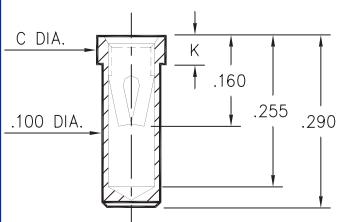
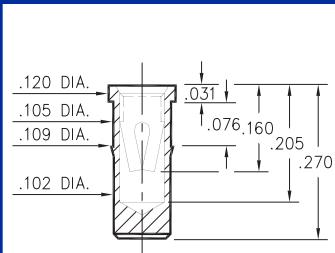


PIN RECEPTACLES
for .040" - .060" diameter pins (#03 contact)
and .059" - .063" diameter pins (#42 contact)


0433/8433

Basic Part Number	Length A
0433-0	.120
8433-0	.330

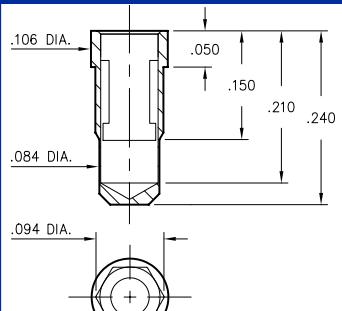
X433-0-15-XX-03-XX-04-0
Press-fit in .106 mounting hole


0435/0436

Basic Part Number	Dia. C	Length K
0435-0	.118	.050
0436-0	.125	.070


043X-0-15-XX-03-XX-10-0
Solder mount in .102 min. mounting hole

0434


0434-0-15-XX-03-XX-10-0
Press-fit in .106 mounting hole

4064

4064-0-18-XX-03-XX-10-0
Surface mount

0342

0342-0-15-XX-42-XX-10-0
Hex press-fit in .090±.002 plated thru hole

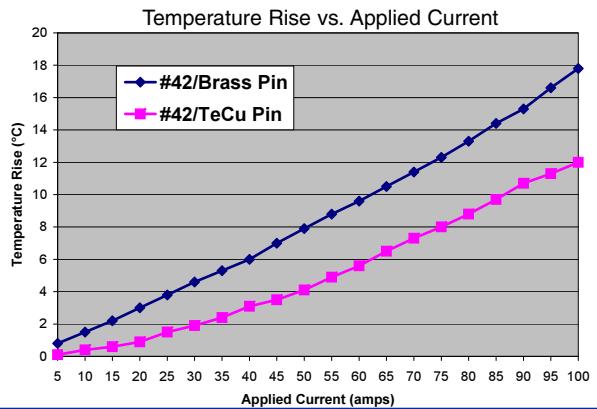
- 0342 receptacle uses Mill-Max's new #42 Power Contact. This receptacle will accept the $\varnothing 0.061 \pm .002$ power pins of $\frac{1}{4}$ brick DC/DC converters.
- #42 contact has a very low resistance path and is rated for currents up to 50A.
- #42 contact can be ordered in standard receptacles that use #03 contact; or it can be specified as the spring element inside custom made receptacles for power connector applications.

Mechanical Data #42 Contact:

Insertion/Extraction Force with a $\varnothing 0.061$ (nominal) pin:

First Cycle		2nd & Subsequent Cycles	
Insertion Force	Extraction Force	Insertion Force	Extraction Force
20N	6N	10N	6N

Compliance Test (the "spring back" characteristic of the contact to accept a .059 small pin after insertion of a .063 large pin):


Initial Cycle with .059 pin		Second Cycle with .063 pin		Third Cycle with .059 pin	
Ins. Force	Ext. Force	Ins. Force	Ext. Force	Ins. Force	Ext. Force
18N	6N	22N	7N	3N	2N

(Insertion/Extraction Forces are in Newtons and measured with polished steel gage pins having elliptical shaped tips)

Electrical/Thermal Data #42 Contact:

The electrical conductivity (resistance) of #42 contact depends on the conductivity of the mating pin. Tests were made with both $\varnothing 0.060$ Brass (26% IACS) and Tellurium Copper (93% IACS) pins. Temperature rise was measured with the receptacles mounted to simulate the heatsinking of a multilayer circuitboard.

Contact/Pin combination	Resistance	Insertion Loss per pin @ 50A
#42/ Brass	.322m Ω	.805W
#42/ TeCu	.213m Ω	.533W

SPECIFICATIONS

SHELL MATERIAL:
Brass Alloy 360, 1/2 Hard

CONTACT MATERIAL:
Beryllium Copper Alloy 172, HT

DIMENSION IN INCHES

TOLERANCES ON:
LENGTHS: $\pm .005$
DIAMETERS: $\pm .002$
ANGLES: $\pm 2^\circ$

ORDER CODE: XXXX - X - 15 - XX - XX - XX - XX - 0

BASIC PART # _____

SPECIFY SHELL FINISH: _____

01 200 μ " TIN/LEAD OVER NICKEL

15 10 μ " GOLD OVER NICKEL

SPECIFY CONTACT FINISH:

01 200 μ " TIN/LEAD OVER NICKEL

14 10 μ " GOLD OVER NICKEL

27 30 μ " GOLD OVER NICKEL

SELECT CONTACT

#03 (DATA ON PAGE 213) or #42 CONTACT