MSKSEMI 美森科

ESD

TSS

MOV

GDT

 PLED

MS60N03

Product specification

ProductSummary

VDS

IDRDS(ON)(at VGS=10V)

• RDS(ON)(at VGS=4.5V)

100% UIS Tested

● 100% ∇V_{DS} Tested

30V

60A

< 9.0 mohm

<11.0mohm

General Features

- Trench Power LV MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Application

- High current load applications
- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply

Reference News

PACKAGE OUTLINE	N-Channel MOSFET	Marking
TO-252	(2) D (3) S	MSKSEMI 60N03 MS**

Absolute Maximum Ratings (TA=25 ℃unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-source Voltage		Vos	30	V	
Gate-source Voltage		Vgs	±20	V	
	Tc=25℃		60	А	
Drain Current	T _C =100°C	lo	35		
Pulsed Drain Current ^A		lьм	150	А	
	Tc=25℃		34	W	
Total Power Dissipation	Tc=100°C	P _D	17	W	
Single Pulse Avalanche Energy ^B		Eas	80	mJ	
Thermal Resistance Junction-to-Case ^C		Rejc	4.4	°C/W	
Junction and Storage Temperature Range		TJ,TsTG	- 55∼+175	${\mathbb C}$	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Static Parameter	neter	Min	Conditions	in Тур	Max	Units
Zero Gate Voltage Drain Current I _{DSS}	eter					
Zero Gate Voltage Drain Current Ioss Vos=30V,Vos=0V T_J=55°C 5	akdown Voltage	30	V _{GS} = 0V, I _D =250μA	0		V
T_j=55°C 5 Gate-Body Leakage Current I _{GSS} V _{GS} = ±20V, V _{DS} =0V ±100 Gate Threshold Voltage V _{GS(th)} V _{DS} = V _{GS} , I _D = 250µA 1.0 1.5 2.5 V _{GS} = 10V, I _D = 15A 6.5 9.0 Static Drain-Source On-Resistance V _{SD} V _{GS} = 4.5V, I _D = 15A 8.6 11.0 Diode Forward Voltage V _{SD} I _S = 15A,V _{GS} =0V 0.85 1.2 Maximum Body-Diode Continuous Current I _S 50 Dynamic Parameters					1	
Sate Threshold Voltage V _{GS(th)} V _{DS} = V _{GS} , I _D =250μA 1.0 1.5 2.5	e Drain Current				5	μA
Vos	ge Current		$V_{GS}=\pm20V,V_{DS}=0V$		±100	nA
Static Drain-Source On-Resistance RDS(ON) VGS= 4.5V, ID=15A 8.6 11.0 Diode Forward Voltage VSD Is=15A,VGS=0V 0.85 1.2 Maximum Body-Diode Continuous Current Is 50 Dynamic Parameters Input Capacitance Ciss 920 Output Capacitance Coss VDS=15V,VGS=0V,F=1MHZ 198 Reverse Transfer Capacitance Crss 114 Switching Parameters Total Gate Charge Qg 28 Gate-Source Charge Qgs VGS=10V,VDS=15V,ID=50A 7 Gate-Drain Charge Qgd 5 Reverse Recovery Charge Qr 25	oltage	1.0	V _{DS} = V _{GS} , I _D =250μA	.0 1.5	2.5	V
On-Resistance V _{GS} = 4.5V, I _D =15A 8.6 11.0 Diode Forward Voltage V _{SD} I _S =15A,V _{GS} =0V 0.85 1.2 Maximum Body-Diode Continuous Current I _S 50 Dynamic Parameters Input Capacitance C _{iss} 920 Output Capacitance C _{oss} V _{DS} =15V,V _{GS} =0V,f=1MHZ Reverse Transfer Capacitance C _{rss} 114 Switching Parameters Total Gate Charge Q _g 28 Gate-Source Charge Q _{gs} V _{GS} =10V,V _{DS} =15V,I _D =50A 7 Gate-Drain Charge Q _{gd} 5 Reverse Recovery Charge Q _{rr} 25			V _{GS} = 10V, I _D =15A	6.5	9.0	mΩ
Maximum Body-Diode Continuous Current Is 50 Dynamic Parameters Input Capacitance Ciss 920 Output Capacitance Coss VDS=15V,VGS=0V,f=1MHZ Reverse Transfer Capacitance Crss 114 Switching Parameters Total Gate Charge Qg 28 Gate-Source Charge Qgs VGS=10V,VDS=15V,ID=50A 7 Gate-Drain Charge Qgd 5 Reverse Recovery Charge Qnr 25	ce		V _{GS} = 4.5V, I _D =15A	8.6	11.0	
Current Dynamic Parameters Input Capacitance C _{iss} 920 Output Capacitance C _{oss} V _{DS} =15V,V _{GS} =0V,f=1MHZ Reverse Transfer Capacitance C _{rss} 114 Switching Parameters Total Gate Charge Q _g 28 Gate-Source Charge Q _{gs} V _{GS} =10V,V _{DS} =15V,I _D =50A 7 Gate-Drain Charge Q _{gd} 5 Reverse Recovery Charge Q _{tr} 25	oltage		ls=15A,V _{GS} =0V	0.85	1.2	V
Input Capacitance	Diode Continuous				50	Α
Output Capacitance Coss VDS=15V,VGS=0V,f=1MHZ 198 Reverse Transfer Capacitance Crss 114 Switching Parameters Total Gate Charge Qg 28 Gate-Source Charge Qgs VGS=10V,VDS=15V,ID=50A 7 Gate-Drain Charge Qgd 5 Reverse Recovery Charge Qrr 25	ameters					
Reverse Transfer Capacitance Crss 114	e			920		
Switching Parameters Total Gate Charge Qg 28 Gate-Source Charge Qgs VGS=10V,VDS=15V,ID=50A 7 Gate-Drain Charge Qgd 5 Reverse Recovery Charge Qrr 25	ce		V _{DS} =15V,V _{GS} =0V,f=1MHZ	198		pF
Total Gate Charge Qg 28 Gate-Source Charge Qgs VGS=10V,VDS=15V,ID=50A 7 Gate-Drain Charge Qgd 5 Reverse Recovery Charge Qrr 25	Capacitance			114		
	rameters					
Gate-Drain Charge Q _{gd} 5 Reverse Recovery Charge Q _{rr} 25	е			28		
Reverse Recovery Charge Q _{rr} 25	rge		V _{GS} =10V,V _{DS} =15V,I _D =50A	7		
	je			5		nC
	ry Charge		1 004 1/1 4004/	25		
Reverse Recovery Time t _{rr} 26	ry Time		l _F =20A, di/dt=100A/us	26		
Turn-on Delay Time t _{D(on)} 8	me			8		
Turn-on Rise Time t _r 15	е			15		ns
Turn-off Delay Time $t_{D(off)}$ $V_{GS}=10V, V_{DD}=20V,$ $I_{D}=2A, R_{L}=1\Omega$ 27	me		$I_D=2A,R_L=1\Omega$	27		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	7		

L 1. Pulse Test: Pulse Width≤300us,Duty cycle ≤2%.

^{2.}Tj=25°C, VDD=20V, VG=10V, L=0.5mH, Rg=25 $\,\Omega$

^{3.} R_{BUA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BUC} is guaranteed by design, while R_{BUA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2oz copper.

TypicalPerformanceCharacteristics

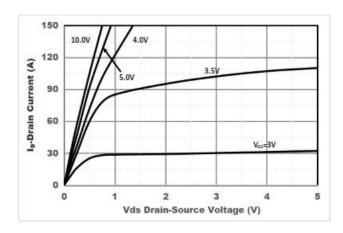


Figure 1. Output Characteristics

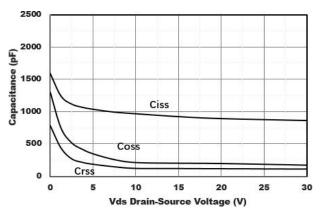


Figure 3. Capacitance Characteristics

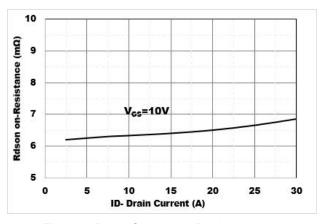


Figure 5. Drain-Source on Resistance

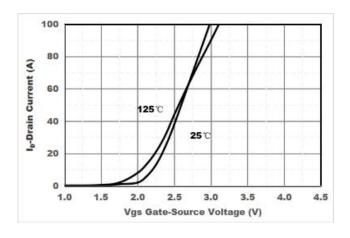


Figure 2. Transfer Characteristics

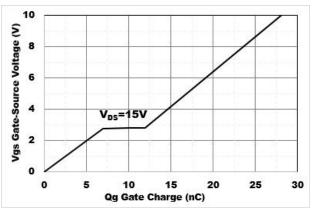


Figure4. Gate Charge

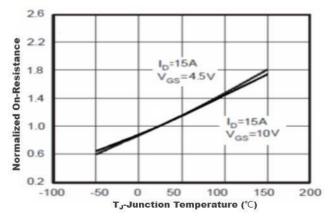


Figure6. Drain-Source on Resistance

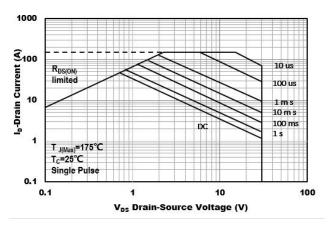
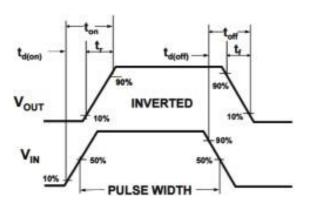
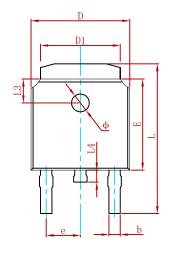
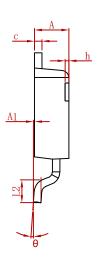
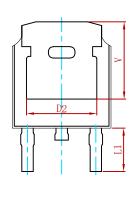
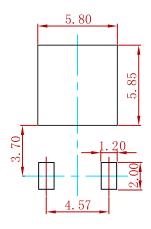


Figure 7. Safe Operation Area


Figure8. Switching wave

PACKAGE MECHANICAL DATA



Cumbal	Dimensions In Millimeters		Dimension	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.635	0.770	0.025	0.030	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830 REF.		0.190 REF.		
Е	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.712	10.312	0.382	0.406	
L1	2.900 REF.		0.114 REF.		
L2	1.400	1.700	0.055	0.067	
L3	1.600 REF.		0.063 REF.		
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.250	REF.	0.207	REF.	

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.

REELSPECIFICATION

P/N	PKG	QTY
MS60N03	TO-252	2500

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents—or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.