

Description

The XP devices are ultra-low phase noise quartz-based PLL oscillators supporting a large range of frequencies and output interface types. These devices are designed to operate at three different power supplies and are available in three package sizes with several pinout configurations, as well as three operational temperature ranges.

The XP devices can be programmed to generate an output frequency from 15MHz to 2100MHz with a resolution as low as 1Hz accuracy. The configuration capability of this family of devices allows for fast delivery times for both sample and large production orders.

Parts are for one time programming (OTP) at the factory for a fixed frequency application, or can be field programmable using I2C, based on system needs (see note 1 under Pin Descriptions).

Features

Output types: LVDS, LVPECL, CML

Frequency range: 15MHz to 2100MHz

Output type: HCSL

Frequency range: 15MHz to 725MHz

Supply voltage options: 1.8V, 2.5V, or 3.3V

Phase jitter (12kHz to 20MHz): 120fs typical

Package options:

• 7.0 × 5.0 × 1.7 mm

• 5.0 × 3.2 × 1.17 mm

• 3.2 × 2.5 × 1.07 mm

Operating temperatures and frequency stability:

-40°C to +85°C, ±25ppm

• -40°C to +105°C, ±50ppm

Pin Assignments

Figure 1. 7.0×5.0 mm, 5.0×3.2 mm, and 3.2×2.5 mm Packages

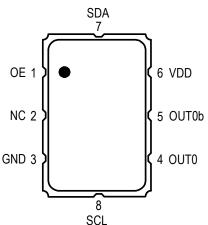


Table 1. Pin Descriptions

Pin #	Pin Name	Description
1	OE	Output Enable (0 = output disabled, pulled high internally)
2	NC	No connect
3	GND	Connect to ground
4	OUT0	Output
5	OUT0b	Complementary output
6	V_{DD}	Supply voltage
7	SDA ¹	Serial data
8	SCL ¹	Serial clock

¹ Pins 7 and 8 are no connect for non-I2C applications.

See Ordering Information for more details.

Contents

Description	. 1
Features	. 1
Pin Assignments	. 1
Absolute Maximum Ratings	. 3
ESD Compliance	
Mechanical Testing	. 3
Solder Reflow Profile	. 3
DC Electrical Characteristics	. 4
AC Electrical Characteristics	. 6
Output Waveforms	10
Termination for 3.3V LVPECL Outputs	12
Termination for 2.5V LVPECL Outputs	13
LVDS Driver Termination	14
Recommended Termination for HCSL Outputs	15
CML Termination	15
Package Outline Drawings	16
Marking Diagrams	16
Ordering Information	17
Revision History	18

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the device. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. Thermal characteristics, in actual applications, should be assessed case by case to guarantee junction temperature does not exceed 125°C.

Table 2. Absolute Maximum Ratings

Item		Rating						
V_{DD}		-0.5V to +3.8V						
OE		-0.5V to +3.8V						
Storage Temperature		-55°C to 125°C						
Maximum Junction Temperature			125	5°C				
Theta J _A ¹	JD8	75.9 °C/W	IVQ	89.6 °C/W	JSW8	97.4 °C/W		
Theta J _B ¹	300	48.6 °C/W	JX8	54.3 °C/W	00000	66.8 °C/W		

¹ Thermal characteristics are based on simulation in standard condition.

ESD Compliance

Table 3. ESD Compliance

	Human Body Model (HBM)	2000V
--	------------------------	-------

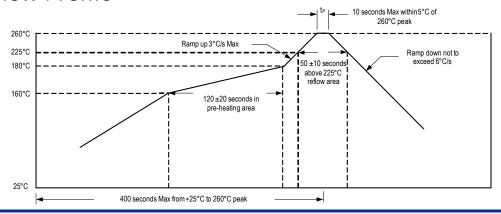

Mechanical Testing

Table 4. Mechanical Testing *

Parameter	Test Method
Mechanical Shock	Half-sine wave with 0.3ms 3000G. X, Y, Z each direction 1 time.
Mechanical Vibration	Frequency: 10 to 55MHz amplitude: 1.5mm. Frequency: 55–2000Hz peak value: 20G. Duration time: 4H for each X,Y,Z axis; total 12hours.
High Temp Operating Life (HTOL)	1000 hours at 125°C (under power).
Hermetic Seal	Gross leak (air leak test). Fine leak (Helium leak test) He-pressure: 6kgf/cm² 2 hours.

^{*} MSL level does not apply.

Solder Reflow Profile

DC Electrical Characteristics

Note for all DC Electrical Characteristics tables: A pull-up resistor from V_{DD} to OE enables output when pin 1 is left open.

Table 5. 3.3V IDD DC Electrical Characteristics

 V_{DD} = 3.3V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Output Type	Conditions	Minimum	Typical	Maximum	Units
I _{DD}		LVDS	15MHz to 400MHz.	_	59	67	
	Current Consumption	LVDS	400MHz to 2.1GHz.	_	_	85	
		rrent Consumption LVPECL	15MHz to 212.5MHz.	_	84	94	mA
			212MHz to 400MHz.	_	_	110	
			400MHz to 2.1GHz.	_	_	110	
		HCSL	15MHz to 725MHz.	_	74	83	
		CML	15MHz to 2.1GHz.	_	45	61	

Table 6. 2.5V IDD DC Electrical Characteristics

 V_{DD} = 2.5V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Output Type	Conditions	Minimum	Typical	Maximum	Units
-		LVDS	15MHz to 400MHz.	_	59	66	
	Current Consumption	LVDS	400MHz to 2.1GHz.	_	_	85	
		LVPECL	15MHz to 156.25MHz.	_	84	94	
			156.25MHz to 400MHz.	_	_	110	mA
I _{DD}			400MHz to 2.1GHz.	_	_	110	
		HCSL	15MHz to 400MHz.	_	_	95	
			400MHz to 725MHz.	_	74	82	
		CML	15MHz to 2.1GHz.	_	54	61	

Table 7. 1.8V IDD DC Electrical Characteristics

 V_{DD} = 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Output Type	Conditions	Minimum	Typical	Maximum	Units
I _{DD}		LVDS	15MHz to 400MHz.	_	59	66	
	Current Consumption	LVD2	400MHz to 2.1GHz.	_	_	85	
		LVPECL	15MHz to 250MHz.	_	84	93	
			250MHz to 2.1GHz.	_	_	110	mA
		HCSL	15MHz to 400MHz.	_	_	95	
			400MHz to 725MHz.	_	74	81	
		CML	15MHz to 2.1GHz.	_	54	61	

Table 8. LVCMOS DC Electrical Characteristics

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage (OE pin only)	V _{DD} = 3.3V, 2.5V, 1.8V ±5%	0.7 × V _{DD}	_	V _{DD} + 0.3	V
V _{IL}	Input Low Voltage (OE pin only)	V _{DD} = 3.3V, 2.5V, 1.8V ±5%	GND - 0.3	_	0.3 × V _{DD}	V

Table 9. LVDS DC Electrical Characteristics

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage	V _{DD} = 3.3V, 2.5V, 1.8V ±5%	0.30	0.44	0.60	
V _{OS} Output Offset Vol		V _{DD} = 3.3V ±5%	1.11	1.26	1.41	V
	Output Offset Voltage	V _{DD} = 2.5V ±5%	1.08	1.25	1.41	V
		V _{DD} = 1.8V ±5%	0.75	0.88	1.01	

Table 10. LVPECL DC Electrical Characteristics

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage	V _{DD} = 3.3V ±5%.	2.28	2.49	2.72	
		$V_{DD} = 2.5V \pm 5\%$.	1.52	1.69	1.87	
		$V_{DD} = 1.8V \pm 5\%$.	0.83	0.96	1.11	V
V _{OL}	Output Low Voltage	$V_{DD} = 3.3V \pm 5\%$.	1.68	1.84	2.01	V
		$V_{DD} = 2.5V \pm 5\%$.	0.92	1.04	1.17	
		$V_{DD} = 1.8V \pm 5\%$.	0.19	0.30	0.42	

Table 11. HCSL DC Electrical Characteristics

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage	V _{DD} = 3.3V ±5%.	0.78	0.92	1.07	
		V _{DD} = 2.5V ±5%.	0.74	0.88	1.03	W
		V _{DD} = 1.8V ±5%.	0.67	0.81	0.95	V
V _{OL}	Output Low Voltage	_	-0.06	0.07	0.20	

Table 12. CML DC Electrical Characteristics

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{OH}		V _{DD} = 3.3V ±5%.	3.09	3.26	3.43	
	Output High Voltage	V _{DD} = 2.5V ±5%.	2.33	2.46	2.59	V
		$V_{DD} = 1.8V \pm 5\%$.	1.66	1.76	1.85	
		$V_{DD} = 3.3V \pm 5\%$.	2.70	2.85	3.00	
V_{OL}	Output Low Voltage	V _{DD} = 2.5V ±5%.	1.95	2.06	2.17	V
		V _{DD} = 1.8V ±5%.	1.30	1.37	1.45	

Table 13. DC Electrical Characteristics - Leakage Current

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C, typical at 156.25MHz.

Symbol	Parameter	Input	Conditions	Minimum	Typical	Maximum	Units
	OE	-5	0.81	5			
I _{IH}	Input Leakage High	SCLK	SCLK V _{DD} = 3.3V ±5%.	-5	1.36	5	μA
		SDATA		-5	1.44	5	
		OE		-20	-17.44	-14	
I _{IL}	Input Leakage Low	SCLK	$V_{DD} = 3.3V \pm 5\%$.	-37	-33.49	-30	μA
		SDATA		-20	-17.02	-14	

AC Electrical Characteristics

Notes for all AC Electrical Characteristics tables:

- 1. A pull-up resistor from $V_{\mbox{\scriptsize DD}}$ to OE enables output when pin 1 is left open.
- 2. Installation should include a $0.01\mu F$ bypass capacitor placed between V_{DD} and GND to minimize power supply line noise.

Table 14. 3.3V AC Electrical Characteristics

 V_{DD} = 3.3V ±5%, T_A = -40°C to +85°C, -40°C to +105°C.

Symbol	Parameter	Test Condition	Minimum	Typical	Maximum	Units
F	Output Fraguanay Banga	LVDS, LVPECL, CML.	15	_	2100	MHz
F	Output Frequency Range	HCSL.	15	_	725	IVITZ
	Frequency Stability	Temperature = -40°C to +85°C.	_	_	±25	ppm
	Frequency Stability	Temperature = -40°C to +105°C.	_	_	±50	ppm
	Frequency Tolerance (25°C)	Temperature = 25°C.	-15	±10	-15	ppm
	Aging (1st year)	T _A = 25°C.	_	_	±3	ppm
	Aging (10 years)	T _A = 25°C.	_	_	±10	ppm

Table 14. 3.3V AC Electrical Characteristics (Cont.)

 V_{DD} = 3.3V ±5%, T_A = -40°C to +85°C, -40°C to +105°C.

Symbol	Parameter	Test Co	ondition	Minimum	Typical	Maximum	Units
		LVDS.	Differential.	_	100	_	
	Output Load	LVPECL.	V _{DD} - 2.0V.	_	50	_	Ω
		HCSL.	To GND.	_	50	_	
T _{ST}	Start-up Time	Output valid time after \ specified level.	Output valid time after V _{DD} meets minimum specified level.		5	_	ms
		LVDS.		_	299	400	
	LVPECL. 20% – 80%,	20% – 80%,	_	287	400	20	
t _R	Output Rise Time	HCSL.	156.25MHz	_	306	400	ps
		CML		_	301	400	
		LVDS.		_	279	400	
	Output Fall Time	LVPECL.	80% – 20%,	_	274	400	ms ps ps
t _F	Output Fall Time	HCSL.	156.25MHz	_	284	400	ρs
		CML		_	279	400	
		LVDS.	156.25MHz	45	_	55	
O _{DC}	Output Cleak Duty Cyala	LVPECL.	156.25MHz	45	_	55	0/
	Output Clock Duty Cycle	HCSL.	156.25MHz	45	_	55	70
		CML	156.25MHz	45	_	55	
T _{OE}	Output Enable/Disable Time	_	_	_	1	_	ms

Table 15. 2.5V AC Electrical Characteristics

 V_{DD} = 2.5V ±5%, T_A = -40°C to +85°C, -40°C to +105°C.

Symbol	Parameter	Test C	ondition	Minimum	Typical	Maximum	Units
F	Output Frequency Range	LVDS, LVPECL, CML.		15	_	2100	MHz
Г	Output Frequency Range	HCSL.		15	_	725	IVITZ
	Fraguency Ctability	Temperature = -40°C to	o +85°C.	_	_	±25	ppm
	Frequency Stability	Temperature = -40°C to	o +105°C.	_	_	±50	ppm
	Frequency Tolerance (25°C)	Temperature = 25°C.		-15	±10	+15	ppm
	Aging (1st year)	T _A = 25°C.		_	_	±3	
	Aging (10 years)	T _A = 25°C.		_	_	±10	
		LVDS.	Differential.	_	100	_	
	Output Load	LVPECL.	V _{DD} - 2.0V. To GND.	_	50	_	Ω
		HCSL.		_	50	_	
T _{ST}	Start-up Time	Output valid time after V _{DD} meets minimum specified level.		_	5	_	ms
	R Output Rise Time	LVDS.		_	303	400	
		LVPECL.	20% – 80%,	_	292	400	no
t_R		HCSL.	156.25MHz	_	310	400	ps
		CML		_	304	400	
		LVDS.		_	282	400	
	Output Fall Time	LVPECL.	80% – 20%,	_	278	400	
t _F	Output Fall Time	HCSL.	156.25MHz	_	288	400	ps
		CML		_	281	400	
		LVDS.	156.25MHz	45	_	55	
0	Output Clock Duty Cycle	LVPECL.	156.25MHz	45	_	55	0/
O _{DC}	Output Clock Duty Cycle	HCSL.	156.25MHz	45	_	55	- %
		CML	156.25MHz	45	_	55	
T _{OE}	Output Enable/Disable Time	_	_	_	1	_	ms

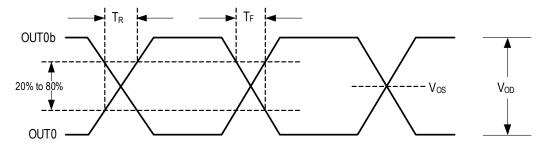
Table 16. 1.8V AC Electrical Characteristics

 V_{DD} = 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C.

Symbol	Parameter	Test	Condition	Minimum	Typical	Maximum	Units
F	Output Frequency Range	LVDS, LVPECL, CMI		15	_	2100	MHz
Г	Output Frequency Range	HCSL.			_	725	IVITZ
	Fraguency Stability	Temperature = -40°C	to +85°C.	_	_	±25	ppm
	Frequency Stability	Temperature = -40°C	to +105°C.	_	_	±50	ppm
	Frequency Tolerance (25°C)	Temperature = 25°C		-15	±10	+15	ppm
	Aging (1st year)	T _A = 25°C.		_	_	±3	
	Aging (10 years)	T _A = 25°C.		_	_	±10	
	Outrot Land	LVDS.	Differential.	_	100	_	0
	Output Load	LVPECL, HCSL.	To GND.	_	50	_	Ω
T _{ST}	Start-up Time	Output valid time after V _{DD} meets minimum specified level.		_	5	_	ms
		LVDS.		_	311	450	ps
	Outset Diss Time	LVPECL.	20% – 80%,	_	312	450	
t_R	Output Rise Time	HCSL.	156.25MHz	_	316	450	
		CML		_	313	450	
		LVDS.		_	290	450	
	Output Fall Time	LVPECL.	80% – 20%,	_	297	450	ps
t _F	Output Fall Time	HCSL.	156.25MHz	_	294	450	
	CML	_	289	450			
		LVDS.	156.25MHz	45	_	55	
0	Output Clock Duty Cycle	LVPECL.	156.25MHz	45	_	55	%
O_{DC}	Output Clock Duty Cycle	HCSL.	156.25MHz	45	_	55	70
		CML	156.25MHz	45	_	55	
T _{OE}	Output Enable/Disable Time	_	_	_	1	_	ms

Table 17. Phase Jitter Characteristics

 V_{DD} = 3.3V, 2.5V, 1.8V ±5%, T_A = -40°C to +85°C, -40°C to +105°C.


Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
		250.00MHz	_	115	_	fsec
f	f _{JITTER} Phase Jitter (12kHz – 20MHz)	312.50MHz	_	125	_	fsec
JITTER		625.00MHz	_	123	_	fsec
		644.53MHz	_	120	_	fsec

Output Waveforms

Figure 2. LVDS Output Waveforms

Output Levels / Rise Time / Fall Time Measurements

Oscillator Symmetry

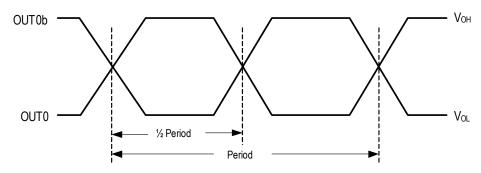
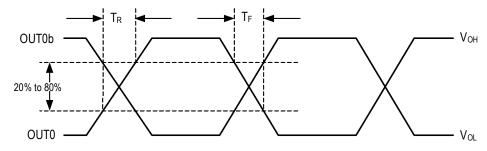



Figure 3. LVPECL Output Waveforms

Rise Time/Fall Time Measurements

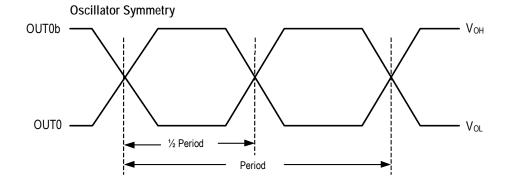
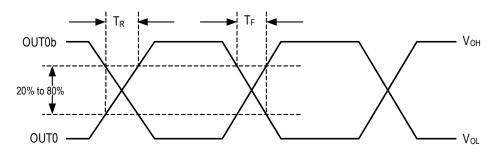



Figure 4. HCSL Output Waveforms

Rise Time/Fall Time Measurements

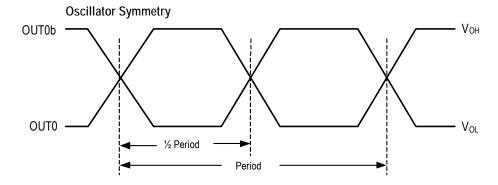
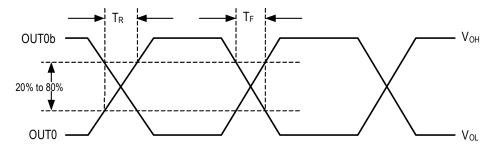
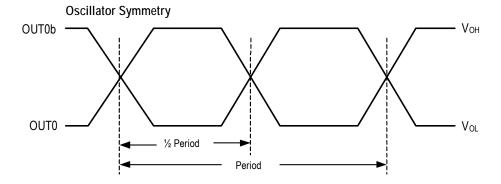




Figure 5. CML Output Waveforms

Rise Time/Fall Time Measurements

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential output is a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figure 6 and Figure 7 show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 6. 3.3V LVPECL Output Termination

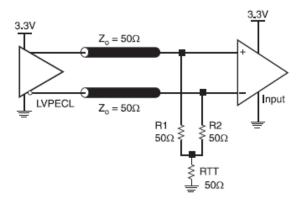
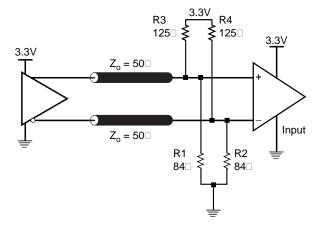



Figure 7. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 8 and Figure 9 show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CCO} - 2V$. For $V_{CCO} = 2.5V$, the $V_{CCO} - 2V$ is very close to ground level. The R3 in Figure 9 can be eliminated and the termination is shown in Figure 10.

Figure 8. 2.5V LVPECL Driver Termination Example

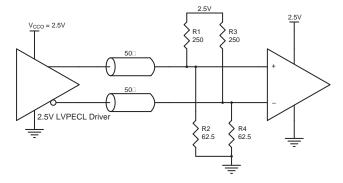


Figure 9. 2.5V LVPECL Driver Termination Example

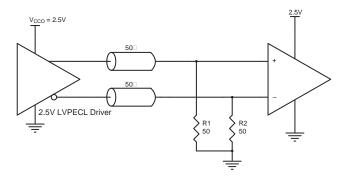
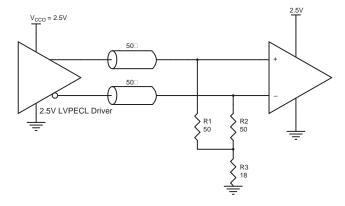



Figure 10. 2.5V LVPECL Driver Termination Example

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90 Ω and 132 Ω . The actual value should be selected to match the differential impedance (Z_0) of your transmission line. A typical point-to-point LVDS design uses a 100 Ω parallel resistor at the receiver and a 100 Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source.

The standard termination schematic as shown in Figure 11 can be used with either type of output structure. Figure 12, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

Figure 11. Standard LVDS Termination

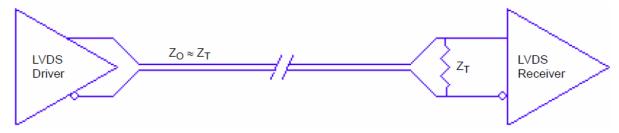
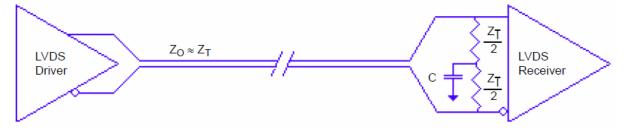
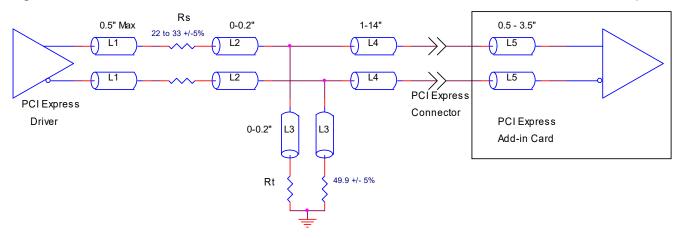
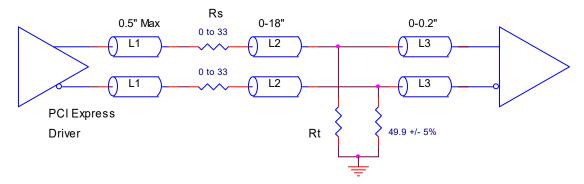



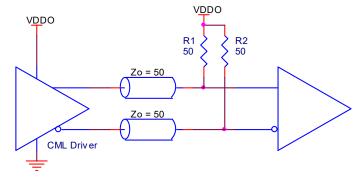
Figure 12. Optional LVDS Termination

Recommended Termination for HCSL Outputs

Figure 13 is the recommended source termination for applications where the driver and receiver will be on a separate PCBs. This termination is the standard for PCI ExpressTM and HCSL output types. All traces should be 50Ω impedance single-ended or 100Ω differential. Figure 14 is the recommended termination for applications where a point-to-point connection can be used. A point-to-point connection contains both the driver and the receiver on the same PCB. With a matched termination at the receiver, transmission-line reflections will be minimized. In addition, a series resistor (Rs) at the driver offers flexibility and can help dampen unwanted reflections. The optional resistor can range from 0Ω to 33Ω . All traces should be 50Ω impedance single-ended or 100Ω differential.

Figure 13. Recommended Source Termination (where the driver and receiver will be on separate PCBs)


Figure 14. Recommended Termination (where a point-to-point connection can be used)

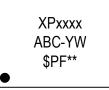
CML Termination

Figure 15 shows an example of the termination for a CML driver. In this example, the transmission line characteristic impedance is 50Ω . The R1 and R2 50Ω matched load terminations are pulled up to VDDO. The matched loads are located close to the receiver.

Figure 15. CML Termination Example

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.


www.idt.com/document/psc/8-col-package-outline-drawing-70-x-50-x-17-mm-body-254mm-pitch-jd8d1

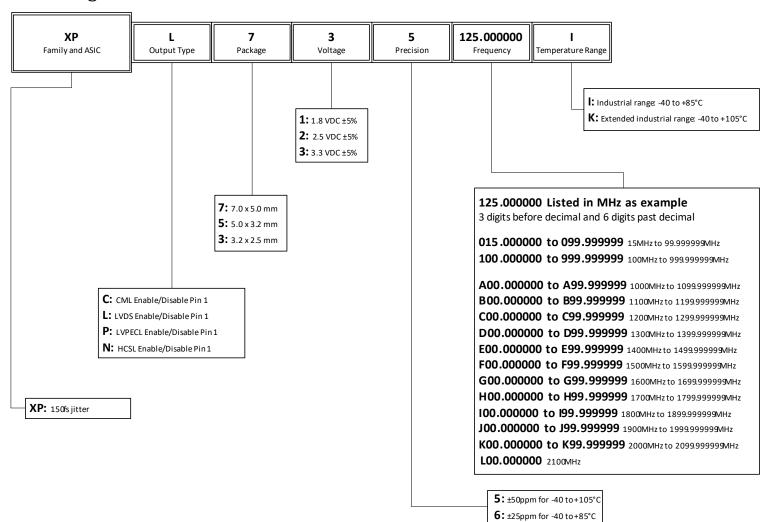
www.idt.com/document/psc/clcc-8-package-outline-drawing-50-x-32-x-11-mm-body-127mm-pitch-jx8d1

www.idt.com/document/psc/8-col-package-outline-drawing-32-x-25-x-095-mm-body-jsw8d1

Marking Diagrams

Figure 16. Marking Configuration for the 7.0 \times 5.0 mm and 5.0 \times 3.2 mm Packages

- Line 1 denotes the truncated part number (e.g., "xxxx" is L726, P516).
- Line 2 indicates the following:
 - "ABC" denotes the truncated first three digits of the frequency code (e.g., 156).
 - "-YW" denotes the last digit of the year and week when the part was assembled.
- Line 3 indicates the following:
 - "\$" denotes the mark location.
 - "PF" is where "P" denotes the package coding number and "F" denotes the frequency coding number.
 - "**" denotes the sequential lot number.


Figure 17. Marking Configuration for the 3.2×2.5 mm Package

- Line 1 indicates the following:
 - "ABC" denotes the truncated first three digits of the frequency code (e.g., 156).
 - "-YW" denotes the last digit of the year and week when the part was assembled.
- Line 2 indicates the following:
 - "\$" denotes the mark location.
 - "PF" is where "P" denotes the package coding number and "F" denotes the frequency coding number.
 - "**" denotes the sequential lot number.

Ordering Information

Revision History

Revision Date Description of Change			
July 22, 2019 Updated LVDS Differential Output Voltage minimum from 0.28 to 0.30V.			
May 22, 2019 Changed 3.3V, 2.5V, and 1.8V LVPECL current consumption conditions value from 670MHz to 2.1GHz.			
April 1, 2019	Initial release.		

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
 and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
 product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
 these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.IDT.com/go/support