

Reference Specification

Leaded MLCC for General Purpose RDE Series

Product specifications in this catalog are as of Aug. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This product specification is applied to Leaded MLCC RDE series used for General Electronic equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

2. Rating

• Part Number Configuration

ex.)	RDE	5C	2E	100	J	2	K1	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Temp.coef.	Standard Temp.	Operating Temp. Range
5C	C0G	-55∼25°C	0+30/-72ppm/°C	25°C	-55 ∼ 125°C
5C	(EIA code)	25∼125°C	0+/-30ppm/°C	25 C	-557~ 125 C

Rated Voltage

Code	Rated voltage
2E	DC250V
2J	DC630V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 100

$$10 \times 10^0 = 10 pF$$

• Capacitance Tolerance

Code	Capacitance Tolerance
J	+/-5%

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

Please refer to [Part number list].

Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

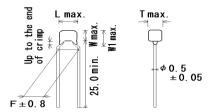
3. Marking

Temp. char. : Letter code : A (C0G Char.) Capacitance : Actual numbers (Less than 100pF)

3 digit numbers (100pF and over)

Capacitance tolerance : Code

: Letter code : 4 (DC250V) Letter code : 7 (DC630V) Rated voltage

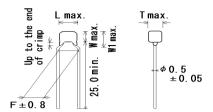

Company name code : Abbreviation : 🗀

(Ex.)

(⊏X.)		
Rated voltage Dimension code	DC250V	DC630V
2	(M) 102 J4A	€ 102 J7A

4. Part number list

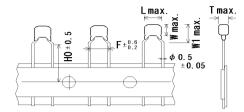
- Inside Crimp (Lead Style:K*)



Unit : mm

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	ension (mm)		Dimension (LxW)	Pack qty.
Part Number			Volt. (V)		Tol.	L	W	W1	F	Т	Lead Style	(pcs)
	RDE5C2E100J2K1H03B	C0G	250	10pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E120J2K1H03B	C0G	250	12pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E150J2K1H03B	C0G	250	15pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E180J2K1H03B	C0G	250	18pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E220J2K1H03B	C0G	250	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E270J2K1H03B	C0G	250	27pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E330J2K1H03B	C0G	250	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E390J2K1H03B	C0G	250	39pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E470J2K1H03B	C0G	250	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E560J2K1H03B	C0G	250	56pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E680J2K1H03B	C0G	250	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E820J2K1H03B	C0G	250	82pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E101J2K1H03B	C0G	250	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E121J2K1H03B	C0G	250	120pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E151J2K1H03B	C0G	250	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E181J2K1H03B	C0G	250	180pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E221J2K1H03B	C0G	250	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E271J2K1H03B	C0G	250	270pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E331J2K1H03B	C0G	250	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E391J2K1H03B	C0G	250	390pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E471J2K1H03B	C0G	250	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E561J2K1H03B	C0G	250	560pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E681J2K1H03B	C0G	250	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E821J2K1H03B	C0G	250	820pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E102J2K1H03B	C0G	250	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E122J2K1H03B	C0G	250	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E152J2K1H03B	C0G	250	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E182J2K1H03B	C0G	250	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E222J2K1H03B	C0G	250	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E272J2K1H03B	C0G	250	2700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E332J2K1H03B	C0G	250	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E392J2K1H03B	COG	250	3900pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E472J2K1H03B	COG	250	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E562J2K1H03B	COG	250	5600pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E682J2K1H03B	C0G	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E822J2K1H03B	C0G	250	8200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2E103J2K1H03B	C0G	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE5C2J100J2K1H03B	C0G	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE5C2J120J2K1H03B	C0G	630	12pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE5C2J150J2K1H03B	COG	630	15pF	±5%	5.5	4.0	6.0	5.0	3.15		500

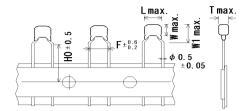
PNLIST


·Inside Crimp (Lead Style:K*)

Unit: mm

Customer	Murata Part Number	T.C.	DC Rated Cap. Cap. Dimension (mm)						Dimension (LxW)			
Part Number	Murata Part Number	1.0.	Volt. (V)	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)	
	RDE5C2J180J2K1H03B	C0G	630	18pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J220J2K1H03B	C0G	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J270J2K1H03B	C0G	630	27pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J330J2K1H03B	C0G	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J390J2K1H03B	C0G	630	39pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J470J2K1H03B	C0G	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J560J2K1H03B	C0G	630	56pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J680J2K1H03B	C0G	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J820J2K1H03B	C0G	630	82pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J101J2K1H03B	C0G	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J121J2K1H03B	C0G	630	120pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J151J2K1H03B	C0G	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J181J2K1H03B	C0G	630	180pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J221J2K1H03B	C0G	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J271J2K1H03B	C0G	630	270pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J331J2K1H03B	C0G	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J391J2K1H03B	C0G	630	390pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J471J2K1H03B	C0G	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J561J2K1H03B	C0G	630	560pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J681J2K1H03B	C0G	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J821J2K1H03B	C0G	630	820pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J102J2K1H03B	C0G	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J122J2K1H03B	C0G	630	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J152J2K1H03B	C0G	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J182J2K1H03B	C0G	630	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE5C2J222J2K1H03B	C0G	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500

Inside Crimp Taping (Lead Style: M*)



Unit : mm

Customer Part Number	Murata Part Number	T.C.	Rated Volt. (V)	Сар.	Cap. Tol.	L	W	imensi W1	F	т	H/H0	Dimension (LxW) Lead Style	qty
		- 10	. ,	10.5	70/								3.04
	RDE5C2E100J2M1H03A	C0G	250	10pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RDE5C2E120J2M1H03A	C0G	250	12pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E150J2M1H03A	C0G	250	15pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E180J2M1H03A	C0G	250	18pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E220J2M1H03A	C0G	250	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E270J2M1H03A	C0G	250	27pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E330J2M1H03A	C0G	250	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E390J2M1H03A	C0G	250	39pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E470J2M1H03A	C0G	250	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E560J2M1H03A	C0G	250	56pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E680J2M1H03A	C0G	250	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RDE5C2E820J2M1H03A	C0G	250	82pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E101J2M1H03A	C0G	250	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E121J2M1H03A	C0G	250	120pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E151J2M1H03A	C0G	250	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E181J2M1H03A	C0G	250	180pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E221J2M1H03A	C0G	250	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E271J2M1H03A	C0G	250	270pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E331J2M1H03A	C0G	250	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E391J2M1H03A	C0G	250	390pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E471J2M1H03A	C0G	250	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E561J2M1H03A	C0G	250	560pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E681J2M1H03A	C0G	250	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E821J2M1H03A	C0G	250	820pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E102J2M1H03A	C0G	250	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E122J2M1H03A	C0G	250	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E152J2M1H03A	C0G	250	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E182J2M1H03A	C0G	250	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E222J2M1H03A	C0G	250	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E272J2M1H03A	C0G	250	2700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E332J2M1H03A	COG	250	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E392J2M1H03A	COG	250	3900pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E472J2M1H03A	COG	250	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RDE5C2E562J2M1H03A	COG	250	5600pF	±5%	5.5	4.0				16.0		2
	RDE5C2E682J2M1H03A	COG	250	6800pF	±5%	5.5	4.0		5.0				2
	RDE5C2E822J2M1H03A	COG	250	8200pF	±5%	5.5	4.0	6.0	5.0				2
	RDE5C2E103J2M1H03A	COG	250	10000pF	±5%	5.5	4.0	6.0	5.0				2
	RDE5C2J100J2M1H03A	COG	630	10pF	±5%	5.5	4.0	6.0	5.0				2
	RDE5C2J120J2M1H03A	COG	630	10pi 12pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0		2
	RDE5C2J150J2M1H03A	COG	630	15pF	±5%	5.5	4.0	6.0	5.0				2

PNLIST

Inside Crimp Taping (Lead Style: M*)

Unit: mm

												Unit : mm	
Customer	Murata Part Number	T.C.	DC Rated	Сар.	Сар.	Dimension (mm)					Dimension (LxW)	Pack qty.	
Part Number			Volt. (V)	oup.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RDE5C2J180J2M1H03A	C0G	630	18pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J220J2M1H03A	C0G	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J270J2M1H03A	C0G	630	27pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J330J2M1H03A	C0G	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J390J2M1H03A	C0G	630	39pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J470J2M1H03A	C0G	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J560J2M1H03A	C0G	630	56pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J680J2M1H03A	C0G	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J820J2M1H03A	C0G	630	82pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J101J2M1H03A	C0G	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J121J2M1H03A	C0G	630	120pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J151J2M1H03A	C0G	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J181J2M1H03A	C0G	630	180pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J221J2M1H03A	C0G	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J271J2M1H03A	C0G	630	270pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J331J2M1H03A	C0G	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J391J2M1H03A	C0G	630	390pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J471J2M1H03A	C0G	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J561J2M1H03A	C0G	630	560pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J681J2M1H03A	C0G	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J821J2M1H03A	C0G	630	820pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J102J2M1H03A	C0G	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J122J2M1H03A	C0G	630	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J152J2M1H03A	C0G	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J182J2M1H03A	C0G	630	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDE5C2J222J2M1H03A	C0G	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000

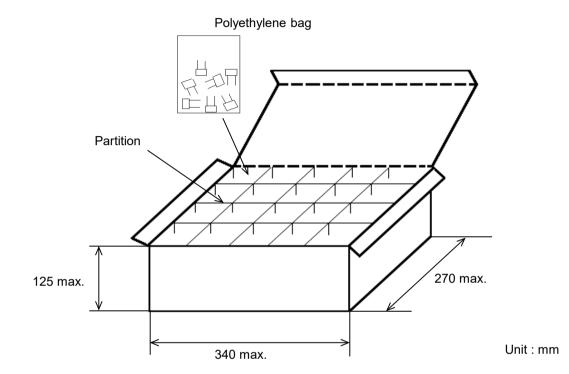
PNLIST

2 [)	AND TEST M	ETHODS						
2 [lte	em	Specification	Test Method					
	Appearance		No defects or abnormalities.	Visual inspection.					
I.	Dimension and Marking	l	Within the specified dimensions and Marking.	Visual inspection, Using Caliper.					
	Dielectric	Between	No defects or abnormalities.	The capacito	r should not be	damaged when vo	Itage of in Table is		
s	Strength Terminals			applied between the terminations for 1 to 5 seconds.					
				(Charge/Disc	charge current ≦	≨ 50mA.)			
					Rated voltage	Test volta	ige		
					DC250V	200% of the rate			
					DC630V	150% of the rate	ed voltage		
					DC1kV	130% of the rate	ed voltage		
		Body	No defects or abnormalities.	The capacito	r is placed in a d	container with met	al balls of 1mm diameter		
		Insulation	No delects of abhormalities.	· ·	•		oximately 2mm from		
		ouidio					1 to 5 seconds between		
					minals and meta	•			
				(Charge/Disc	charge current ≦	≨ 50mA.)			
					Rated vo	Itage Test vo	Itage		
					DC25	-			
					DC630V-I	DC1kV DC13	00V		
4 .	manulatic :-	Debues:	10 000MO as 500MO5	The in-order	n no alate : !				
	nsulation Resistance	Between Terminals	10,000MΩ or 500MΩ•μF min.			ould be measured			
	I.R.)	reminais	(Whichever is smaller)		•	case of rated volta	nge : DC250V) at minutes of charging.		
('	,				charge current ≦	•	ging.		
5 C	Capacitance		Within the specified tolerance.	` "		e measured at 25°	°C		
			·	at the freque	ncy and voltage	shown in the table) .		
6 0	2		30pF ≦ C : Q ≧ 1,000	T [lominal Cap.	Frequency	Voltage		
			30pF > C : Q ≥ 400+20C	<u> </u>	C≦1000pF	1±0.2MHz	AC0.5 to 5V(r.m.s.)		
					C > 1000pF	1±0.2kHz	AC1±0.2V(r.m.s.)		
7 (itamaa		C : Nominal Capacitance (pF)	The conseits		ld be messerined a	often E		
	Capacitance Femperature		Within the specified Tolerance. 25°C to 125°C: 0±30ppm/°C	The capacitance change should be measured after 5 minutes at each specified temperature stage.					
	Characteristics		-55°C to 25°C : 0+30/-72ppm/°C	The temperature coefficient is determined using the					
				capacitance	=				
				When cycling the temperature sequentially from step					
				1 through 5 (-55°C to 125°C) the capacitance should					
				be within the	specified tolera	nce for the temper	ature coefficient.		
					Step	Temperatu	re(°C)		
					1	25±2			
					2	-55±3			
					3	25±2			
					5	125±3 25±2			
						2012			
8 T	Γerminal	Tensile	Termination not to be broken or loosened.	_	re, fix the capac		11411		
	Strength	Strength			ce gradually to e		· · · · · · · · · · · · · · · · · · ·		
					tne	†			
					dial direction of	and the			
				capacitor unt	il reaching 10N		4		
		Bendina	Termination not to be broken or loosened	capacitor unt	il reaching 10N the force for 10	±1 seconds.	拉 。		
		Bending Strength	Termination not to be broken or loosened.	capacitor unt keep applied Each lead wi	il reaching 10N the force for 10 re should be sub				
		ŭ	Termination not to be broken or loosened.	capacitor unt keep applied Each lead wi 2.5N and the	il reaching 10N the force for 10 re should be sul n be bent 90° at	±1 seconds. ojected to a force o			
		ŭ	Termination not to be broken or loosened.	capacitor unt keep applied Each lead wi 2.5N and the one direction	il reaching 10N the force for 10 re should be sub n be bent 90° at . Each wire is th	±1 seconds. Djected to a force of the point of egres			
		ŭ	Termination not to be broken or loosened.	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit	il reaching 10N the force for 10 re should be sub n be bent 90° at . Each wire is th ion and bent 90°	±1 seconds. Dijected to a force of the point of egres the returned to the	s in		
9 V	/ibration	Strength Appearance	No defects or abnormalities.	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito	il reaching 10N the force for 10 re should be sut n be bent 90° at . Each wire is th ion and bent 90° ne rate of one be r should be subj	±1 seconds. Dijected to a force of the point of egres en returned to the opposite end per 2 to 3 second per 3 to 3 seco	s in onds.		
9 V	/ibration Resistance	Strength Appearance Capacitance	No defects or abnormalities. Within the specified tolerance.	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic mo	il reaching 10N the force for 10 re should be sut n be bent 90° at . Each wire is th ion and bent 90° ne rate of one be r should be subj	±1 seconds. Dijected to a force of the point of egres are returned to the original in the opposite and per 2 to 3 second per 3 to 3 secon	onds. 5mm,		
9 V		Strength Appearance	No defects or abnormalities. Within the specified tolerance. $30pF \le C : Q \ge 1,000$	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic mo	il reaching 10N the force for 10 re should be sut n be bent 90° at . Each wire is thion and bent 90° ne rate of one be r should be subjection having a tory being varied un	±1 seconds. Dijected to a force of the point of egressien returned to the finite opposite and per 2 to 3 second per 2 to a simple tall amplitude of 1.5 informly between the conditional of the conditiona	s in onds. 5mm, he		
9 V		Strength Appearance Capacitance	No defects or abnormalities. Within the specified tolerance.	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic months the frequency approximate	il reaching 10N the force for 10 re should be sut n be bent 90° at . Each wire is the ion and bent 90° ne rate of one bear should be subjution having a tory being varied ur limits of 10Hz a	±1 seconds. Dijected to a force of the point of egressien returned to the finite opposite and per 2 to 3 second per 2 t	onds. 5mm, he uency		
9 V		Strength Appearance Capacitance	No defects or abnormalities. Within the specified tolerance. 30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic mon the frequency approximate range, from 2	il reaching 10N the force for 10 re should be sut n be bent 90° at . Each wire is the ion and bent 90° ne rate of one bear should be subjution having a toty being varied unlimits of 10Hz an 10Hz to 55Hz an	±1 seconds. Dijected to a force of the point of egressien returned to the finite opposite and per 2 to 3 second per	onds. 5mm, the tuency shall be		
9 V		Strength Appearance Capacitance	No defects or abnormalities. Within the specified tolerance. $30pF \le C : Q \ge 1,000$	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic mon the frequency approximate range, from	il reaching 10N the force for 10 re should be sub n be bent 90° at . Each wire is th ion and bent 90° ne rate of one be r should be sub juition having a to y being varied un limits of 10Hz an approximately 1	±1 seconds. Dijected to a force of the point of egressien returned to the in the opposite and per 2 to 3 second cected to a simple tal amplitude of 1.8 informly between the total second of the total amplitude, second of the total amplitude, second of the total amplitude, second of the total amplitude of 1.8 informly between the total second of the total amplitude, and the total amplitude of 1.8 informly between th	s in onds. 5mm, he uency shall be		
9 V		Strength Appearance Capacitance	No defects or abnormalities. Within the specified tolerance. 30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic mon the frequency approximate range, from a traversed in a shall be applied	il reaching 10N the force for 10 re should be sub n be bent 90° at . Each wire is the force and bent 90° ne rate of one bear should be subjection having a tory being varied unlimits of 10Hz and 10Hz to 55Hz and approximately 1 ied for a period of	±1 seconds. Dijected to a force of the point of egressien returned to the in the opposite end per 2 to 3 second ected to a simple tal amplitude of 1.5 informly between the thind 55Hz. The frequent of 10Hz, siminute. This motion of 2 hours in each	s in onds. 5mm, the uency shall be on		
9 V		Strength Appearance Capacitance	No defects or abnormalities. Within the specified tolerance. 30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C	capacitor unt keep applied Each lead wi 2.5N and the one direction original posit direction at the The capacito harmonic mon the frequency approximate range, from a traversed in a shall be applied	il reaching 10N the force for 10 re should be sub n be bent 90° at . Each wire is the force and bent 90° ne rate of one bear should be subjection having a tory being varied unlimits of 10Hz and 10Hz to 55Hz and approximately 1 ied for a period of	±1 seconds. Dijected to a force of the point of egressien returned to the in the opposite and per 2 to 3 second cected to a simple tal amplitude of 1.8 informly between the total second of the total amplitude, second of the total amplitude, second of the total amplitude, second of the total amplitude of 1.8 informly between the total second of the total amplitude, and the total amplitude of 1.8 informly between th	s in onds. 5mm, the uency shall be on		

ESRDE115C

NI-	1 ,,			nce on	y		T4 M-41-	1		
No.		em	Specification	Th - 4-			Test Meth			
10	Solderability of	rLead	Solder is deposited on unintermittently		The terminal of capacitor is dipped into a solution of					
			immersed portion in axial direction		ethanol (JIS K 8101) and rosin (JIS K 5902) (25%					
			covering 3/4 or more in circumferential		rosin in weight propotion). Immerse in solder solution					
			direction of lead wires.	for 2±0.5 seconds. In both cases the depth of dippir				of dipping		
				is up to about 1.5 to 2mm from the terminal body.						
				Temp. of solder :						
				245:	5°C Lead	Free Solder (Sn-3.0Ag-0.5	Cu)		
				235:	5°C H60A	or H63A Eute	ectic Solder			
11-1	Resistance	Appearance	No defects or abnormalities.	The le	The lead wires should be immersed in the melted solder 1.5 to 2.0mm					
	to Capacitance Within ±2.5% or ±0.25pF		Within ±2.5% or ±0.25pF	from t	ne root of t	terminal at 260	0±5°C for 10±	:1 seconds.		
	Soldering	Change	(Whichever is larger)							
	Heat	Dielectric	tric No defects.		treatment					
	(Non-	Strength		Capac	itor should	d be stored for	24±2 hours	at *room cond	ition.	
	Preheat)	(Between								
		terminals)								
11-2	Resistance	Appearance	No defects or abnormalities.	First th	ne capacito	or should be s	tored at 120+	0/-5°C for 60+	0/-5 seconds.	
	to	Capacitance	Within ±2.5% or ±0.25pF	Then,	the lead w	rires should be	immersed ir	the melted so	older	
	Soldering	Change	(Whichever is larger)	1.5 to	2.0mm fro	m the root of t	erminal at 26	60±5°C for 7.5+	-0/-1 seconds	S.
	Heat	Dielectric	No defects.	1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 se						
	(On-	Strength		Post-treatment						
	Preheat)	(Between		Capac	itor should	d be stored for	24±2 hours	at *room cond	ition.	
	,	terminals)			Capacitor should be stored for 24±2 hours at *room condition.					
11-3	Resistance	Appearance	No defects or abnormalities.	Test c	ondition					
	to	Capacitance	Within ±2.5% or ±0.25pF	Tem	perature of	f iron-tip : 350:	±10°C			
	Oupdottaneo 111tm 122.070 or 20.20p1		(Whichever is larger)	Soldering time : 3.5±0.5 seconds						
	Heat	Dielectric	No defects.		Soldering position Straight Lead : 1.5 to 2.0mm from the root of terminal.					
	(soldering	Strength								
	iron method) (Between terminals)			Crimp Lead: 1.5 to 2.0mm from the end of bend.						
				0		.0 10 2.0		. 20.14.		
		torrimaio)		• Post	treatment					
	Temperature Appearance				Capacitor should be stored for 24±2 hours at *room condition.					
12			No defects or abnormalities.	Repeat 5 cycles according to the 4 heat treatments listed in the						
	Cycle		Within ±5% or ±0.5pF	_ `	-	specified tem				
	O y o l o	Canacitance		minate	o at oaon	-	porataro otag	0.		
	Ī	Capacitance Change	•	The te	mnerature	coefficient is	determined i	ising the		
i i		Change	(Whichever is larger)	The te	mperature	coefficient is	determined ι	ising the		
			(Whichever is larger) 30pF ≤ C : Q ≥ 350	The te	mperature Step	coefficient is	determined ι	ising the	4	
		Change	(Whichever is larger) 30pF ≤ C : Q ≥ 350 10pF ≤ C < 30pF : Q ≥ 275+5C/2	The te	Step		2			
		Change	(Whichever is larger) 30pF ≤ C : Q ≥ 350	The te	Step Temp.	1 Min. Operating	2 Room	3 Max. Operating	Room	
		Change	(Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$	The te	Step	1 Min.	2	3 Max.		
		Change Q	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$	The te	Step Temp.	1 Min. Operating Temp. ±3	2 Room Temp.	3 Max. Operating Temp. ±3	Room Temp.	
		Change	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$	The te	Step Temp. (°C)	1 Min. Operating	2 Room	3 Max. Operating	Room	
		Change Q I.R.	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller)	The te	Step Temp. (°C)	1 Min. Operating Temp. ±3	2 Room Temp.	3 Max. Operating Temp. ±3	Room Temp.	
		Change Q I.R.	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$	The te	Step Temp. (°C)	1 Min. Operating Temp. ±3	2 Room Temp.	3 Max. Operating Temp. ±3	Room Temp.	
		Change Q I.R. Dielectric Strength	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller)	The te	Step Temp. (°C)	1 Min. Operating Temp. ±3	2 Room Temp.	3 Max. Operating Temp. ±3	Room Temp.	
		Change Q I.R. Dielectric Strength (Between	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller)	The te	Step Temp. (°C)	1 Min. Operating Temp. ±3	2 Room Temp.	3 Max. Operating Temp. ±3	Room Temp.	
10	Aloneid?	Change Q I.R. Dielectric Strength (Between Terminals)	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000M\Omega \ or \ 50M\Omega \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$		Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3	Room Temp.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	Humidity	I.R. Dielectric Strength (Between Terminals) Appearance	(Whichever is larger) $30pF \leq C: Q \geq 350$ $10pF \leq C < 30pF: Q \geq 275+5C/2$ $10pF > C: Q \geq 200+10C$ $C: Nominal\ Capacitance\ (pF)$ $1,000M\Omega\ or\ 50M\Omega\cdot \mu F\ min.$ (Whichever is smaller) $No\ defects\ or\ abnormalities.$ $No\ defects\ or\ abnormalities.$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3	Room Temp.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal\ Capacitance\ (pF)$ $1,000M\Omega\ or\ 50M\Omega\cdot \mu F\ min.$ (Whichever is smaller) $No\ defects\ or\ abnormalities.$ $No\ defects\ or\ abnormalities.$ $Within\ \pm 5\%\ or\ \pm 0.5pF$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	-	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000M\Omega \ or \ 50M\Omega \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger)	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance	(Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change	(Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change	(Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change Q	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \pm 5\% \ or \pm 0.5pF$ (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	
13	(Steady	I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change	(Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$	Set th	Step Temp. (°C) Time (min.)	1 Min. Operating Temp. ±3 30±3 r at 40±2°C ar 24/-0 hours.	2 Room Temp. 3 max.	3 Max. Operating Temp. ±3 30±3	Room Temp.	

^{* &}quot;room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa


No.	Item Specification		Specification	Test Method					
14	Humidity Appearance No defects or abnormalities.		No defects or abnormalities.	Apply the rated voltage at 40±2°C and relative					
	Load Capacitance		Within ±7.5% or ±0.75pF	humidity of 90 to 95% for 500+24/-0 hours.					
		Change	(Whichever is larger)	Remove and set for 24±2 hours at *room condition, then measure.					
		Q	30pF ≦ C : Q ≧ 200	(Charge/Discharge current ≦ 50mA.)					
	30pF > C :		30pF > C : Q ≥ 100+10/3						
			C : Nominal Capacitance (pF)						
		I.R.	500MΩ or 25MΩ•μF min.						
			(Whichever is smaller)						
15	High	Appearance	No defects or abnormalities.	Apply voltage in Table at the maximum					
	Temperature Capacitance Within ±3% or ±0.3pF		Within ±3% or ±0.3pF	operating temperature ±3°C for 1000+48/-0 hours.					
	Load	Change	(Whichever is larger)	Remove and set for 24±2 hours at *room condition, then measure.					
		Q	30pF ≤ C : Q ≥ 350	(Charge/Discharge current ≦ 50mA.)					
			10pF ≤ C < 30pF : Q ≥ 275+5C/2						
			10pF > C : Q ≧ 200+10C	Rated voltage Test voltage					
				DC250V 150% of the rated voltage					
			C : Nominal Capacitance (pF)	DC630V, DC1kV 120% of the rated voltage					
		I.R.	1,000MΩ or 50MΩ•μF min.						
			(Whichever is smaller)						
16	Solvent	Appearance	No defects or abnormalities.	The capacitor should be fully immersed, unagitated,					
	Resistance	Marking	Legible	in reagent at 20 to 25°C for 30±5 seconds and then					
				remove gently. Marking on the surface of the					
				capacitor shall immediately be visually examined.					
				Regent : Isopropyl alcohol					

[&]quot;room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

6. Packing specification

•Bulk type (Packing style code : B)

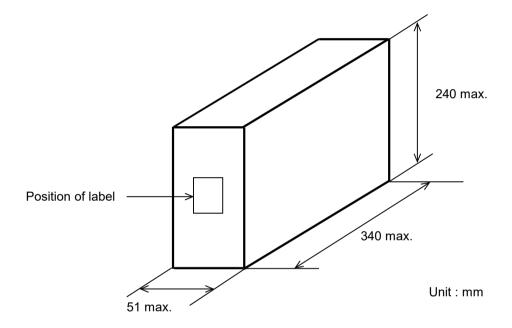
The size of packing case and packing way

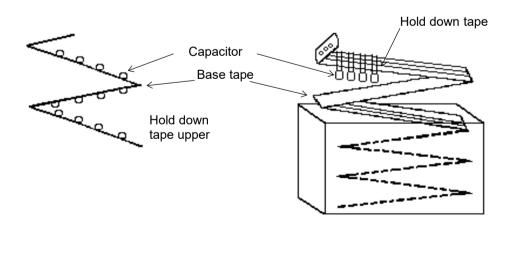
The number of packing = $^{^{\star1}}$ Packing quantity × $^{^{\star2}}$ n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

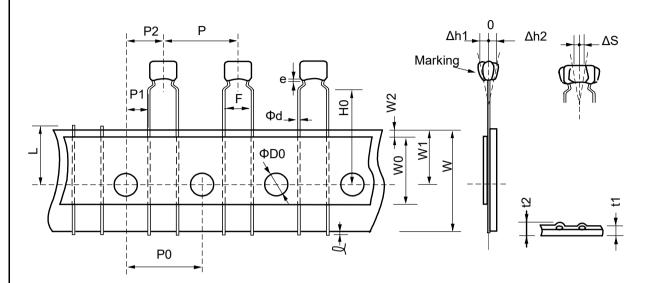

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way

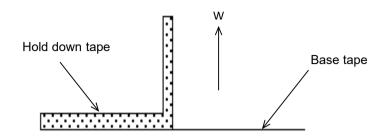


7. Taping specification

7-1. Dimension of capacitors on tape

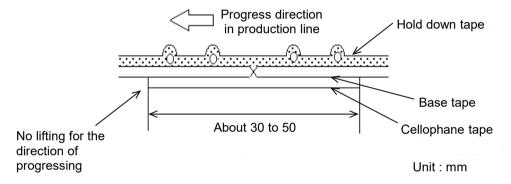
Inside crimp taping type < Lead Style : M1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

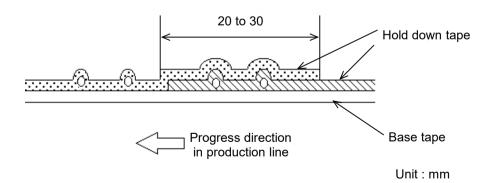


Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation agrees tand		2.0 max. (Di	mension code : W)
Deviation across tape	Δ h2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead		Up to the end of	crimp


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

b) When hold down tape is spliced

•Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01