

## Simple switcher 1A step-down Voltage regulator

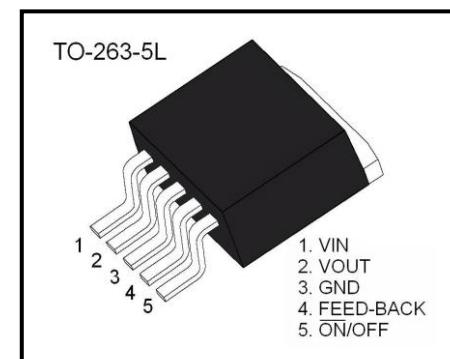
### General Description

The LM2575S-xxx-Y of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 1A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V,5V,12V,15V, and an adjustable output version.

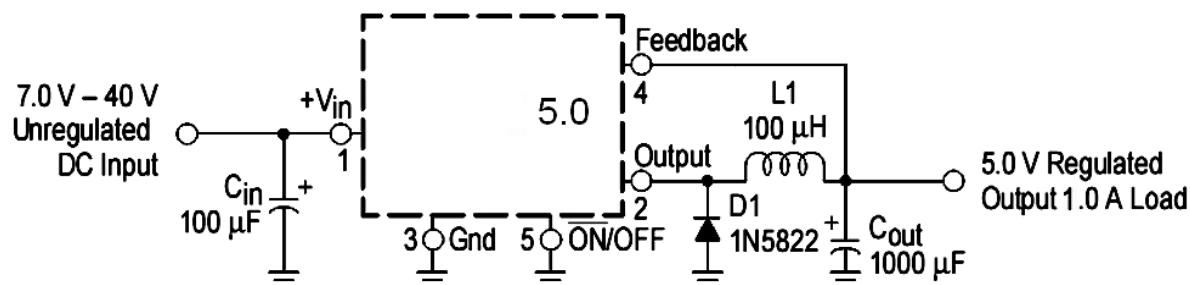
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The LM2575S-xxx-Y offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heatsink, and in some cases no heat sink is required.

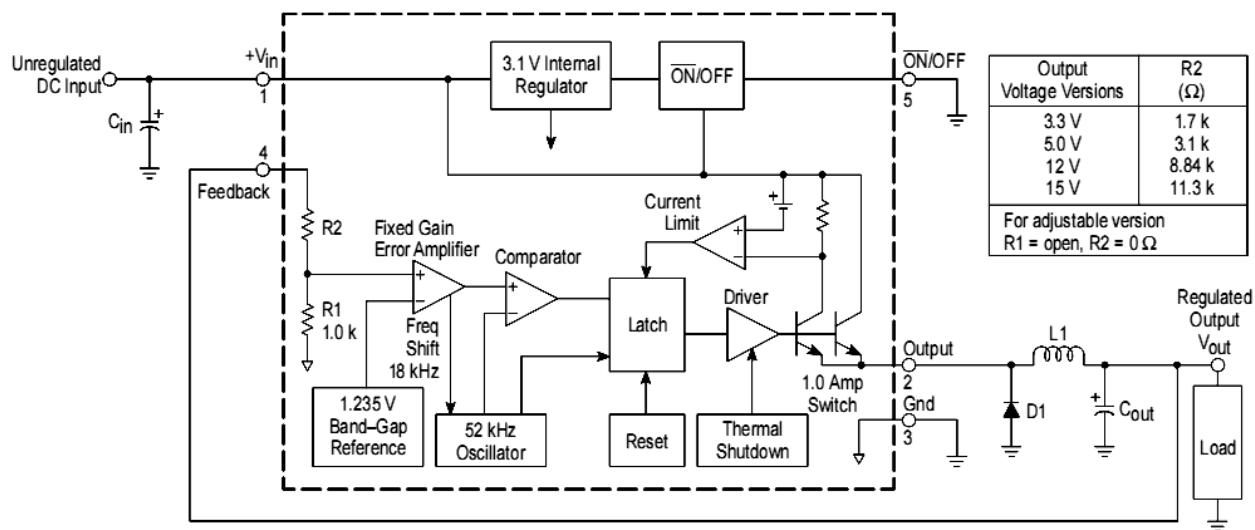
A standard series of inductors optimized for use with the LM2575S-xxx-Y are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.


Other features include a guaranteed  $\pm 4\%$  tolerance on output voltage with unspecified input voltages and output load conditions, and  $\pm 10\%$  on the oscillator frequency. External shutdown is included, featuring 50 $\mu$ A (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

### Applications


- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

### Features


- Guaranteed 1A output current
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection



### Typical Application (Fixed Output Voltage Versions)



## Block Diagram and Typical Application



## Absolute Maximum Ratings

| Parameter                | Symbol              | Conditions            | Ratings                  | Unit |
|--------------------------|---------------------|-----------------------|--------------------------|------|
| Supply Voltage           | V <sub>IN</sub>     |                       | 45                       | V    |
| ON/OFF Pin Input Voltage | V <sub>ON/OFF</sub> |                       | -0.3 ~ + V <sub>IN</sub> | V    |
| Output Voltage to Ground | V <sub>OG</sub>     | Steady State          | -1                       | V    |
| Power Dissipation        | P <sub>D</sub>      |                       | Internally Limited       | W    |
| Junction Temperature     | T <sub>J</sub>      |                       | -40 ~ 125                | °C   |
| Storage Temperature      | T <sub>stg</sub>    |                       | -65 ~ 150                | °C   |
| Minimum ESD Rating       | V <sub>ESD</sub>    | C=100pF, R=1.5kΩ      | 2                        | kV   |
| Lead Temperature         | T <sub>LEAD</sub>   | Soldering, 10 Seconds | 260                      | °C   |

Note1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

2. All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to calculate Average Out going Quality Level, and all are 100% production tested.
3. All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.

**Electrical Characteristics LM2575S-3.3-Y**

Specification with standard type face are for  $T_j = 25^\circ\text{C}$ 

| Parameter      | Symbol           | Conditions                                                                                               | Value                               |       |       | Unit  |
|----------------|------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|-------|-------|-------|
|                |                  |                                                                                                          | Min                                 | Typ   | Max   |       |
| Output Voltage | $V_{\text{OUT}}$ | $V_{\text{IN}}=12\text{V}$ , $I_{\text{LOAD}}=0.2\text{A}$ ,                                             | 3.234                               | 3.3   | 3.366 | V     |
| Output Voltage | $V_{\text{OUT}}$ | $4.75\text{V} \leq V_{\text{IN}} \leq 40\text{V}$ ,<br>$0.2\text{A} \leq I_{\text{LOAD}} \leq 1\text{A}$ | $T_j = 25^\circ\text{C}$            | 3.168 | 3.3   | 3.432 |
|                |                  |                                                                                                          | $T_j = -40 \sim -125^\circ\text{C}$ | 3.135 | 3.3   | 3.465 |
| Efficiency     | $\eta$           | $V_{\text{IN}}=12\text{V}$ , $I_{\text{LOAD}}=1.0\text{A}$ ,                                             |                                     | 75    |       | %     |

**Electrical Characteristics LM2575S-5.0-Y**

Specification with standard type face are for  $T_j = 25^\circ\text{C}$ 

| Parameter      | Symbol           | Conditions                                                                                            | Value                               |       |       | Unit  |
|----------------|------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|-------|-------|-------|
|                |                  |                                                                                                       | Min                                 | Typ   | Max   |       |
| Output Voltage | $V_{\text{OUT}}$ | $V_{\text{IN}}=12\text{V}$ , $I_{\text{LOAD}}=0.2\text{A}$ ,                                          | 4.900                               | 5.0   | 5.100 | V     |
| Output Voltage | $V_{\text{OUT}}$ | $8\text{V} \leq V_{\text{IN}} \leq 40\text{V}$ ,<br>$0.2\text{A} \leq I_{\text{LOAD}} \leq 1\text{A}$ | $T_j = 25^\circ\text{C}$            | 4.800 | 5.0   | 5.200 |
|                |                  |                                                                                                       | $T_j = -40 \sim -125^\circ\text{C}$ | 4.750 | 5.0   | 5.250 |
| Efficiency     | $\eta$           | $V_{\text{IN}}=12\text{V}$ , $I_{\text{LOAD}}=1.0\text{A}$ ,                                          |                                     | 77    |       | %     |

**Electrical Characteristics LM2575S-12-Y**

Specification with standard type face are for  $T_j = 25^\circ\text{C}$ 

| Parameter      | Symbol           | Conditions                                                                                             | Value                               |       |       | Unit  |
|----------------|------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|-------|-------|-------|
|                |                  |                                                                                                        | Min                                 | Typ   | Max   |       |
| Output Voltage | $V_{\text{OUT}}$ | $V_{\text{IN}}=25\text{V}$ , $I_{\text{LOAD}}=0.2\text{A}$ ,                                           | 11.76                               | 12    | 12.24 | V     |
| Output Voltage | $V_{\text{OUT}}$ | $15\text{V} \leq V_{\text{IN}} \leq 40\text{V}$ ,<br>$0.2\text{A} \leq I_{\text{LOAD}} \leq 1\text{A}$ | $T_j = 25^\circ\text{C}$            | 11.52 | 12    | 12.48 |
|                |                  |                                                                                                        | $T_j = -40 \sim -125^\circ\text{C}$ | 11.40 | 12    | 12.60 |
| Efficiency     | $\eta$           | $V_{\text{IN}}=15\text{V}$ , $I_{\text{LOAD}}=1.0\text{A}$ ,                                           |                                     | 88    |       | %     |

**Electrical Characteristics LM2575S-15-Y**

Specification with standard type face are for  $T_j = 25^\circ\text{C}$ 

| Parameter      | Symbol           | Conditions                                                                                             | Value                              |       |       | Unit  |
|----------------|------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|-------|-------|-------|
|                |                  |                                                                                                        | Min                                | Typ   | Max   |       |
| Output Voltage | $V_{\text{OUT}}$ | $V_{\text{IN}}=25\text{V}$ , $I_{\text{LOAD}}=0.2\text{A}$ ,                                           | 14.70                              | 15    | 15.30 | V     |
| Output Voltage | $V_{\text{OUT}}$ | $18\text{V} \leq V_{\text{IN}} \leq 40\text{V}$ ,<br>$0.2\text{A} \leq I_{\text{LOAD}} \leq 1\text{A}$ | $T_j = 25^\circ\text{C}$           | 14.40 | 15    | 15.60 |
|                |                  |                                                                                                        | $T_j = -40 \sim 125^\circ\text{C}$ | 14.52 | 15    | 15.75 |
| Efficiency     | $\eta$           | $V_{\text{IN}}=18\text{V}$ , $I_{\text{LOAD}} = 1.0\text{A}$ ,                                         |                                    | 88    |       | %     |

**Electrical Characteristics LM2575S-ADJ-Y**

Specification with standard type face are for  $T_j = 25^\circ\text{C}$ 

| Parameter      | Symbol           | Conditions                                                                                                                          | Value                              |       |       | Unit  |
|----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-------|-------|
|                |                  |                                                                                                                                     | Min                                | Typ   | Max   |       |
| Output Voltage | $V_{\text{OUT}}$ | $V_{\text{IN}}=12\text{V}$ , $I_{\text{LOAD}}=0.2\text{A}$ ,<br>$V_{\text{OUT}}=5\text{V}$                                          | 1.217                              | 1.230 | 1.243 | V     |
| Output Voltage | $V_{\text{OUT}}$ | $8\text{V} \leq V_{\text{IN}} \leq 40\text{V}$ ,<br>$0.2\text{A} \leq I_{\text{LOAD}} \leq 1\text{A}$<br>$V_{\text{OUT}}=5\text{V}$ | $T_j = 25^\circ\text{C}$           | 1.193 | 1.230 | 1.267 |
|                |                  |                                                                                                                                     | $T_j = -40 \sim 125^\circ\text{C}$ | 1.180 | 1.230 | 1.286 |
| Efficiency     | $\eta$           | $V_{\text{IN}}=12\text{V}$ , $I_{\text{LOAD}}=1.0\text{A}$ , $V_{\text{OUT}}=5\text{V}$                                             |                                    | 77    |       | %     |

## All Output Voltage Versions Electrical Characteristics

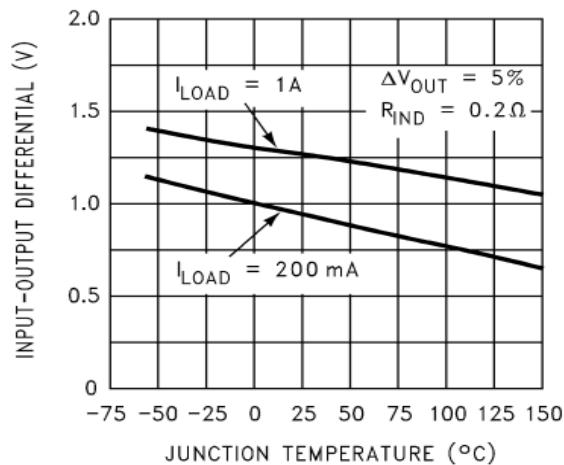
$V_{IN}$  =12V for the 3.3V,5V, and Adjustable version,  $V_{IN}$  =25V for the 12V version, and  $V_{IN}$  =30V for the 15V version.


$I_{LOAD}$  =200mA. Specification with standard type face are for  $T_j$  =25°C, unless other wise specified,

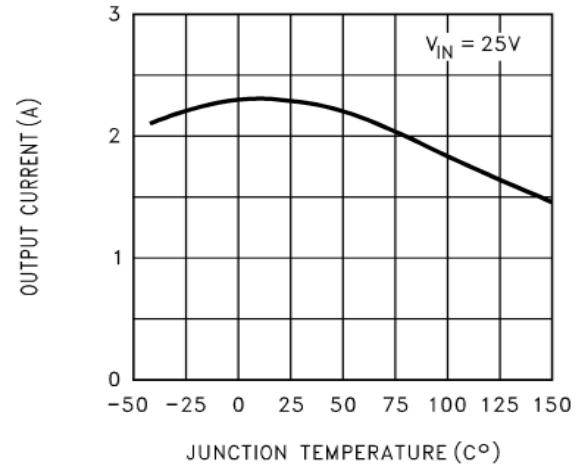
| Parameter                    | Symbol     | Conditions                                 | Value             |     |     | Unit |
|------------------------------|------------|--------------------------------------------|-------------------|-----|-----|------|
|                              |            |                                            | Min               | Typ | Max |      |
| Feedback Bias Current        | $I_b$      | $V_{OUT}$ = 5V, Adjustable Only            |                   | 50  | 100 | nA   |
| Oscillator Frequency         | $f_{osc}$  | Note11                                     |                   | 52  |     | kHz  |
| Saturation Voltage           | $V_{sat}$  | $I_{OUT}$ = 1.0A (Note 5)                  |                   | 0.9 | 1.2 | V    |
| Max Duty Cycle ("on")        | DC         |                                            | 93                | 98  |     | %    |
| Current Limit                | $I_{CL}$   | Peak Current (Note 5,11)                   | 1.7               | 2.2 | 3   | A    |
| Output Leakage Current       | $I_L$      | Output = 0 V<br>Output = -1.0 V (Note 7,8) | 2                 | 7.5 | 30  | mA   |
| Quiescent Current            | $I_Q$      | Note 7                                     |                   | 5   | 10  | mA   |
| Standby Quiescent Current    | $I_{stby}$ | ON/OFF Pin=5.0V (off )                     |                   | 50  | 200 | μA   |
| ON/OFF Pin Logic Input Level | $V_{IH}$   | $V_{OUT}$ = 0                              | $T_j$ = 25°C      |     | 2.2 | V    |
|                              |            |                                            | $T_j$ =-40~ 125°C |     | 2.4 |      |
| ON/OFF Pin Logic Input Level | $V_{IL}$   | $V_{OUT}$ = Nominal Output Voltage         | $T_j$ = 25°C      |     | 1.0 | V    |
|                              |            |                                            | $T_j$ =-40~ 125°C |     | 0.8 |      |
| ON/OFF Pin Input Current     | $I_{IH}$   | ON/OFF Pin=5.0V ("off" )                   |                   |     | 30  | μA   |
| ON/OFF Pin Input Current     | $I_{IL}$   | ON/OFF Pin=5.0V ("on" )                    |                   |     | 5.0 | μA   |


Notes:

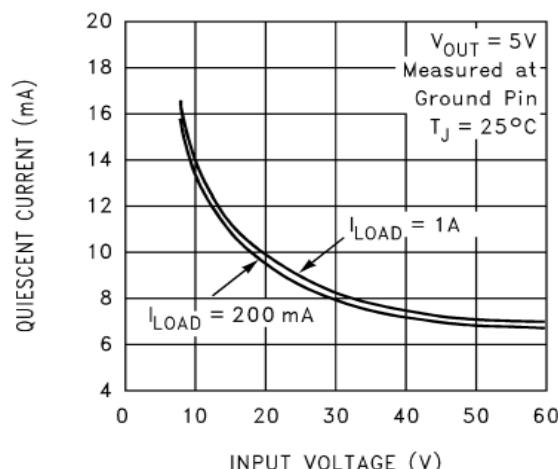
4. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2575S is used as shown in the Figure2 testcircuit, system performance will be as shown in system parameters section of Electrical Characteristics.
- 5 .Output (pin2) sourcing current.No diode, inductor or capacitor connected to output pin.
- 6.Feedback (pin4) removed from output and connected to 0V.
- 7.Feedback (pin4) removed from output and connected to +12V for the Adjustable, 3.3V, and 5V versions, and +25V for the 12V and 15V versions, to force the output transistor OFF.
8.  $V_{IN}$  = 40 V.
9. Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads .Additional copper area will resistance further. See the rmal model in Switchers made Simple software
- 10 If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area  $\theta_{JA}$  thermally connected to the package: Using 0.5 square inch of copper area,  $\theta_{JA}$  is 50°C/W; with 1 square inch of copper area,  $\theta_{JA}$  is 37°C/W; and with 1.6 or more square inches of copper area,  $\theta_{JA}$  is 32°C/W.
- 11 The oscillator frequency reduces to approximately 18kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.


### Typical Characteristics

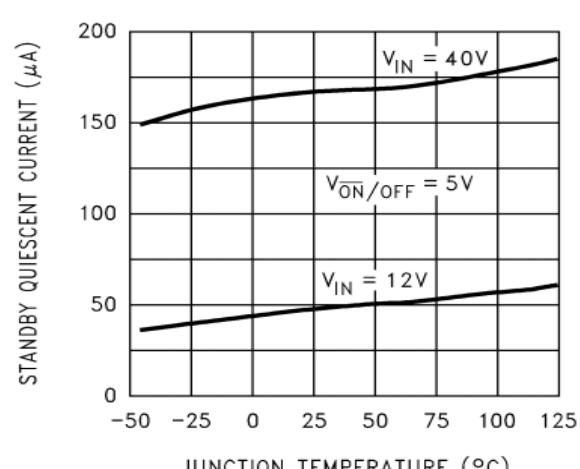



**Figure 1. Normalized Output Voltage**




**Figure 2. Line Regulation**




**Figure 3. Dropout Voltage**



**Figure 4. Current Limit**



**Figure 5. Quiescent Current**



**Figure 6. Standby Quiescent Current**

### Typical Characteristics

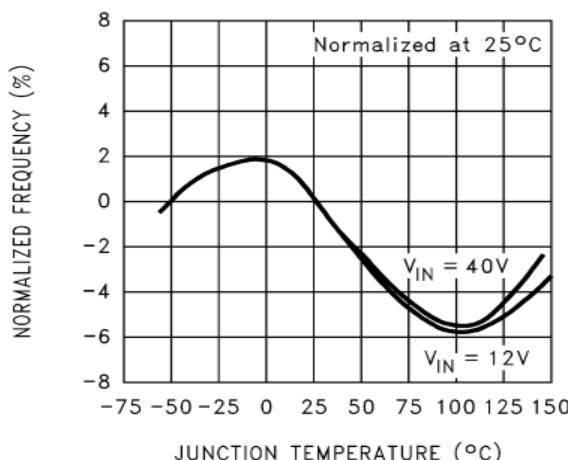



Figure 7. Oscillator Frequency

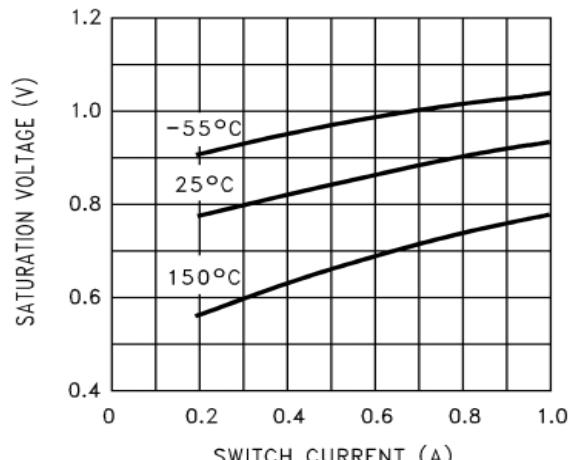



Figure 8. Switch Saturation Voltage

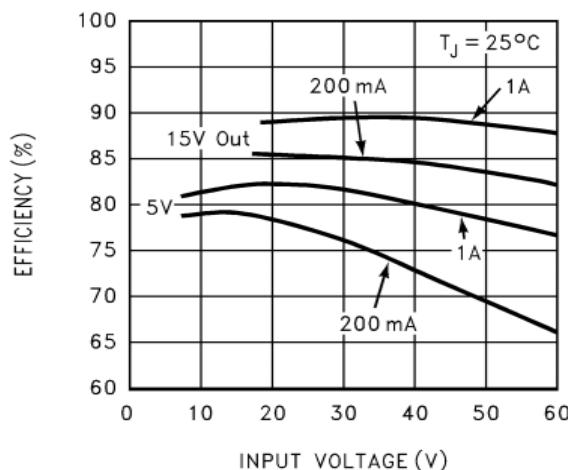



Figure 9. Efficiency

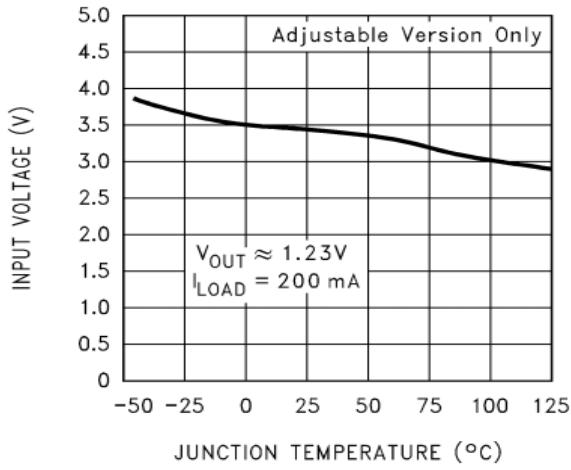



Figure 10. Minimum Operating Voltage

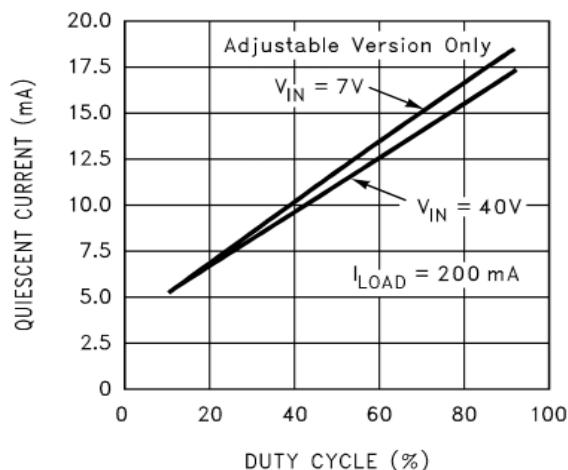



Figure 11. Quiescent Current vs Duty Cycle

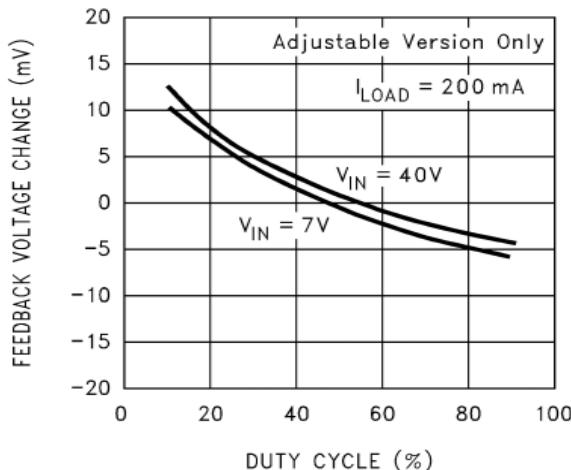



Figure 12. Feedback Voltage vs Duty Cycle

## Typical Characteristics

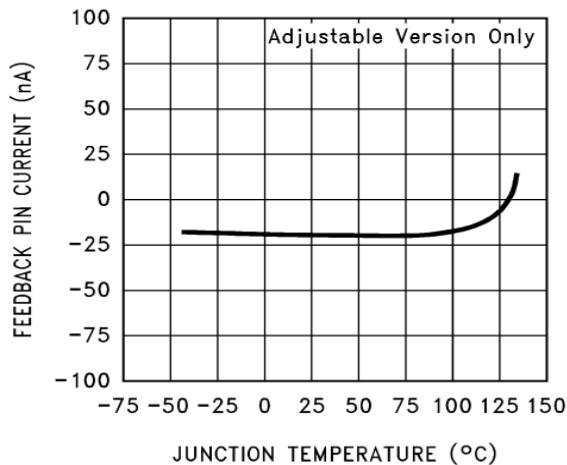



Figure 13. Feedback Pin Current

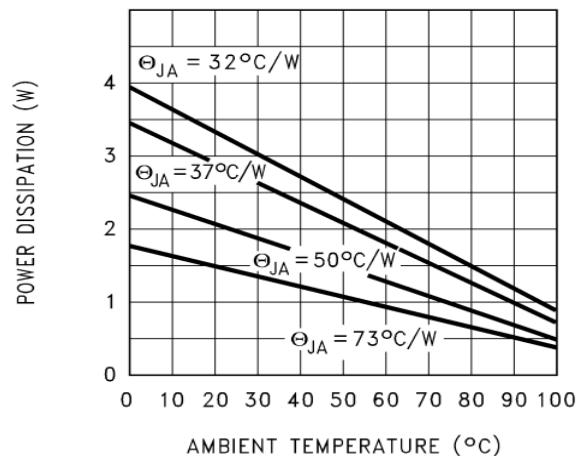
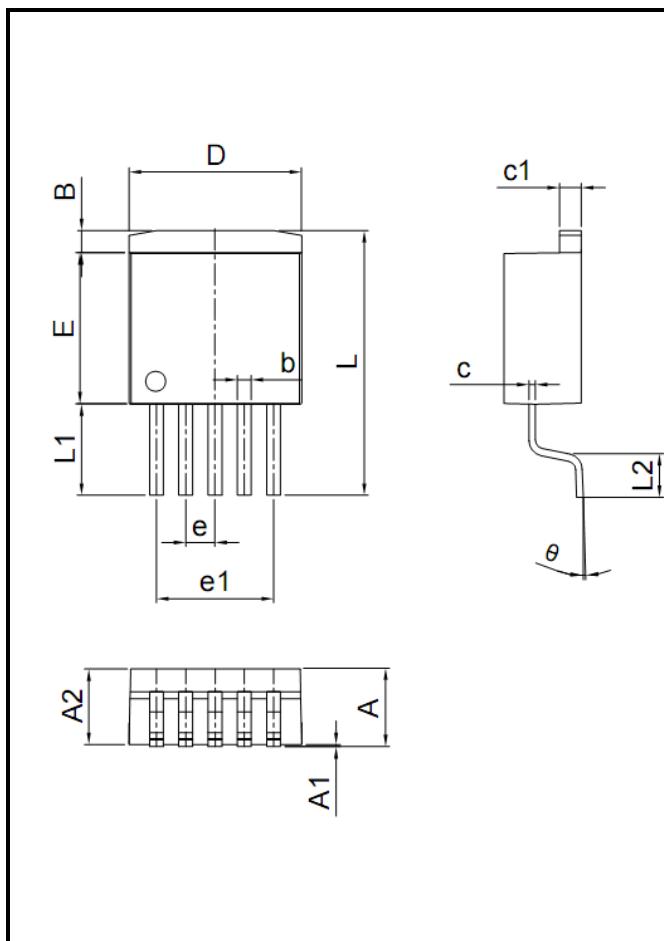




Figure 14. Maximum Power Dissipation

## Package Dimensions



| Dim | Millimeter |       | Inches |       |
|-----|------------|-------|--------|-------|
|     | Min.       | Max.  | Min.   | Max.  |
| A   | 4.30       | 4.70  | 0.169  | 0.185 |
| A1  | 0.00       | 0.15  | 0.000  | 0.006 |
| A2  | 4.30       | 4.55  | 0.169  | 0.179 |
| B   | 1.20       | 1.60  | 0.047  | 0.063 |
| b   | 0.70       | 0.90  | 0.028  | 0.035 |
| b1  | 1.20       | 1.50  | 0.047  | 0.059 |
| c   | 0.30       | 0.60  | 0.012  | 0.024 |
| c1  | 1.17       | 1.37  | 0.046  | 0.054 |
| D   | 9.90       | 10.20 | 0.390  | 0.402 |
| E   | 8.50       | 8.90  | 0.335  | 0.350 |
| e   | 1.60       | 1.80  | 0.096  | 0.104 |
| e1  | 6.40       | 7.20  | 0.252  | 0.283 |
| L   | 14.60      | 15.00 | 0.575  | 0.590 |
| L1  | 4.70       | 5.30  | 0.205  | 0.213 |
| L2  | 2.30       | 2.60  | 0.091  | 0.110 |