MSKSEMI 美森科

TVC

TCC

MOV

GDT

PIFF

3N10-MS

Product specification

Description

The 3N10-MS is the high cell density trenched N-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications.

The 3N10-MS meet the RoHS and Green Product requirement with full function reliability approved.

Product Summary

BVDSS	RDSON	ID
100V	90mΩ	3A

- Green Device Available
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology

Reference News

PACKAGE OUTLINE	PIN Configuration	Marking
SOT-23	G	3N10

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	100	V
Vgs	Gate-Source Voltage	±20	V
l o@Ta=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	3.0	Α
l o@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.2	Α
Ірм	Pulsed Drain Current ²	12	Α
P o@T a=25°C	Total Power Dissipation ³	1	W
Тѕтс	Storage Temperature Range	-55 to 150	${\mathbb C}$
TJ	Operating Junction Temperature Range	-55 to 150	${\mathbb C}$

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Rеja	Thermal Resistance Junction-ambient ¹		74	°C/W
Rыс	Thermal Resistance Junction-Case ¹		80	°C/W

Electrical Characteristics (TJ=25℃ unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Characteristic							
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	100	-	-	V	
Inss	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V,	-	-	1.0	μA	
Igss	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA	
On Charac	cteristics						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS},\ I_{D}=250\mu A$	1.0	1.5	2.5	V	
	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =3A	-	90	110	mΩ	
R _{DS(on)}	Note2	V _{GS} =4.5V, I _D =2A	-	120	150	mΩ	
Dynamic (Characteristics						
Ciss	Input Capacitance		-	765	-	pF	
Coss	Output Capacitance	V_{DS} =25V, V_{GS} =0V, f= 1.0MHz	-	38	-	pF	
Crss	Reverse Transfer Capacitance	I= I.UIVIMZ	-	33	-	pF	
Qg	Total Gate Charge		-	18	-	nC	
Q _{gs}	Gate-Source Charge	V _{DS} =50V, I _D =2A, V _{GS} =10V	-	2.5	-	nC	
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	-	4	-	nC	
Switching	Characteristics						
t _{d(on)}	Turn-on Delay Time		-	7.5	-	ns	
t _r	Turn-on Rise Time	V _{DS} =50V, I _D =3A,	-	6	-	ns	
t _{d(off)}	Turn-off Delay Time	$R_G=1.8\Omega$, $V_{GS}=10V$	-	21	-	ns	
t _f	Turn-off Fall Time		-	9	-	ns	
Drain-Sou	rce Diode Characteristics and Ma	ximum Ratings					
ls	Maximum Continuous Drain to Source Diode Forward Current		-	-	5	Α	
Ism	Maximum Pulsed Drain to Source Diode Forward Current		-	-	12	Α	
Vsd	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =3A	-	-	1.2	V	
trr	Body Diode Reverse Recovery Time		-	21	-	ns	
Qrr	Body Diode Reverse Recovery Charge	l⊧=3A, dl/dt=100A/μs	-	22	-	nC	

Notes:

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature
- 2. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Characterisitics

Figure1: Output Characteristics

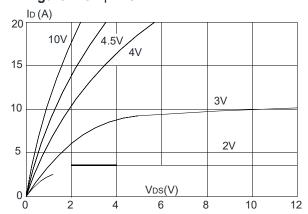


Figure 3:On-resistance vs. Drain Current

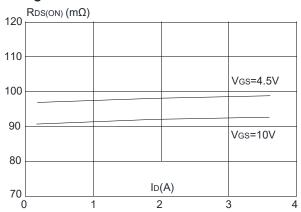


Figure 5: Gate Charge Characteristics

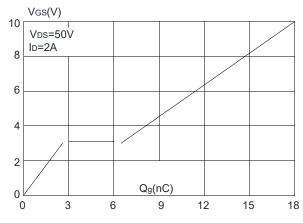


Figure 2: Typical Transfer Characteristics

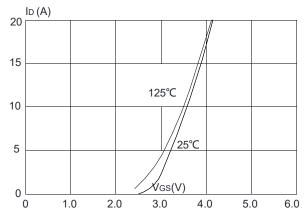


Figure 4: Body Diode Characteristics

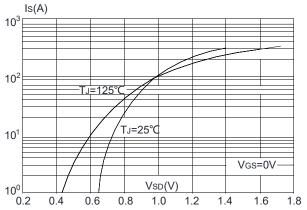
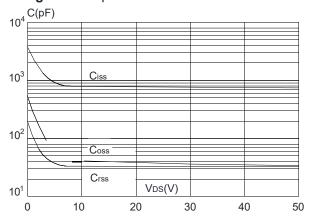
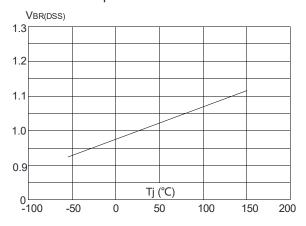
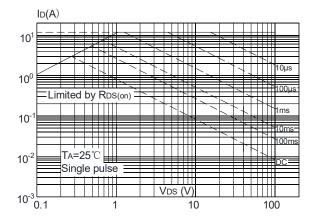
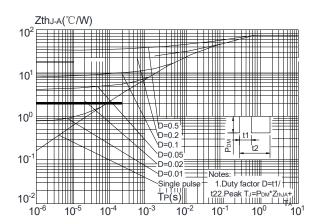
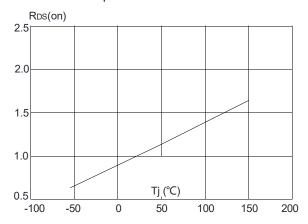



Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature


Figure 9: Maximum Safe Operating Area

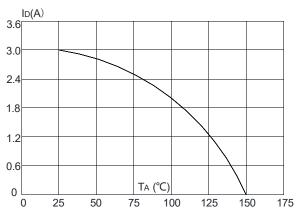
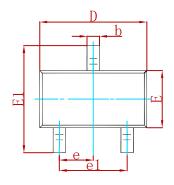
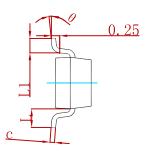
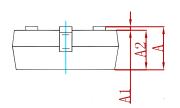

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

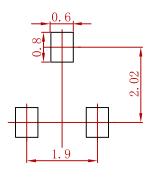
Figure 8: Normalized on Resistance vs. Junction Temperature




Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature



PACKAGE MECHANICAL DATA



Comple el	Dimensions In Millimeters		Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
e	0.950 TYP		0.037 TYP		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF		0.550 REF 0.022 REF		REF
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Suggested Pad Layout

- 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

REELSPECIFICATION

P/N	PKG	QTY
3N10-MS	SOT-23	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.