

TF0211E1

1.9A High Speed, Low-Side, Single Gate Driver

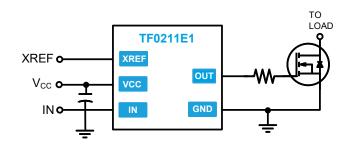
Features

- Efficient, low-cost solution for driving MOSFETs and IGBTs
- Wide supply voltage operating range: 4.5V to 18V
- 1.9A source / 1.8A sink output current capability
- Single non-inverting input configuration
- Logic input thresholds can be varied with XREF level
- Fast propagation delays (55ns typical)
- Fast rise and fall times (15ns typical)
- Space saving SOT23-5L package
- Extended temperature range: -40°C to +125°C

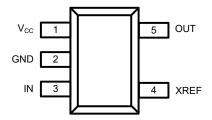
Description

The TF0211E1 high speed, low side MOSFET and IGBT driver is capable of driving 1.9A of peak current. The TF0211E1 has adjustable logic input thresholds depending on XREF level allowing use with 5.0V, 3.3V, and 2.5V supply systems. Fast and well matched propagation delays allow high speed operation, enabling a smaller, more compact power switching design using smaller associated components.

The TF0211E1 provides a single non-inverted input, comes in a space-saving SOT23-5L package, and operates over an extended -40°C to +125°C temperature range.


Applications

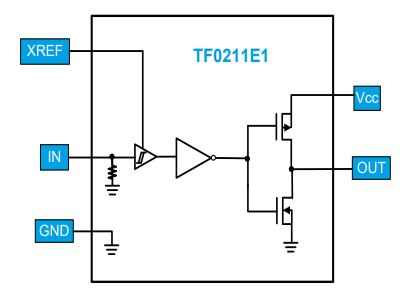
- Switch Mode Power Supplies
- Motor Drive
- Line Drivers
- DC-DC Converters



SOT-23-5L

Typical Application

www.tfsemi.com Rev. 1.0



Top View: SOT23-5L

Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION	
V _{cc}	1	Supply voltage	
GND	2	Ground, supply return	
IN	3	Non-inverting logic input, in phase with OUT	
XREF	4	External reference voltage, reference for input thresholds.	
OUT	5	Gate drive output	

Functional Block Diagram

Jan. 2024 2

Absolute Maximum Ratings (NOTE1)

Symbol	Parameter	MIN	MAX	Unit	
V _{cc}	Supply voltage	-0.3	24		
V _{OUT}	Output voltage (OUT)	-0.3	V _{CC} +0.3	V	
V _{IN}	Logic input voltage (IN)	-0.3	XREF+0.3		
V _{XREF}	Voltage on XREF	-0.3	5.5		
P _D	Package power dissipation @ $T_A \le 25^{\circ}$ C (SOT23-5L)	TBD	TBD	W	
θ_{JA}	Thermal resistance, junction to ambient (SOT23-5L)(NOTE2)	TBD	TBD	°C/W	
T _J	Junction temperature	-40	150		
T _L	Lead temperature (soldering 10s)		300	°C	
T _s	Storage temperature	-55	150		
565	ESD Protection on all pins, HBM		2	kV	
ESD	MM		400	V	

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

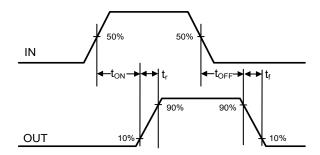
Recommended Operating Conditions

Symbol	Parameter	MIN	MAX	Unit
V _{cc}	Supply voltage	4.5	18	
V _{OUT}	Output voltage (OUT)	0	V _{cc}	V
V _{IN}	Logic input voltage (IN)	0	XREF	
V _{XREF}	External reference voltage	2.5	5.0	
T _A	Ambient temperature	-40	125	°C

Jan. 2024

Electrical Characteristics (NOTE3)

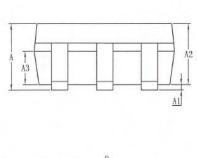
 V_{CC} =12V, T_A = 25°C , XREF=3.3V unless otherwise specified.

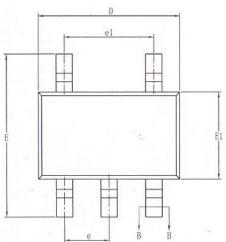

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit	
DC Chara	cteristics						
V _{IH}	Logic "1" input voltage	XREF=2.5V-5.0V		52		%XREF	
V _{IL}	Logic "0" input voltage			42			
I _{IN+}	Logic "1" input bias current	V _{IN} = 3V, XREF=3V			5	_	
I _{IN-}	Logic "0" input bias current	V _{IN} = 0V, XREF=3V			2	μΑ	
V _{OH}	High level output voltage, V _{BIAS} - V _O			25			
V _{OL}	Low level output voltage			25		mV	
I _{ccq}	V _{CC} quiescent supply current	Inputs open		4	10	μΑ	
I _{O+}	Output high short circuit pulsed current			1.9		_	
I ₀₋	Output low short circuit pulsed current			1.8		A	
R _{OH}	Output Resistance, High	I _{OUT} = 10mA, V _{CC} = 12V		3.3		Ω	
R _{OL}	Output Resistance, Low	I _{OUT} = 10mA, V _{CC} = 12V		2.3		Ω	
Switchin	g Characteristics						
t _r	Turn-on rise time	C _L = 1000pF, V _{CC} = 12V		15	25	ns	
t _f	Turn-off fall time	$C_L = 1000 \text{pF}, V_{CC} = 12 \text{V}$		15	25	ns	
t _{on}	Turn-on propogation delay	V _{CC} = 12V		35	50	ns	
t _{off}	Turn-off propogation delay	V _{CC} = 12V		35	55	ns	

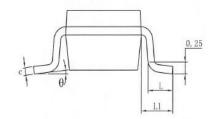
NOTE3 The V_{IN} and I_{IN} parameters are applicable to the logic input pin: IN. The V_{O} and I_{O} parameters are applicable to the output pin: OUT.

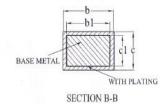
Jan. 2024 4

Timing Waveforms


Figure 1. Switching Time Waveform Definitions


Jan. 2024 5




Package Dimensions (SOT23-5L)

Please contact support@tfsemi.com for package availability.

SYMBOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A		_	1.25	
A1	0.04	_	0.10	
A2	1.00	1.10	1.20	
A3	0.60	0.65	0.70	
b	0.33	-	0.41	
b1	0.32	0.35	0.38	
c	0.15		0.19	
cl	0.14	0.15	0.16	
D	2.82	2.92	3.02	
Е	2.60	2.80	3.00	
E1	1.50	1.60	1.70	
e	0.95BSC			
e1	1.90BSC			
L	0.30	_	0.60	
L1	0.60REF			
θ	0	-	8°	

Rev.	Change	Owner	Date
1.0	First release, Advance Info datasheet	Keith Spaulding	1/5/2024

Important Notice

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2024 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfsemi.com or visit www.tfsemi.com.

Jan. 2024