

Self Control Fuse

DOC.No.: ISS:WSFB1514

INDIVIDUAL SPECIFICATION SHEET

Product Name: Self Control Fuse

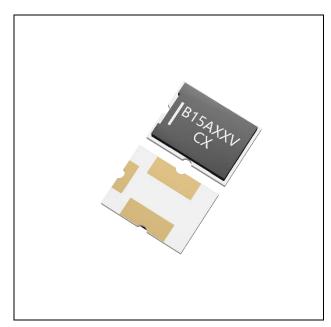
Part Number: WSFB1514

Revision: A/2

Dongguan TLC Electronic Technology Co., LTD

No.18,5th GaoLi Road, TangXia Town, DongGuan, GuangDong, P.R China 523710

TEL: 86-0769-3892 0511
FAX: 86-0769-8793 2077
Http: www.tlcet.com.cn


Rev.	Effective Date	Changed Contents	
A/0	2020-3-31	New Release	
A/1	2022-6-11	Product picture change	
A/2	2023-2-14	Voltage range correction	

real The individual specification sheet are the property of Dongguan TLC electronic technology Co.,Ltd and shall not be copied or used as commercial purposes without permission.

PREPARED BY	APPROVED BY
刘子儿	AVBA

WSFB Series

Description

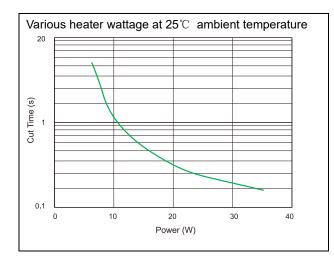
WSFB Series is a three terminals surface mountable battery protector that can protect against both overcurrent and overcharging. It comprises a fuse element to ensure stable operation under normal electrical current and to cut off the current when overcurrent occurs. It also comprises a resistive heating element that could be used in combination with a voltage detecting means, such as IC and FET. When overvoltage is detected, it will generate heat to blow the fuse to achieve overvoltage protection.

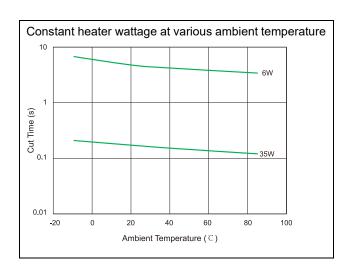
Features

- Halogen Free
- Protection for both overcurrent and overcharging
- Surface Mount
- Fast response

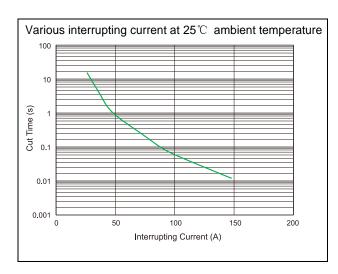
Agency Approvals

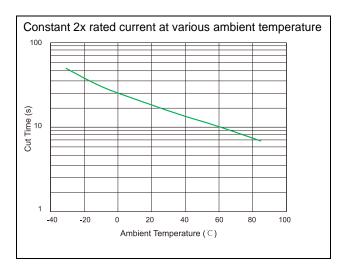
> UL file: E467707


Electrical Characteristics

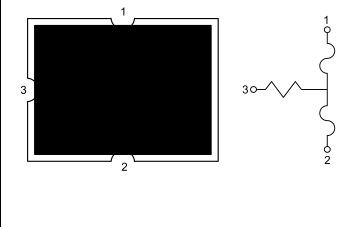

Part	I _{rated}	Cell In	V_{max}	I _{break}	V_{op}	Resistance	Agency Approvals	
Number	(A)	Series	(Vdc)	(A)	(V)	$R_{fuse}(m\Omega)$	c FU °us	
WSFB1514	15	4	36	50	10.5-19.6	1.0-3.0	•	
Current Capacity		100% x I _{rated} , No Melting						
Cut Time		200% x I _{rated} , < 1 min						
Interrupting Current		5 x I _{rated} , power on 5 ms, power off 995 ms, 10000 cycles, No Melting					ing	
Over Voltage Opera	tion	In operation	n voltage ra	ange, the fo	using time is <	1min		

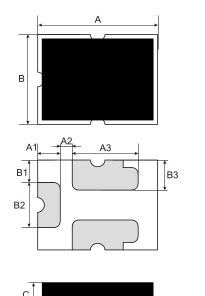
- 1) Irated = Current carrying capacity that is measured at 40 ℃ thermal equilibrium condition
- 2) Ibreak = The current that the fuse element is able to interrupt
- 3) Vmax = The maximum voltage that can be cut off by fuse
- 4) Vop = Range of operation voltage
- 5) Rheater = The resistance of the heating element
- 6) Rfuse= The resistance of the fuse element
- 7) Cells in series = Number of battery cells connected in series in the circuit for WSFB device to protect.
- Value specified is determined by using the PWB with 2mm*2oz copper traces, AWG18 covered wire, and 0.6mm glass epoxy PCB.
- Specifications are subject to change without notice.
- UL




Cut Time by Heater Operation (WSFB 15A series)

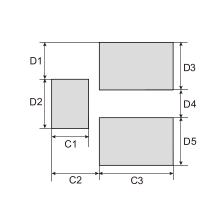
Cut Time by Current Operation (WSFB 15A series)




Environmental Specifications

Storage	0~35℃, ≤70%RH 1 year after
Temperature	shipment
Operating Temperature	-10°C to +65°C
Hat Dansius	100±5℃, 250 hours
Hot Passive Aging	No structural damage and functional failure
	60℃±2℃, 90~95% R.H. 250 hours
Humidity Aging	No structural damage and functional failure
	-20±3℃, 500 hours
Cold Passive Aging	No structural damage and functional failure
	MIL-STD-202 Method 107G
Thermal	+125℃/-55℃, 100 times
Shock	No structural damage and functional failure

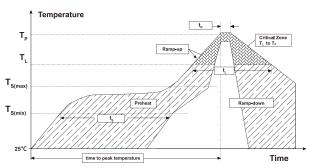
Device Circuit



Physical Dimension (mm)

Symbol	Dimension		
A	4.00±0.2		
В	3.00±0.3		
С	1.00max		
A1	0.75±0.1		
A2	0.46±0.1		
A3	2.20±0.1		
B1	0.75±0.1		
B2	1.50±0.1		
В3	1.00±0.1		

Board and Solder Layout Recommend (mm)



Symbol	Dimension
C1	1.20±0.1
C2	1.55±0.1
C3	2.40±0.1
D1	1.20±0.1
D2	1.60±0.1
D3	1.55±0.1
D4	0.90±0.1
D5	1.55±0.1

Soldering Parameters

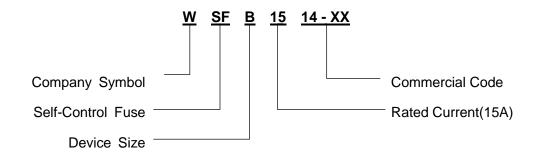
Average Ramp-Up Rate (Ts _{max} to TP)		3℃/second max.	
	Temperature Min (Ts _{min})	150℃	
Preheat	Temperature Max (Ts _{max})	200℃	
	Time (Ts _{min} to Ts _{max})	60-120 seconds	
Time maintained above:	Temperature (T _L)	217℃	
	Time (t∟)	60-105 seconds	
Peak Temperatur	e (T _P)	255 ℃	
Time within 5℃ of actual Peak Temperature (t _P)		5 seconds max.	
Ramp-Down Rate	9	6℃/second max.	
Time 25°C to Peak Temperature		8 minutes max.	

—All temperature refer to topside of the package, measured on the package body surface.

—If reflow temperature exceeds the recommended profile, devices may not meet the performance requirements

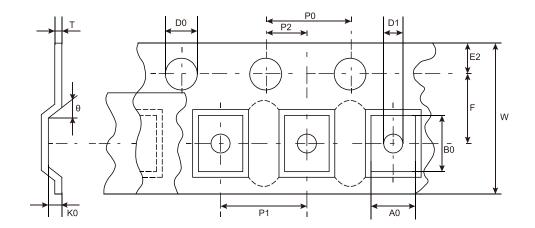
Physical Specifications

Material	Glass Epoxy PCB
Base Thickness	0.6mm
Copper Thickness	0.07mm
Covered Wire	AWG18

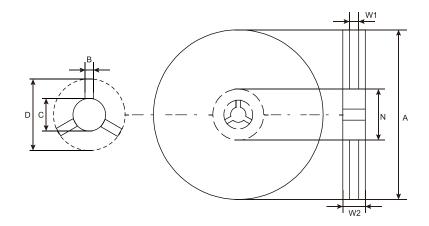

Packaging

Part Number	Tape and Reel Quantity
WSFBXXXX	5,000

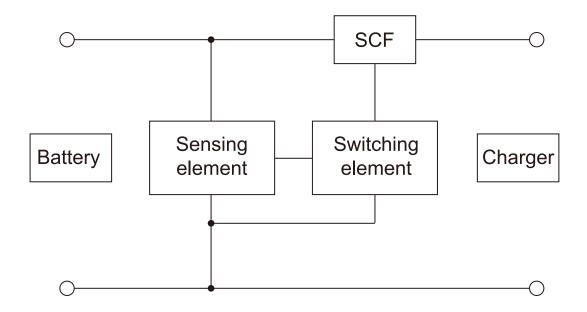
Part Marking System


B15A14V	 Model Mark
C4	— Commercial Code

Part Numbering System



Tape and Reel Specification


Item	A0	В0	D0	D1	E2	F	K0
Spec.(mm)	3.35±0.1	4.35±0.1	Ф1.50±0.05	Ф1.50±0.05	1.75±0.10	5.50±0.05	1.20±0.10
Item	P0	P1	P2	Т	W	θ	
Spec.(mm)	4.00±0.10	8.00±0.10	2.00±0.10	0.30±0.05	12.00±0.30	MAX6°	

Item	А	В	С	D	N	W1	W2
Spec.(mm)	φ330±0.1	2.50±0.05	13.60±0.05	22.60±0.05	Φ99±0.05	13.00±0.1	16.8±0.1

Typical Application Circuit Diagram

Installation and Handling Guidelines

- •Before and after mounted, the ultrasonic-cleaning or immersion-cleaning must not be done to WSF device. The flux on element would flow, and it would not be satisfied its specification when cleaning is done. In addition, a similar influence happens when the product comes in contact with cleaning-solution. These products after cleaning will not be guaranteed.
- •Silicone-based oils, oils, solvents, gels, electrolytes, fuels, acids, and the like will adversely affect the properties of WSF devices, and shall not be used or applied.
- •Please Do Not reuse the WSF device removed by the soldering process.
- •WSF devices are secondary protection devices and are used solely for sporadic, accidental over-current or over-temperature error condition, and shall NOT be used if or when constant or repeated fault conditions (such fault conditions may be caused by, among others, incorrect pin-connection of a connector) or over-extensive trip events may occur.
- •Operation over the maximum rating or other forms of improper use may cause failure, arcing, flame and/or other damage to the WSF devices.
- •The performance of WSF devices will be adversely affected if they are improperly used under electronic, thermal and/or mechanical procedures and/or conditions non-conformant to those recommended by manufacturer.
- •Customers shall be responsible for determining whether it is necessary to have back-up, failsafe and/or fool-proof protection to avoid or minimize damage that may result from extra-ordinary, irregular function or failure of WSF devices.
- •There should be minimum of 0.1mm spacing between WSF and surrounding compounds, to maintain the product characteristics and avoid damage other surrounding compounds.
- •This product is designed and manufactured only for general-use of electronics devices. We do not recommend that it is used for the applications Military, Medical and so on which may cause direct damages on life, bodies or properties.