBH03A X8L 100 1500pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A322KODBH03A X8L 100 3300pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A332KODBH03A X8L 100 3300pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A32XCDBH03A X8L 100 4700pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A69KODBH03A X8L 100 4700pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A13XCDBH03A X8L 100 1000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A13XCDBH03A X8L 100 1000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A15XCDBH03A X8L 100 1000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23XCDBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23XCDBH03A X8L 100 2000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23XH0DBH03A X8L 100 3000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A63XH0DBH03A X8L 100 3000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A68XH0BH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A68XH0BH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A68XH0BH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A68XH0BH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A64XDBH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A64XDBH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A64XDBH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A62XDBH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL81E104K0M1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E2A6XM1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E1344W1H103A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.3pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E164FXM1H03A X8L 25 0.4pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E164FXM1H03A X8L 25 0.4pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E164FXM1H03A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E364FXM1H03A X8L 25 0.4pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E364FXM1H03A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 0M1 2000 RHEL81E		RHEL82A681K0DBH03A	X8L	100	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A232KODBH03A X8L 100 2200pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33XODBH03A X8L 100 470pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A69XCODBH03A X8L 100 470pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A15XODBH03A X8L 100 470pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A15XODBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A15XODBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A15XODBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23XODBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23XIODBH03A X8L 100 22000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33XIOBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473XIDBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A693XIDBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A693XIDBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154XDBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154XDBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154XDBH03A X8L 100 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A154XDBH03A X8L 100 0.2µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E164XMMH03A X8L 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E164XMMH03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E1654XMMH03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34XMMH03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34XMMH03A X8L 25 0.5µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34XMMH03A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2DB 2000 RHEL81E34XMMH03A X8L 25 0.5µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E35XMMH03A X8L 25 0.5µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E35XMMH03A X8L 25 0.5µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E35XMMH03A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E35XMMH03A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E305XMMH03A X8L 50 300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03XM		RHEL82A102K0DBH03A	X8L	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A332K0DBH03A X8L 100 3300pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A472K0DBH03A X8L 100 6800pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A103K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A103K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A103K0DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33K1DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A333K1DBH03A X8L 100 33000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33X1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A63SK1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 6000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1MH03A X8L 100 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82HE104K0MH03A X8L 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0MH03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34X1MH03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34A74K1M103A X8L 25 0.1µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E34A74K1M103A X8L 25 0.4µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E34A74K1M103A X8L 25 0.4µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E34A74K1M103A X8L 25 0.4µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2DB 2000 RHEL81E35XMH03A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.5 16.0 0M1 2000 RHEL81E4224K0M103A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2DM 2000 RHEL81E4225K0M103A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.5 16.0 0M1 2000 RHEL81E4225K0M103A X8L 50 0.50µF ±10% 5.5 4.0 6.0 5.0 3.5 16.0 0M1 2000 RHEL81E433SK2M103A X8L 50 0.50pF ±10% 5.5 4.0 6.0 5.0 3.5 16.0 0M1 2000 RHEL81H333K0M103A X8L 50 0.500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.		RHEL82A152K0DBH03A	X8L	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A472K0DBH03A X8L 100 4700pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A682K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A153K0DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A253K0DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23K0DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A233K0DBH03A X8L 100 22000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A333K1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A2154K2DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A2154K2DBH03A X8L 100 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A224K2DBH03A X8L 100 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82H104K0M1H03A X8L 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E154K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.3µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.3µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E364K1M1H03A X8L 25 0.3µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E364K1M1H03A X8L 25 0.3µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E364K1M1H03A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E365K2M1H03A X8L 25 0.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E363K2M1H03A X8L 25 0.5µF ±10% 5.5 5.0 0.0 5.0 2.5 16.0 1M1 2000 RHEL81E363K2M1H03A X8L 25 0.5µF ±10% 5.5 5.0 0.0 5.0 2.5 16.0 1M1 2000 RHEL81E33K2KM1H03A X8L 25 0.5µF ±10% 5.5 5.0 0.0 5.0 2.5 16.0 1M1 2000 RHEL81E363K2M1H03A X8L 25 0.5µF ±10% 5.5 5.0 0.0 5.0 2.5 16.0 1M1 2000 RHEL81E33K2KM1H03A X8L 25 0.5µF ±10% 5.5 5.0 0.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 1.0µF ±10% 5.5 5.0 0.0 5.0 2.5 16.0 0M1 2000 RHEL81H3615K0M1H03A X8L 50 1.00pF ±10% 3.6 3.5 6.		RHEL82A222K0DBH03A	X8L	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82AG83KODBHO3A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A103KODBHO3A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A223KODBHO3A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A233K1DBHO3A X8L 100 2000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A233K1DBHO3A X8L 100 33000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A473K1DBHO3A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBHO3A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A683K1DBHO3A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBHO3A X8L 100 0 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBHO3A X8L 100 0 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A24K2DBHO3A X8L 100 0 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A24K2DBHO3A X8L 100 0 .1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A24K2DBHO3A X8L 100 0 .1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A24K2DBHO3A X8L 100 0 .2pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1HO3A X8L 25 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1HO3A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1HO3A X8L 25 0.2pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E344X1M1HO3A X8L 25 0.3pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E3474K1M1HO3A X8L 25 0.3pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E3474K1M1HO3A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E355K1M1HO3A X8L 25 0.8pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E355K2M1HO3A X8L 25 0.8pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K1M1HO3A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K1M1HO3A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E165K1M1HO3A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1HO3A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 1M1 2000 RHEL81E106K3M1HO3A X8L 25 0.5pF ±10% 5.5 4.0 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E106K3M1HO3A X8L 25 0.5pF ±10% 5.5 5.0 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H1322K0M1HO3A X8L 50 1000pF ±10% 3.6 3.5 6.		RHEL82A332K0DBH03A	X8L	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A103K0DBH03A X8L 100 10000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A123K0DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A23X0DBH03A X8L 100 22000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33K1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 0.10 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 0.15pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A14K1DBH03A X8L 100 0.15pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A154K2DBH03A X8L 100 0.22pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E164K0M1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224C4K0M1H03A X8L 25 0.22pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E334K1M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E165K1M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E165K1M1H03A X8L 25 0.83pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E165K1M1H03A X8L 25 0.83pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E165K1M1H03A X8L 25 0.50pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E165K1M1H03A X8L 25 0.50pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E165K1M1H03A X8L 25 0.50pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E474K1M103A X8L 25 0.50pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 0.50pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 50 30pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E376K3M1H03A X8L 50 30pF ±10% 5.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 30pF ±10% 5.6 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 30pF ±10% 5.6 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500pF ±10% 5.6 6		RHEL82A472K0DBH03A	X8L	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A153K0DBH03A X8L 100 15000pF ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A223K0DBH03A X8L 100 22000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33K1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A37K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A683K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A683K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A69K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.1µF ±10% 5.0 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A154K2DBH03A X8L 100 0.15µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E154K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E24K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.3µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.3µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.4µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.8µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E45K2M1H03A X8L 25 0.8µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E105K1M1H03A X8L 25 0.8µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E125K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E425K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E4226K0M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E4226K0M1H03A X8L 25 3.3µF ±10% 5.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E426K0M1H03A X8L 25 3.3µF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H315K0M1H03A X8L 50 300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H132K0M1H03A X8L 50 300pF ±10% 3.6 3.5 6.0 5.0 2.5		RHEL82A682K0DBH03A	X8L	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A223K0DBH03A X8L 100 22000F ±10% 3.6 3.5 - 2.5 2.5 16.0 0DB 2000 RHEL82A33K1DBH03A X8L 100 33000F ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A63K1DBH03A X8L 100 47000F ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A63K1DBH03A X8L 100 68000FF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A63K1DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A154K2DBH03A X8L 100 0.22µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34K1M1H03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E424K0M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E474K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.47µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E155K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E125K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E25K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.5 16.0 0M1 2000 RHEL81E3H225K0M1H03A X8L 25 3.3µF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E3H225K0M1H03A X8L 25 3.3µF ±10% 5.5 5.0 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H225K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H321K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.		RHEL82A103K0DBH03A	X8L	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A333K1DBH03A X8L 100 33000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A124K2DBH03A X8L 100 0.22pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E154K0M1H03A X8L 25 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E154K0M1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E2424K0M1H03A X8L 25 0.22pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34G4K1M1H03A X8L 25 0.33pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E56K2M1H03A X8L 25 1.0pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E56K2M1H03A X8L 25 1.0pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E35K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E156K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E165K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 1.5pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E125K2M1H03A X8L 50 3.3pF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E1225K2M1H03A X8L 50 3.3pF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H321K0M1H03A X8L 50 3.3pF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 3.3pF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H321K0M1H03A X8L 50 3.3pF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 3.3pF ±10% 5.5 5.0 5.0 5.0 2.5 16.0 0M1 2000 RHEL81H32K0M1H03A X8L 50 300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1		RHEL82A153K0DBH03A	X8L	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A473K1DBH03A X8L 100 47000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A683K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 0.1pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.1pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A22K2DBH03A X8L 100 0.2pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A224K2DBH03A X8L 100 0.2pF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.2pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E34K1M1H03A X8L 25 0.3pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E34K1M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E364K1M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E364K1M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E365K2M1H03A X8L 25 0.47pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E365K2M1H03A X8L 25 1.0pF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E365K2M1H03A X8L 25 1.0pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E35K2M1H03A X8L 25 1.0pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E235K2M1H03A X8L 25 1.2pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E363K2M1H03A X8L 25 1.2pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E363K2M1H03A X8L 25 1.2pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E363K2M1H03A X8L 25 1.2pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E226K0M1H03A X8L 25 1.2pF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E30KMN1H03A X8L 25 1.0pF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81H231K0M1H03A X8L 50 3.0pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H221K0M1H03A X8L 50 3.0pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H321K0M1H03A X8L 50 3.0pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 3.0pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 3.0pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 3.0pF ±10% 3.6 3.5 6.0 5.0 2.		RHEL82A223K0DBH03A	X8L	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
RHEL82A683K1DBH03A X8L 100 68000pF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A104K1DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.15µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A224K2DBH03A X8L 100 0.22µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.5µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E354K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E4576K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E475K2M1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E475K2M1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E475K2M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H321K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H421K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3000pF ±10% 3.6 3.5 6.0 5.0 2.5		RHEL82A333K1DBH03A	X8L	100		±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
RHEL82A104K1DBH03A X8L 100 0.1µF ±10% 4.0 3.5 - 2.5 2.5 16.0 1DB 2000 RHEL82A154K2DBH03A X8L 100 0.15µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A224K2DBH03A X8L 100 0.22µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E154K0M1H03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.2µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E3684K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E1684K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E5682M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E35K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E35K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E226K2M1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E335K2M1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E475K2M1H03A X8L 25 3.3µF ±10% 5.5 5.0 5.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 50 3.0µF ±10% 5.5 5.0 5.0 5.0 3.15 16.0 0M1 2000 RHEL81H031K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H03K0M1H03A X8L 50 200pF ±10% 3.6 3.5 6.0 5.0		RHEL82A473K1DBH03A	X8L	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
RHEL82A154K2DBH03A X8L 100 0.15µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL82A224K2DBH03A X8L 100 0.22µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E154K0M1H03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E324K0M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E34F4K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E1225K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E165K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E1225K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E1706K3M1H03A X8L 25 4.7µF ±10% 5.5 5.0 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E1226MWM1H03A X8L 25 2.2µF ±10% 5.5 5.0 5.0 5.0 5.0 5.0 5.0 3.15 16.0 2M1 2000 RHEL81E1706K3M1H03A X8L 25 4.7µF ±10% 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		RHEL82A683K1DBH03A	X8L	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
RHEL82A224K2DBH03A X8L 100 0.22µF ±10% 5.5 4.0 - 2.5 3.15 16.0 2DB 2000 RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E154K0M1H03A X8L 25 0.1pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 0M1 2000 RHEL81E474K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E4684K1M1H03A X8L 25 0.48µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E165K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E25K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E16684K1M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 3.3µF ±10% 5.5 5.0 5.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 22µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81H221K0M1H03A X8L 25 22µF ±20% 5.5 7.5 5.0 4.0 16.0 3M1 1500 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H162K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H162K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H162K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0		RHEL82A104K1DBH03A	X8L	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
RHEL81E104K0M1H03A X8L 25 0.1µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E154K0M1H03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E25K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E45K2M1H03A X8L 25 1.0µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E226K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E226K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E226MWM1H03A X8L 25 4.7µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 3M1 1500 RHEL81H321K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H31H31K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H1621K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL82A154K2DBH03A	X8L	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
RHEL81E154K0M1H03A X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E224K0M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E225K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E406K3M1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22µF ±20% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H02K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL82A224K2DBH03A	X8L	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
RHEL81E224K0M1H03A X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E225K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E325K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E406K3M1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 3M1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H122K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H122K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H333K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H333K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H333K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H333K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H333K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E104K0M1H03A	X8L	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81E334K1M1H03A X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E474K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E25K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22µF ±20% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E154K0M1H03A	X8L	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81E474K1M1H03A X8L 25 0.47µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E325K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 10µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E226MWM1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81H221K0M1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H331K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E224K0M1H03A	X8L	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81E684K1M1H03A X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E105K1M1H03A X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E266M3M1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E334K1M1H03A	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
RHEL81E105K1M1H03A X8L 25 1.0μF ±10% 4.0 3.5 5.0 5.0 2.5 16.0 1M1 2000 RHEL81E155K2M1H03A X8L 25 1.5μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 2.2μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 10μF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22μF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220μF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330μF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470μF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680μF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 1000μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 1500μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 220μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 1500μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 220μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 220μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 220μρ ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E474K1M1H03A	X8L	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
RHEL81E155K2M1H03A X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E225K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E35K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 4.7µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81H221K0M1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H331K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E684K1M1H03A	X8L	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
RHEL81E225K2M1H03A X8L 25 2.2µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E335K2M1H03A X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 10µF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H322K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E105K1M1H03A	X8L	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
RHEL81E335K2M1H03A X8L 25 3.3μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E475K2M1H03A X8L 25 4.7μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E106K3M1H03A X8L 25 10μF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22μF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E155K2M1H03A	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
RHEL81E475K2M1H03A X8L 25 4.7μF ±10% 5.5 4.0 6.0 5.0 3.15 16.0 2M1 2000 RHEL81E206K3M1H03A X8L 25 10μF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22μF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E225K2M1H03A	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
RHEL81E106K3M1H03A X8L 25 10μF ±10% 5.5 5.0 7.5 5.0 4.0 16.0 3M1 1500 RHEL81E226MWM1H03A X8L 25 22μF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E335K2M1H03A	X8L	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
RHEL81H221K0M1H03A X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 16.0 WM1 1500 RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E475K2M1H03A	X8L	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
RHEL81H221K0M1H03A X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E106K3M1H03A	X8L	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
RHEL81H331K0M1H03A X8L 50 330pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81E226MWM1H03A	X8L	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500
RHEL81H471K0M1H03A X8L 50 470pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H221K0M1H03A	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81H681K0M1H03A X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H331K0M1H03A	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81H102K0M1H03A X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H471K0M1H03A	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81H152K0M1H03A X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H681K0M1H03A	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81H222K0M1H03A X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000 RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H102K0M1H03A	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81H332K0M1H03A X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H152K0M1H03A	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
		RHEL81H222K0M1H03A	X8L	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
RHEL81H472K0M1H03A X8L 50 4700pF ±10% 3.6 3.5 6.0 5.0 2.5 16.0 0M1 2000		RHEL81H332K0M1H03A	X8L	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
		RHEL81H472K0M1H03A	X8L	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
					-									

 Inside Crimp Taping (Lead Style: M*)

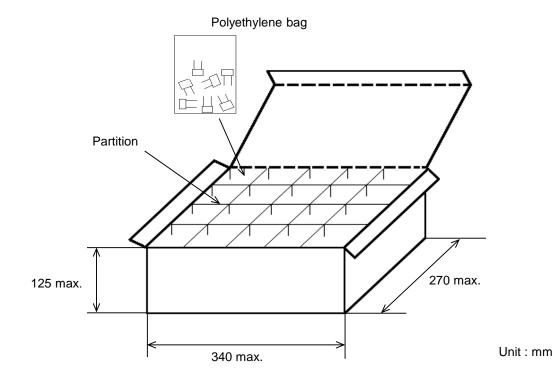
												Unit : mm		
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.	Dimension (mm)						Dimension (LxW)	Pack qty.	
Part Number	Marata Fart Number	1.0.	Volt. (V)	оцр.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	(pcs)	
	RHEL81H682K0M1H03A	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H103K0M1H03A	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H153K0M1H03A	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H223K0M1H03A	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H333K0M1H03A	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H473K0M1H03A	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H683K0M1H03A	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H104K0M1H03A	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL81H154K1M1H03A	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL81H224K1M1H03A	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL81H334K1M1H03A	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL81H474K2M1H03A	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RHEL81H684K2M1H03A	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RHEL81H105K2M1H03A	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RHEL81H155K2M1H03A	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RHEL81H225K2M1H03A	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RHEL81H335K3M1H03A	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500	
	RHEL81H475K3M1H03A	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500	
	RHEL81H106MWM1H03A	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500	
	RHEL82A221K0M1H03A	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A331K0M1H03A	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A471K0M1H03A	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A681K0M1H03A	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A102K0M1H03A	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A152K0M1H03A	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A222K0M1H03A	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A332K0M1H03A	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A472K0M1H03A	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A682K0M1H03A	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A103K0M1H03A	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A153K0M1H03A	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A223K0M1H03A	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000	
	RHEL82A333K1M1H03A	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL82A473K1M1H03A	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL82A683K1M1H03A	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL82A104K1M1H03A	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000	
	RHEL82A154K2M1H03A	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	
	RHEL82A224K2M1H03A	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000	

Reference only

. AE			cifications and Test Methods							
No.	AEC-Q200		Specification	AEC-Q200 Test Method						
1	Test Item Pre-and Post-Stress									
	Electrical Test	011000		-						
2	High	Appearance	No defects or abnormalities.	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2 hours						
	Temperature	Capacitance	within ±12.5%	at *room condition, then measure.						
	Exposure	Change								
	(Storage)	D.F.	0.04 max.	•Pretreatment						
		I.R.	More than 1,000MΩ or 50MΩ • μF	Perform the heat treatment at 150+0/-10°C for 60±5 min and						
			(Whichever is smaller)	then let sit for 24±2 hours at *room condition.						
3	Temperature	Appearance	No defects or abnormalities except color	Perform the 1000 cycles according to the four heat treatments listed						
	Cycling		change of outer coating.	in the following table. Let sit for 24±2 hours at *room condition, then measu						
		Capacitance	within ±12.5%	Step 1 2 3 4						
		Change		Temp55+0/-3 Room 150+3/-0 Room						
		D.F.	0.05 max.	(°C) Temp. Temp.						
		I.R.	1,000MΩ or 50MΩ∙μF min.	Time (min.) 15±3 1 15±3 1						
			(Whichever is smaller)							
				•Pretreatment						
				Perform the heat treatment at 150+0/-10°C for 60±5 min and						
_	<u> </u>	ļ		then let sit for 24±2 hours at *room condition.						
4	Moisture	Appearance	No defects or abnormalities.	Apply the 24 hours heat (25 to 65°C) and humidity (80 to 98%)						
	Resistance	Capacitance	within ±12.5%	treatment shown below, 10 consecutive times.						
		Change	10.00	Let sit for 24±2 hours at *room condition, then measure.						
		D.F.	0.05 max.	Temperature Humidity Humidity (9C) Humidity 80~98% Humidity 80~98% Humidity						
		I.R.	500MΩ or 25MΩ•μF min.	(°C) 90~98% V 90~98% V 90~98%						
			(Whichever is smaller)	65						
				60						
				55						
				§50 845						
				940						
				[§35						
				30 25 35						
				20 +10						
				- 2 °C						
				10 Initial measurement						
				5 0						
				-5						
				-10 One cycle 24 hours						
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24						
				Hours						
				•Pretreatment						
				Perform the heat treatment at 150+0/-10°C for 60±5 min and						
				then let sit for 24±2 hours at *room condition.						
5	Biased	Appearance	No defects or abnormalities.	Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)						
	Humidity	Capacitance	within ±12.5%	at 85±3°C and 80 to 85% humidity for 1,000±12 hours.						
		Change		Remove and let sit for 24±2 hours at *room condition, then measure.						
		D.F.	0.05 max.	The charge/discharge current is less than 50mA.						
		I.R.	500MΩ or 25MΩ•μF min.	Pretreatment						
			(Whichever is smaller)	Perform a heat treatment at 150+0/-10°C for one hour.						
				and then set at room temperature for 24±2 hours.						
6	Operational	Appearance	No defects or abnormalities except color	Apply 150% of the rated voltage for 1,000±12 hours at 150±3°C.						
	Life		change of outer coating.	Let sit for 24±2 hours at *room condition, then measure.						
		Capacitance	within ±12.5%	The charge/discharge current is less than 50mA.						
		Change		•Pretreatment						
		D.F.	0.04 max.	Apply test voltage for 60±5 min at test temperature.						
		I.R.	1,000MΩ or 50MΩ∙μF min.	Remove and let sit for 24±2 hours at *room condition.						
			(Whichever is smaller)							
7	External Visua	ıl	No defects or abnormalities.	Visual inspection.						
8	Physical Dime	nsion	Within the specified dimensions.	Using calipers and micrometers.						
9	Marking		To be easily legible.	Visual inspection.						
10	Resistance	Appearance	No defects or abnormalities.	Per MIL-STD-202 Method 215						
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol						
		D.F.	0.025 max.	3 parts (by volume) of mineral spirits						
		I.R.	More than 10,000MΩ or 500 MΩ∙μF	Solvent 2 : Terpene defluxer						
		1	(Whichever is smaller)	Solvent 3 : 42 parts (by volume) of water						
			The second secon	1 part (by volume) of propylene glycol monomethyl ether						
		1		ipart (b) volume, or propylene glycol monomentyl ether						
				1 part (by volume) of monoethanolamine						

			Referen	ce only						
No.	AEC Tes	-Q200 Specification		AEC-Q200 Test Method						
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in each direction should be applied along 3						
	Shock	Capacitance	Within the specified tolerance.	mutually perpendicular axes of the test specimen (18 shocks).						
		D.F.	0.025 max.	The specified test pulse should be Half-sine and should have a						
				duration: 0.5ms, peak value: 1500G and velocity change: 4.7m/s.						
12	Vibration	Appearance	No defects or abnormalities.	The capacitor should be subjected to a simple harmonic motion						
		Capacitance	Within the specified tolerance.	having a total amplitude of 1.5mm, the frequency being varied						
		D.F.	0.025 max.	uniformly between the approximate limits of 10 and 2000Hz.						
				The frequency range, from 10 to 2000Hz and return to 10Hz,						
				should be traversed in approximately 20 min. This motion						
				should be applied for 12 items in each 3 mutually perpendicular						
				directions (total of 36 times).						
13-1	Resistance	Appearance	No defects or abnormalities.	The lead wires should be immersed in the melted solder 1.5 to 2.0mm						
	to Soldering	Capacitance	Within ±7.5%	from the root of terminal at 260±5°C for 10±1 seconds.						
	Heat	Change		4_						
	(Non-	Dielectric	No defects.	Pre-treatment						
	Preheat)	Strength		Capacitor should be stored at 150+0/-10°C for one hour,						
		(Between		then place at *room condition for 24±2 hours before initial measurement.						
		terminals)		• Post-treatment						
				Capacitor should be stored for 24±2 hours at *room condition.						
13-2	Resistance	Appearance	No defects or abnormalities.	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 seconds.						
	to Soldering	Capacitance	Within ±7.5%	Then, the lead wires should be immersed in the melted solder						
	Heat	Change		1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 seconds.						
	(On-	Dielectric	No defects.							
	Preheat)	Strength		Pre-treatment						
		(Between		Capacitor should be stored at 150+0/-10°C for one hour,						
		terminals)		then place at *room condition for 24±2 hours before initial measurement.						
				Post-treatment						
40.0	5		N. 1.5 1 199	Capacitor should be stored for 24±2 hours at *room condition.						
13-3	Resistance	Appearance	No defects or abnormalities.	Test condition						
	to Soldering	Capacitance	Within ±7.5%	Temperature of iron-tip: 350±10°C						
	Heat	Change	N 16	Soldering time: 3.5±0.5 seconds						
	(soldering	Dielectric	No defects	Soldering position						
	iron method)	Strength		Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend.						
		(Between		Crimp Lead: 1.5 to 2.0mm from the end of lead bend.						
		terminals)		But has discord						
				• Pre-treatment						
				Capacitor should be stored at 150+0/-10°C for one hour,						
				then place at *room condition for 24±2 hours before initial measurement. • Post-treatment						
14	Thermal	Appearance	No defects or abnormalities.	Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the						
14	Shock	Capacitance	within ±12.5%	following table (Maximum transfer time is 20 seconds.).						
	OTIOOK	Change	Within 112.570	Let sit for 24±2 hours at *room condition, then measure.						
		D.F.	0.05 max.	Step 1 2						
		I.R.	1,000MΩ or 50MΩ•μF min.							
			(Whichever is smaller)	Temp. (°C) -55+0/-3 150+3/-0						
			(vviiionovor is ornamor)	Time 45.0						
				(min.) 15±3 15±3						
				•Pretreatment						
				Perform the heat treatment at 150+0/-10°C for 60±5 min and						
				then let sit for 24±2 hours at *room condition.						
15	ESD	Appearance	No defects or abnormalities.	Per AEC-Q200-002						
		Capacitance	Within the specified tolerance.	1						
		D.F.	0.025 max.	1						
		I.R.	More than 10,000MΩ or 500MΩ∙μF	1						
			(Whichever is smaller)							
16	Solderability		Lead wire should be soldered with	The terminal of a capacitor is dipped into a solution of ethanol						
	, , , , , , , , , , , , , , , , , , ,		uniform coating on the axial direction	(JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight propotion)						
			over 95% of the circumferential direction.	and then into molten solder (JIS-Z-3282) for 2±0.5 seconds. In both cases						
				the depth of dipping is up to about 1.5 to 2mm from the terminal body.						
				Temp. of solder :						
				245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu)						
				235±5°C H60A or H63A Eutectic Solder						
	•		to 35°C, Relative humidity : 45 to 75%, Atmo	<u>L</u>						

Reference only


Reference only												
AEC-Q200 Specifications Test Item					AEC-Q200 Test Method							
Εl	Electrical	Appearance	No defects or	abnormalities.	Visual in	Visual inspection.						
Cł	characte-	Capacitance	Within the spe	cified tolerance.	The capacitance/D.F. should be measured at 25°C at the							
riz	zation	D.F.	0.025 max.		frequenc	cy and voltage sho	wn in the tabl	e.				
						Nominal Cap.	Frequency	Vo	ltage	7		
						C≦1000pF	1±0.1MHz		SV (r.m.s.)	1		
					10	ıF≧C>1000pF	1±0.1kHz	AC1±0.	2V (r.m.s.)	1		
						C>10µF	120±24Hz		.1V (r.m.s.)]		
		Insulation	Room	10,000MΩ or 500MΩ•μF min.	The insu	lation resistance s	should be mea	asured at 2	5±3 °C with			
		Resistance	Temperature	(Whichever is smaller)	a DC vo	Itage not exceeding	g the rated vo	oltage at no	rmal tempera	iture		
		(I.R.)				nidity and within 2	-	ng.				
						/Discharge current						
			High	100MΩ or 5MΩ•μF min.	The insulation resistance should be measured at 150±3 °C with							
			Temperature	(Whichever is smaller)		Itage not exceeding	-	-	rmal tempera	ıture		
						nidity and within 2	-	ng.				
						/Discharge current	-					
		Dielectric	Between	No defects or abnormalities.		acitor should not b				Ď		
		Strength	Terminals			ted voltage is app	lied between	tne termina	tions for			
					1 to 5 se							
				N 16 4 1 199		/Discharge current			N 0			
			Body	No defects or abnormalities.		acitor is placed in			X			
			Insulation		balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 250% of the rated DC voltage is impressed for 1 to 5 seconds between							
					capacitor terminals and metal balls.							
						/Discharge current				vietai balls		
Τε	erminal	Tensile	Termination no	ot to be broken or loosened.		e figure, fix the cap		apply the fo	rce gradually			
	Strength	Strength	Tommadon n	or to be broken or legeonica.		lead in the radial o	-		-			
-	u.o.i.gu.	ou ongur			10N and then keep the force applied for 10±1 seconds.							
					/	1441						
						} 						
					*							
		Bending	Termination no	ot to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90°							
		Strength										
					in the opposite direction at the rate of one bend per 2 to 3 seconds.							
Ca	Capacitance		Within the spe	cified Tolerance.	The capa	acitance change s	hould be mea	sured after	5min.			
	emperature		-55 to 125°C :		at each	specified temperate	ture step.					
Cł	Characteristics		125 to 150°C	within +15/-40%		Step	Tempera	ture(°C)				
						1	25±	2				
						2	-55±	:3				
						3	25±	2				
						4	150±	:3				
						5	25±	2				
					The rand	res of canacitance	change com	nared with	the above			
					,	The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table						
						e within the specif	-					
					•Pretrea	•	iou ianges.					
							t at 150+0/-10)°C for 60+	5 min and			
									and			
					then let sit for 24±2 hours at *room condition. Perform the initial measurement.							
c	condition" Te	emperature : 15	to 35°C, Relativ	ve humidity: 45 to 75%, Atmospher								
		,		,	,							
C	condition" Te	emperature : 15	to 35°C, Relativ	ve humidity : 45 to 75%, Atmospher	Perform then let s Perform	the heat treatmen sit for 24±2 hours the initial measure	at *room c			//-10°C for 60±5 min and condition.		

ESRH01F

6. Packing specification

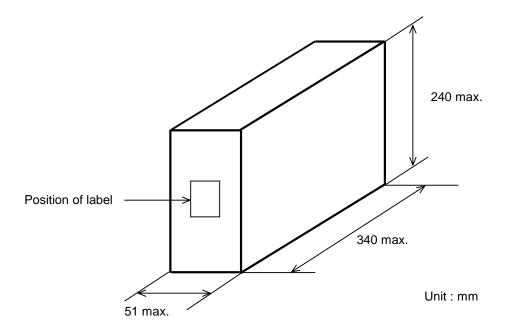
•Bulk type (Packing style code : B)

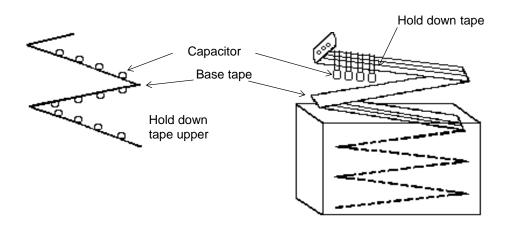
The size of packing case and packing way

The number of packing = *1 Packing quantity × *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

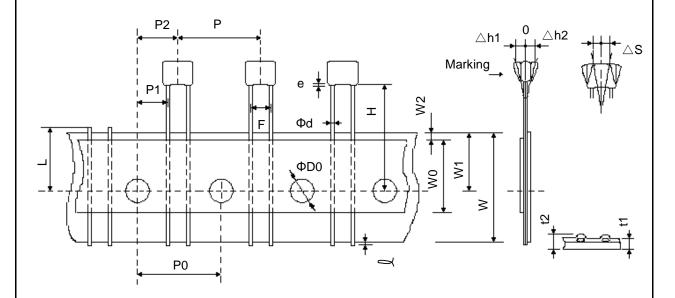

Note)


The outer package and the number of outer packing be changed by the order getting amount.

•Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

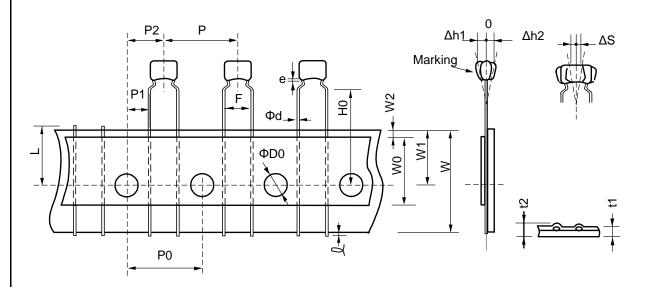
The size of packing case and packing way



7. Taping specification

7-1. Dimension of capacitors on tape

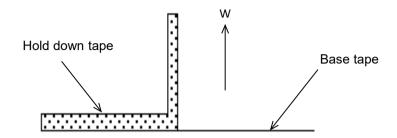
Straight taping type < Lead Style : DB >


Pitch of component 12.7mm / Lead spacing 2.5mm

Unit: mm

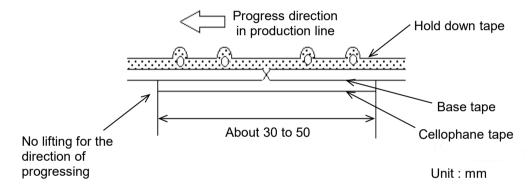
Item	Code	Dimensions	Remarks		
Pitch of component	Р	12.7+/-1.0			
Pitch of sprocket hole	P0	12.7+/-0.2			
Lead spacing	F	2.5+0.4/-0.2			
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction		
Length from hole center to lead	P1	5.1+/-0.7			
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend		
Carrier tape width	W	18.0+/-0.5			
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction		
Lead distance between reference and bottom plane	н	16.0+/-0.5			
Protrusion length	L	0.5 max.			
Diameter of sprocket hole	ФD0	4.0+/-0.1			
Lead diameter	Фd	0.5+/-0.05			
Total tape thickness	t1	0.6+/-0.3	They include hold down tape		
Total thickness of tape and lead wire	t2	1.5 max.	thickness		
Deviation across tape	Δh1	1.0 max.			
Deviation across tape	Δh2	1.0 IIIax.			
Portion to cut in case of defect	L	11.0+0/-1.0			
Hold down tape width	W0	9.5 min.			
Hold down tape position	W2	1.5+/-1.5			
Coating extension on lead	е	1.5 max.			

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

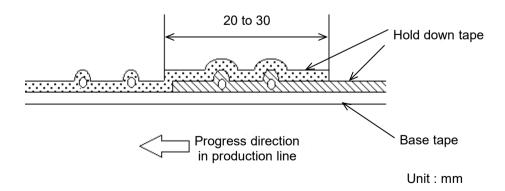


Unit: mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	L	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	∆ h1	2.0 max. (Di	mension code : W)
Deviation across tape	∆ h2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.



2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

c) When both tape are spliced

•Base tape and hold down tape shall be spliced with splicing tape.