MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

PIFD

MNCP380HSN05AAT1G

Product specification

MNCP380HSN05AAT1G

GENERAL DESCRIPTION

The MNCP380HSN05AAT1G is a cost-effective, low voltage, single P-MOSFET load switch, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. This switch operates with inputs ranging from 2.4V to 5.5V, making it ideal for both 3V and 5V systems. The switch's low $R_{DS(ON)}$, $80m\Omega$, meets USB voltage drop requirements.

The MNCP380HSN05AAT1G is also protected from thermal overload which limits power dissipation and junction temperatures. Current limit threshold is programmed with a resistor from SET to ground.

The quiescent supply current is typically 15μA at switch on state. At switch off state the supply current decreases to less than 1μA. The MNCP380HSN05AAT1G is available in SOT23-5 package.

Features

- Compliant to USB Specifications
- Integrated 80mΩ Power MOSFET
- Low Supply Current
 15µA Typical at Switch On State
 1µA Typical at Switch Off State
- Wide Input Voltage Range:2.4V to 5.5V

- Fast Transient Response:<2µs
- Reverse Current Flow Blocking
- Thermal Shutdown Protection
- Hot Plug-In Application (Soft-Start)
- Available in a 5-Pin SOT23-5 Package

Applications

- USB Bus/Self Powered Hubs
- USB Peripherals
- Notebook Computers

- Battery-Charger Circuits
- Personal Communication Devices

Reference News

SOT-23-5	Pin Configuration	Marking
III EIL	TOP VIEW VOUT 1 GND 2 SET 3 4 EN 5-LEAD PLASTIC SOT-23 T _{JMAX} = 150°C, θ _{JA} = 250°C/W, θ _{JC} = 130°C/W	D00HA* ●

Pin Description

Pin Name	Pin Number	Description	
VOUT	1	Power-switch output	
GND	2	Ground connection; connect externally to Power PAD	
SET	3	External resistor used to set current-limit threshold	
EN	4	Enable input, logic high turns on power switch	
VINI E		Input voltage; connect a 10uF or greater ceramic capacitor from VINto GND as close	
VIN	5	tothe IC as possible	

TYPICAL APPLICATION

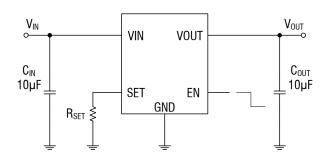
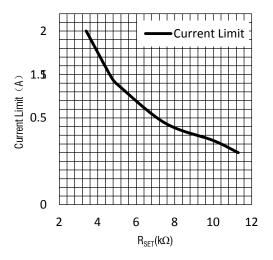



Figure 1. Basic Application Circuit

ABSOLUTEMAXIMUMRATINGS (Note 1)

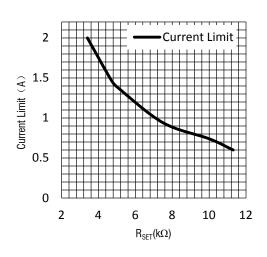
Input Supply Voltage	0.3V to 7V
EN Voltages	0.3Vto (VIN+0.3V)
SET Voltage	0.3V to (VIN+0.3V)
Power Dissipation	/0.4W
Thermal Resistanceθυα	130°C/W
Thermal Resistanceθ	250°C/W

Junction Temperature(Note2)	150°C
Operating Temperature Range	40°Cto 85°C
Lead Temperature(Soldering, 10s)	300°C
Storage Temperature Range	65°C to 150°C
ESD HBM(Human Body Mode)	2kV
ESD MM(Machine Mode)	200V

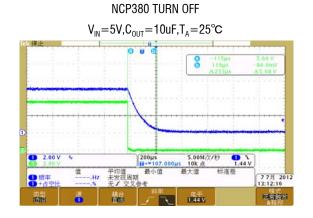
ELECTRICAL CHARACTERISTICS (Note 3)

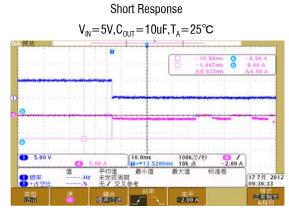
(V_{IN} =5V, T_A =-40°C to 85°C, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage I	Range	Vin		2.4		5.5	V
Switch On Resistance		RDS(ON)	VIN=5V		80	100	mΩ
			VIN=3V		90	110	mΩ
Operation Qui	escent Current	IQ	V _{IN} =5V,EN=Active, No load		15	25	μΑ
Off Supply Cu	rrent	IQ(OFF)	V _{IN} =5.5V,EN=Inactive			1	μA
Off Switch Cur	rent	IQ(SW_OFF)	V _{IN} =5.5V,EN=Inactive			1	μA
Under-voltage	Lockout	Vuvlo	V _{IN} Increasing		1.8	2.4	V
Under-voltage	Lockout Hysteresis	ΔVυνιο	V _{IN} decreasing		0.1		V
Current Limit 7	Threshold	Ішм	RSET = $6.8k\Omega$		1		Α
EN	Logic-Low Voltage	VIL	Vin =2.5V to 5.5V			0.8	V
Threshold	Logic-High Voltage	ViH	V _{IN} =2.5V to 5.5V	2			V
Output Leaka	ge Current	ILEAK	EN=Inactive, R _{LOAD} =0Ω		0.5	10	μA
Current Limit F	Response Time	TRESP	V _{IN} =5V		1		μs
Thermal Shuto	down Protection	Tsp			150		°C
Thermal Shuto	down Hysteresis	ΔTsp			20		°C


Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.


Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) \times (250^{\circ}\text{C/W})$.


Note 3: 100% production test at 25°C. Specifications over the temperature range are guaranteed by design and characterization.



TYPICAL PERFORMANCE CHARACTERISTICS

FUNCTIONAL BLOCK DIAGRAM

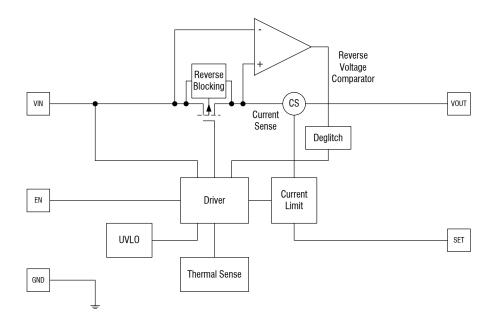


Figure 2. MNCP380HSN05AAT1G Block Diagram

APPLICATIONS INFORMATION

The MNCP380HSN05AAT1G is a single channel c urrent limiting load switch that is intended to pr otect against short circuit and over current event s by current limiting to a preset level. This device i s optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. The s witch's low $R_{\text{DS(ON)}},\ 80\text{m}\Omega$, meets USB volt age drop requirements; and a flag output is av ailable to indicate fault conditions to the lo cal USB controller.

Input and Output

 V_{IN} (input) is the power source connection to the internal circuitry and the source of the MOSFET. V_{OUT} (output) is the drain of the MOSFET. In a typical application, current flows through the switch from V_{IN} to V_{OUT} toward the load. If V_{OUT} is greater than V_{IN} , current will flow from V_{OUT} to V_{IN} since the MOSFET is bidirectional when on. The MNCP380HSN05AAT1G 's reverse current block ing feature prevents current prevents current

to flow from V_{OUT} to V_{IN} when the device is disabled.

Soft Start for Hot Plug-In Applications

In order to eliminate the upstream voltage droop caused by the large inrush current during hot-plug events,the "soft-start" feature effectively isolates the power source from extremely large capacitive loads,satisfying the USB voltage droop requirements.

Input capacitor

The input capacitor C_N protects the power supply from current transients generated by the load attached to the MNCP380HSN05AAT1G. When a short circuit is suddenly applied to the output of the MNCP380HSN05AAT1G, a large current, limited only by the $R_{DS(ON)}$ of the MOSFET, will flow for less than 2 μ s before the current limit circuitry activates. In this event, a moderately sized CIN will dramatically reduce the voltage transient seen by the power

supply and by other circuitry upstream from the MNCP380HSN05AAT1G. The extremely fast short -circuit response time of the MNCP380HSN05AA T1G reduces the size requirement for C_{IN}. C_{IN} should be located as close to the device V_{IN} pin as practically possible. Ceramic, tantalum, or aluminum electrolytic capacitors are appropriate for C_{IN}. There is no specific capacitor ESR requirement for C_{IN}. However, for higher current operation, ceramic capacitors are recommended for C_{IN} due to their inherent capability over tantalum capacitors to withst and input current surges from low impedance sources such as batteries in portable devices.

Output capacitor

A low-ESR 150μ F aluminum electrolytic or tantalum between V_{OUT} and GND is strongly recommended to meet the 330mV maximum droop requirement in the hub V_{BUS} (Per USB 2.0, output ports must have a minimum 120μ F of low-ESR bulk capacitance per hub). Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the downstream connector to reduce EMI and decouple voltage droop caused when downstream cables are hot-insertion transients. Ferrite beads in series with V_{RIIS} , the ground line and the 0.1μ F bypass capacitors at the power connector pins are recommended for EMI and ESD protection. The bypass capacitor itself should have a low dissipation factor to allow decoupling at higher frequencies.

Thermal Considerations

Since the MNCP380HSN05AAT1G has internal current limit and over temperature protection, junction temperature is rarely a concern. However, if the application requires large currents in a hot environment, it is possible that temperature, rather than current limit, will be the dominant regulating condition. In these applications, the maximum current available without risk of an over-temperature condition must be calculated. Power dissipation can be

calculated based on the output current and the $R_{\text{DS(ON)}}$ of switch as below.

$$P_{\text{D}} = R_{\text{DS(ON)}} \times {I_{\text{OUT}}}^2$$

Although the devices are rated for 2A(max) of output current, but the application may limit the amount of output current based on the total power dissipation and the ambient temperature. The final operating junction temperature for any set of conditions can be estimated by the following thermal equation:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

Where $T_{\text{J(MAX)}}$ is the maximum operation junction temperature 150°C, T_{A} is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. The junction to ambient thermal resistance θ_{JA} is layout dependent. For S0T23-5 and TS0T23-5 packages, the thermal resistance θ_{JA} is 250°C/W. The maximum power dissipation at $T_{\text{A}}=25$ °C is 0.4W for S0T23-5 and TS0T23-5 Package.

Current limit threshold Setting

Current limit threshold is programmed with a resistor from SET to ground marked as R_{SET} . It can be estimated by the following equation:

$$I_{SET}(A) = \frac{6.8k\Omega}{R_{SET}(k\Omega)}$$

Such as the following table.

I _{SET} (mA)	$R_{SET}(k\Omega)$
600	11.3
800	8.45
1000	6.8
1500	4.53
2000	3.4
<u> </u>	

PCB Layout Recommendations

When laying out the printed circuit board, the following checking should be used to ensure proper operation of the MNCP380HSN05AAT1G. Check the following in your layout:

- Does the (+) plates of C_{IN} connect to VIN as closely as possible. This capacitor provides the AC current to the internal power MOSFETs.
- Keep the (-) plates of C_{IN} and C_{OUT} as close as possible

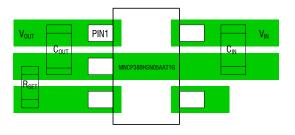
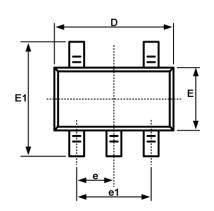
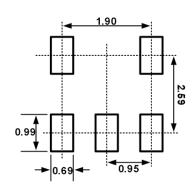
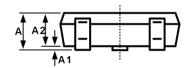
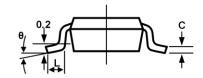




Figure 3. MNCP380HSN05AAT1G Suggested Layout




Package Outline SOT23-5

Recommended Land Pattern (Unit: mm)

Cymhal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	0.950BSC		7BSC	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
L1	0.60	0.600REF		4REF	
θ	0°	8°	0°	8°	

Order information

Orderable Device	Package	Packing Option
MNCP380HSN05AAT1G	SOT23-5	3000PCS

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.