

Product Features

- Excellent Insertion Loss and Isolation performance
- High Linearity
- RFFE 2.1 Control Interface
- Broadband frequency range: 0.1 to 3 GHz
- Small package: QFN-20 2.5mm x 2.5mm x 0.45mm
- No DC blocking capacitors required
- 1kV HBM ESD Protection on all pins

Product Applications

- 4G multimode cellular tablets and Multi-Mode GSM, EDGE, WCDMA, LTE
- Diversity antenna switching

Product Description

The LX86C0 is a Silicon On Insulator (SOI) Single Pole, Twelve Throw (SP12T) antenna switch with a Mobile Industry Processor Interface (MIPI) which require very low insertion loss, high isolation and high linearity performance. The LX86C0 is manufactured in a compact 2.5mm x 2.5mm x 0.45mm, 20-pin surface mount Quad Flat No-Lead (QFN) package.

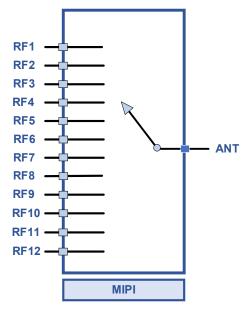


Figure 1 Functional Block Diagram

Absolute Maximum Conditions

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V _{DD}	2.5	3.6	V
Digital control signal	V _{IO}		2	V
RF input power	Pin		+37	dBm
Storage temperature	Tstg	-55	+150	°C
Operating temperature	Тор	-40	+90	°C
Human Body Model, Class 1C	ESD	1000		V

1: Test condition 50% duty cycle, VSWR=1:1, +25 ° C

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

General Electrical Specifications

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Units
Supply voltage	V _{DD}		2.5	2.8	3.6	V
Supply current, active mode	I _{DD}		100		150	μA
Interface supply	VIO		1.65	1.8	2	V
Interface signal:						
High			0.8 x VIO	VIO	2	V
Low			0	0	0	
Control current:						
High	Ість		5		15	μA
Low						
Turn-on time		Measured from 50% of				
	Ton	final VDD supply voltage to		20		μs
(PIN = +27 dBm)		90% of RF power				
Switching time		Measured from 50% of				
Switching time (PIN = +27 dBm)	Tsw	final VDD supply voltage to		2	5	μs
		90% of RF power				

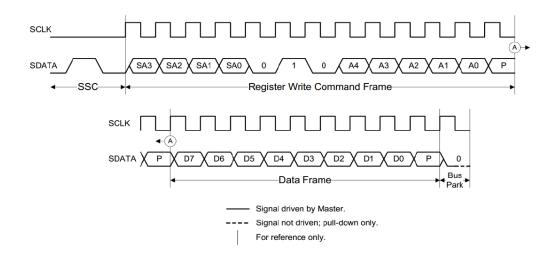
(VDD = 2.8 V, VIO = 1.8 V, TOP = +25 °C, Characteristic Impedance [ZO] = 50 Ω, Unless Otherwise Noted)

RF Specifications

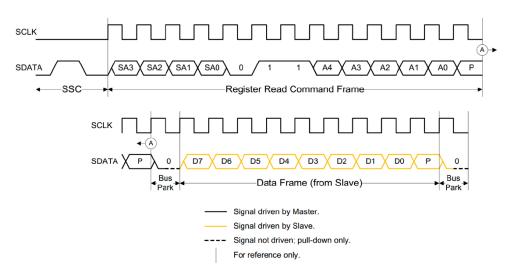
Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Units
Operating frequency	f		0.1		3	GHz
		Up to 1.0 GHz		0.51		
Insertion loss	IL	Up to 2.0 GHz		0.61		dB
		Up to 2.7 GHz		0.66		
lociation (ANT part to any		Up to 1.0 GHz	35	38		
Isolation (ANT port to any	Iso	Up to 2.0 GHz	23	25		dB
receive port)		Up to 2.7 GHz	20	23		
		All ports, up to 1.0 GHz	23	26		
Return loss	RL	All ports, up to 2.0 GHz	20	23		dB
		All ports, up to 2.7 GHz	15	18		
2nd Order harmonics	2fo	Pin = +26 dBm,900MHz	-80	-86		dBm
3rd Order harmonics	3fo	Pin = +26 dBm,900MHz	-70	-74		dBm
2nd Order harmonics	2fo	Pin = +30 dBm,900MHz	-72	-78		dBm
3rd Order harmonics	3fo	Pin = +30 dBm,900MHz	-58	-62		dBm
0.1 dB Compression Point 50% duty cycle, VSWR=1:1	P0.1dB	900M, 50Ω		+37		dBm

Truth Table

Dec. 10	Reg_00							ANT-RFX	
Reg_1C	D7	D6	D5	D4	D3	D2	D1	D0	ΑΝΙ-ΚΓΛ
38	х	0	0	0	0	0	0	0	ISO
38	х	0	0	0	1	1	1	1	ISO
38	х	0	0	0	0	1	0	0	ANT-RF1 on
38	х	0	0	0	0	1	1	1	ANT-RF2 on
38	х	0	0	0	1	0	0	1	ANT-RF3 on
38	х	0	0	0	1	0	1	1	ANT-RF4 on
38	х	0	0	0	1	1	0	0	ANT-RF5 on
38	х	0	0	0	0	0	0	1	ANT-RF6 on
38	х	0	0	0	0	0	1	0	ANT-RF7 on
38	х	0	0	0	0	0	1	1	ANT-RF8 on
38	х	0	0	0	1	0	1	0	ANT-RF9 on
38	х	0	0	0	1	0	0	0	ANT-RF10 on
38	х	0	0	0	0	1	0	1	ANT-RF11 on
38	х	0	0	0	0	1	1	0	ANT-RF12 on



MIPI RFFE Commands


MIPI RFFE V2.1 interface supports the following Command Sequences:

- Register Write
- Register Read
- Register_0 Write

Figure 2 and Figure 3 illustrate the timing diagrams for register write command sequence and read command sequence, respectively. Figure 4 describes the Register_0 write command sequence. In the below timing figures, SA[3:0] is the slave address. A[4:0] is the register address. D[7:0] is the data. "P" is a parity bit.

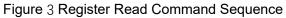


Figure 4 shows the Register_0 Write Command Sequence. The Command Sequence starts with an SSC, followed by the Register 0 Write Command Frame containing the Slave address, a logic '1' (to denote the command type and address), and an only seven-bit word to be written into Register 0. The Command Sequence ends with a Bus Park Cycle.

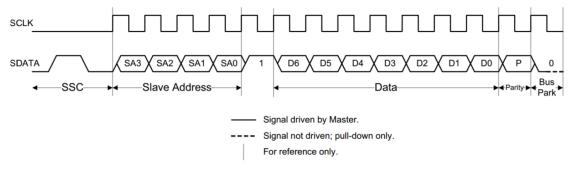


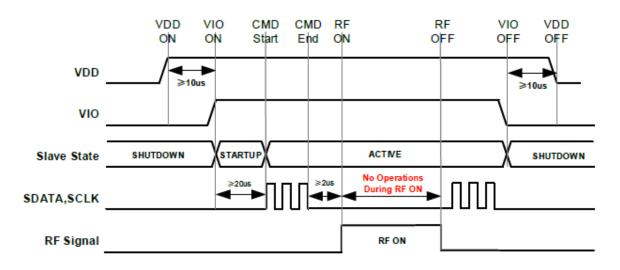
Figure 4 Register_0 Write Command Sequence

Other information such as MIPI USID programming sequences, MIPI bus specifications, etc. can be referred to the MIPI Alliance Specification for RF Front-End Control Interface (RFFE), V2.1 (18-DEC-2017).

Register definition

Register 0, Address: 0x00 (MODE_CTRL)							
Register 0	Description	Default	Notes				
[7:0]	MODE_CTRL	0x0	Switch control. See Truth Table	0			
Register 1B, Address: 0x1B							
Register 1B	Description	Default	Notes	Trig			
[7:4]	Reserved	0x00	Reserved	No			
[3:0]	GSID	0x00	Group slave ID	No			
	Registe	r 1C Addre	ss: 0x1C (PM_TRIG)				
Register 1C	Description	Default	Notes	Trig			
[7:6]	PWR_MODE	10	00 = Normal Operation (ACTIVE) 01 = Default Settings (STARTUP) 10 = Low Power (LOW POWER) 11 = Reserved	No			
[5]	Trigger Mask 2	0	Trigger Enable: 0 Trigger Disable: 1	No			
[4]	Trigger Mask 1	0	Trigger Enable: 0 Trigger Disable: 1	No			
[3]	Trigger Mask 0	0	Trigger Enable: 0 Trigger Disable: 1	No			
[2]	Trigger Register 2	0	1 = Latch Register 2 contents				
[1]	Trigger Register 1	0	1 = Latch Register 1 contents				
[0]	Trigger Register 0	0	1 = Latch Register 0 contents	No			
	Registe	er1D, Addr	ess: 0x01D (PM_ID)				
Register1D	Description	Default	Notes				
[7:0]	Product ID	0X5F	Product ID = 0X5F	No			
	Register	r 1E, Addre	ess: 0x01E (MAN_ID)				
Register 1E	Description	Default	Notes				
[7:0]	Manufacturer ID	0x78	Manufacturer ID[7:0] = 0x78				
Register 1F Address: 0x01F (USID)							
Register 1F	Description	Default	Notes	Trig			
[7:4]	Manufacturer ID	0x04	Manufacturer ID [11:8]	No			
[3:0]	User ID	0xA	The default value at reset is selected via pin USID.	No			

Power ON and OFF Sequence


Here is the recommendation about power-on/off sequence in order to avoid damaging the device.

Power ON

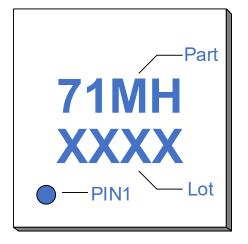
- Apply voltage supply VDD
- Apply logic supply VIO
- Wait 20µs or longer and then apply MIPI bus signals SCLK and SDATA
- Wait 2µs or longer after MIPI bus goes idle and then apply the RF Signal

Power OFF

- Remove the RF Signal
- Remove MIPI bus SCLK and SDATA
- Remove logic supply VIO
- Remove voltage supply VDD

Figure 5 Power On/Off Sequence

Notice


VIO can be applied to the device before VDD or removed after VDD.

It is important to wait 20µs after VIO & VDD are applied before sending SDATA to ensure correction data transmission.

It is strongly recommended that no SDATA/SCLK operations are implemented during RF power on period so as to prevent the device being damaged.

Pin-out Information

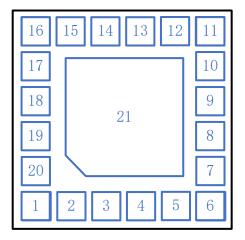


Figure 6 Pin-out Information

Table 1. Pin Description

Pin #	Name	Description	Pin #	Name	Description
1	ANT	Antenna in	12	RF1	RF Port 1
2	RF4	RF Port 4	13	RF8	RF Port 8
3	RF3	RF Port 3	14	RF7	RF Port 7
4	RF2	RF Port 2	15	RF6	RF Port 6
5	RF12	RF Port 12	16	RF5	RF Port 5
6	NC	Not Connect	17	GND	Ground
7	VDD	Supply voltage	18	RF10	RF Port 10
8	VIO	Digital control signal	19	RF9	RF Port 9
9	SDATA	MIPI data input/output	20	GND	Ground
10	SCLK	MIPI clock	21	GND	Ground
11	RF11	RF Port 11			

Application circuit

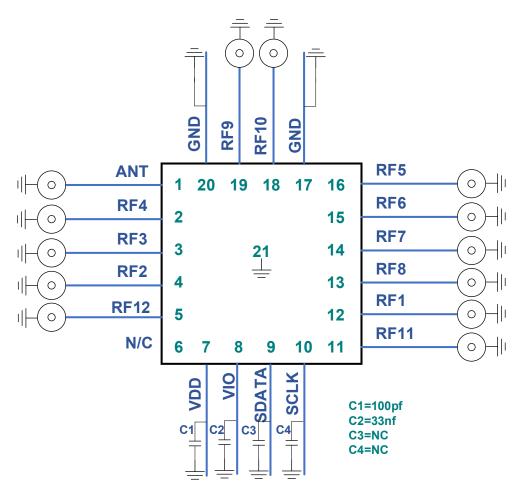


Figure 7 Application circuit

Evaluation Board

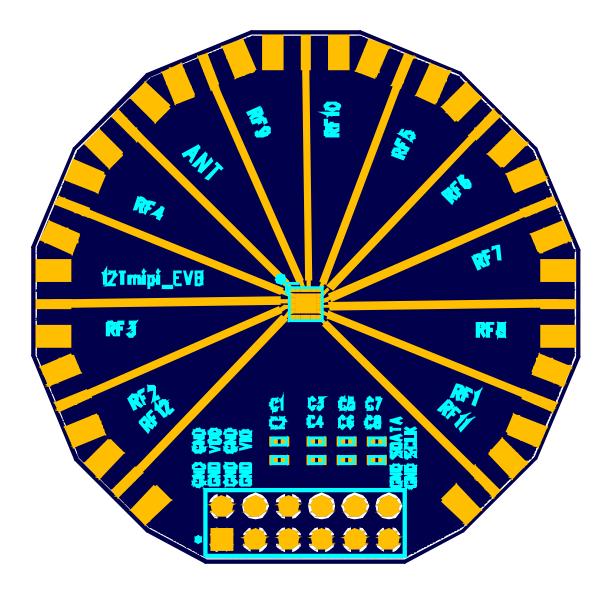
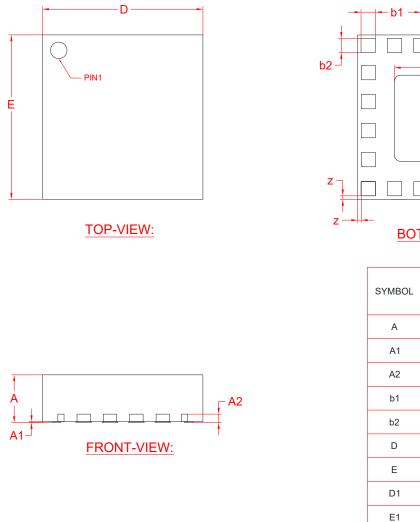


Figure 8 Evaluation Board Assembly Diagram

-e1

D1


E1

+ e2 +-

Pin1

e1

Package Outline Dimension

1.29

0.35

0.40

0.23

Ζ

e1 e2*

Κ

1.34

0.10REF

0.40

0.45

0.28

1.39

0.45

0.50

0.33

Figure 9 Package Outline Dimension

Package Dimensions (3000pcs)

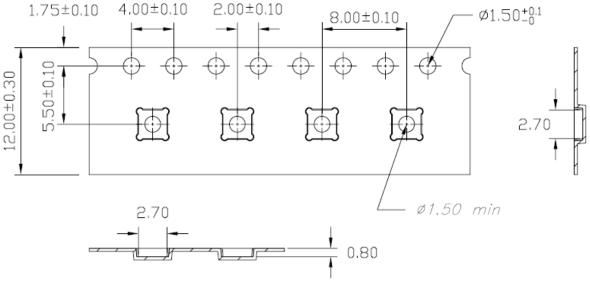
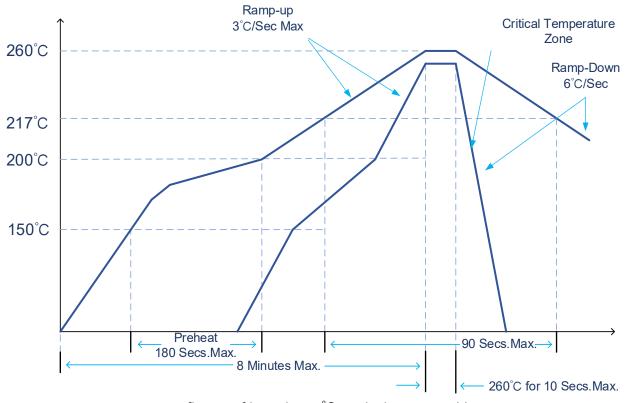


Figure 10 Tape and Reel Dimensions

Declaration of No Harmful Substances


This part is compliant with 2005/20/EC packaging directive, 1907/2006/EC REACH directive and the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- SVHC Free

Reflow Chart

NOTE: Reflow Profile with 240°C peak also acceptable.