

MoLi3004 3-4S 锂离子电芯

硬件保护芯片

目 录

概	述	1
功能	全介绍	1
应用]领域	1
量产	-选型表	2
管朋	排列图	3
芯片	·功能框图	4
典型	· 应用框图	4
功能	:描述	5
	1 . 正常状态	5
	2. 充电过压保护	5
	3. 放电欠压保护	5
	4. 休眠状态	5
	5. 充电过流保护	5
	6. 放电过流保护	6
	7. 延时设置	6
	8. 状态检测功能	6
	9. 温度保护	6
	10. 电池均衡功能	7
	11. 低压禁充功能	7
	12. 串数设置	8
	13. 负载锁定功能	8
	14. MOS 保护	8
绝对	· 最大和额定工作参数	10
电气	〔参数和保护参数描述	10
封	装	12
版本	变更	13

> 概 述

MoLi3004 是一款适用于 3~4 S 锂离子电池保护芯片,通过集成高精度电压、电流和温度检测和延时电路,为电池提供全面的保护,保障电池的使用安全,延长电池的使用寿命。

● 放电欠压保护:

▶ 精度: ±30mV

▶ 步进: **100mV**

▶ 范围: 【2.200V ~ 2.800V】

▶ 迟滞: 【200mV ~ 500mV】.步进 100mV

> 功能介绍

● 充电过压保护:

▶ 范围: 【3.650V; 3.850V; 4.150V ~ 4.400V】

▶ 精度: ±25mV

▶ 步进: **25mV**

➤ 迟滞: 【0~400mV】,步进 100mV

● 充电过流保护:

范围: 【- 0.005V ~ - 0.080V】, 精度: ±5mV, 步进: 5mV

● 放电过流保护:

✓ 放电过流检测 1: 范围: 【0.050V~0.100V】,精度: ±5mV,步进: 50mV

✓ 放电过流检测 2: 范围: 【0.100V~0.200V】, 精度: ±10mV, 步进: 100mV

✓ 短路保护检测 : 范围: 【200mV: 400mV】, 精度: ±20mV

● 温度保护: 充电高温、充电低温: 放电高温、放电低温四个温度保护, 阈值通过外部电阻灵活设置

●延时时间:放电过流 1、放电过流 2和放电欠压 3个保护延时通过外部电容灵活设置

● **电池均衡**:内部均衡和外部均衡延长电池组寿命

●低压禁充:防止电池组滥用,保障电池组安全

● **状态检测**: 充放电状态精确检测,精细化保护

● MOS 保护:抑制充放电 MOS 体二极管的过热,可靠性高

● 休眠功能:

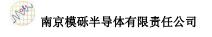
✓ 正常状态: (典型) **15 uA**

✓ 休眠状态: (典型)5uA

● 封装形式: **SSOP16**

▶ 应用领域

电动工具


清洁电器

消费电子

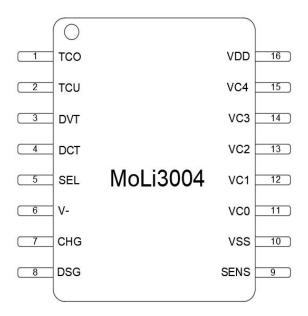
储能系统

▶ 量产选型表

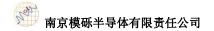
类别			充电					放电			温保
产品	过压	过压	均衡	低压	充电	过放	过放	放电	放电	放电	温度
型号	保护	恢复	电压	禁充	过流	保护	恢复	过流 1	过流 2	短路	保护
MoLi3004 -AABN	4.200 V	4. 100V	4.075 V	1.5V	-0.020V	2.800 V	3.000V	0.050 V	0.100 V	0.200 V	全温度
MoLi3004 -ABBN	4.250 V	4. 150V	4.125 V	1.5V	-0.020V	2.800 V	3.000V	0.050 V	0.100 V	0.200 V	全温度
MoLi3004 -ACBN	4.250 V	4. 150V	4.125 V	1.5V	-0.050V	2.700 V	3.000V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -ADBN	4.250 V	4. 150V	4.125 V	1.5V	-0.050V	2.800 V	3.000V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -AEBN	4.200 V	4. 100V	4.075 V	1.5V	-0.050V	2.800 V	3.000V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -AFBN	4.250 V	4. 150V	4.125 V	1.5V	-0.025V	2.700 V	3.000V	0.050 V	0.100 V	0.200 V	全温度
MoLi3004 -AGBN	4.400V	4. 300V	4.125 V	1.5V	-0.050V	2.800 V	3.000V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -AHBN	4.250 V	4. 150V	4.125 V	1.5V	-0.050V	2.500V	2.700V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -AIBN ⁽²⁾	4.175 V	4. 075V	无均衡	1.5V	-0.05V	2.700 V	3.000V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -BABN	3.650V	3.55V	3.525V	1.5V	-0.050V	2.500V	2.700V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -BBBN	3.850V	3.750V	3.525V	1.5V	-0.050V	2.500V	2.700V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -BCBN	3.850V	3.750V	3.525V	1.5V	-0.050V	2.200V	2.700V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -BDBN	3.650 V	3.550V	3.525 V	1.5V	-0.050V	2.200 V	2.700V	0.100 V	0.200 V	0.400 V	全温度
MoLi3004 -BEBN ⁽²⁾	3.650V	3.55V	3.525V	1.5V	-0.050V	2.500V	2.700V	0.100 V	0.200 V	0.400 V	全温度
沙	•	•			'					'	

注:

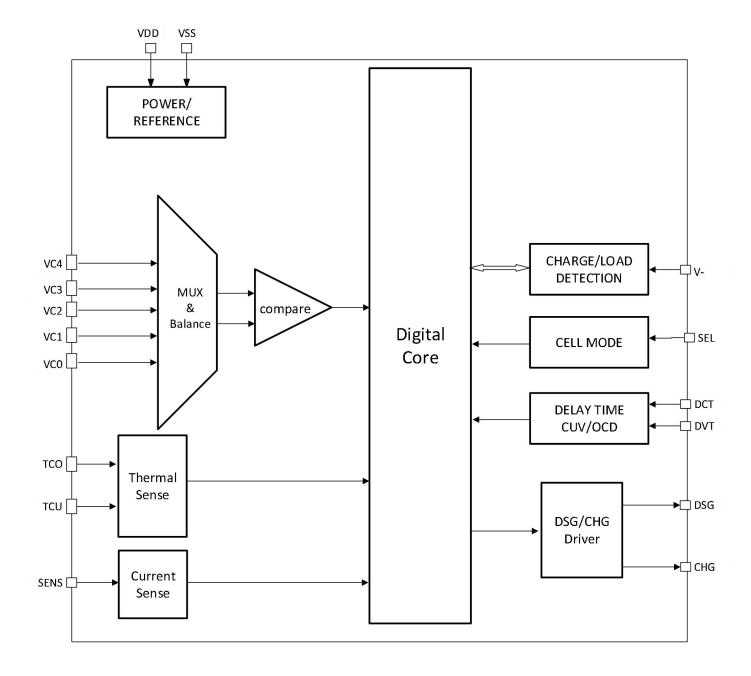
(1) 型号后缀说明:

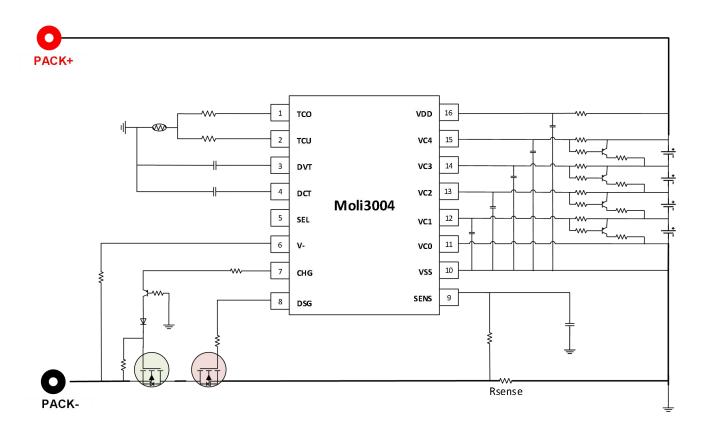

第1位: A表示三元,B表示磷酸铁锂等

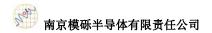
第2位: A-Z 表示产品参数和规格编码


第3位: O表示断线版本; B表示带均衡版本

(**2**) 该芯片支持低压充电(单节**1.5V**,芯片供电电压**>6V**时)


> 管脚排列图


序号	管脚	描述			
1	TCO	充电高温和放电高温温度设置电阻			
2	TCU	充电低温和放电低温温度设置电阻			
3	DVT	欠压延时时间设置电容			
4	DCT	过流1,过流2延时时间设置电容			
5	SEL	SEL决定电池包适用电芯串数			
6	V-	充电器和负载检测管脚			
7	CHG	充电MOSFET驱动管脚			
8	DSG	放电MOSFET驱动管脚			
9	SENS	充放电过流检测管脚			
10	VSS	芯片的地,连接电池组最低电位			
11	VC0	连接第一节电芯负极			
12	VC1	连接第一节电芯正极,第二节电芯负极			
13	VC2	连接第二节电芯正极,第三节电芯负极			
14	VC3	连接第三节电芯正极,第四节电芯负极			
15	VC4	连接第四节电芯正极,第五节电芯负极			
16	VDD	芯片的电源,连接电池组最高电位			



▶ 芯片功能框图

> 典型应用框图

▶ 功能描述

1. 正常状态

电池无充电过压和放电欠压保护,无充放电过流和短路保护,无温度保护等保护,**MoLi3004**处于正常工作状态。

2. 充电过压保护

检测机制:任意一节电芯电压超过充电过压保护电压(**V**_{cov}),并且状态持续超过充电过压保护延时(**t**_{cov}),**MoLi3004** 进入过压保护状态,

执行操作: CHG 管脚输出高阻态, 充电 MOSFET 截止。

恢复机制:在满足以下任意条件的情况下,充电过压保护状态恢复:

- A. V- 端检测到充电器未移除, 电芯电压低于充电过压恢复电压(VcovR) 且超过充电过压恢复延时(tcovR);
- **B.** V- 端检测到充电器移除,电芯电压低于充电过压保护电压(V_{cov})且持续超过充电过压恢复延时(t_{covr});

3. 放电欠压保护

检测机制:任意一节电芯电压低于放电欠压保护电压(**V**_{DUV}),并且状态持续超过放电欠压保护延时(t_{DUV})。**MoLi3004** 进入欠压保护状态,

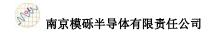
执行操作: DSG 管脚输出低电平,放电 MOSFET 截止。

恢复机制: 在满足以下任意条件的情况下,放电欠压保护状态恢复:

- A. 检测到外部未连接充电器且无负载情况下,所有电芯电压超过放电欠压恢复电压(**V**_{DUVR})且持续超过 放电欠压恢复延时(**t**_{DUVR})
- B. 检测到外部有连接充电器,所有电芯电压超过放电欠压保护电压(V_{DUV})且持续超过放电欠压恢复延时(t_{DUVR})

4. 休眠状态

检测机制: MoLi3004 进入放电欠压保护状态后,并持续超过休眠延时时间(t_{PL}),则 MoLi3004 会进入 到休眠状态。


执行操作: 放电 MOSFET 维持截止状态。

恢复机制:休眠状态恢复条件:

- A. 放电欠压保护状态恢复;
- B. 检测到外部有连接充电器:

5. 充电过流保护

MoLi3004 3~4S 锂离子电芯硬件保护芯片

检测机制:在充电过程中,监控充电电流,**SENS**管脚将采集在电流检测电阻的压降小于充电过流检测阈值 (Vcoc)并持续超过充电过流延时时间(tcoc),**MoLi3004** 进入充电过流保护状态,

执行操作: CHG 管脚输出高阻态, DSG 管脚输出低电平, 充放电 MOSFET 都截止。

恢复机制: 充电过流保护恢复条件:

检测到充电器移除,且超过充电过流恢复延时(tcocR)。

6. 放电过流保护

检测机制:在放电过程中,**SENS**端将采集检流电阻的压降,监控回路放电电流。若超过设定的放电过流保护 **1**,放电过流保护 **2**的电压,短路保护电压(V_{DOC1}, V_{DOC2}, V_{SHT})并持续超过对应延时时间(**t**_{DOC1}, **t**_{DOC2}, **t**_{SHT}),**MoLi3004** 进入放电过流保护。

执行操作: DSG 管脚输出低电平,放电 MOSFE 截止;放电过流保护 2 的延时时间小于放电过流保护 1 的延时时间,短路保护延时时间最短。

恢复机制: 放电过流保护恢复条件:

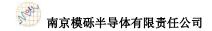
检测到负载移除,且持续超过过流恢复延时(toock)。

7. 延时设置

MoLi3004 有两个管脚 DVT, DCT 外接电容设定延迟时间,求通过调节外接电容,实现所需要的延迟时间。

- A. DVT 外接电容设置放电欠压延迟时间,
- B. DCT 外接电容设置放电过流 1、放电过流 2 延迟时间。

8. 状态检测功能


MoLi3004会对充放电状态进行检测: SENS检测的电流为有符号值,充电为负值,放电为正值。

- A. 当SENS检测的电流大于V_{DSING}时,MoLi3004处于放电状态;
- B. 当SENS检测的电流小于V_{CHING}时,MoLi3004处于充电状态;
- C. 否则MoLi3004处于静置状态。

9. 温度保护

MoLi3004 两个管脚 TCO, TCU 分别对应充放电高温电阻 R_{co} 和充放电低温电阻 R_{cu} 进行温度保护参数设置,并且连接 NTC 选用 103AT, B=3435K,常温 10kΩ@25℃热敏电阻对外部电芯的温度进行判断;

● 高温保护: 充放电高温保护温度由电阻 R_{co} 决定,首先查看对应 NTC 的 R-T 表;若设置 50℃为充电高温保护触发温度,那么 R_{co} 选用 50℃下 NTC 电阻阻值的 10 倍即 41.56K;当充电高温的触发温度决定后,放电高温的触发温度为充电高温触发温度加 20℃,即放电高温保护温度为 70℃。

● 低温保护: 充放电低温保护温度由电阻 R_{CU} 决定,若设置 0° ℃为充电低温保护触发温度,那么 R_{CU} 选用 0° ℃下 NTC 电阻阻值的 10 倍即 276.2K;当充电低温的触发温度决定后,放电低温的触发温度为充电低温触发温度减去 15° ℃,即放电低温保护温度为 -15° ℃; R-T 部分表如下:

温度(℃)	R _{nor} (kΩ)
-5	34.52
0	27.62
50	4.156
55	3.536

A.充电温度保护:

检测机制:在充电状态,若检测到温度高于充电高温保护电压(**T**_{CO})或低于充电低温保护电压(**T**_{CU}),持续超过对应保护延时(**t**_{CO})和(**t**_{CU}),进入充电温度保护状态。

执行操作: CHG 管脚输出高阻态, 充电 MOSFET 截止;

恢复机制:温度保护恢复条件:电芯温度恢复正常范围内,并且持续时间超过温度保护恢复延时时间。

B.放电温度保护:

检测机制:在放电状态,若检测到温度高于放电高温保护电压(**T**_{DO})或低于放电低温保护电压(**T**_{DU}),持续超过对应保护延时(**t**_{DO})和(**t**_{DU}),进入放电温度保护状态。

执行操作: CHG 管脚输出高阻态, DSG 管脚输出低电平; 充放电 MOSFET 截止;

恢复机制:温度保护恢复条件:电芯温度恢复正常范围内,并且持续时间超过温度保护恢复延时时间。如果有放电高温负载锁定功能,还需要去除负载才能实现恢复。

10. 电池均衡功能

MoLi3004 内置均衡电路,任意电芯电压值超过电芯均衡电压(V_{BL})时,并且满足均衡开启条件,对应的 V_n管脚输出高电平,内部均衡电路的 MOSFET 导通。可通过外部电路调节均衡电流大小。

电池均衡采用相邻 AB 轮策略:

- 1、如所需均衡的电芯均不相邻,则这些电芯在 A 轮中进行均衡,且每轮均衡均为 A 轮;
- 2、如所需均衡的电芯存在相邻,则部分电芯在 A 轮中进行均衡,剩余电芯在 B 轮中进行均衡,AB 轮循。

均衡时序图

当满足下面任意条件时均衡停止:

- A. 所有电芯电压低于均衡检测电压(V_{BL})
- B. 所有电芯电压高于均衡检测电压(V_{BL})
- C. 除充电过压保护状态以外,其他保护全部禁止均衡。

11. 低压禁充功能

MoLi3004 低压禁充功能可选:

具有低压禁充功能版本:

检测机制: 在检测到任意节电芯电压低于(V_{VL}),持续时间超过(t_{VL}),

执行操作: CHG 管脚输出高阻态, 充电 MOSFET 截止, 停止充电。

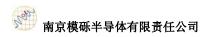
恢复机制: 当所有电芯电压高于(V_{VL})时,低压禁充状态恢复。

12. 串数

设置通过设置 SEL 管脚的输入电平(SEL 内部上拉),设置芯片对应不同串数的工作状态。

PIN	3 \$	4 S
SEL	VSS+10K	VDD/NC

13. 负载锁定功能

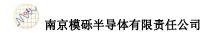

MoLi3004有负载锁定功能。当芯片进入以下保护状态后,进入负载锁定态。

检测包括功能:

保护状态	充电过压	放电欠压	充电过流	放电过流	放电高温
负载锁定	否	是	否	是	可选

恢复机制:

当异常状态恢复后,V-端检测到 电压低于负载检测电压(V_{LOAD}),并且持续时间超过负载检测延时(t_{MLOAD}),负载锁定恢复。

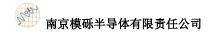


14. MOS保护

检测机制:在同口或者半分口的应用中,如果其中一个MOS关断,则充电/放电电流流过关断的MOS的体二极管。在这种情况下,如果电流很大,场效应管严重受热,可能会损坏。

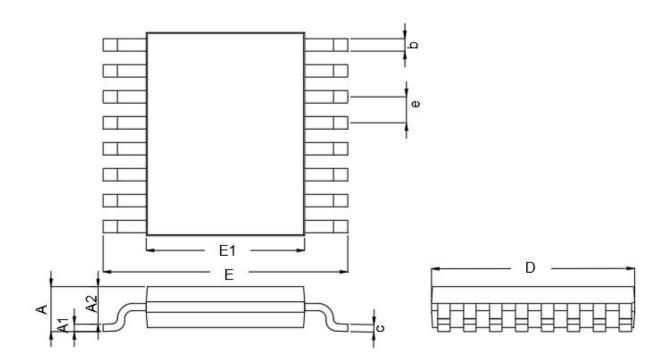
执行操作: MoLi3004利用SENS引脚监测充放电状态,从而保护被关闭的MOS 的体二极管,进而保护MOS。

恢复机制:解除充放电状态后恢复,之后再检测芯片的保护状态是否存在,从而判读是否打开对应 MOS。



绝对最大和额定工作参数

绝对最大额定值		最小值	最大值		单位
引脚输入电压	VDD,V-,SEL	VSS-0.3	VSS+40		V
引脚输入电压	TCO,TCU,DVT,DCT,SENS	VSS-0.3	VSS+6		V
引脚输入电压	VCO,VC1,VC2,VC3,VC4,CHG,DSG	VSS-0.3	VDD+0.3		V
工作温度范围		-40	85		°C
存储温度范围		-40	125		°C
额定工作电压	项目	最小值	典型值	最大值	单位
VDD 输入电压	VDD	4	-	18	V
VCx 输入电压	VCn-VCn-1 (n=1-4)	0	-	5	V
引脚输入电压	$V_{DVT}, V_{DCT}, V_{TCO}, V_{TCU}$	0	-	5	V


▶ 电气参数和保护参数描述(25°C)

功	能	参数	符号	条件	最小值	典型值	最大值	单位
		过压电压	V _{cov}		V _{cov} -0.025	V _{cov}	V _{cov} +0.025	٧
	充电过压	过压延时	t _{cov}		0.5	1	1.5	s
充由		过压恢复电压	V _{covR}		V _{covr} -0.025	V _{covR}	V _{covR} +0.025	V
充电保护		过压恢复延时	t _{covr}		85	100	155	ms
10	充	保护电压	V _{coc}		V _{coc} -0.005	V _{coc}	V _{coc} +0.005	٧
	充电过流	保护延时	tcoc		30/300	50/500	70/700	ms
	狁	保护恢复延时	t _{cocr}		43	60	85	ms
	34.	欠压电压	V _{DUV}		V _{DUV} -0.03	V_{DUV}	V _{DUV} +0.03	٧
	放电欠压	欠压延时	t _{DUV}	DVT接0.1μF电容控制	0.5	1	1.5	s
	次压 过流 1	欠压恢复电压	V _{DUVR}		V _{DUVR} -0.03	V _{DUVR}	V _{DUVR} +0.03	V
		欠压恢复延时	t _{DUVR}		200	250	300	ms
放		保护阈值	V _{DOC1}		V _{DOC1} -0.005	V _{DOC1}	V _{DOC1} +0.005	V
放电保护		保护延时	t _{DOC1}	DCT接0.1µF电容控制	0.5	1	1.5	s
ן שר	过 流 2	保护阈值	V _{DOC2}		V _{DOC2} -0.010	V _{DOC2}	V _{DOC2} +0.010	V
		保护延时	t _{DOC2}	DCT接0.1µF电容控制	50	100	150	ms
	短	短路阈值	V _{SHT}		V _{SHT} -0.020	V _{SHT}	V _{SHT} +0.020	٧
	路	保护延时	tsнт	SENS管脚未接电容	200	250	300	μs
	过济	和短路保护恢复延时	t _{DOCR}		55	60	75	ms
		保护温度	Tco		T _{co} -3	Tco	T _{co} +3	$^{\circ}$
	充电	保护延时	tco		1	2	3	s
高	电	恢复温度	T _{COR}	$T_{COR} = T_{CO} - 10$	T _{COR} -3	T _{COR}	T _{COR} +3	$^{\circ}$
高温保护		恢复延时	t _{cor}		1	2	3	s
I I [™]	}/ r	保护温度	T _{DO}	T _{DO} =T _{CO} +20	T _{DO} -3	T _{DO}	T _{DO} +3	$^{\circ}$
	放电	保护延时	t _{DO}		1	2	3	s
		恢复温度	T _{DOR}	$T_{DOR} = T_{DO}-10$	T _{DOR} -3	T _{DOR}	T _{DOR} +3	$^{\circ}\!$

		 恢复延时	t _{DOR}		1	2	3	s
		保护温度	T _{CU}		T _{CU} -3	T _{CU}	T _{CU} +3	$^{\circ}$
	充电	保护延时	tcu		1	2	3	s
		恢复温度	T _{CUR}	T _{CUR} = T _{CU} +10	T _{CUR} -3	T _{CUR}	T _{CUR} +3	℃
低温保护		恢复延时	tcur		1	2	3	s
保护		保护温度	T _{DU}	T _{DU} =T _{CU} -15	T _{DU} -3	T _{DU}	T _{DU} +3	$^{\circ}\mathbb{C}$
"	放	保护延时	t _{DU}		1	2	3	s
	电	恢复温度	T _{DUR}	$T_{DUR} = T_{DU} + 10$	T _{DUR} -3	T _{DUR}	T _{DUR} +3	$^{\circ}$ C
		恢复延时	t _{DUR}		1	2	3	s
	均衡	均衡开启电压	V _{BL}		V _{BL} -0.025	V _{BL}	V _{BL} +0.025	٧
其	便	均衡开启延时	t _{BL}		14	-	49	ms
其他保护	[[[]	禁充电压	V _{VL}	可选	-	1/1.5	-	٧
护 	低压禁充	禁充延时	t _V ∟		500	600	700	ms
	充	禁充恢复延时	t _{VL}		100	150	200	ms
	充	放电状态判断电压	V _{DSING}	V _{SENS} 到大于V _{DSING}	2	4	6	mv
	充放状态检测 PACK 状	充电状态检测电压	V _{CHING}	V _{SENS} 到小于V _{CHING}	-2	-4	-6	mv
业		放电状态检测延时	t _{DSING}	V _{SENS} 到大于V _{DSING}	5	6	7	ms
状态监测		充电状态检测延时	tcHING	V _{SENS} 到小于V _{CHING}	5	6	7	ms
"		负载锁定检测电压	V _{LOAD}		-	1	-	٧
		负载锁定恢复延时	t _{MLOAD}		5	10	15	ms
	态	充电器移除检测电压	V _{MCHER}	V-未连接电阻	-	250	-	mV
	女	CHG 逻辑高电平	V _{CHG}	VDD≥12V	9	12	13	٧
	鬼	CHG 逻辑高电平	V _{CHG}	VDD<12V	VDD-1.2	VDD-0.7	VDD-0.3	٧
	充电MOS驱动	CHG 逻辑高阻态	-	-	-	-	-	٧
2		CHG 驱动能力	V _{CHG}		3.5	5	6.5	kΩ
MOS驱动			▼ CHG		600	800	1000	Ω
	12/1	DSG 逻辑高电平	V _{DSG}	VDD≥12V	9	12	13	V
	製 [DSG 逻辑高电平	V _{DSG}	VDD<12V	VDD-1.2	VDD-0.7	VDD-0.3	٧
	放电MOS驱动	DSG 逻辑低电平	V _{DSG}		VSS	-	VSS+0.3	٧
	拠	DSG 驱动能力	V		3.5	5	6.5	kΩ
			V _{DSG}		600	800	1000	Ω
		正常工作电流	I _{DD}	VCn=3.7V (n=1-4)	-	15	-	uA
功耗		休眠工作电流	I _{DDSLEEP}	VCn=2.0V (n=1-4)	-	5	-	uA
		进入休眠延时	t _{PL}		18	20	22	s

> 封 装

CVMDOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
Α	_	_	1.75			
A1	0.10	0.15	0.25			
A2	1.30	1.40	1.50			
b	0.23	_	0.31			
С	0.20	_	0.24			
D	4.90	4.95	5.00			
E	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
е	0.635BSC					