

ME2177

High Efficiency, 7-A Synchronous Boost Converter

Description

ME2177 is a high power density synchronous boost converter which integrates two low R_{DS(ON)} MOSFETs to reduce conduction loss. It provides tiny and high efficiency solution for portable electronics. ME2177 has wide input voltage ranging from 2.7(ME2177A)/ 2.0(ME2177B) to 12V and can provide output voltage up to 12.6 V. It has 7 A switch current capability and is capable of delivering more than 20 W power.

ME2177 uses current mode COT control to regulate the output voltage. It works in PWM mode in moderate to heavy load. In light load, the chip adopts PFM to save quiescent power consumption. The switching frequency is adjustable ranging from 200 kHz to 2.2 MHz by an external resistor. ME2177 is also capable of programming peak current limit. In addition, ME2177 integrates input UVLO, output OVP, soft-start control and thermal shutdown protection.

Applications

- Quick Charge Power Bank
- E-Cigarette
- Bluetooth™ Speaker
- Portable POS terminal

Feature

• Input voltage range: 2.7 V ~ 12 V (ME2177A)

2.0 V ~ 12 V (ME2177B)

Output voltage range: 4.5 V ~ 12.6 V

• Low shutdown current: 1 uA ~ 4 uA (ME2177A)

1 uA ~ 7uA (ME2177B)

• Low $R_{DS(ON)}$ MOSFETs (LSD/HSD): 20 m Ω /28 m Ω

• Up to 89% efficiency @ V_{IN} = 3.3 V, V_{OUT} = 9 V and I_{OUT} = 2 A

• Adjustable switching frequency: 200 kHz~2.2MHz

 Programmable peak switch current limit: cycle by cycle, I_{LIM} = 10 A @ R_{ILIM} = 150 kΩ

Internal soft-start time: 2.5 ms

Output over-voltage protection @ 13.4 V

Thermal shutdown @ 150 °C

Package

• 11-pin QFN2.5*2.0-11L \QFN2.0*2.0-11L

Typical Application

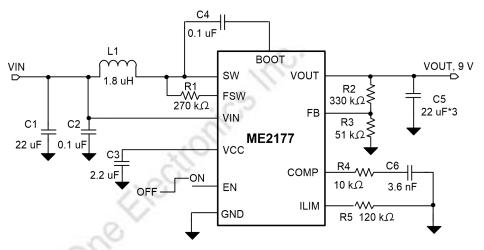
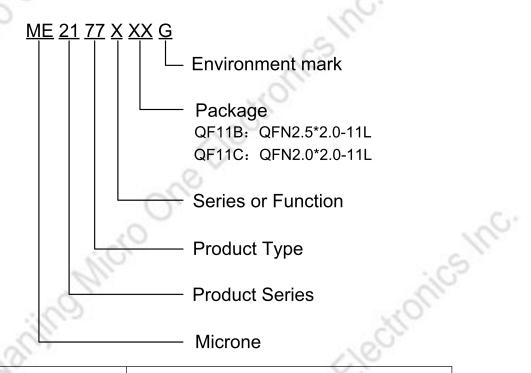



Fig 1. ME2177 Typical Application Schematic

Selection Guide

product series	product description			
ME2177AQF11BG	Package: QFN2.5*2.0-11L;Start Voltage: 2.7V			
ME2177BQF11BG	Package: QFN2.5*2.0-11L;Start Voltage: 2.0V			
ME2177BQF11CG	Package: QFN2.0*2.0-11L;Start Voltage: 2.0V			

V05 www.microne.com.cn Page 2 of 11

Pin Configuration

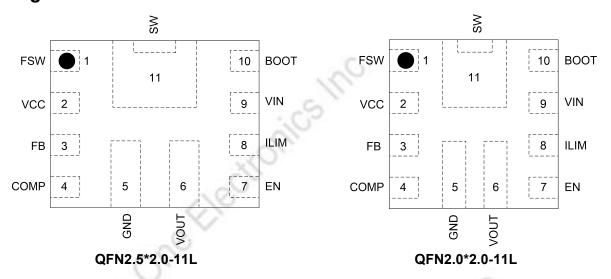


Fig. 2. ME2177 Package (TOP View)

Pin Assignment

Pin		Description	
Name	Number	Description	
FSW	(20) I	Use external resistor between the FSW pin and the SW pin to set switching frequence	
VCC	2	Output of the internal LDO. A ceramic capacitor of more than 1 uF is required betwee VCC pin and ground.	
FB	3	Voltage feedback. This pin is connected to the tape of a resistor divider.	
COMP	4	Output of internal error amplifier. Loop compensate network is required between the COMP pin and GND.	
GND	5	Reference ground.	
VOUT	6	Output of boost converter.	
EN	7	Enable logic input. Logic high enables IC and logic low disables IC.	
ILIM	8	Use external resistor between the ILIM pin and GND to set peak current limit.	
VIN	9	Power supply for IC.	
воот	10	Power supply for the HSD gate driver. A ceramic capacitor of more than 0.1 uF is required between the BOOT pin and SW.	
SW	11	Switching node of the boost converter. It is connected to the drain of LSD and the source of HSD.	
		Marijing Micro One	

V05 <u>www.microne.com.cn</u> Page 3 of 11

Block Diagram

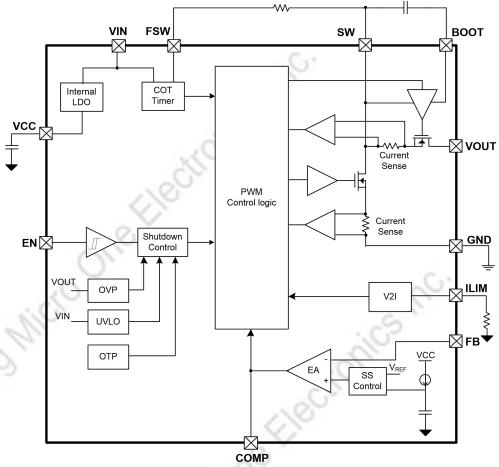


Fig. 3. ME2177 Block Diagram

Absolute Maximum Ratings (Note1)

Symbol		Description	Value	Unit	
воот		life,	-0.3 ~ 20	V	
V_{PIN}	VIN, SW, FSW, VOUT	Voltage between each pin and ground.	-0.3 ~ 14	V	
	EN, VCC, COMP, ILIM, FB	ground.	-0.3 ~ 6	V	
	Tu	Operating junction temperature	-40 ~ 150	°C	
	T _{stg}	Storage temperature	-55 ~ 150	°C	
	T _A	Operating Ambient Temperature Range	-40 ~ 85	°C	
	T_lead	Lead temperature	260	°C	
	P _D	Power Dissipation	2.4	W	
	θја	Package thermal resistance (Junction to air)	52	°C/W	

Note 1: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

ESD Ratings

Model	Value	Unit
Human body mode(HBM), all pins	± 2000	V
Charged device model (CDM), all pins	± 500	V

V05 <u>www.microne.com.cn</u> Page 4 of 11

Recommended Operating Conditions

Symbol	Description	1	Min	Тур	Max	Unit
Maria	lanut voltage ronge	ME2177A	2.7	-	12	V
Vin	Input voltage range	ME2177B	2.0	-	12	V
V _{OUT}	Output voltage r	ange	4.5	-	12.6	V
L	Inductance, effectiv	ve value	0.6	1.8	10	uH
Co	Output capacitance, eff	ective value	30	60	1000	uF
T _A	Operating ambient te	mperature	-40	-	85	°C

Electrical Characteristics

 $(T_{A} = 25 \text{ °C}, \ V_{IN} = 3.6 \text{ V}, \ V_{OUT} = 9 \text{ V}, \ L = 1.8 \text{ uH}, \ R_{ILIM} = 150 \text{ k}\Omega, \ R_{FSW} = 270 \text{ k}\Omega, \ unless otherwise specified})$

Symbol	Description	Test Condi	tions	Min	Тур	Max	Unit
		ME2177A		2.7	-	12	.,
V_{IN}	Input Voltage range	ME2177B		2.0		12	V
V	Input IIV/I O throubold voltage	Input voltage riging	ME2177A	10	2.6	2.7	V
V_{UVLO}	Input UVLO threshold voltage	Input voltage rising	ME2177B	-	1.83	1.94	\ \ \
V _{UVLO_HYS}	UVLO hysteresis		110	-	0.2	-	V
	Chartelesses assument into the AVINI	IC disabled, no	ME2177A	-	1	4	
I _{SD}	Shutdown current into the VIN pin	feedback resistor and load connected to VOUT pin	ME2177B	-	1	7	uA
IQ	Input quiescent current in PFM mode and empty load	IC enabled, no feedbalload connected to the		-	120	200	uA
Vcc	Output voltage of internal LDO	V _{IN} = 8 V, I _{VCC} = 10 m	Α	-	5		V
V_{ENH}	EN logic high threshold voltage	VCC = 5 V		-	-	1.2	V
V_{ENH}	EN logic low threshold voltage	VCC = 5 V		0.4	- 15	7/1	V
R _{EN}	EN internal pull-down resistor	VCC = 5 V		-	800	3-	kΩ
V _{OUT}	Output voltage range			4.5	July .	12.6	V
V_{REF}	Feedback reference voltage			1.188	1.206	1.224	V
I _{FB}	Leakage current into FB pin	V _{FB} = 1.5 V	9	0	-	100	nA
R _{DS(ON)_LSD}	LSD on-resistance		<	7	20	30	mΩ
R _{DS(ON)_HSD}	HSD on-resistance		-63	-	28	42	mΩ
	Peak switch current limit in	R _{ILIM} = 150 kΩ M	E2177A	-	10	-	^
I _{LIM_PFM}	PFM mode	R _{ILIM} = 100 kΩ M	E2177B	-	7.8	-	Α
fsw	Switch frequency	R _{FSW} = 270 kΩ	9.	-	500	-	kHz
t _{min_ON}	Minimum on time	011		-	100	200	ns
t _{min_OFF}	Minimum off time	4/2		-	90	200	ns
t _{SS}	Soft-start Time	::09		-	2.5	-	ms
V _{OVP}	Output over-voltage protection threshold voltage	Output voltage rising		-	13.4	-	V
V _{OVP_HYS}	Output over-voltage protection hysteresis	Ly.		-	0.3	-	V
T _{SD}	Thermal shut down threshold	Junction temperature	rising	-	150	-	°C
T_{SD_HYS}	Thermal shut down hysteresis			-	25	-	°C

Type Characteristics

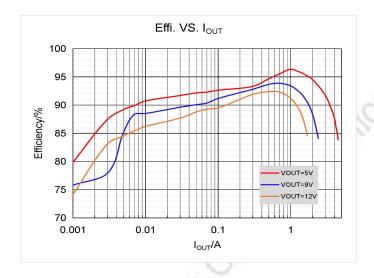


Fig. 4. Efficiency vs. I_{OUT} @ V_{IN}=3.3V

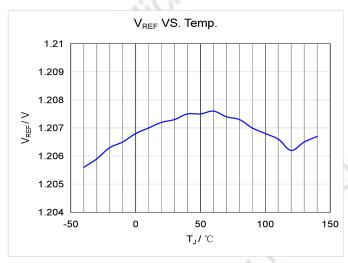


Fig. 6. Reference Voltage vs. Temperature

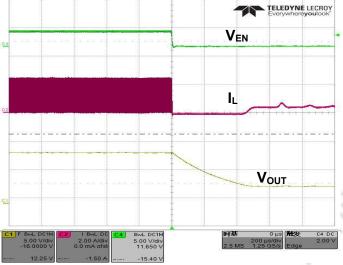


Fig. 8. Shutdown Waveforms

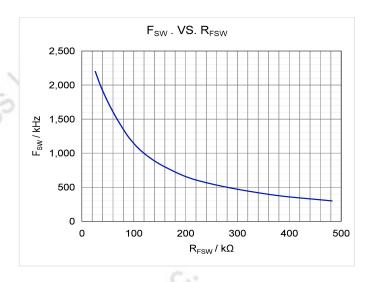


Fig. 5. Switching Frequency Setting

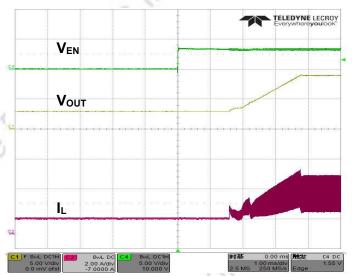


Fig. 7. Startup Waveforms

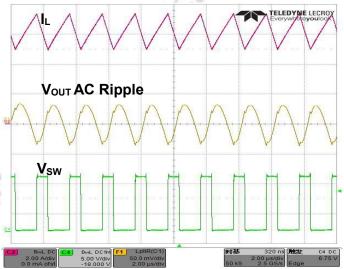
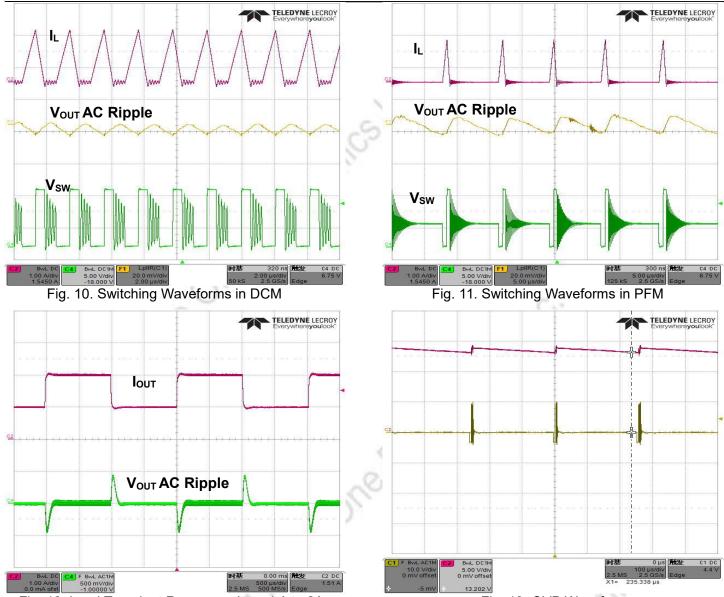



Fig. 9. Switching Waveforms in CCM

Fig. 12. Load Transient Response, IOUT=1 A to 2A

Fig. 13. OVP Waveforms

Operation Description

ME2177 is a synchronous step-up DC-DC converter which integrates two very low R_{DS(ON)} power switches to improve efficiency. It adopts current mode COT control topology to regulate output voltage. In moderate to heavy load, during every switching period, low-side MOSFET is turned on until switch current ramps up to a certain peak current determined by error amplifier. During dead time, inductor current flows through body diode of the high-side MOSFET. After dead time, the high-side MOSFET is turned on and will be turned off after adaptive constant off time is reached. In light load, ME2177 works in PFM mode and extends off time of switching period to reduce delivered energy.

Application Information

ME2177 has wide input voltage range and is capable of providing 12.6 V output voltage. It integrates two internal 7A power switches and can deliver more than 20 W power. ME2177 can change modulation mode automatically between PWM and PFM in different load conditions. In addition, ME2177 integrates OVP, OTP, UVLO and internal soft start control function and support external setting of the switching frequency.

Setting Output Voltage

Crone 盟_{电子} ME2177

The output voltage can be programmed by external resistor divider (R1 and R2 in typical application schematic) connected to VOUT pin. For reducing quiescent current in empty load, it is recommended to use large resistance between 10 k Ω and 1 M Ω for R1 and R2. The resistance of R1 can be calculated by following equation.

$$R_1 = \frac{(V_{OUT} - V_{REF}) \times R_2}{V_{REF}}$$

Setting Switching Frequency

The switching frequency can be programmed by external resistor R_{FSW} between the FSW pin and the SW pin. The R_{FSW} required for desired switching frequency can be calculated using the following equation.

$$R_{FSW} = \frac{4 \times (\frac{1}{f_{SW}} - t_{Delay} \times \frac{V_{OUT}}{V_{IN}})}{C_{FSW}}$$

Where V_{IN} is input voltage, V_{OUT} is output voltage, f_{SW} is the switching frequency, C_{FSW} is 25 pF, t_{Delay} is 90 ns.

Setting Peak Current Limit

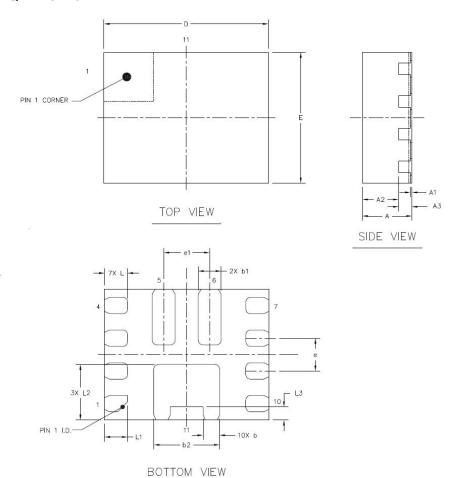
The peak switch current limit can be set by external resistor R_{ILIM}. To guarantee normal operation of the boost converter, peak switch current limit should be higher than maximum inductor peak current. Peak current limit can be calculated using following equation.

$$I_{\text{LIM}} = \frac{1500000}{R_{\text{ILIM}}} \hspace{0.2cm} (\text{ME2177A}) \hspace{1cm} I_{\text{LIM}} = \frac{780000}{R_{\text{ILIM}}} \hspace{0.2cm} (\text{ME2177B})$$

External Component

- 1) High-side MOSFET driver is powered using external bootstrap capacitor. A ceramic capacitor of 100 nF should be connected between the SW pin and the BOOT pin.
- 2) The effective capacitance is decreased with DC bias. So it is necessary to leave margin to guarantee adequate effective capacitance especially for C_{IN} and C_{OUT}.
- 3) When the inductor current approaches its saturation current, its inductance can decrease 30% from the value at 0-A current. The saturation current of used inductor should be higher than the maximum peak inductor current. And to improve efficiency of the boost converter, a inductor with low DCR is necessary.

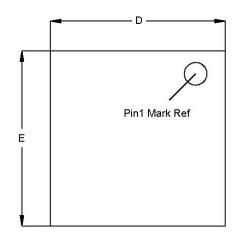
Layout Guideline

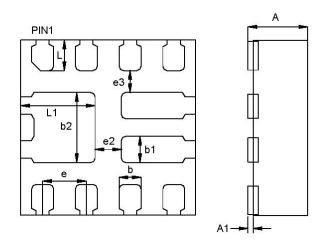

- 1) Boost converter implemented by ME2177 is sensitive to PCB layout. For reducing non-ideality, external component such as inductor, input capacitor, output capacitor, compensation network and resistor divider should be placed as nearly as possible to the chip.
- 2) For reducing EMI caused by high frequency switching, the trace connected to SW pin should be as short as possible. It is recommended to use ground plane to shield signal from interplane coupling.
- 3) To improve thermal dissipation and power efficiency, it is recommended to use thick copper PCB(recommending 2 OZ copper thickness). More thermal vias near the chip are desirable. And the traces with large current should be placed on both the front side and reverse side of PCB.

V05 www.microne.com.cn Page 8 of 11

Packaging Information

Package Type: QFN2.5*2.0-11L




Millimeters Inches DIM Min Max Min Max 0.7 0.0276 0.0315 Α 8.0 0.05 0.0020 Α1 A2 0.0216 0.55 0.0080 А3 0.203 b 0.2 0.0079 0.0118 0.3 0.3 0.0118 0.0157 0.4 b1 0.95 0.0374 b2 1.05 0.0413 2.5 BSC 0.0984 BSC D Ε 2 BSC 0.0787 BSC 0.5 BSC 0.0197 BSC е 0.7 BSC 0.0276 BSC e1 L 0.3 0.4 0.0118 0.0157 L1 0.25 0.45 0.0098 0.0177 L2 8.0 0.9 0.0315 0.0354 L3 0.2 REF 0.0079 REF

V05 <u>www.microne.com.cn</u> Page 9 of 11

Package Type: QFN2.0*2.0-11L

DINA	Millimeters		Inches		
DIM	Min	Max	Min	Max	
Α	0.5	0.6	0.0197	0.0236	
A1	0.007	0.017	0.0003	0.0007	
D	1.9	2.1	0.0748	0.0827	
E	1.9	2.1	0.0748	0.0827	
e1	0.45	0.55	0.0177	0.0217	
e2	0.25	0.35	0.0098	0.0138	
e3	0.2	0.3	0.0079	0.0118	
b	0.2	0.3	0.0079	0.0118	
b1	0.25	0.35	0.0098	0.0138	
b2	0.75	0.85	0.0295	0.0335	
L	0.3	0.4	0.0118	0.0157	
L1	0.8	0.9	0.0315	0.0354	
			0.0118		
		۵۸.	2		

V05 <u>www.microne.com.cn</u> Page 10 of 11

 The contents of this document will be updated with the product's improvement without prior notice. Please consult our sales staff before using this document to ensure that you are using the latest version.

One Electronics Inc.

- The application circuit examples described in this document are only used to indicate the representative use of the product and do not guarantee the design of mass production.
- Please use this product within the limits stated in this document. We will not be responsible for any damage caused by improper use.
- The products described in this document are not allowed to be used in equipment or devices that affect the human body without the written permission of our company, including but not limited to: health equipment, medical equipment, disaster prevention equipment, fuel control equipment, automobile equipment, aviation equipment and vehicle equipment.
- Although our company has always been committed to improving product quality and reliability, semiconductor products have a certain probability of malfunction or wrong work. To prevent personal injury or property damage caused by such accidents, please pay full attention to safety design, for example: Alternate design, fire protection design, and prevention of wrong action design.
- When exporting this product or this document overseas, you should abide by applicable import and export control laws.
- Copying or reprinting part or all of this document in any form without the permission of our company is strictly prohibited.