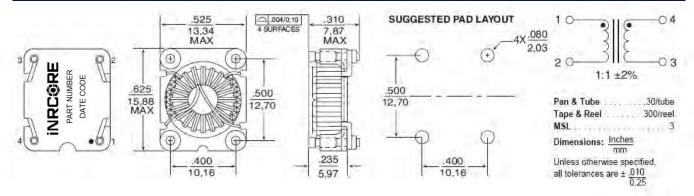
SMT POWER INDUCTORS

Toroid - Military/Aerospace POGO Series Ruggedized

Ruggedized header with POGO pins for secure board mounting

Current Rating: up to 8.3ADC

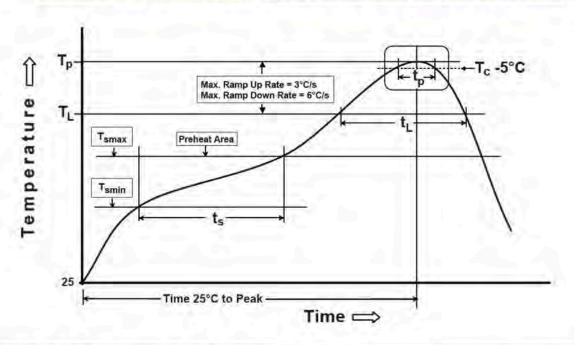

Inductance Range: 2.0µH to 336µH

Moisture Sensitivity Level: 1

	Elec	ctrical Speci	fications @ :	25 °C – Oper	ating Temper	ature – 40°C to	+130°C	
Part Number	Inductance @ Irated (µH MIN)	Irated (A)	DCR (MAX) $(m\Omega)$	ET (V-µsec)	Inductance @OADC (µH ±10%)	100 Gauss ET100 (V-µsec)	1 Amp DC H1 (Orsted)	Connection
POGO 25								
PL8600	2.0	8.30	8.0	7.31	2.2	1.20	5.43	Parallel
PL8601	2.4	7.20	10.9	7.81	2.6	1.33	5.97	Parallel
PL8602	5.0	5.20	19.0	11.72	5.5	1.93	8.69	Parallel
PL8600	7.0	4.16	16.0	14.61	8.75	2.41	10.86	Series
PL8603	9.3	3.80	30	16.12	10.4	2.65	11.95	Parallel
PL8601	8.4	3.78	21.8	15.62	10.4	2.65	11.95	Series
PL8604	14.1	3.10	45.5	19.73	15.7	3.25	14.66	Parallel
PL8605	19.8	2.60	66.5	23.45	22.1	3.86	17.38	Parallel
PL8602	17.9	2.60	38.0	23.43	22.45	3.86	17.38	Series
PL8606	29.3	2.20	101	28.50	32.8	4.70	21.18	Parallel
PL8603	33.8	1.89	60	32.25	41.7	5.30	23.89	Series
PL8607	42.6	1.80	151	34.49	47.6	5.66	25.52	Parallel
PL8604	50.9	1.54	91	39.46	62.8	6.51	29.32	Series
PL8608	61.3	1.50	222	40.85	67.5	6.75	30.41	Parallel
PL8605	71.5	1.30	133	46.90	88.2	7.71	34.75	Series
PL8609	84.2	1.20	318	46.22	91.0	7.83	35.30	Parallel
PL8606	106.1	1.07	202	57.00	131.0	9.40	42.36	Series
PL8607	154.2	0.89	302	68.99	190.3	11.33	51.05	Series
PL8608	218.9	0.74	444	81.70	270.2	13.50	60.82	Series
PL8609	295.0	0.64	636	92.43	364.0	15.66	70.59	Series

- 2. Total loss in the inductor is 380 mWatts for a $50 ^{\circ}\text{C}$ temperature rise above ambient.
- 3. To estimate temperature rise in a given application, determine copper and core losses, divide by 380 and multiply by 50.
- 4. For the copper loss, calculate IDC^2 X RN.
- 5. For core loss, using frequency (f) and operating flux density (B), calculate 6.11 x 10-18 x B2.7 x $\rm f2.04$.
- NOTES:
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET
 1. Temperature rise is 50°C in typical buck or boost circuits at 250kHz and wit
 - Limit the DC bias (H) to 46 orsteds. Calculate H by multiplying H1 from the table by IDC of the application.
 - The maximum DCR listed is approximately 17% over the nominal DCR.
 - Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e. PL8600 becomes PL8600T).

Electrical Schematic Mechanical


www.inrcore.com

SMT POWER INDUCTORS

Toroid - Military/Aerospace POGO Series Ruggedized

Tin/Lead Recommended Reflow Profile (Based on J-STD-020D)

T _{SMIN} (°C)	T _{SMAX} (°C)	W 10-70	T _P (°C MAX)	t _s (s)	t _L (s)	t _P (s MAX)	Ramp-up rate (T _L to T _P)	Ramp-down rate (T _P to T _L)	Time 25°C to peak temperature (s MAX)	
100	100 150 183		235	235 60-120 6		20	3°C/s MAX	6°C/s MAX	360	

Notes:

- 1. All temperatures measured on the package leads.
- 2. Maximum times of reflow cycle: 2.

For More Information

iNRCORE,LLC 311 Sinclair Road Bristol, PA 19007-6812 U.S.A Tel: + 1.215.781.6400 Fax: +1.215.7816430

Global Sales Representatives and Locations:

http://www.inrcore.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2020. iNRCORE, LLC. All rights reserved.

www.inrcore.com

M114.D (07/20)