

Tuning Fork Quartz Crystals

G4

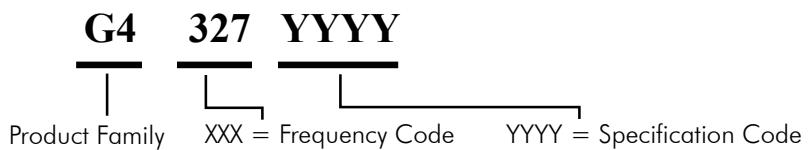
8.0 x 3.8mm SMD Plastic Molded Tuning Fork Crystal

Product Features

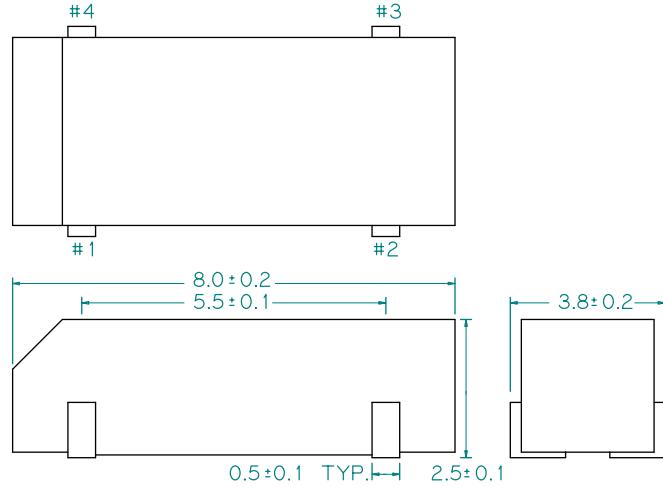
- Rugged, plastic-molded, resistant to shock and vibration
- Excellent resistance to heat shock and environmental characteristics
- Ideally suited for automated pick-and-place assembly environments
- Available on tape & reel; 16mm tape; 3000 units per reel
- RoHS/Green Compliant

Product Description

The G4 Series is a 32.768 kHz tuning fork type quartz crystal mounted in a plastic-molded package.

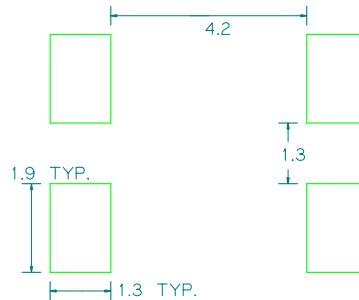

Applications

- Real-time clocks
- Reference for microprocessors' low power and standby modes.

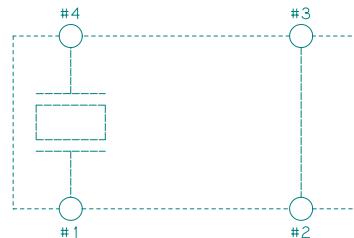

Electrical Specification:

Nominal Frequency	f	32.768 kHz
Frequency Tolerance at 25°C		±20ppm
Turnover Temperature	T ₀	25°C±5°C
Temperature Coefficient	K	-0.035ppm/°C ² Typical
Load Capacitance	C _L	12.5pF standard
Equivalent Series Resistance	R _S	50KΩ max
Shunt Capacitance	C ₀	1.3pF typical
Drive Level	DL	1μW max
Aging (1st year @25°C±3°C)		±5.0ppm max
Operating Temperature Range		-40 to +85°C
Storage Temperature Range		-55 to +125°C
Reflow Temperature		260°C max, 10 Second

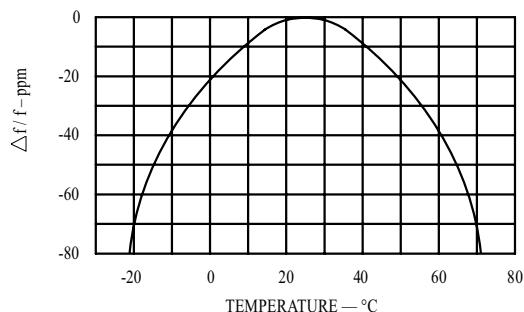
Part Ordering Information:



Mechanical Drawings: G4 Series



UNIT: mm


Land Pattern Example

Crystal Pin Connection

Typical Temperature Characteristic:

Frequency Deviation at Temperature T

$$\Delta f/f = K(T_0 - T)^2$$