

SL54123 高性能漏电保护IC

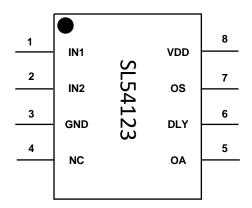
产品特性

- 芯片直接使用交流供电;
- 芯片直接驱动SCR (可控硅), 当有漏电信号 时, OS输出30mS高电平脉冲;
- 适用于检测 AC 型剩余电流漏电信号;
- 针对各种类型的剩余电流漏电信号的跳闸控制 精度高,一致性能好;
- 具有良好的抗电磁干扰(EMC)能力;
- 该产品适用于 110V 或 220V 供电系统;
- 具有较宽的温度范围 (Ta=-20~+85 ℃)。

产品描述

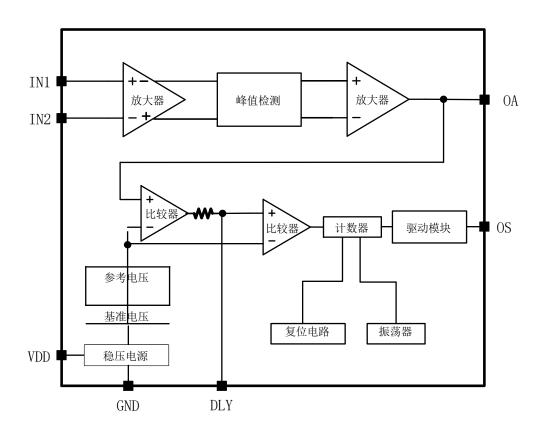
SL54123是一款高性能漏电保护器芯片,采用 CMOS工艺。芯片内部包含稳压电源、放大电路、 比较器电路、延时电路、计数器电路、跳闸控制电 路及跳闸驱动电路。芯片外围应用有脱扣线圈、压 敏电阻、稳压二级管、二级管、电阻、电容等元器

芯片适用于AC型剩余电流漏电检测,安全系数有 保证,尤其适用于一些用电要求高的场合 该系列产品采用标准SOP8的封装形式。


产品应用

- 智能家电
- 热水器
- 智能马桶
- 漏电保护开关
- 电源模块

引脚描述


SL54123 管脚排列图

序号	符号	引脚描述
1	IN1	信号放大器输入端1
2	IN2	信号放大器输入端2
3	GND	地
4	NC	无连接
5	OA	测试引脚
6	DLY	延时设置,外接电容
7	OS	输出控制可控硅
8	VDD	电源

芯片电路结构

极限参数

	参数		
参数名称	最小值	最大值	单位
工作温度	-20	+85	°C
存储温度	-55	+150	°C
管脚对地电压	-1.0	+7.5	V
工作电压		8.5	V
工作电流		8	mA

订货信息

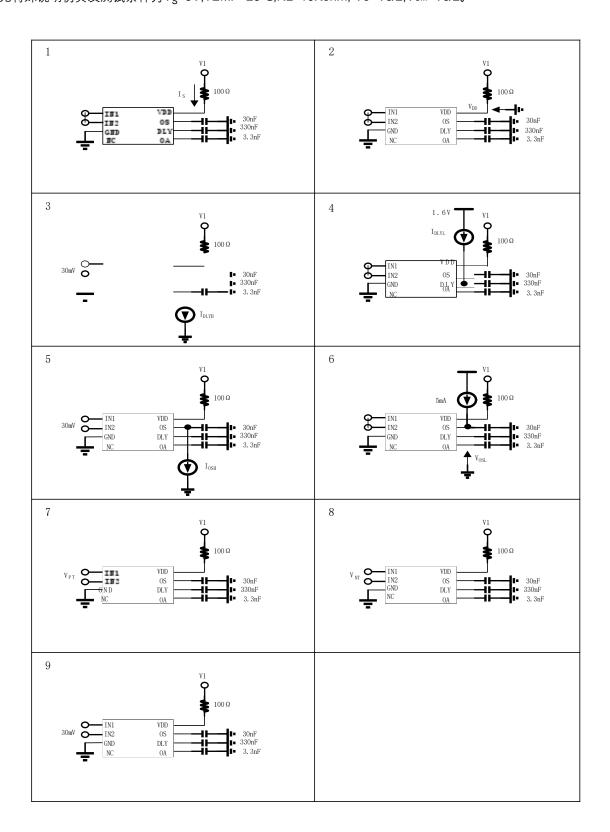
型号	封装形式	封装数量	封装代码	湿敏等级	工作温度
SL54123	8Pin SOP8	卷装 4000	PA1	3	-40 to 85°C

电气参数

(除特别说明, Temp=-20℃~ 85℃)

参数名称	参数符 号	测试条件	电路图	最小值	典型值 (注 1)	最大值	单位
电源电流	I _s	V1加 5.0V	1	150	250	1000	uA
电源电压	V _{DD}	V1加 5.5V	2	4.8	5.2	5.4	٧
DLY脚输出高电流	I _{DLYH}	V1=5.5V, V _{DLY} =0V V _{IN1} - V _{IN2} =30mV	3	35	50	70	uA
DLY脚输出低电流	I _{DLYL}	V1=5.5V,V _{DLY} =1.6VV _{IN1} - V _{IN2} =0mV	4		10		uA
OS脚输出高电流	I _{osh}	V1=5.5V, V _{IN1} -V _{IN2} =30mV	5	120	250	1000	uA
OS脚输出低电平	V _{OSL}	V1=5.5V, V _{IN1} -V _{IN2} =30mV	6			0.6	V
正动作电压	V _{PT}	V1=5.5V,V _{IN1} -V _{IN2} (注 2)	7	4.5		5.5	mV
负动作电压	V _{NT}	V1=5.5V,V _{IN2} -V _{IN1} (注 2)	8	4.5		5.5	mV
锁存时间	T _{ON}	V1=5.5V, V _{IN1} -V _{IN2} =30mV (注 3)	9	20	30	40	mS

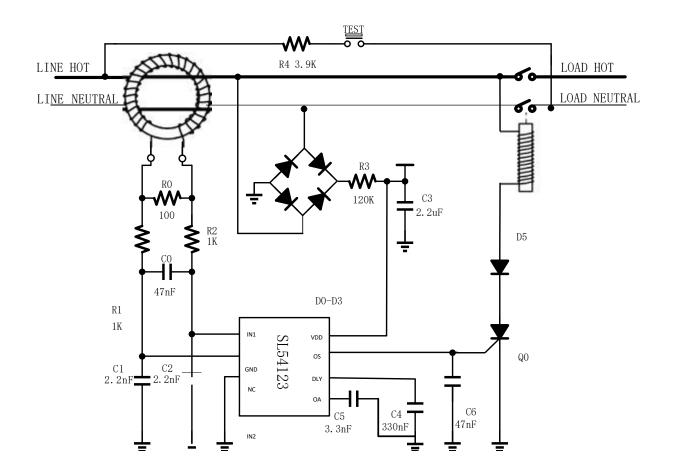
*注1: 典型数值的条件是Temp=25℃;


*注2: 当在VIN1和VIN2之间的直流电压VPT小于4.5mV时,OS管脚输出低电平。当VPT大于5.5mV时,OS管脚输出高电平;

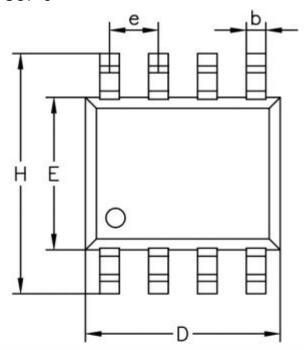
*注3: T_{ON}为OS输出高电平持续时间。

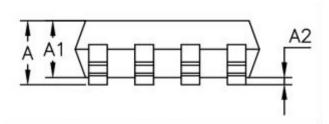
测试电路图

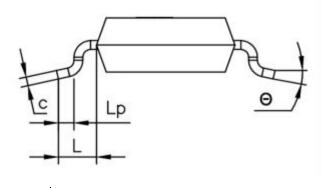
无特殊说明仿真及测试条件为V_S=5V,TEMP=25℃,RL=10Kohm, Vo=Vs/2,Vcм=Vs/2。



总体描述


SL54123 漏电保护器芯片用于检测火线和零线上的漏电信号。当有漏电信号产生时,零序电流互感器 (ZCT) 检测到漏电信号, 其次级线圈输出感应信号作为漏电保护器专用芯片的输入。当漏电流的 RMS 值 得大于漏电保护器规定的额定电流(rms)时,漏电保护器芯片输出管脚 OS 产生动作电平,该电平脉 冲 宽度为30ms左右,驱动外部可控硅导通。


应用原理图



SOP-8

	Dimensions				
Symbol	In Millimeters				
	Min	Max			
А	1.400	1.800			
A1	0.100	0.250			
A2	1.300	1.550			
b	0.330	0.510			
С	0.170	0.250			
D	4.780	5.000			
Е	3.800	4.000			
Н	5.800	6.300			
е	1.270	1.270			
L					
Lp	0.400	0.900			
θ	0°	8°			

免责声明

这些资料供您选择赛卓电子产品进行设计与研发的时候适用,请针对您的应用自行评估并选择合适的产品。赛卓电子执行可持续环保政策,这些资料如果有变更,恕不另外通知。