

STM32U535xx

Datasheet - production data

Ultra-low-power Arm[®] Cortex[®]-M33 MCU+TrustZone[®]+FPU, 240 DMIPS, up to 512 KB flash memory, 274 KB SRAM

Features

Includes ST state-of-the-art patented technology

Ultra-low-power with FlexPowerControl

- 1.71 V to 3.6 V power supply
- -40 °C to +85/125 °C temperature range
- Low-power background-autonomous mode (LPBAM): autonomous peripherals with DMA, functional down to Stop 2 mode
- V_{BAT} mode: supply for RTC, 32 x 32-bit backup registers and 2-Kbyte backup SRAM
- 90 nA Shutdown mode (23 wake-up pins)
- 200 nA Standby mode (23 wake-up pins) •
- 370 nA Standby mode with RTC
- 1.4 µA Stop 3 mode with 16-Kbyte SRAM •
- 2.2 µA Stop 3 mode with full SRAM
- 3.0 µA Stop 2 mode with 16-Kbyte SRAM
- 4.6 µA Stop 2 mode with full SRAM
- 16.3 µA/MHz Run mode @ 3.3 V

Core

Arm[®] 32-bit Cortex[®]-M33 CPU with TrustZone[®], MPU, DSP, and FPU

ART Accelerator

- 8-Kbyte instruction cache allowing 0-wait-state execution from flash and external memories: up to 160 MHz, 240 DMIPS
- 4-Kbyte data cache for external memories

Power management

Embedded regulator (LDO) and SMPS step-down converter supporting switch on-the-fly and voltage scaling

Benchmarks

1.5 DMIPS/MHz (Drystone 2.1)

- 651 CoreMark[®] (4.07 CoreMark[®]/MHz)
- 464 ULPMark[™]-CP
- 125 ULPMark[™]-PP
- 54 ULPMark[™]-CM
- 137000 SecureMark™-TLS

Memories

- Up to 512-Kbyte flash memory with ECC, 2 banks read-while-write, and 100 kcycles
- 274-Kbyte SRAM including up to 64-Kbyte SRAM with ECC ON
- 1 Octo-SPI memory interface

Security

- Arm[®] TrustZone[®] and securable I/Os, memories and peripherals
- Flexible life cycle scheme with RDP and password protected debug
- Root of trust thanks to unique boot entry and secure hide protection area (HDP)
- Secure firmware installation (SFI) thanks to embedded root-secure services (RSS)
- Secure firmware upgrade support with TF-M
- HASH hardware accelerator
- True random number generator, NIST SP800-90B compliant
- 96-bit unique ID
- 512-byte OTP (one-time programmable)
- Active tampers

Clock management

4 to 50 MHz crystal oscillator

December 2023

DS14217 Rev 4

This is information on a product in full production.

- 32 kHz crystal oscillator for RTC (LSE)
- Internal 16 MHz factory-trimmed RC (±1%)
- Internal low-power 32 kHz RC (±5%)
- 2 internal multispeed 100 kHz to 48 MHz oscillators, including one auto-trimmed by LSE (better than ±0.25% accuracy)
- Internal 48 MHz with clock recovery
- 3 PLL for system clock, USB, audio, ADC

General-purpose input/outputs

 Up to 82 fast I/Os with interrupt capability most 5V-tolerant and up to 14 I/Os with independent supply down to 1.08 V

Up to 17 timers and 2 watchdogs

- 2 16-bit advanced motor-control, 4 32-bit, 5 16-bit, 4 low-power 16-bit (available in Stop mode), 2 SysTick timers and 2 watchdogs
- RTC with hardware calendar and calibration

Up to 19 communication peripherals

- 1 USB full-speed selectable host or device controller
- 1 SAI (serial-audio interface)
- 4 I2C FM+(1 Mbit/s), SMBus/PMBus[®]
- 5 USART/UART/LPUART (SPI, ISO 7816, LIN, IrDA, modem)
- 3 SPI (+1 with OCTOSPI +2 with USART)
- 1 CAN FD controller
- 1 SDMMC interface
- 1 multi-function digital filter (2 filters) + 1 audio digital filter with sound-activity detection
- Parallel synchronous slave interface

16- and 4-channel DMA controllers, functional in Stop mode

Graphic features

• 1 digital camera interface

Mathematical co-processor

- CORDIC for trigonometric functions
 acceleration
- Filter mathematical accelerator (FMAC)

Up to 20 capacitive sensing channels

Support touch key, linear and rotary touch sensors

Rich analog peripherals (independent supply)

- 14-bit ADC 2.5-Msps with hardware oversampling
- 12-bit ADC 2.5-Msps, with hardware oversampling, autonomous in Stop 2 mode
- 2 12-bit DAC, low-power sample and hold
- 1 operational amplifier with built-in PGA
- 1 ultra-low-power comparator

CRC calculation unit

Debug

 Development support: serial-wire debug (SWD), JTAG, Embedded Trace Macrocell™ (ETM)

ECOPACK2 compliant packages

Table 1. Device summarv

Reference	Part numbers
STM32U535xx	STM32U535CB, STM32U535CC, STM32U535CE, STM32U535JE, STM32U535NC, STM32U535NE, STM32U535RB, STM32U535RC, STM32U535RE, STM32U535VC, STM32U535VE

Contents

1	Introd	duction		14
2	Desc	ription .		15
3	Func	tional o	verview	20
	3.1	Arm Co	rtex-M33 core with TrustZone and FPU	20
	3.2	ART Ac	celerator (ICACHE and DCACHE)	20
		3.2.1	Instruction cache (ICACHE)	. 20
		3.2.2	Data cache (DCACHE)	. 21
	3.3	Memory	y protection unit	22
	3.4	Embed	ded flash memory	22
		3.4.1	Flash memory protection	. 23
		3.4.2	Additional flash memory protections when TrustZone activated	. 25
		3.4.3	FLASH privilege protection	. 25
	3.5	Embed	ded SRAMs	26
		3.5.1	SRAMs TrustZone security	. 26
		3.5.2	SRAMs privilege protection	. 26
	3.6	TrustZc	one security architecture	26
		3.6.1	TrustZone peripheral classification	. 27
		3.6.2	Default TrustZone security state	. 27
	3.7	Boot m	odes	28
	3.8	Global	TrustZone controller (GTZC)	31
	3.9	Powers	supply management	31
		3.9.1	Power supply schemes	. 32
		3.9.2	Power supply supervisor	. 35
		3.9.3	Low-power modes	. 36
		3.9.4	Reset mode	. 44
		3.9.5	VBAT operation	. 44
		3.9.6	PWR TrustZone security	. 44
	3.10	Periphe	eral interconnect matrix	44
	3.11	Reset a	and clock controller (RCC)	45
		3.11.1	RCC TrustZone security	. 48
	3.12	Clock r	ecovery system (CRS)	48

3.13	General	I-purpose inputs/outputs (GPIOs)	48
	3.13.1	GPIOs TrustZone security	48
3.14	Low-pov	wer general-purpose inputs/outputs (LPGPIO)	48
	3.14.1	LPGPIO TrustZone security	49
3.15	Multi-Al-	HB bus matrix	49
3.16	System	configuration controller (SYSCFG)	49
3.17	General	purpose direct memory access controller (GPDMA)	49
3.18	Low-pov	wer direct memory access controller (LPDMA)	51
3.19	Interrup	ts and events	53
	3.19.1	Nested vectored interrupt controller (NVIC)	53
	3.19.2	Extended interrupt/event controller (EXTI)	53
3.20	Cyclic re	edundancy check calculation unit (CRC)	54
3.21	CORDI	C co-processor (CORDIC)	54
3.22	Filter ma	ath accelerator (FMAC)	54
3.23	Octo-SF	PI interface (OCTOSPI)	55
	3.23.1	OCTOSPI TrustZone security	55
3.24	Delay b	lock (DLYB)	56
3.25	Analog-	to-digital converter (ADC1 and ADC4)	56
	3.25.1	Analog-to-digital converter 1 (ADC1)	57
	3.25.2	Analog-to-digital converter 4 (ADC4)	58
	3.25.3	Temperature sensor	60
	3.25.4	Internal voltage reference (VREFINT)	60
	3.25.5	VBAT battery voltage monitoring	60
3.26	Digital to	o analog converter (DAC)	61
3.27	Voltage	reference buffer (VREFBUF)	62
3.28	Compar	rator (COMP)	62
3.29	Operatio	onal amplifier (OPAMP)	63
3.30	Multi-fu	nction digital filter (MDF) and audio digital filter (ADF)	63
	3.30.1	Multi-function digital filter (MDF)	63
	3.30.2	Audio digital filter (ADF)	65
3.31	Digital c	amera interface (DCMI)	67
3.32	Parallel	synchronous slave interface (PSSI)	67
3.33	Touch s	ensing controller (TSC)	67
3.34	True rar	ndom number generator (RNG)	68

3.35	HASH	nardware accelerator (HASH)	. 69
3.36	Timers	and watchdogs	. 70
	3.36.1	Advanced-control timers (TIM1, TIM8)	70
	3.36.2	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)	71
	3.36.3	Basic timers (TIM6 and TIM7)	71
	3.36.4	Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4)	71
	3.36.5	Infrared interface (IRTIM)	72
	3.36.6	Independent watchdog (IWDG)	72
	3.36.7	Window watchdog (WWDG)	72
	3.36.8	SysTick timer	72
3.37	Real-tin	ne clock (RTC), tamper and backup registers	. 73
	3.37.1	Real-time clock (RTC)	73
	3.37.2	Tamper and backup registers (TAMP)	74
3.38	Inter-inf	tegrated circuit interface (I ² C)	. 75
3.39		al synchronous/asynchronous receiver transmitter (USART/UAF /-power universal asynchronous receiver transmitter (LPUART)	
	3.39.1	Universal synchronous/asynchronous receiver transmitter (USART/UART)	77
	3.39.2	Low-power universal asynchronous receiver transmitter (LPUART) .	78
3.40	Serial p	eripheral interface (SPI)	. 79
3.41	Serial a	udio interfaces (SAI)	. 80
3.42	Secure	digital input/output and MultiMediaCards interface (SDMMC)	. 81
3.43	Control	ler area network (FDCAN)	. 82
3.44	USB ful	ll speed (USB)	. 83
3.45	Develo	pment support	. 83
	3.45.1	Serial-wire/JTAG debug port (SWJ-DP)	
	3.45.2	Embedded Trace Macrocell	
Pino	ut, pin d	escription, and alternate functions	. 85
4.1	Pinout/I	ballout schematics	. 85
4.2	Pin des	cription	. 96
4.3	Alternat	te functions	.114
Elect	rical ch	aracteristics	126
5.1	Parame	eter conditions	126

4

5

	5.1.1	Minimum and maximum values
	5.1.2	Typical values
	5.1.3	Typical curves
	5.1.4	Loading capacitor
	5.1.5	Pin input voltage
	5.1.6	Power supply scheme
	5.1.7	Current consumption measurement
5.2	Absolute	e maximum ratings 129
5.3	Operatir	ng conditions
	5.3.1	General operating conditions
	5.3.2	Operating conditions at power-up/power-down
	5.3.3	Embedded reset and power control block characteristics
	5.3.4	SMPS characteristics
	5.3.5	Embedded voltage reference
	5.3.6	Supply current characteristics
	5.3.7	Wake-up time from low-power modes and voltage scaling transition times
	5.3.8	External clock timing characteristics
	5.3.9	Internal clock timing characteristics
	5.3.10	PLL characteristics
	5.3.11	Flash memory characteristics
	5.3.12	EMC characteristics
	5.3.13	Electrical sensitivity characteristics
	5.3.14	I/O current injection characteristics
	5.3.15	I/O port characteristics
	5.3.16	NRST pin characteristics
	5.3.17	Extended interrupt and event controller input (EXTI) characteristics 212
	5.3.18	Analog switches booster
	5.3.19	14-bit analog-to-digital converter (ADC1) characteristics
	5.3.20	12-bit analog-to-digital converter (ADC4) characteristics
	5.3.21	Temperature sensor characteristics
	5.3.22	V_{CORE} monitoring characteristics
	5.3.23	V _{BAT} monitoring characteristics
	5.3.24	Digital-to-analog converter characteristics
	5.3.25	Voltage reference buffer characteristics
	5.3.26	Comparator characteristics
	5.3.27	Operational amplifiers characteristics

9	Revis	ion hist	ory	298
8	Impoi	rtant seo	curity notice	297
7	Order	ring info	rmation	296
		6.9.1	Reference documents	295
	6.9	•	e thermal characteristics	
	6.8	UFBGA	100 package information (A0C2)	291
	6.7		0 package information (1L)	
	6.6		72 package information (B0HK)	
	6.5		64 package information (A019)	
	6.4		package information (5W)	
	6.3		56 package information (B0H4)	
	6.2		N48 package information (A0B9)	
	6.1		package information (5B)	
6		-	rmation	
		5.3.41	JTAG/SWD interface characteristics	
		5.3.40	USB FS characteristics	
		5.3.30	SAI characteristics	
		5.3.37 5.3.38	USART (SPI mode) characteristics	
		5.3.36	I2C interface characteristics	
		5.3.35	Delay block characteristics	
		5.3.34	SD/SDIO/e•MMC card host interfaces (SDMMC) characteristics	
		5.3.33	OCTOSPI characteristics	
		5.3.32	Timer characteristics	243
		5.3.31	PSSI characteristics	241
		5.3.30	DCMI characteristics	240
		5.3.29	ADF/MDF characteristics	237
		5.3.28	Temperature and backup domain supply thresholds monitoring	236

List of tables

Table 1.	Device summary	2
Table 2.	STM32U535xx features and peripheral counts	16
Table 3.	Access status versus protection level and execution modes when TZEN = 0	23
Table 4.	Access status versus protection level and execution modes when TZEN = 1	24
Table 5.	Example of memory map security attribution versus SAU configuration regions	27
Table 6.	Boot modes when TrustZone is disabled (TZEN = 0)	29
Table 7.	Boot modes when TrustZone is enabled (TZEN = 1)	30
Table 8.	Boot space versus RDP protection	30
Table 9.	STM32U535xx mode overview	36
Table 10.	Functionalities depending on the working mode	41
Table 11.	GPDMA1 channels implementation and usage	51
Table 12.	GPDMA1 autonomous mode and wake-up in low-power modes	51
Table 13.	LPDMA1 channels implementation and usage	52
Table 14.	LPDMA1 autonomous mode and wake-up in low-power modes	53
Table 15.	ADC features	56
Table 16.	Temperature sensor calibration values	30
Table 17.	Internal voltage reference calibration values	30
Table 18.	MDF features	
Table 19.	Timer feature comparison	
Table 20.	I2C implementation	
Table 21.	USART, UART, and LPUART features	
Table 22.	SPI features	
Table 23.	SAI implementation.	
Table 24.	SDMMC features	
Table 25.	Legend/abbreviations used in the pinout table	
Table 26.	STM32U535xx pin/ball definitions	
Table 27.	Alternate function AF0 to AF7	
Table 28.	Alternate function AF8 to AF15	
Table 29.	Voltage characteristics	
Table 30.	Current characteristics	
Table 31.	Thermal characteristics	
Table 32.	General operating conditions	
Table 33.	Operating conditions at power-up/power-down	
Table 34.	Embedded reset and power control block characteristics.	
Table 35.	SMPS characteristics	
Table 36.	Embedded internal voltage reference	
Table 37.	Current consumption in Run mode on LDO, code with data processing	
	running from flash memory, ICACHE ON (1-way), prefetch ON.	39
Table 38.	Current consumption in Run mode on SMPS, code with data processing	
	running from flash memory, ICACHE ON (1-way), prefetch ON.	40
Table 39.	Current consumption in Run mode on SMPS, code with data processing	10
Table 55.	running from flash memory, ICACHE ON (1-way), prefetch ON, V_{DD} = 3.0 V 14	11
Table 40.	Typical current consumption in Run mode on LDO, with different codes	τ.
	Typical current consumption in run mode on LDO, with unerent codes	
		12
Table 11	running from flash memory in low-power mode, ICACHE ON (1-way), prefetch ON 14	42
Table 41.	running from flash memory in low-power mode, ICACHE ON (1-way), prefetch ON 14 Typical current consumption in Run mode on LDO, with different codes	
	running from flash memory in low-power mode, ICACHE ON (1-way), prefetch ON 14 Typical current consumption in Run mode on LDO, with different codes running from flash memory, ICACHE ON (1-way), prefetch ON	
Table 41. Table 42.	running from flash memory in low-power mode, ICACHE ON (1-way), prefetch ON 14 Typical current consumption in Run mode on LDO, with different codes	42

Table 43.	Typical current consumption in Run mode on SMPS, with different codes running from flash memory, ICACHE ON (1-way), prefetch ON
Table 44.	Current consumption in Sleep mode on LDO, flash memory in power down
Table 45.	Current consumption in Sleep mode on SMPS, flash memory in power down 147
Table 46.	Current consumption in Sleep mode on SMPS,
	flash memory in power down, $V_{DD} = 3.0 V$
Table 47.	SRAM1 current consumption in Run/Sleep mode with LDO and SMPS
Table 48.	Static power consumption of flash banks, when supplied by LDO/SMPS
Table 49.	Current consumption in Stop 0 mode on LDO
Table 50.	Current consumption in Stop 0 mode on SMPS
Table 51.	Current consumption in Stop 1 mode on LDO
Table 52.	Current consumption during wake-up from Stop 1 mode on LDO
Table 53.	Current consumption in Stop 1 mode on SMPS
Table 54.	Current consumption during wake-up from Stop 1 mode on SMPS
Table 55.	Current consumption in Stop 2 mode on LDO
Table 56.	SRAM static power consumption in Stop 2 when supplied by LDO
Table 57.	Current consumption during wake-up from Stop 2 mode on LDO
Table 58.	Current consumption in Stop 2 mode on SMPS
Table 59.	SRAM static power consumption in Stop 2 when supplied by SMPS
Table 60.	Current consumption during wake-up from Stop 2 mode on SMPS
Table 61.	Current consumption in Stop 3 mode on LDO
Table 62.	SRAM static power consumption in Stop 3 when supplied by LDO
Table 63.	Current consumption during wake-up from Stop 3 mode on LDO
Table 64.	Current consumption in Stop 3 mode on SMPS
Table 65.	SRAM static power consumption in Stop 3 when supplied by SMPS
Table 66.	Current consumption during wake-up from Stop 3 mode on SMPS
Table 67.	Current consumption in Standby mode
Table 68.	Current consumption during wake-up from Standby mode
Table 69.	Current consumption in Shutdown mode
Table 70.	Current consumption during wake-up from Shutdown mode
Table 71.	Current consumption in V _{BAT} mode
Table 72.	Typical dynamic current consumption of peripherals
Table 73.	Low-power mode wake-up timings on LDO
Table 74.	Low-power mode wake-up timings on SMPS
Table 75.	Regulator mode transition times
Table 76.	Wake-up time using USART/LPUART
Table 77.	High-speed external user clock characteristics
Table 78.	Low-speed external user clock characteristics
Table 79.	HSE oscillator characteristics
Table 80.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)
Table 81.	HSI16 oscillator characteristics
Table 82.	MSI oscillator characteristics
Table 83.	HSI48 oscillator characteristics
Table 84.	LSI oscillator characteristics
Table 85.	PLL characteristics
Table 86.	Flash memory characteristics
Table 87.	Flash memory endurance and data retention
Table 88.	EMS characteristics
Table 89.	EMI characteristics for $f_{HSE} = 8$ MHz and $f_{HCLK} = 160$ MHz
Table 90.	ESD absolute maximum ratings
Table 91.	Electrical sensitivities
Table 92.	I/O current injection susceptibility

Table 93. Table 94.	I/O static characteristics	202
	FT_t in VBAT mode, and FT_o I/Os)	
Table 95.	Output voltage characteristics for FT_t I/Os in V _{BAT} mode, and for FT_o I/Os	205
Table 96.	Output AC characteristics, HSLV OFF (all I/Os except FT_c,	
	FT_t in VBAT mode, and FT_o I/Os)	206
Table 97.	Output AC characteristics, HSLV ON (all I/Os except FT_c)	208
Table 98.	Output AC characteristics for FT_c I/Os	210
Table 99.	Output AC characteristics for FT_t I/Os in V _{BAT} mode, and for FT_o I/Os	
Table 100.	NRST pin characteristics	
Table 101.	EXTI input characteristics	
Table 102.	Analog switches booster characteristics	
Table 103.	14-bit ADC1 characteristics	
Table 104.	Maximum RAIN for 14-bit ADC1	
Table 105.	14-bit ADC1 accuracy	
Table 106.	12-bit ADC4 characteristics	
Table 107.	Maximum RAIN for 12-bit ADC4	
Table 108.	12-bit ADC4 accuracy	
Table 109.	Temperature sensor characteristics	
Table 110.	V _{CORE} monitoring characteristics	
Table 111.	V _{BAT} monitoring characteristics	
Table 112.	V _{BAT} charging characteristics	
Table 113.	DAC characteristics	
Table 114.	DAC accuracy.	
Table 115.	VREFBUF characteristics	
Table 116.	COMP characteristics	
Table 117.	OPAMP characteristics	
Table 118.	ADF characteristics.	
Table 119.	MDF characteristics	
Table 120.	DCMI characteristics.	
Table 121.	PSSI transmit characteristics	
Table 122.	PSSI receive characteristics	
Table 123.	TIMx characteristics	
Table 124.	IWDG min/max timeout period at 32 kHz (LSI).	
Table 125.	WWDG min/max timeout value at 160 MHz (PCLK).	
Table 126.	OCTOSPI characteristics in SDR mode	
Table 127.	OCTOSPI characteristics in DTR mode (no DQS)	
Table 128.	OCTOSPI characteristics in DTR mode (with DQS)/HyperBus	
Table 129.	SD/e•MMC characteristics ($V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$)	
Table 130.	e•MMC characteristics (V _{DD} = 1.71 V to 1.9 V)	
Table 131.	Delay block characteristics	
Table 132.	I2C analog filter characteristics.	
Table 133.	USART (SPI mode) characteristics	
Table 134.	SPI characteristics	
Table 135.	SAI characteristics	
Table 136.	USB_FS characteristics	
Table 137.		
Table 138.	SWD characteristics	
Table 139. Table 140.	LQFP48 – Mechanical data	
Table 140. Table 141.	WLCSP56 - Mechanical data	
Table 141.	WLCSP56 - Mechanical data	
142.		213

Table 143.	LQFP64 - Mechanical data	. 276
Table 144.	UFBGA64 – Mechanical data	. 280
Table 145.	UFBGA64 - Example of PCB design rules (0.5 mm pitch BGA)	. 281
Table 146.	WLCSP72 - Mechanical data	. 284
Table 147.	WLCSP72 - Example of PCB design rules	. 285
Table 148.	LQFP100 - Mechanical data	. 288
Table 149.	UFBGA100 - Mechanical data	. 292
Table 150.	UFBGA100 - Example of PCB design rules (0.5 mm pitch BGA)	. 293
Table 151.	Package thermal characteristics	. 295
Table 152.	Document revision history	. 298

List of figures

Figure 1.	STM32U535xx block diagram	. 19
Figure 2.	STM32U535xxxxQ power supply overview (with SMPS)	. 33
Figure 3.	STM32U535xx power supply overview (without SMPS)	. 34
Figure 4.	Power-up / down sequence	
Figure 5.	Clock tree	. 47
Figure 6.	VREFBUF block diagram	. 62
Figure 7.	LQFP48_SMPS pinout	. 85
Figure 8.	LQFP48 pinout	
Figure 9.	UFQFPN48_SMPS pinout	. 86
Figure 10.	UFQFPN48 pinout	
Figure 11.	LQFP64_SMPS pinout	. 87
Figure 12.	LQFP64 pinout	
Figure 13.	UFBGA64 SMPS ballout	
Figure 14.	UFBGA64 ballout	
Figure 15.	WLCSP56 SMPS ballout	
Figure 16.	WLCSP72_SMPS ballout	
Figure 17.	LQFP100_SMPS ballout.	
Figure 18.	LQFP100 pinout	
Figure 19.	UFBGA100_SMPS ballout	
Figure 20.	UFBGA100 ballout	
Figure 21.	Pin loading conditions.	
Figure 22.	Pin input voltage	
Figure 23.	STM32U535xx power supply scheme (without SMPS)	
Figure 24.	STM32U535xQ power supply scheme (with SMPS)	
Figure 25.	Current consumption measurement	
Figure 26.	VREFINT versus temperature	
Figure 27.	AC timing diagram for high-speed external clock source (digital mode)	
Figure 28.	AC timing diagram for high-speed external clock source (analog mode)	
Figure 29.	AC timing diagram for low-speed external square clock source	
Figure 30.	AC timing diagram for low-speed external sinusoidal clock source	
Figure 31.	Typical application with a 8 MHz crystal	
Figure 32.	Typical application with a 32.768 kHz crystal	
Figure 33.	HSI48 frequency versus temperature	
Figure 34.	I/O input characteristics (all I/Os except BOOT0 and FT_c).	
Figure 35.	Output AC characteristics definition	
Figure 36.	Recommended NRST pin protection	
Figure 37.	ADC accuracy characteristics	
Figure 38.	Typical connection diagram when using the ADC	210
rigure oo.	with FT/TT pins featuring analog switch function	218
Figure 39.	12-bit buffered/non-buffered DAC.	
Figure 40.	V _{REFBUF OUT} versus temperature (VRS = 000)	220
Figure 41.	V _{REFBUF OUT} versus temperature (VRS = 000)	230
Figure 42.	V _{REFBUF OUT} versus temperature (VRS = 010)	231
Figure 42. Figure 43.	V _{REFBUF_OUT} versus temperature (VRS = 010)	201 221
Figure 43. Figure 44.	V_{REFBUF_OUT} versus temperature (VRS – 011) OPAMP voltage noise density, normal mode, R _{LOAD} = 3.9 kΩ	226
Figure 44. Figure 45.	OPAMP voltage noise density, normal mode, $R_{LOAD} = 3.9 \text{ k}\Omega$	230
0		
Figure 46.	ADF timing diagram	
Figure 47.	MDF timing diagram	239

Figure 48. DCMI timing diagram 240 Figure 49. PSSI transmit timing diagram 242 Figure 50. PSSI receive timing diagram 243 Figure 51. OCTOSPI timing diagram - SDR mode 248 Figure 52. OCTOSPI timing diagram - DTR mode. 248 Figure 53. OCTOSPI HyperBus clock 249 Figure 54. OCTOSPI HyperBus read. 249 Figure 55. OCTOSPI HyperBus read. 249 Figure 56. OCTOSPI HyperBus read. 249 Figure 57. SD high-speed mode 252 Figure 58. SD default mode. 252 Figure 59. SDMMC DDR mode 252 Figure 60. USART timing diagram in SPI master mode. 255 Figure 61. USART timing diagram - slave mode and CPHA = 0 258 Figure 62. SPI timing diagram - slave mode and CPHA = 1 258 Figure 63. SPI timing diagram - slave mode 259 Figure 64. SPI timing diagram - slave mode 259 Figure 65. SAI master timing diagram 261 Figure 65. SAI master timing diagram 263 <
Figure 50. PSSI receive timing diagram 243 Figure 51. OCTOSPI timing diagram - SDR mode 248 Figure 52. OCTOSPI timing diagram - DTR mode. 248 Figure 53. OCTOSPI HyperBus clock 249 Figure 54. OCTOSPI HyperBus read. 249 Figure 55. OCTOSPI HyperBus read with double latency. 249 Figure 56. OCTOSPI HyperBus write 250 Figure 57. SD high-speed mode 252 Figure 58. SD default mode. 252 Figure 59. SDMMC DDR mode 252 Figure 60. USART timing diagram in SPI master mode. 255 Figure 61. USART timing diagram in SPI slave mode 255 Figure 62. SPI timing diagram - slave mode and CPHA = 0 258 Figure 63. SPI timing diagram - slave mode 259 Figure 64. SPI timing diagram 261 Figure 66. SAI master timing diagram 261 Figure 67. JTAG timing diagram 263 Figure 68. SWD timing diagram 263 Figure 69. LQFP48 – Outline ⁽¹⁵⁾ 264
Figure 51. OCTOSPI timing diagram - SDR mode 248 Figure 52. OCTOSPI timing diagram - DTR mode. 248 Figure 53. OCTOSPI HyperBus clock 249 Figure 54. OCTOSPI HyperBus read. 249 Figure 55. OCTOSPI HyperBus read with double latency 249 Figure 56. OCTOSPI HyperBus write 250 Figure 57. SD high-speed mode 252 Figure 58. SD default mode 252 Figure 59. SDMMC DDR mode 252 Figure 60. USART timing diagram in SPI master mode. 255 Figure 61. USART timing diagram in SPI slave mode 255 Figure 62. SPI timing diagram - slave mode and CPHA = 0 258 Figure 63. SPI timing diagram - slave mode 259 Figure 64. SPI timing diagram 261 Figure 65. SAI master timing diagram 261 Figure 67. JTAG timing diagram 263 Figure 67. JTAG timing diagram 263 Figure 68. SWD timing diagram 263 Figure 69. LQFP48 – Outline ⁽¹⁵⁾ 264
Figure 52.OCTOSPI timing diagram - DTR mode.248Figure 53.OCTOSPI HyperBus clock249Figure 54.OCTOSPI HyperBus read.249Figure 55.OCTOSPI HyperBus read with double latency.249Figure 56.OCTOSPI HyperBus write250Figure 57.SD high-speed mode252Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode.255Figure 61.USART timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram .261Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram263Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 53.OCTOSPI HyperBus clock249Figure 54.OCTOSPI HyperBus read249Figure 55.OCTOSPI HyperBus read with double latency249Figure 56.OCTOSPI HyperBus write250Figure 57.SD high-speed mode252Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - master mode259Figure 64.SPI timing diagram261Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram263Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 54.OCTOSPI HyperBus read.249Figure 55.OCTOSPI HyperBus read with double latency.249Figure 56.OCTOSPI HyperBus write250Figure 57.SD high-speed mode252Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode.255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram263Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 55.OCTOSPI HyperBus read with double latency249Figure 56.OCTOSPI HyperBus write250Figure 57.SD high-speed mode252Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - master mode259Figure 64.SPI timing diagram261Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram263Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 56.OCTOSPI HyperBus write250Figure 57.SD high-speed mode252Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 57.SD high-speed mode252Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 58.SD default mode252Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode.255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 59.SDMMC DDR mode252Figure 60.USART timing diagram in SPI master mode255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 60.USART timing diagram in SPI master mode.255Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 61.USART timing diagram in SPI slave mode255Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 62.SPI timing diagram - slave mode and CPHA = 0258Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 63.SPI timing diagram - slave mode and CPHA = 1258Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 64.SPI timing diagram - master mode259Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 65.SAI master timing diagram261Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 66.SAI slave timing diagram261Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 67.JTAG timing diagram263Figure 68.SWD timing diagram263Figure 69.LQFP48 – Outline ⁽¹⁵⁾ 264Figure 70.LQFP48 – Footprint example266
Figure 68. SWD timing diagram. 263 Figure 69. LQFP48 – Outline ⁽¹⁵⁾ . 264 Figure 70. LQFP48 – Footprint example 266
Figure 69. LQFP48 – Outline ⁽¹⁵⁾ 264 Figure 70. LQFP48 – Footprint example 266
Figure 70. LQFP48 – Footprint example
Figure 72. UFQFPN48 – Outline
Figure 73. UFQFPN48 – Footprint example
Figure 74. UFQFPN48 marking example (package top view)
Figure 75. WLCSP56 - Outline
Figure 76. WLCSP56 - Footprint example
Figure 77. WLCSP56 marking example (package top view)
Figure 78. LQFP64 - Outline ⁽¹⁵⁾
Figure 79. LQFP64 - Footprint example
Figure 80. LQFP64 marking example (package top view)
Figure 81. UFBGA64 – Outline ^{(13)}
Figure 82. UFBGA64 – Footprint example
Figure 83. UFBGA64 marking example (package top view)
Figure 84. WLCSP72 - Outline
Figure 85. WLCSP72 - Footprint example
Figure 86. WLCSP72 marking example (package top view)
Figure 87. LQFP100 - Outline ⁽¹⁵⁾
Figure 88. LQFP100 - Footprint example
Figure 89. LQFP100 marking example (package top view)
Figure 90. UFBGA100 - Outline ⁽¹³⁾
Figure 91. UFBGA100 - Footprint example
Figure 92. UFBGA100 marking example (package top view)

1 Introduction

This document provides the ordering information and mechanical device characteristics of the STM32U535xx microcontrollers.

For information on the Arm^{®(a)} Cortex[®]-M33 core, refer to the Cortex[®]-M33 Technical Reference Manual, available from the www.arm.com website.

For information on the device errata with respect to the datasheet and reference manual, refer to the STM32U535xx and STM32U545xx errata sheet (ES0587).

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2 Description

The STM32U535xx devices belong to an ultra-low-power microcontrollers family (STM32U5 Series) based on the high-performance Arm[®] Cortex[®]-M33 32-bit RISC core. They operate at a frequency of up to 160 MHz.

The Cortex[®]-M33 core features a single-precision FPU (floating-point unit), that supports all the Arm[®] single-precision data-processing instructions and all the data types.

The Cortex[®]-M33 core also implements a full set of DSP (digital signal processing) instructions and a MPU (memory protection unit) that enhances the application security.

The devices embed high-speed memories (up to 512-Kbyte flash memory and 274-Kbyte SRAM), one Octo-SPI flash memory interface, an extensive range of enhanced I/Os, peripherals connected to three APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

The devices offer security foundation compliant with the TBSA (trusted-based security architecture) requirements from Arm[®]. It embeds the necessary security features to implement a secure boot, secure data storage and secure firmware update. Besides these capabilities, the devices incorporate a secure firmware installation feature, that allows the customer to secure the provisioning of the code during its production. A flexible lifecycle is managed thanks to multiple levels of readout protection and debug unlock with password. Firmware hardware isolation is supported thanks to securable peripherals, memories and I/Os, and privilege configuration of peripherals and memories.

The devices feature several protection mechanisms for embedded flash memory and SRAM: readout protection, write protection, secure and hide protection areas.

The devices embed several peripherals reinforcing security: with DPA resistance, a HASH hardware accelerator, and a true random number generator.

The devices offer active tamper detection and protection against transient and environmental perturbation attacks, thanks to several internal monitoring generating secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications.

The devices offer one fast 14-bit ADC (2.5 Msps), one 12-bit ADC (2.5 Msps), one comparator, one operational amplifier, two DAC channels, an internal voltage reference buffer, a low-power RTC, four 32-bit general-purpose timers, two 16-bit PWM timers dedicated to motor control, three 16-bit general-purpose timers, two 16-bit basic timers and four 16-bit low-power timers.

The devices support a MDF (multi-function digital filter) with two filters dedicated to the connection of external sigma-delta modulators. Another low-power digital filter dedicated to audio signals is embedded (ADF), with one filter supporting sound-activity detection. The devices embed also mathematical accelerators (a trigonometric functions accelerator plus a filter mathematical accelerator). In addition, up to 20 capacitive sensing channels are available.

The devices also feature standard and advanced communication interfaces such as: four I²Cs, three SPIs, two USARTs, two UARTs, one low-power UART, one SAI, one digital camera interface (DCMI), one SDMMC, one FDCAN, one USB host and device capable full-speed, and one generic synchronous 8-/16-bit PSSI (parallel data input/output slave interface).

The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply.

A comprehensive set of power-saving modes allow the design of low-power applications. Many peripherals (including communication, analog, timers and audio peripherals) can be functional and autonomous down to Stop mode with direct memory access, thanks to LPBAM support (low-power background autonomous mode).

Some independent power supplies are supported like an analog independent supply input for ADC, DACs, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, that can be supplied independently down to 1.08 V. A VBAT input is available for connecting a backup battery in order to preserve the RTC functionality and to backup 32 × 32-bit registers and 2-Kbyte SRAM.

The devices offer eight packages from 48 to 100 pins.

Peript	STM32U535CB/CC/CE	STM32U535RB/RC/RE	STM32U535NE/NC	STM32U535JE	STM32U535VE/VC			
Flash memory (Kbytes)		512	(for STM32U53 128 (35xE) - 256 (fo for STM32U5		xC) -		
SRAM (274 Kbytes)	Spann (274 l/b) teo) System (Kbytes)		272 (192+64+16)					
SITAINI (274 Royles)	Backup (bytes)		2048 backup SRAM + 128 backup registers					
OCTOSPI		1 ⁽¹⁾						
	Advanced control	2 (16 bits)						
	General purpose	4 (32 bits) and 3 (16 bits)						
	Basic	2 (16 bits)						
Timers	Low power	4 (16 bits)						
	SysTick timer	2						
	Watchdog timers (independent, window)							

Table 2. STM32U535xx features and peripheral counts

Table 2. STM320555X leatures and peripheral counts (continued)							
Peripherals		STM32U535CB/CC/CE	STM32U535RB/RC/RE	STM32U535NE/NC	STM32U535JE	STM32U535VE/VC	
	SPI			3			
	I2C			4			
	USART			2			
	UART	1 ⁽²⁾	2	1	(2)	2	
	LPUART		L	1		I	
Communication interfaces	SAI			1			
Internaces	FDCAN			1			
	USB (host/device)						
	SDMMC	0	1		0	1	
	Camera interface	No Y					
	PSSI	No Yes ⁽⁴⁾					
MDF (multi-function	digital filter)	Yes (2 filters)					
ADF (audio digital fil	ter)	Yes					
CORDIC co-process	sor	Yes					
FMAC (filter mathem	natical accelerator)	Yes					
RTC (real-time clock	x)	Yes					
Tamper pins (withou with SMPS)		3/3	4 / 3	6	3	8/7	
Active tampers (without SMPS / with SMPS) ⁽⁵⁾		2/2	3/2	5	2	7 / 6	
True random number generator		Yes					
HASH (SHA-256)		Yes					
GPIOs (without SMPS / with SMPS)		37 / 33	51 / 47	39	50	82 / 79	
Wake-up pins (without SMPS / with SMPS)		17 / 15	18 / 17	18	17	23 / 22	
Number of I/Os down to 1.08 V (without SMPS / with SMPS)		0/0	0 / 0	0	14	0 / 0	
Capacitive sensing Number of channels with SMPS)	(without SMPS /	5 / 4	11 / 10	7	4	20 / 19	

Table 2. STM32U535xx features and periphe	eral counts (continued)

Peripl	STM32U535CB/CC/CE	STM32U535RB/RC/RE	STM32U535NE/NC	STM32U535JE	STM32U535VE/VC		
	12-bit ADC			1			
	14-bit ADC			1			
ADC	Number of channels (without SMPS / with SMPS)	11 / 10	17 / 15	11	12	20 / 18	
DAC	Number of 12-bit D-to-A converters	2					
Internal voltage refer	ence buffer	No Yes					
Analog comparator		1					
Operational amplifier		1					
Maximum CPU frequency		160 MHz					
Operating voltage		1.71 to 3.6 V					
Operating temperature		Ambient operating temperature: -40 to +85 °C / -40 to +125 °C Junction temperature: -40 to +105 °C / -40 to +130 °C					
Package		LQFP48, UFQFPN48	LQFP64, UFBGA64	WLCSP56	WLCSP72	LQFP100, UFBGA100	

	Table 2. STM32U535xx features and	peripheral counts	(continued)
--	-----------------------------------	-------------------	-------------

1. HyperBus differential mode with CLK/NCLK is supported only in LQFP100 and BGA100 packages.

2. UART4

3. Up to 12 bits.

4. 8 bits only.

5. Active tampers in output sharing mode (one output shared by all inputs).

Figure 1. STM32U535xx block diagram

3 Functional overview

3.1 Arm Cortex-M33 core with TrustZone and FPU

The Cortex-M33 with TrustZone and FPU is a highly energy-efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security.

The Cortex-M33 processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. It features:

- Arm TrustZone technology, using the Armv8-M main extension supporting secure and nonsecure states
- MPUs (memory protection units), supporting up to 16 regions for secure and nonsecure applications
- Configurable SAU (secure attribute unit) supporting up to eight memory regions as secure or nonsecure
- Floating-point arithmetic functionality with support for single precision arithmetic

The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution.

The Cortex-M33 processor supports the following bus interfaces:

System AHB bus:

The S-AHB (system AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor_SYS regions of the Armv8-M memory map.

Code AHB bus:

The C-AHB (code AHB) bus interface is used for any instruction fetch and data access to the code region of the Armv8-M memory map.

Figure 1 shows the general block diagram of the STM32U535xx devices.

3.2 ART Accelerator (ICACHE and DCACHE)

3.2.1 Instruction cache (ICACHE)

The ICACHE is introduced on C-AHB code bus of Cortex-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories.

ICACHE offers the following features:

- Multi-bus interface:
 - Slave port receiving the memory requests from the Cortex-M33 C-AHB code execution port
 - Master1 port performing refill requests to internal memories (flash memory and SRAMs)
 - Master2 port performing refill requests to external memories (external flash memory and RAMs through Octo-SPI)
 - Second slave port dedicated to ICACHE registers access

- Close to zero wait-states instructions/data access performance:
 - 0 wait-state on cache hit
 - Hit-under-miss capability, allowing to serve new processor requests while a line refill (due to a previous cache miss) is still ongoing
 - Critical-word-first refill policy, minimizing processor stalls on cache miss
 - Hit ratio improved by two-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - Dual master ports allowing to decouple internal and external memory traffics, on fast and slow buses, respectively; also minimizing impact on interrupt latency
 - Optimal cache line refill thanks to AHB burst transactions (of the cache line size)
 - Performance monitoring by means of a hit counter and a miss counter
- Extension of cacheable region beyond the code memory space, by means of address remapping logic that allows four cacheable external regions to be defined
- Power consumption reduced intrinsically (more accesses to cache memory rather to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default two-ways set-associative mode)
- TrustZone security support
- Maintenance operation for software management of cache coherency
- Error management: detection of unexpected cacheable write access, with optional interrupt raising

3.2.2 Data cache (DCACHE)

The DCACHE is introduced on S-AHB system bus of Cortex-M33 processor to improve the performance of data traffic to/from external memories.

DCACHE offers the following features:

- Multi-bus interface:
 - Slave port receiving the memory requests from the Cortex-M33 S-AHB system port
 - Master port performing refill requests to external memories (external flash memory and RAMs through Octo-SPI)
 - Second slave port dedicated to DCACHE registers access
- Close to zero wait-states external data access performance:
 - Zero wait-states on cache hit
 - Hit-under-miss capability, allowing to serve new processor requests to cached data, while a line refill (due to a previous cache miss) is still ongoing
 - Critical-word-first refill policy for read transactions, minimizing processor stalls on cache miss
 - Hit ratio improved by two-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - Optimal cache line refill thanks to AHB burst transactions (of the cache line size)
 - Performance monitoring by means of two hit counters (for read and write) and two miss counters (for read and write)

- Supported cache accesses:
 - Both write-back and write-through policies supported (selectable with AHB bufferable attribute)
 - Read and write-back always allocated
 - Write-through always non-allocated (write-around)
 - Byte, half-word and word writes supported
- TrustZone security support
- Maintenance operations for software management of cache coherency:
 - Full cache invalidation (non interruptible)
 - Address range clean and/or invalidate operations (background task, interruptible)
- Error management: detection of error for master port request initiated by DCACHE (line eviction or clean operation), with optional interrupt raising

3.3 Memory protection unit

The MPU (memory protection unit) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 16 protected areas. The MPU regions and registers are banked across secure and nonsecure states.

The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by a RTOS (real-time operating system).

If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In a RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded flash memory

The devices feature up to 512-Kbyte embedded flash memory that is available for storing programs and data. The flash memory supports up to 100 000 cycles.

A 128-bit instruction prefetch is implemented and can optionally be enabled.

The flash memory interface features:

- Dual-bank operating modes
- Read-while-write (RWW)

This allows a read operation to be performed from one bank while an erase or program operation is performed to the other bank. The dual-bank boot is also supported. Each bank contains 32 pages of 8 Kbytes. The flash memory also embeds 512-byte OTP (one-time programmable) for user data.

The whole non-volatile memory embeds the ECC (error correction code) feature supporting:

- single-error detection and correction
- double-error detection
- ECC fail address report

3.4.1 Flash memory protection

The option bytes allow the configuration of flexible protections:

- write protection (WRP) to protect areas against erasing and programming. Two areas per bank can be selected with 8-Kbyte granularity.
- RDP (readout protection) to protect the whole memory, has four levels of protection available (see *Table 3* and *Table 4*):
 - Level 0: no readout protection
 - Level 0.5: available only when TrustZone is enabled

All read/write operations (if no write protection is set) from/to the nonsecure flash memory are possible. The debug access to secure area is prohibited. Debug access to nonsecure area remains possible.

– Level 1: memory readout protection

The flash memory cannot be read from or written to if either the debug features are connected or the boot in RAM or bootloader are selected. If TrustZone is enabled, the nonsecure debug is possible and the boot in SRAM is not possible. Regressions from Level 1 to lower levels can be protected by password authentication.

- Level 2: chip readout protection

The debug features, the boot in RAM and the bootloader selection are disabled. A secure secret key can be configured in the secure options to allow the regression capability from Level 2 to Level 1. By default (key not configured), this Level 2 selection is irreversible and JTAG/SWD interfaces are disabled. If the secret key was previously configured in lower RDP levels, the device enables the RDP regression from Level 2 to Level 1 after password authentication through JTAG/SWD interface.

Note: In order to reach the best protection level, it is recommended to activate TrustZone and to set the RDP Level 2 with password authentication regression enabled.

Area	RDP level	User execution (boot from flash memory)		Debug/boot from RAM/ bootloader ⁽¹⁾			
	IEVEI	Read	Write	Erase	Read	Write	Erase
	1	Yes	Yes	Yes	No	No	No ⁽⁴⁾
Flash main memory	2	Yes	Yes	Yes	N/A	N/A	N/A
Questo en en en en (2)	1	Yes	No	No	Yes	No	No
System memory ⁽²⁾	2	Yes	No	No	N/A	N/A	N/A
Option bytes ⁽³⁾	1	Yes	Yes ⁽⁴⁾	N/A	Yes	Yes ⁽⁴⁾	N/A
Option bytes	2	Yes	No ⁽⁵⁾	N/A	N/A	N/A	N/A
OTP	1	Yes	Yes ⁽⁶⁾	N/A	Yes	Yes ⁽⁶⁾	N/A
OIP	2	Yes	Yes ⁽⁶⁾	N/A	N/A	N/A	N/A

Area RDP level		User execution (boot from flash memory)			Debug/boot from RAM/ bootloader ⁽¹⁾		
		Read	Write	Erase	Read	Write	Erase
Backup registers	1	Yes	Yes	N/A	No	No	N/A ⁽⁷⁾
	2	Yes	Yes	N/A	N/A	N/A	N/A
SRAM2/backup	1	Yes	Yes	N/A	No	No	N/A ⁽⁸⁾
RAM	2	Yes	Yes	N/A	N/A	N/A	N/A

Table 3. Access status versus protection level and execution modes when TZEN = 0 (continued)

1. When the protection level 2 is active, the debug port, the boot from RAM and the boot from system memory are disabled.

2. The system memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode.

3. Option bytes are only accessible through the flash memory registers and OPSTRT bit.

4. The flash main memory is erased when the RDP option byte changes from level 1 to level 0.

5. SWAP_BANK option bit can be modified.

6. OTP can only be written once.

7. The backup registers are erased when RDP changes from level 1 to level 0.

8. All SRAMs are erased when RDP changes from level 1 to level 0.

Table 4. Access status versus protection level and execution modes when TZEN = 1

Area	RDP level	User execution (boot from flash memory)		Debug/ bootloade		er ⁽¹⁾	
	level	Read	Write	Erase	Read	Write	Erase
	0.5	Yes	Yes	Yes	Yes ⁽²⁾	Yes ⁽²⁾	Yes ⁽²⁾
Flash main memory	1	Yes	Yes	Yes	No	No	No ⁽⁵⁾
	2	Yes	Yes	Yes	N/A	N/A	N/A
	0.5	Yes	No	No	Yes	No	No
System memory ⁽³⁾	1	Yes	No	No	Yes	No	No
	2	Yes	No	No	N/A	N/A	N/A
	0.5	Yes	Yes ⁽⁵⁾	N/A	Yes	Yes ⁽⁵⁾	N/A
Option bytes ⁽⁴⁾	1	Yes	Yes ⁽⁵⁾	N/A	Yes	Yes ⁽⁵⁾	N/A
	2	Yes	No ⁽⁶⁾	N/A	N/A	N/A	N/A
OTP	0.5	Yes	Yes ⁽⁷⁾	N/A	Yes	Yes ⁽⁷⁾	N/A
	1	Yes	Yes ⁽⁷⁾	N/A	Yes	Yes ⁽⁷⁾	N/A
	2	Yes	Yes ⁽⁷⁾	N/A	N/A	N/A	N/A

Area	RDP level		User execution t from flash memory)		Debug/ bootloader ⁽¹⁾		
	IEVEI	Read	Write	Erase	Read	Write	Erase
Backup registers	0.5	Yes	Yes	N/A	Yes ⁽²⁾	Yes ⁽²⁾	N/A ⁽⁸⁾
	1	Yes	Yes	N/A	No	No	N/A ⁽⁸⁾
	2	Yes	Yes	N/A	N/A	N/A	N/A
SRAM2/backup RAM	0.5	Yes	Yes	N/A	Yes ⁽²⁾	Yes ⁽²⁾	N/A ⁽⁹⁾
	1	Yes	Yes	N/A	No	No	N/A ⁽⁹⁾
	2	Yes	Yes	N/A	N/A	N/A	N/A

Table 4. Access status versus protection level and execution modes when TZEN = 1 (continued)

1. When the protection level 2 is active, the debug port and the bootloader mode are disabled.

2. Depends on TrustZone security access rights.

3. The system memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode.

4. Option bytes are only accessible through the flash memory registers and OPSTRT bit.

5. The flash main memory is erased when the RDP option byte regresses from level 1 to level 0.

6. SWAP_BANK option bit can be modified.

7. OTP can only be written once.

8. The backup registers are erased when RDP changes from level 1 to level 0.

9. All SRAMs are erased when RDP changes from level 1 to level 0.

3.4.2 Additional flash memory protections when TrustZone activated

When the TrustZone security is enabled through option bytes, the whole flash memory is secure after reset and the following protections are available:

• non-volatile watermark-based secure flash memory area

The secure area can be accessed only in Secure mode. One area per bank can be selected with a page granularity.

• secure HDP (hide protection area)

It is part of the flash memory secure area and can be protected to deny an access to this area by any data read, write and instruction fetch. For example, a software code in the secure flash memory hide protection area can be executed only once and deny any further access to this area until next system reset. One area per bank can be selected at the beginning of the secure area.

volatile block-based secure flash memory area
 Each page can be programmed on-the-fly as secure or nonsecure.

3.4.3 FLASH privilege protection

Each flash memory page can be programmed on-the-fly as privileged or unprivileged.

3.5 Embedded SRAMs

Five SRAMs are embedded in the STM32U535xx devices, each with specific features. SRAM1 and SRAM2 are the main SRAMs. SRAM4 is in the SRAM used for peripherals LPBAM (low-power background autonomous mode) in Stop 2 mode.

These SRAMs are made of several blocks that can be powered down in Stop mode to reduce consumption:

- SRAM1: three 64-Kbyte blocks (total 192 Kbytes)
- SRAM2: 8-Kbyte + 56-Kbyte blocks (total 64 Kbytes) with optional ECC. In addition SRAM2 blocks can be retained in Standby mode.
- SRAM4: 16 Kbytes
- BKPSRAM (backup SRAM): 2 Kbytes with optional ECC. The BKPSRAM can be retained in all low-power modes and when V_{DD} is off in V_{BAT} mode, but not in Shutdown mode.

3.5.1 SRAMs TrustZone security

When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM1, SRAM2, and SRAM4 can be programmed as secure or nonsecure by blocks, using the MPCBB (block-based memory protection controller).

The granularity of SRAM secure block based is a page of 512 bytes. Backup SRAM regions can be programmed as secure or nonsecure with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller).

3.5.2 SRAMs privilege protection

The SRAM1, SRAM2, and SRAM4 can be programmed as privileged or unprivileged by blocks, using the MPCBB. The granularity of SRAM privilege block based is a page of 512 bytes. Backup SRAM regions can be programmed as privileged or unprivileged with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller).

3.6 TrustZone security architecture

The security architecture is based on Arm TrustZone with the Armv8-M main extension.

The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register.

When the TrustZone is enabled, the SAU (security attribution unit) and IDAU (implementation defined attribution unit) define the access permissions based on secure and nonsecure state.

- SAU: up to eight SAU configurable regions are available for security attribution.
- IDAU: It provides a first memory partition as nonsecure or nonsecure callable attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected.

Based on IDAU security attribution, the flash memory, system SRAM and peripheral memory space is aliased twice for secure and nonsecure states. However, the external memory space is not aliased.

The table below shows an example of typical SAU region configuration based on IDAU regions. The user can split and choose the secure, nonsecure or NSC regions for external memories as needed.

Region description	Address range	IDAU security attribution	SAU security attribution typical configuration	Final security attribution	
Code - external memories	0x0000 0000 0x07FF FFFF	Nonsecure	Secure or nonsecure or NSC ⁽¹⁾	Secure or nonsecure or NSC	
Code - Flash and SRAM	0x0800 0000 0x0BFF FFFF	Nonsecure	Nonsecure	Nonsecure	
	0x0C00 0000 0x0FFF FFFF	NSC	Secure or NSC	Secure or NSC	
Code - external memories	0x1000 0000 0x17FF FFFF	Nonsecure			
Code - external memories	0x1800 0000 0x1FFF FFFF	Nonsecure	Nonsecure		
SRAM	0x2000 0000 0x2FFF FFFF	Nonsecure	-		
	0x3000 0000 0x3FFF FFFF	NSC	Secure or NSC	Secure or NSC	
Pariphorals	0x4000 0000 0x4FFF FFFF	Nonsecure	Nonsecure	Nonsecure	
Peripherals	0x5000 0000 0x5FFF FFFF	NSC	Secure or NSC	Secure or NSC	
External memories	0x6000 0000 0xDFFF FFFF	Nonsecure	Secure or nonsecure or NSC	Secure or nonsecure or NSC	

Table 5. Example of memory map security attribution versus SAU configuration regions

1. NSC = nonsecure callable.

3.6.1 TrustZone peripheral classification

When the TrustZone security is active, a peripheral can be either securable or TrustZone-aware type as follows:

- securable: peripheral protected by an AHB/APB firewall gate that is controlled from TZSC to define security properties
- TrustZone-aware: peripheral connected directly to AHB or APB bus and implementing a specific TrustZone behavior such as a subset of registers being secure

3.6.2 Default TrustZone security state

The default system security state is detailed below:

- CPU:
 - Cortex-M33 is in secure state after reset. The boot address must be in secure address.

DS14217 Rev 4

- Memory map:
 - SAU is fully secure after reset. Consequently, all memory map is fully secure.
 Up to eight SAU configurable regions are available for security attribution.
- Flash memory:
 - Flash memory security area is defined by watermark user options.
 - Flash memory block based area is nonsecure after reset.
- SRAMs:
 - All SRAMs are secure after reset. MPCBB (memory protection block based controller) is secure.
- External memories:
 - OCTOSPI banks are secure after reset. MPCWMx (memory protection watermark based controller) is secure.
- Peripherals
 - Securable peripherals are nonsecure after reset.
 - TrustZone-aware peripherals are nonsecure after reset. Their secure configuration registers are secure.
- All GPIOs are secure after reset.
- Interrupts:
 - NVIC: All interrupts are secure after reset. NVIC is banked for secure and nonsecure state.
- TZIC: All illegal access interrupts are disabled after reset.

3.7 Boot modes

At startup, a BOOT0 pin, NBOOT0, NSBOOTADDx[24:0] (x = 0, 1) and SECBOOTADD0[24:0] option bytes are used to select the boot memory address that includes:

- Boot from any address in user flash memory.
- Boot from system memory bootloader.
- Boot from any address in embedded SRAM.
- Boot from RSS (root security services).

The BOOT0 value comes from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

The bootloader is located in the system memory, programmed by ST during production. The bootloader is used to reprogram the flash memory by using USART, I2C, SPI, FDCAN or USB in device mode through the DFU (device firmware upgrade).

The bootloader is available on all devices. Refer to the application note *STM32 microcontroller system memory boot mode* (AN2606) for more details.

The RSS are embedded in a flash memory area named secure information block, programmed during ST production.

For example, the RSS enable the SFI (secure firmware installation), thanks to the RSSe SFI (RSS extension firmware).

This feature allows customer to produce the confidentiality of the firmware to be provisioned into the STM32, when production is sub-contracted to untrusted third party.

The RSS are available on all devices, after enabling the TrustZone through the TZEN option bit. Refer to the application note *Overview secure firmware install* (SFI) (AN4992) for more details.

Refer to *Table 6* and *Table 7* for boot modes when TrustZone is disabled and enabled respectively.

NBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	NSWBOOT0 FLASH_ OPTR[26]	Boot address option-byte selection	Boot area	ST programmed default value		
-	0	1	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000		
-	1	1	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	Bootloader: 0x0BF9 0000		
1	-	0	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000		
0	-	0	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	Bootloader: 0x0BF9 0000		

Table 6. Boot modes when TrustZone is disabled ((TZEN = 0)	

When TrustZone is enabled by setting the TZEN option bit, the boot space must be in the secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address.

A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot options are ignored.

BOOT_ LOCK	NBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	NSWBOOT0 FLASH_ OPTR[26]	RSS com- mand	Boot address option-bytes selection	Boot area	ST pro- grammed default value
	-	0	1	0	SECBOOTADD0 [24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000
	-	1	1	0	N/A	RSS	RSS: 0x0FF8 0000
0	1	-	0	0	SECBOOTADD0 [24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000
	0	-	0	0	N/A	RSS	RSS: 0x0FF8 0000
	-	-	-	≠0	N/A	RSS	RSS: 0x0FF8 0000
1	-	-	-	-	SECBOOTADD0 [24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000

Table 7. Boot modes when TrustZone is enabled (TZEN = 1)

The boot address option bytes allow any boot memory address to be programmed. However, the allowed address space depends on the flash memory RDP level.

If the programmed boot memory address is out of the allowed memory mapped area when RDP level is 0.5 or more, the default boot address is forced either in secure flash memory or nonsecure flash memory, depending on TrustZone security option as described in the table below.

Table 8. Boot space versus RDP protection

RDP	TZEN = 1	TZEN = 0	
0	Any boot address	Any boot address	
0.5		N/A	
1	Boot address only in RSS or secure flash memory:	s only in RSS or secure flash memory: Any boot address	
2	0x0C00 0000 - 0x0C07 FFFF Otherwise, forced boot address is 0x0FF8 0000.	Boot address only in flash memory 0x0800 0000 - 0x0807 FFFF Otherwise, forced boot address is 0x0800 0000.	

3.8 Global TrustZone controller (GTZC)

GTZC is used to configure TrustZone and privileged attributes within the full system.

The GTZC includes three different sub-blocks:

TZSC: TrustZone security controller

This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the nonsecure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic.

- TZIC: TrustZone illegal access controller This sub-block gathers all security illegal access events in the system and generates a secure interrupt towards NVIC.
- MPCBB: MPCBB: block-based memory protection controller
 - This sub-block controls secure states of all memory blocks (512-byte pages) of the associated SRAM. This peripheral aims at configuring the internal RAM in a TrustZone system product having segmented SRAM with programmable-security and privileged attributes.

The GTZC main features are:

- Three independent 32-bit AHB interfaces for TZSC, TZIC and MPCBB
- Secure and nonsecure access supported for privileged/unprivileged part of TZSC
- Set of registers to define product security settings:
 - Secure/privilege regions for external memories
 - Secure/privilege access mode for securable peripherals
 - Secure/privilege access mode for securable legacy masters

3.9 **Power supply management**

The PWR (power controller) main features are:

- Power supplies and supply domains
 - Core domain (V_{CORE})
 - V_{DD} domain
 - Backup domain (V_{BAT})
 - Analog domain (V_{DDA})
 - SMPS power stage (V_{DDSMPS}, available only on SMPS packages)
 - V_{DDIO2} domain
 - V_{DDUSB} for USB transceiver
- System supply voltage regulation
- SMPS step down converter
 - Voltage regulator (LDO)
- Power supply supervision
 - BOR monitor
 - PVD monitor
 - PVM monitor (V_{DDA}, V_{DDUSB}, V_{DDIO2})

- Power management
 - Operating modes
 - Voltage scaling control
 - Low-power modes
- V_{BAT} battery charging
- TrustZone security and privileged protection

3.9.1 **Power supply schemes**

The devices require a 1.71 V to 3.6 V V_{DD} operating voltage supply. Several independent supplies can be provided for specific peripherals:

• V_{DD} = 1.71 V to 3.6 V (functionality guaranteed down to V_{BORx} min value)

V_{DD} is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.

 V_{DDA} = 1.58 V (COMPs) / 1.6 V (DACs, OPAMPs) / 1.62 V (ADCs) / 1.8 V (VREFBUF) to 3.6 V

 V_{DDA} is the external analog power supply for ADCs, DACs, voltage reference buffer, operational amplifiers and comparators. The V_{DDA} voltage level is independent from the V_{DD} voltage and must be connected to VDD or VSS pin (preferably to VDD) when these peripherals are not used.

• V_{DDSMPS} = 1.71 V to 3.6 V

 V_{DDSMPS} is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply than VDD.

• V_{LXSMPS} is the switched SMPS step down converter output.

Note: The SMPS power supply pins are available only on a specific package with SMPS step down converter option.

• V_{DDUSB} = 3.0 V to 3.6 V

 V_{DDUSB} is the external independent power supply for USB transceivers. V_{DDUSB} voltage level is independent from the V_{DD} voltage and must be connected to VDD or VSS pin (preferably to VDD) when the USB is not used.

• V_{DDIO2} = 1.08 V to 3.6 V

 V_{DDIO2} is the external power supply for 14 I/Os (port G[15:2]). The V_{DDIO2} voltage level is independent from the V_{DD} voltage and must be connected to VDD or VSS pin (preferably to VDD) when PG[15:2] are not used.

- V_{BAT} = 1.65 V to 3.6 V (functionality guaranteed down to V_{BOR_VBAT} min value)
 V_{BAT} is the power supply for RTC, TAMP, external and internal clocks 32 kHz oscillators and backup registers (through power switch) when V_{DD} is not present.
- VREF-, VREF+

 V_{REF+} is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled.

 V_{REF^+} can be grounded when ADC and DAC are not active.

The internal voltage reference buffer supports four outputs:

- $V_{\text{REF+}}$ around 1.5 V. This requires $V_{\text{DDA}} \ge 1.8$ V.
- − $V_{\text{REF+}}$ around 1.8 V. This requires $V_{\text{DDA}} \ge 2.1$ V.

- V_{REF+} around 2.048 V. This requires $V_{DDA} \ge 2.4$ V.
- V_{REF+} around 2.5 V. This requires $V_{DDA} \ge 2.8$ V.

VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively.

When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled.

 $V_{\text{REF-}}$ must always be equal to $V_{\text{SSA}}.$

The STM32U535xx devices embed two regulators: one LDO and one SMPS in parallel to provide the V_{CORE} supply for digital peripherals, SRAM1, SRAM2, and SRAM4 and embedded flash memory. The SMPS generates this voltage on VDD11 (two pins), with a total external capacitor of 4.7 μ F typical. SMPS requires an external coil of 2.2 μ H typical. The LDO generates this voltage on VCAP pin connected to an external capacitor of 4.7 μ F typical.

Both regulators can provide four different voltages (voltage scaling) and can operate in Stop modes.

It is possible to switch from SMPS to LDO and from LDO to SMPS on-the-fly.

Figure 2. STM32U535xxxxQ power supply overview (with SMPS)

DS14217 Rev 4

In this document, V_{DDIOx} (with x = 1 or 2) refers to the I/O power supply. V_{DDIO1} is supplied by VDD. V_{DDIO2} is the independent power supply for PG[15:2].

 $V_{SW} = V_{DD}$ when V_{DD} is above V_{BOR0} , and $V_{SW} = V_{BAT}$ when V_{DD} is below V_{BOR0} .

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA}, V_{DDIO2}, V_{DDUSB}) must remain below V_{DD} + 300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.
- During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

Figure 4. Power-up / down sequence

1. V_{DDX} refers to any power supply among V_{DDA} , V_{DDUSB} , and V_{DDIO2} .

3.9.2 Power supply supervisor

The devices have an integrated ultra-low-power BOR (Brownout reset) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the device after power on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes. The devices feature an embedded PVD (programmable voltage detector) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold.

An interrupt can be generated when V_{DD} drops below and/or rises above the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embed a peripheral voltage monitor that compares the independent supply voltages V_{DDA}, V_{DDUSB} and V_{DDIO2} to ensure that the peripheral is in its functional supply range.

The devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (V_{CORF}) can be adjusted according to the system's maximum operating frequency.

The main regulator operates in the following ranges:

- Range 1 (V_{CORF} = 1.2 V) with CPU and peripherals running at up to 160 MHz
- Range 2 (V_{CORF} = 1.1 V) with CPU and peripherals running at up to 110 MHz
- Range 3 (V_{CORF} = 1.0 V) with CPU and peripherals running at up to 55 MHz
- Range 4 (V_{CORE} = 0.9 V) with CPU and peripherals running at up to 25 MHz

3.9.3 Low-power modes

The ultra-low-power STM32U535xx devices support seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wake-up sources.

The table below details the related low-power modes.

Regulator ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA and peripherals ⁽²⁾	Wake-up source		
Range 1	Yes	ON ⁽³⁾	ON	Any	All			
Range 2						N/A		
Range 3								
Range 4					All except USB			
Range 1		ON	ON ⁽⁴⁾	Any	All	Any interrupt or event		
Range 2	No							
Range 3								
Range 4					All except USB			
Range 1					BOR, PVD, PVM,	Reset pin, all I/Os,		
Range 2	-					BOR, PVD, PVM, RTC, TAMP, IWDG,		
Range 3					VREFBUF,			
Range 4								-
LPR	No	OFF	ON ⁽⁵⁾	LSE LSI (6)	COMP1, OPAMP1, USARTx (x = 1, 3, 4, 5) ⁽⁹⁾ , LPUART1, SPIx (x = 13) ⁽¹⁰⁾ , I2Cx (x = 14) ⁽¹¹⁾ , LPTIMx (x = 14) ⁽¹²⁾ , MDF1 ⁽¹³⁾ , ADF1, GPIO, LPGPIO, GPDMA1 ⁽¹⁴⁾ , LPDMA1	DAC1 (2 channels), COMP1, USARTx (x = 1, 3, 4, 5), LPUART1, SPIx (x = 13), I2Cx (x = 14), LPTIMx (x = 14), MDF1, ADF1, GPDMA1, LPDMA1, USB		
	Range 1 Range 2 Range 3 Range 4 Range 1 Range 2 Range 3 Range 4 Range 2 Range 2 Range 3 Range 4	Range 1 Range 2 Range 3 Range 4 Range 1 Range 2 Range 3 Range 3 Range 4 Range 1 Range 1 Range 2 Range 2 Range 3 Range 4 No No No	Range 1YesON(3)Range 2YesON(3)Range 3Ange 1Ange 2Range 2NoONRange 3NoONRange 4Ange 1Ange 2Range 1Range 2Ange 3Range 3Ange 3ONRange 4NoOFF	Range 1YesON(3)ONRange 2YesON(3)ONRange 3PesON(3)ONRange 4NoONON(4)Range 3NoONON(4)Range 1Range 2NoONRange 3Range 3NoOFFRange 4NoOFFON(5)	Range 1 Yes ON ⁽³⁾ ON Any Range 2 Yes ON ⁽³⁾ ON Any Range 3 Press ON ⁽³⁾ ON Any Range 1 Any Any Any Range 2 ON ON ON ⁽⁴⁾ Any Range 3 ON ON ON ⁽⁴⁾ Any Range 4 ON ON ON ⁽⁴⁾ Any Range 1 Any Any Any Range 1 Any Any Any Range 2 Any Any Any Range 3 Any Any Any Range 4 Any Any Any No ON ON ⁽⁴⁾ Any	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

Table 9. STM32U535xx mode overview

Mode	Regulator ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA and peripherals ⁽²⁾	Wake-up source
Stop 2	LPR	No	OFF	ON ⁽⁵⁾	LSE LSI	BOR, PVD, PVM, RTC, TAMP, IWDG, TEMP, VREFBUF, ADC4, DAC1 (2 channels), COMP1, OPAMP1, LPUART1, SPI3, I2C3, LPTIMx (x = 1, 3, 4), ADF1, LPGPIO, LPDMA1 All other peripherals are frozen.	Reset pin, all I/Os, BOR, PVD, PVM, RTC, TAMP, IWDG, TEMP, ADC4, COMP1, LPUART1, SPI3, I2C3, LPTIMx (x = 1,3,4), ADF1, LPDMA1
Stop 3	LPR	No	OFF	ON ⁽⁵⁾	LSE LSI	BOR, RTC, TAMP, IWDG, DAC1 (2 static channels), OPAMP1 All other peripherals are frozen. I/O configuration can be floating, pull-up or pull-down.	Reset pin, 24 I/Os (WKUPx), BOR, RTC, TAMP, IWDG
Standby	LPR	Powered off	OFF	ed 64-, 56- or 8-Kbyte SRAM2 2-Kbyte BKPSRAM ⁽⁵⁾ all other SRAMs powered off	LSE LSI	BOR, RTC, TAMP, IWDG All other peripherals are powered off. I/O configuration can be floating, pull-up or pull-down.	Reset pin, 24 I/Os (WKUPx), BOR, RTC, TAMP, IWDG
	OFF			Powered off			
Shutdown	OFF	Powered off	OFF	Powered off	LSE	RTC, TAMP All other peripherals are powered off. I/O configuration can be floating, pull-up or pull-down ⁽¹⁵⁾ .	Reset pin, 24 I/Os (WKUPx), RTC, TAMP

Table 9. STM32U535xx mode overview (continued)

Functional overview

- 1. LPR means that the main regulator is OFF and the low-power regulator is ON.
- 2. All peripherals can be active or clock gated to save power consumption.
- 3. The flash memory can be put in power-down and its clock can be gated off when executing from SRAM. One bank can also be put in power-down mode.
- 4. The SRAM1, SRAM2, SRAM4 and BKPSRAM clocks can be gated on or off independently.
- 5. The SRAM can be individually powered off to save power consumption.
- 6. MSI and HSI16 can be temporary enabled upon peripheral request, for autonomous functions with DMA or wake-up from Stop event detections.
- 7. The ADC4 conversion is functional and autonomous with DMA in Stop mode, and can generate a wake-up interrupt on conversion events.
- 8. DAC1 is the digital-to-analog (D/A) converter controller instance name. This instance controls two D/A converters also called "two channels". The DAC conversions are functional and autonomous with DMA in Stop mode.
- 9. U(S)ART and LPUART transmission and reception is functional and autonomous with DMA in Stop mode, and can generate a wake-up interrupt on transfer events.
- 10. SPI transmission and reception is functional and autonomous with DMA in Stop mode, and can generate a wake-up interrupt on transfer events.
- 11. I2C transmission and reception is functional and autonomous with DMA in Stop mode, and can generate a wake-up interrupt on transfer events.
- 12. LPTIM is functional and autonomous with DMA in Stop mode, and can generate a wake-up interrupt on all events.
- 13. MDF and ADF are functional and autonomous with DMA in Stop mode, and can generate a wake-up interrupt on events.
- 14. GPDMA and LPDMA are functional and autonomous in Stop mode, and can generate a wake-up interrupt on events.
- 15. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop 0, Stop 1, Stop 2, and Stop 3 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. The SRAMs can be totally or partially switched off to further reduce consumption. All clocks in the V_{CORE} domain are stopped, the PLL, the MSI, the HSI16, the HSI48 and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals are autonomous and can operate in Stop mode by requesting their kernel clock and their bus (APB or AHB) when needed, in order to transfer data with DMA (GPDMA1 in Stop 0 and Stop 1 modes, LPDMA1 in Stop 0, Stop 1 and Stop 2 modes). Refer to *Low-power background autonomous mode (LPBAM)* for more details. LPBAM is not supported in Stop 3 mode.

In Stop 2 and Stop 3 modes, most of the V_{CORE} domain is put in a lower leakage mode. Stop 0 and Stop 1 modes offer the largest number of active peripherals and wake-up sources, a smaller wake-up time but a higher consumption than Stop 2 mode.

In Stop 0 mode, the main regulator remains ON, allowing a very fast wake-up time but with much higher consumption.

Stop 3 is the lowest power mode with full retention, but the functional peripherals and sources of wake-up are reduced to the same ones than in Standby mode.

The system clock when exiting from Stop 0, Stop 1 or Stop 2 mode can be either MSI up to 24 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the MSI, the HSI16, the HSI48 and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The BOR always remains active in Standby mode.

The state of each I/O during Standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAMs and register contents are lost except for registers and backup SRAM in the backup domain and Standby circuitry. Optionally, the full SRAM2 or 8 Kbytes or 56 Kbytes can be retained in Standby mode, supplied by the low-power regulator (Standby with SRAM2 retention mode).

The BOR can be configured in ultra-low-power mode to further reduce power consumption during Standby mode.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), an RTC event occurs (alarm, periodic wake-up, timestamp), or a tamper detection. The tamper detection can be raised either due to external pins or due to an internal failure detection.

The system clock after wake-up is MSI up to 4 MHz.

• Shutdown mode

The lowest power consumption is achieved in Shutdown mode. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the HSI16, the HSI48, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to backup domain is not supported (V_{BAT} mode is not supported).

SRAMs and register contents are lost except for registers in the backup domain as long as VDD is present.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wake-up, timestamp), or a tamper detection.

The system clock after wake-up is MSI at 4 MHz.

Low-power background autonomous mode (LPBAM)

The ultra-low-power STM32U535xx devices support LPBAM (low-power background autonomous mode) that allows peripherals to be functional and autonomous in Stop mode (Stop 0, Stop 1 and Stop 2 modes), so without any software running.

In Stop 0 and Stop 1 modes, the autonomous peripherals are the following: ADC4, DAC1, LPTIMx (x = 1 to 4), USARTx (x = 1, 3, 4, 5), LPUART1, SPIx (x = 1 to 3), I2Cx (x = 1 to 4), MDF1, ADF1, GPDMA1 and LPDMA1. In these modes, SRAM1, SRAM2, and SRAM4 can be accessed by the GPDMA1, and SRAM4 can be accessed by the LPDMA1.

In Stop 2 mode, the autonomous peripherals are the following: ADC4, DAC1, LPTIM1, LPTIM3, LPTIM4, LPUART1, SPI3, I2C3, ADF1 and LPDMA1. In this mode, the SRAM4 can be accessed by the LPDMA1.

Those peripherals support the features detailed below:

- Functionality in Stop mode thanks to its own independent clock (named kernel clock) request capability: the peripheral kernel clock is automatically switched on when requested by a peripheral, and automatically switched off when no peripheral requests it.
- DMA transfers supported in Stop mode thanks to system clock request capability: the system clock (MSI or HSI16) automatically switched on when requested by a peripheral, and automatically switched off when no peripheral requests it. When the system clock is requested by an autonomous peripheral, the system clock is woken up and distributed to all peripherals enabled in the RCC. This allows the DMA to access the enabled SRAM, and any enabled peripheral register (for instance GPIO or LPGPIO registers).
- Automatic start of the peripheral thanks to hardware synchronous or asynchronous triggers (such as I/Os edge detection and low-power timer event).
- Wake-up from Stop mode with peripheral interrupt.

The GPDMA and LPDMA are fully functional and the linked-list is updated in Stop mode, allowing the different DMA transfers to be linked without any CPU wake-up. This can be used to chain different peripherals transfers, or to write peripherals registers in order to change their configuration while remaining in Stop mode.

The DMA transfers from memory to memory can be started by hardware synchronous or asynchronous triggers, and the DMA transfers between peripherals and memories can also be gated by those triggers.

Here below some use-cases that can be done while remaining in Stop mode:

- A/D or D/A conversion triggered by a low-power timer (or any other trigger)
 - wake-up from Stop mode on analog watchdog if the A/D conversion result is out of programmed thresholds
 - wake-up from Stop mode on DMA buffer event
- Audio digital filter data transfer into SRAM
 - wake-up from Stop on sound-activity detection
- I²C slave reception or transmission, SPI reception, UART/LPUART reception
 wake-up at the end of peripheral transfer or on DMA buffer event
- I²C master transfer, SPI transmission, UART/LPUART transmission, triggered by a low-power timer (or any other trigger):
 - example: sensor periodic read
 - wake-up at the end of peripheral transfer or on DMA buffer event
- Bridges between peripherals
 - example: ADC converted data transferred by communication peripherals
- Data transfer from/to GPIO/LPGPIO to/from SRAM for:
 - controlling external components
 - implementing data transmission and reception protocols

		Functio	Stop		Sto	-	Sto	-		ndby	Shut	down	
Peripheral	Run	Sleep	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	V _{BAT}
CPU	Y	-	-	-	-	-	-	-	-	-	-	-	-
Flash memory (512 Kbytes)	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-	-	-	-	-
SRAM1 (192 Kbytes)	Y ⁽³⁾⁽⁴⁾	Y ⁽³⁾⁽⁴⁾	O ⁽⁵⁾	-	O ⁽⁵⁾	-	O ⁽⁵⁾	-	-	-	-	-	-
SRAM2 (64 Kbytes)	Y ⁽³⁾⁽⁴⁾	Y ⁽³⁾⁽⁴⁾	O ⁽⁵⁾	O ⁽⁶⁾	O ⁽⁵⁾	-	O ⁽⁵⁾	-	O (7)	-	-	-	-
SRAM4 (16 Kbytes)	Y ⁽³⁾⁽⁴⁾	Y ⁽³⁾⁽⁴⁾	O ⁽⁵⁾	-	O ⁽⁵⁾	-	O ⁽⁵⁾	-	-	-	-	-	-
BKPSRAM	O ⁽⁴⁾	O ⁽⁴⁾	0	O ⁽⁶⁾	0		0		0		-		0
OCTOSPI1	0	0	-	-	-	-	-	-	-	-	-	-	-
Backup registers	Y	Y	Y	-	Y	-	Y	-	Y	-	Y	-	Y
BOR (Brownout reset)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	-
PVD (programmable voltage detector)	0	0	0	0	0	0	-	-	-	-	-	-	-
Peripheral voltage monitor	0	0	0	0	0	0	-	-	-	-	-	-	-
GPDMA1	0	0	0	O ⁽⁸⁾	-	-	-	-	-	-	-	-	-
LPDMA1	0	0	0	O ⁽⁹⁾	0	O ⁽⁹⁾	-	-	-	-	-	-	-
HSI16 (high-speed internal)	0	0	(10)	-	(10)	-	-	-	-	-	-	-	-
HSI48 oscillator	0	0	-	-	-	-	-	-	-	-	-	-	-
HSE (high-speed external)	0	0	-	-	-	-	-	-	-	-	-	-	-
LSI (low-speed internal)	0	0	0	-	0	-	0	-	0	-	-	-	0
LSE (low-speed external)	0	0	0	-	0	-	0	-	0	-	0	-	0
MSIS and MSIK (multi-speed internal)	0	0	(10)	-	(10)	-	-	-	-	-	-	-	-
CSS (clock security system)	0	0	-	-	-	-	-	-	-	-	-	-	-
Clock security system on LSE	0	0	0	0	0	0	0	0	0	0	0	0	0
Backup domain voltage and temperature monitoring	0	0	0	0	0	0	0	0	0	0	-	-	0

Table 10. Functionalities depending on the working $\mathsf{mode}^{(1)}$

		tionalitie	Stop		Sto		_	op 3	-	ndby	-	down	
Peripheral	Run	Sleep	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	V _{BAT}
RTC/TAMP	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC tamper pins	8	8	8	0	8	0	8	0	8	0	8	0	8
USB	O ⁽¹¹⁾	O ⁽¹¹⁾	-	0	-	-	-	-	-	-	-	-	-
USARTx (x = 1,3,4,5)	0	0	O ⁽¹²⁾	O ⁽¹²⁾	-	-	-	-	-	-	-	-	-
Low-power UART (LPUART1)	0	0	O ⁽¹²⁾	O ⁽¹²⁾	O ⁽¹²⁾	O ⁽¹²⁾	-	-	-	-	-	-	-
I2Cx (x = 1, 2, 4)	0	0	O ⁽¹³⁾	O ⁽¹³⁾	-	-	-	-	-	-	-	-	-
I2C3	0	0	O ⁽¹³⁾	O ⁽¹³⁾	O ⁽¹³⁾	O ⁽¹³⁾	-	-	-	-	-	-	-
SPIx (x = 1, 2)	0	0	O ⁽¹⁴⁾	O ⁽¹⁴⁾	-	-	-	-	-	-	-	-	-
SPI3	0	0	O ⁽¹⁴⁾	O ⁽¹⁴⁾	O ⁽¹⁴⁾	O ⁽¹⁴⁾							
FDCAN1	0	0	-	-	-	-	-	-	-	-	-	-	-
SDMMC1	0	0	-	-	_	-	-	-	-	-	-	-	-
SAI1	0	0	-	-	-	-	-	-	-	-	-	-	-
ADC1	0	0	-	-	-	-	-	-	-	-	-	-	-
ADC4	0	0	O ⁽¹⁵⁾	O ⁽¹⁵⁾	O ⁽¹⁵⁾	O ⁽¹⁵⁾	-	-	-	-	-	-	-
DAC1 (2 converters)	0	0	0	-	0	-	-	-	-	-	-	-	-
VREFBUF	0	0	0	-	0	-	-	-	-	-	-	-	-
OPAMP1	0	0	0	-	0	-	-	-	-	-	-	-	-
COMP1	0	0	0	0	0	0	-	-	-	-	-	-	-
Timers (TIMx)	0	0	-	-	-	-	-	-	-	-	-	-	-
LPTIMx (x = 1, 3, 4)	0	0	O ⁽¹⁶⁾	O ⁽¹⁶⁾	O ⁽¹⁶⁾	O ⁽¹⁶⁾	-	-	-	-	-	-	-
LPTIM2	0	0	O ⁽¹⁶⁾	O ⁽¹⁶⁾	-	-	-	-	-	-	-	-	-
IWDG (independent watchdog)	0	0	0	0	0	0	0	0	0	0	-	-	-
WWDG (window watchdog)	0	0	-	-	-	-	-	-	-	-	-	-	-
SysTick timer	0	0	-	-	-	-	-	-	-	-	-	-	-
MDF1 (multi-function digital filter)	0	0	O ⁽¹⁷⁾	O ⁽¹⁷⁾	-	-	-	-	-	-	-	-	-
ADF1 (audio digital filter)	0	0	O ⁽¹⁷⁾	O ⁽¹⁷⁾	O ⁽¹⁷⁾	O ⁽¹⁷⁾	-	-	-	-	-	-	-

Table 10. Functionalities depending on the working mode⁽¹⁾ (continued)

42/301

			Stop	o 0/1	Sto	p 2	Sto	op 3	Sta	ndby	Shut	down	
Peripheral	Run	Sleep	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	-	Wake-up capability	V _{BAT}
DCMI (digital camera interface)	0	0	-	-	-	-	-	-	-	-	-	-	-
PSSI (paral. synch. slave interface)	0	0	-	-	-	-	-	-	-	-	-	-	-
CORDIC coprocessor	0	0	-	-	-	-	-	-	-	-	-	-	-
FMAC (filter mathematical accelerator)	0	0	-	-	-	-	-	-	-	-	-	-	-
TSC (touch sensing controller)	0	0	-	-	-	-	-	-	-	-	-	-	-
RNG (true random number generator)	0	0	-	-	-	-	-	-	-	-	-	-	-
HASH accelerator	0	0	-	-	-	-	-	-	-	-	-	-	-
CRC calculation unit	0	0	-	-	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	- (18)	24 pins	- (18)	24 pins	- (19)	24 pins	-

Table 10. Functionalities depending on the working mode⁽¹⁾ (continued)

 Y = yes (enabled). O = optional (disabled by default, can be enabled by software). - = not available. Gray cells highlight the wake-up capability in each mode.

2. The flash memory can be configured in power-down mode. By default, it is not in power-down mode.

3. The SRAMs can be powered on or off independently.

4. The SRAM clock can be gated on or off independently.

- Sub-blocks or full SRAM1, full SRAM2 and SRAM4 can be powered-off to save power consumption. SRAM1, SRAM2, and SRAM4 can be accessed by GPDMA1 in Stop 0 and Stop 1 modes. SRAM4 can be accessed by LPDMA1 in Stop 0, Stop 1 and Stop 2 modes.
- 6. ECC error interrupt or NMI wake-up from Stop mode.
- 7. 8-Kbyte, 56-Kbyte or full SRAM2 content can be preserved.
- 8. GPDMA transfers are functional and autonomous in Stop mode, and generates a wake-up interrupt on transfer events.
- 9. LPDMA transfers are functional and autonomous in Stop mode, and generates a wake-up interrupt on transfer events.
- 10. Some peripherals with autonomous mode and wake-up from Stop capability can request HSI16, MSIS or MSIK to be enabled. In this case, the oscillator is woken up by the peripheral, and is automatically put off when no peripheral needs it.
- 11. USB is functional in voltage scaling range 1, 2 and 3.
- 12. USART and LPUART reception and transmission are functional and autonomous in Stop mode in asynchronous and in SPI master modes, and generate a wake-up interrupt on transfer events.
- I²C reception and transmission are functional and autonomous in Stop mode, and generate a wake-up interrupt on transfer events.
- 14. SPI reception and transmission are functional and autonomous in Stop mode, and generate a wake-up interrupt on transfer events.
- 15. A/D conversion is functional and autonomous in Stop mode, and generates a wake-up interrupt on conversion events.
- 16. LPTIM is functional and autonomous in Stop mode, and generates a wake-up interrupt on events.
- 17. MDF and ADF are functional and autonomous in Stop mode, and generate a wake-up interrupt on events.
- 18. I/Os can be configured with internal pull-up, pull-down or floating in Stop 3 and Standby modes.

19. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.4 Reset mode

In order to improve the consumption under reset, the I/O state under and after reset is "analog state" (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.5 VBAT operation

The VBAT pin allows the device V_{BAT} domain to be powered from an external battery or an external super-capacitor.

The VBAT pin supplies the RTC with LSE, anti-tamper detection (TAMP), backup registers and 2-Kbyte backup SRAM. Eight anti-tamper detection pins are available in V_{BAT} mode.

The VBAT operation is automatically activated when V_{DD} is not present. An internal V_{BAT} battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from V_{BAT} , neither external interrupts nor RTC/TAMP alarm/events exit the microcontroller from the V_{BAT} operation.

3.9.6 **PWR TrustZone security**

When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode.

The PWR TrustZone security secures the following configuration:

- low-power mode
- WKUP (wake-up) pins
- voltage detection and monitoring
- V_{BAT} mode

Some of the PWR configuration bits security is defined by the security of other peripherals:

- The VOS (voltage scaling) configuration is secure when the system clock selection is secure in RCC.
- The I/O pull-up/pull-down in Standby mode configuration is secure when the corresponding GPIO is secure.

3.10 **Peripheral interconnect matrix**

Several peripherals have direct connections between them, that allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency.

Depending on the peripherals, these interconnections can operate in Run, Sleep, Stop 0, Stop 1, and Stop 2 modes.

3.11 Reset and clock controller (RCC)

The RCC (reset and clock control) manages the different reset types, and generates all clocks for the bus and peripherals.

The RCC distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features:

- Clock prescaler: in order to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- Clock security system: clock sources can be changed safely on-the-fly in Run mode through a configuration register.
- Clock management: in order to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - HSE (4 to 50 MHz high-speed external crystal or ceramic resonator) that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - HSI16 (16 MHz high-speed internal RC oscillator) trimmable by software, that can supply a PLL.
 - MSI (multispeed internal RC oscillator) trimmable by software, that can generate 16 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
 - System PLL that can be fed by HSE, HSI16 or MSI, with a maximum frequency at 160 MHz.
- HSI48 (RC48 with clock recovery system) internal 48 MHz clock source that can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock:
 - LSE (32.768 kHz low-speed external crystal), supporting three drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - LSI (32 kHz low-speed internal RC), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy. The LSI clock can be divided by 128 to output a 250 Hz as source clock.
- Peripheral clock sources: several peripherals have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, USB, SDMMC, RNG, MDF, ADF, FDCAN1, OCTOSPI and SAI.
- Startup clock: after reset, the microcontroller restarts by default with MSI. The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- CSS (clock security system): this feature can be enabled by software. If a HSE clock failure occurs, the master clock automatically switches to HSI16 and a software

interrupt is generated if enabled. LSE failure can also be detected and generates an interrupt.

- Clock-out capability:
 - MCO (microcontroller clock output): it outputs one of the internal clocks for external use by the application.
 - LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes (except V_{BAT} mode).

Several prescalers allow AHB and APB frequencies configuration. The maximum frequency of the AHB and the APB clock domains is 160 MHz.

3.11.1 RCC TrustZone security

When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode.

The RCC TrustZone security secures some RCC system configuration and peripheral configuration clock from being read or modified by nonsecure accesses: when a peripheral is secure, the related peripheral clock, reset, clock source selection and clock enable during low-power modes control bits are secure.

A peripheral is in secure state:

- when its corresponding SEC security bit is set in the TZSC (TrustZone security controller), for securable peripherals.
- when a security feature of this peripheral is enabled through its dedicated bits, for TrustZone-aware peripherals.

3.12 Clock recovery system (CRS)

The devices embed a special block that allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, that is either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup, automatic trimming and manual trimming action can be combined.

3.13 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

After reset, all GPIOs are in analog mode to reduce power consumption.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13.1 GPIOs TrustZone security

Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a nonsecure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure.

3.14 Low-power general-purpose inputs/outputs (LPGPIO)

The LPGPIO allows dynamic I/O control in Stop 2 mode thanks to LPDMA1. Up to 16 I/Os can be configured and controlled as input or output (open-drain or push-pull depending on GPIO configuration).

3.14.1 LPGPIO TrustZone security

Each I/O pin registers bit of the LPGPIO is configured as secure if the corresponding I/O is configured as secure in the GPIO.

3.15 Multi-AHB bus matrix

A 32-bit multi-AHB bus matrix interconnects all master (CPU, GPDMA1, SDMMC1) and slave (flash memory, RAM, OCTOSPI, SRAMs, AHB and APB) peripherals. It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Another multi-AHB bus matrix interconnects two masters (previous AHB bus matrix slave port and LPDMA1) and all slaves that are functional in Stop 2 modes (SRAM4 and AHB/APB peripherals functional in Stop 2 mode).

3.16 System configuration controller (SYSCFG)

The STM32U535xx devices feature a set of configuration registers. The main purposes of the system configuration controller are the following:

- Managing robustness feature
- Configuring FPU interrupts
- Enabling/disabling the FMP high-drive mode of some I/Os and voltage booster for I/Os analog switches
- Managing the I/O compensation cell
- Configuring register security access

3.17 General purpose direct memory access controller (GPDMA)

The general purpose direct memory access (GPDMA) controller is a bus master and system peripheral.

The GPDMA is used to perform programmable data transfers between memory-mapped peripherals and/or memories via linked-lists, upon the control of an off-loaded CPU.

The GPDMA main features are:

- Dual bidirectional AHB master
- Memory-mapped data transfers from a source to a destination:
 - Peripheral-to-memory
 - Memory-to-peripheral
 - Memory-to-memory
 - Peripheral-to-peripheral
- Autonomous data transfers during Sleep and Stop modes
- Transfers arbitration based on a four-grade programmed priority at a channel level:
 - One high-priority traffic class, for time-sensitive channels (queue 3)
 - Three low-priority traffic classes, with a weighted round-robin allocation for non time-sensitive channels (queues 0, 1, 2)

- Per channel event generation, on any of the following events: transfer complete or half transfer complete or data transfer error or user setting error, and/or update linked-list item error or completed suspension
- Per channel interrupt generation, with separately programmed interrupt enable per event
- 16 concurrent DMA channels:
 - Per channel FIFO for queuing source and destination transfers
 - Intra-channel DMA transfers chaining via programmable linked-list into memory, supporting two execution modes: run-to-completion and link step mode
 - Intra-channel and inter-channel DMA transfers chaining via programmable DMA input triggers connection to DMA task completion events
- Per linked-list item within a channel:
 - Separately programmed source and destination transfers
 - Programmable data handling between source and destination: byte-based reordering, packing or unpacking, padding or truncation, sign extension and left/right realignment
 - Programmable number of data bytes to be transferred from the source, defining the block level
 - 12 channels with linear source and destination addressing: either fixed or contiguously incremented addressing, programmed at a block level, between successive single transfers
 - Four channels with 2D source and destination addressing: programmable signed address offsets between successive burst transfers (non-contiguous addressing within a block, combined with programmable signed address offsets between successive blocks, at a second 2D/repeated block level)
 - Support for scatter-gather (multi-buffer transfers), data interleaving and deinterleaving via 2D addressing
 - Programmable DMA request and trigger selection
 - Programmable DMA half-transfer and transfer complete events generation
 - Pointer to the next linked-list item and its data structure in memory, with automatic update of the DMA linked-list control registers
- Debug:
 - Channel suspend and resume support
 - Channel status reporting including FIFO level and event flags
- TrustZone support:
 - Support for secure and nonsecure DMA transfers, independently at a first channel level, and independently at a source/destination and link sub-levels
 - Secure and nonsecure interrupts reporting, resulting from any of the respectively secure and nonsecure channels
 - TrustZone-aware AHB slave port, protecting any DMA secure resource (register, register field) from a nonsecure access
- Privileged/unprivileged support:
 - Support for privileged and unprivileged DMA transfers, independently at channel level
 - Privileged-aware AHB slave port

Channel	Hardwar	e parameters	Features				
X	dma_fifo_ size[x]	dma_ addressing[x]					
x = 0 to 11	2	0	Channel x (x = 0 to 11) is implemented with: – a FIFO of 8 bytes, 2 words – fixed/contiguously incremented addressing These channels may be also used for GPDMA transfers, between an APB or AHB peripheral and SRAM.				
x = 12 to 15	4	1	Channel x (x = 12 to 15) is implemented with: – a FIFO of 32 bytes, 8 words – 2D addressing These channels may be also used for GPDMA transfers, between a demanding AHB peripheral and SRAM, or for transfers from/to external memories.				

Table 11. GPDMA1 channels implementation and usage

Table 12. GPDMA1 autonomous mode and wake-up in low-power modes

Feature	Low-power modes
Autonomous mode and wake-up	GPDMA1 in Sleep, Stop 0 and Stop 1 modes

3.18 Low-power direct memory access controller (LPDMA)

The LPDMA controller is a bus master and system peripheral. The LPDMA is used to perform programmable data transfers between memory-mapped peripherals and/or memories via linked-lists, upon the control of an off-loaded CPU.

The LPDMA main features are:

- Single bidirectional AHB master
- Memory-mapped data transfers from a source to a destination:
 - Peripheral-to-memory
 - Memory-to-peripheral
 - Memory-to-memory
 - Peripheral-to-peripheral
- Autonomous data transfers during Sleep and Stop modes
- Transfers arbitration based on a 4-grade programmed priority at channel level:
 - One high-priority traffic class, for time-sensitive channels (queue 3)
 - Three low-priority traffic classes, with a weighted round-robin allocation for non time-sensitive channels (queues 0, 1, 2)
- Per channel event generation, on any of the following events: transfer complete, or half-transfer complete, or data transfer error, or user setting error, and/or update linked-list item error, or completed suspension
- Per channel interrupt generation, with separately programmed interrupt enable per event

- Four concurrent DMA channels:
 - Intra-channel DMA transfers chaining via programmable linked-list into memory, supporting two execution modes: run-to-completion and link step mode
 - Intra-channel and inter-channel DMA transfers chaining via programmable DMA input triggers connection to DMA task completion events
- Per linked-list item within a channel:
 - Separately programmed source and destination transfers
 - Programmable data handling between source and destination: byte-based padding or truncation, sign extension and left/right realignment
 - Programmable number of data bytes to be transferred from the source, defining the block level
 - Linear source and destination addressing: either fixed or contiguously incremented addressing, programmed at a block level, between successive single transfers
 - Programmable DMA request and trigger selection
 - Programmable DMA half-transfer and transfer complete events generation
 - Pointer to the next linked-list item and its data structure in memory, with automatic update of the DMA linked-list control registers
- Debug:
 - Channel suspend and resume support
 - Channel status reporting and event flags
- TrustZone support
 - Support for secure and nonsecure DMA transfers, independently at a first channel level, and independently at a source/destination and link sub-levels
 - Secure and nonsecure interrupts reporting, resulting from any of the respectively secure and nonsecure channels
 - TrustZone-aware AHB slave port, protecting any DMA secure resource (register, register field) from a nonsecure access
- Privileged/unprivileged support:
 - Support for privileged and unprivileged DMA transfers, independently at channel level
 - Privileged-aware AHB slave port

Table 13. LPDMA1 channels implementation and usage

Channel	Hardwai	re parameters					
X			Features				
x = 0 to 3	0	0	Channel x (x = 0 to 3) is implemented with: – no FIFO. Only a single source transfer cell is internally registered. – fixed/contiguously incremented addressing				

Table 14. LF DMAT autonomous mode and wake-up in low-power modes							
Feature	Low-power modes						
Autonomous mode and wake-up	LPDMA1 in Sleep, Stop 0, Stop 1 and Stop 2 modes						

Table 14. LPDMA1 autonomous mode and wake-up in low-power modes

3.19 Interrupts and events

3.19.1 Nested vectored interrupt controller (NVIC)

The devices embed a NVIC that is able to manage 16 priority levels and to handle up to 114 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M33.

The NVIC benefits are the following:

- closely coupled NVIC giving low-latency interrupt processing
- interrupt entry vector table address passed directly to the core
- early processing of interrupts
- processing of late arriving higher priority interrupts
- support for tail chaining
- processor state automatically saved
- interrupt entry restored on interrupt exit with no instruction overhead
- TrustZone support: NVIC registers banked across secure and nonsecure states

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.19.2 Extended interrupt/event controller (EXTI)

The EXTI manages the individual CPU and system wake-up through configurable event inputs. It provides wake-up requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional event generation block (EVG) is needed to generate the CPU event signal.

The EXTI wake-up requests allow the system to be woken up from Stop modes.

The interrupt request and event request generation can also be used in Run modes. The EXTI also includes the EXTI multiplexer I/O port selection.

The EXTI main features are the following:

- All event inputs allowed to wake up the system
- Configurable events (signals from I/Os or peripherals able to generate a pulse)
 - Selectable active trigger edge
 - Interrupt pending status register bit independent for the rising and falling edge
 - Individual interrupt and event generation mask, used for conditioning the CPU wake-up, interrupt and event generation
 - Software trigger possibility
- TrustZone secure events
 - The access to control and configuration bits of secure input events can be made secure
- EXTI I/O port selection

3.20 Cyclic redundancy check calculation unit (CRC)

The CRC is used to get a CRC code using a configurable generator with polynomial value and size.

Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the flash memory integrity.

The CRC calculation unit helps to compute a signature of the software during runtime, that can be ulteriorly compared with a reference signature generated at link-time and that can be stored at a given memory location.

3.21 CORDIC co-processor (CORDIC)

The CORDIC co-processor provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications. It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks.

The CORDIC main features are:

- 24-bit CORDIC rotation engine
- Circular and hyperbolic modes
- Rotation and vectoring modes
- Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural logarithm
- Programmable precision
- Low-latency AHB slave interface
- Results can be read as soon as ready without polling or interrupt
- DMA read and write channels
- Multiple register read/write by DMA

3.22 Filter math accelerator (FMAC)

The FMAC performs arithmetic operations on vectors. It comprises a MAC (multiplier/accumulator) unit, together with address generation logic that allows it to index vector elements held in local memory.

The unit includes support for circular buffers on input and output, that allows digital filters to be implemented. Both finite and infinite impulse response filters can be done.

The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks.

The FMAC main features are:

- 16 x 16-bit multiplier
- 24 + 2-bit accumulator with addition and subtraction
- 16-bit input and output data

- 256 x 16-bit local memory
- Up to three areas can be defined in memory for data buffers (two input, one output), defined by programmable base address pointers and associated size registers
- Input and output buffers can be circular
- Filter functions: FIR, IIR (direct form 1)
- Vector functions: dot product, convolution, correlation
- AHB slave interface
- DMA read and write data channels

3.23 Octo-SPI interface (OCTOSPI)

The OCTOSPI supports most external serial memories such as serial PSRAMs, serial NAND and serial NOR flash memories, HyperRAMs[™] and HyperFlash[™] memories, with the following functional modes:

- Indirect mode: all the operations are performed using the OCTOSPI registers.
- Status-polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting.
- Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation.

The OCTOSPI supports the following protocols with associated frame formats:

- the standard frame format with the command, address, alternate byte, dummy cycles and data phase
- the HyperBus[™] frame format

The OCTOSPI offers the following features:

- Three functional modes: Indirect, Status-polling, and Memory-mapped
- Read and write support in Memory-mapped mode
- Supports for single, dual, quad and octal communication
- Dual-quad mode, where eight bits can be sent/received simultaneously by accessing two quad memories in parallel.
- SDR (single-data rate) and DTR (double-transfer rate) support
- Data strobe support
- Fully programmable opcode
- Fully programmable frame format
- HyperBus support
- Integrated FIFO for reception and transmission
- 8-, 16-, and 32-bit data accesses allowed
- DMA channel for Indirect mode operations
- Interrupt generation on FIFO threshold, timeout, operation complete, and access error

3.23.1 OCTOSPI TrustZone security

When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.

Up to two nonsecure area can be configured thought the TZSC MPCWM1 controller with a granularity of 64 Kbytes.

DS14217 Rev 4

The OCTOSPI registers can be configured as secure through the TZSC controller.

3.24 Delay block (DLYB)

The delay block (DLYB) is used to generate an output clock that is dephased from the input clock. The phase of the output clock must be programmed by the user application. The output clock is then used to clock the data received by another peripheral such as a SDMMC or Octo-SPI interface. The delay is voltage and temperature dependent, that may require the application to re-configure and recenter the output clock phase with the received data.

The delay block main features are:

- Input clock frequency ranging from 25 to 160 MHz
- Up to 12 oversampling phases

3.25 Analog-to-digital converter (ADC1 and ADC4)

The devices embed two successive approximation analog-to-digital converters.

ADC modes/features ⁽¹⁾	ADC1	ADC4
Resolution	14 bits	12 bits
Maximum sampling speed for maximum resolution	2.5 Msps	2.5 Msps
Hardware offset calibration	Х	Х
Hardware linearity calibration	Х	-
Single-ended inputs	Х	Х
Differential inputs	Х	-
Injected channel conversion	Х	-
Oversampling	up to x1024	up to x256
Data register	32 bits	16 bits
DMA support	X	Х
Parallel data output to MDF	X	-
Autonomous mode	-	Х
Offset compensation	Х	-
Gain compensation	Х	-
Number of analog watchdogs	3	3
Wake-up from Stop mode	-	X ⁽²⁾

Table 15. ADC features

1. X = supported.

2. Wake-up supported from Stop 0, Stop 1 and Stop 2 modes.

3.25.1 Analog-to-digital converter 1 (ADC1)

The ADC1 is a 14-bit ADC successive approximation analog-to-digital converter.

This ADC has up to 20 multiplexed channels. A/D conversion of the various channels can be performed in Single, Continuous, Scan or Discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 32-bit data register.

This ADC is mapped on the AHB bus to allow fast data handling. The analog watchdog features allow the application to detect if the input voltage goes outside the user-defined high or low thresholds.

A built-in hardware over sampler allows analog performances to be improved while off-loading the related computational burden from the CPU.

An efficient low-power mode is implemented to allow very low consumption at low frequency.

The ADC1 main features are:

- High-performance features
 - 14-, 12-, 10- or 8-bit configurable resolution
 - A/D conversion time independent from the AHB bus clock frequency
 - Faster conversion time by lowering resolution
 - Management of single-ended or differential inputs (programmable per channels)
 - Fast data handling thanks to the AHB slave bus interface
 - Self-calibration (both offset and linearity)
 - Channel-wise programmable sampling time
 - Flexible sampling time control
 - Up to four injected channels (analog inputs assignment to regular or injected channels is fully configurable)
 - Fast context switching thanks to the hardware assistant that prepares the context of the injected channels
 - Data alignment with in-built data coherency
 - Data can be managed by GPDMA for regular channel conversions with FIFO
 - Data can be routed to MDF for post processing
 - Four dedicated data registers for the injected channels
- Oversampler
 - 32-bit data register
 - Oversampling ratio adjustable from 2 to 1024
 - Programmable data right and left shift
- Data preconditioning
 - Gain compensation
 - Offset compensation
- Low-power features
 - Speed adaptive low-power mode to reduce ADC consumption when operating at low frequency
 - Slow bus frequency application while keeping optimum ADC performance
 - Automatic control to avoid ADC overrun in low AHB bus clock frequency application (auto-delayed mode)

- ADC features an external analog input channel:
 - Up to 17 channels from dedicated GPIO pads
- Three additional internal dedicated channels:
 - One channel for internal reference voltage (VREFINT)
 - One channel for internal temperature sensor (VSENSE)
 - One channel for VBAT monitoring channel (VBAT/4)
- Start-of-conversion can be initiated:
 - by software for both regular and injected conversions
 - by hardware triggers with configurable polarity (internal timers events or GPIO input events) for both regular and injected conversions
- Conversion modes
 - Single mode: the ADC converts a single channel. The conversion is triggered by a special event.
 - Scan mode: the ADC scans and converts a sequence of channels.
 - Continuous mode: the ADC converts continuously selected inputs.
 - Discontinuous mode: the ADC converts a subset of the conversion sequence.
- Interrupt generation when the ADC is ready, at end of sampling, end of conversion (regular or injected), end of sequence conversion (regular or injected), analog watchdog 1, 2 or 3 or when an overrun event occurs
- Three analog watchdogs
 - Filtering to ignore out-of-range data
- ADC input range: V_{SSA} < VIN < VREF+

Note: The ADC1 analog block clock frequency must be between 5 MHz and 55 MHz.

3.25.2 Analog-to-digital converter 4 (ADC4)

The 12-bit ADC4 is a successive approximation analog-to-digital converter. It has up to 21 multiplexed channels allowing it to measure signals from 15 external and six internal sources. A/D conversion of the various channels can be performed in Single, Continuous, Scan or Discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes outside the user-defined higher or lower thresholds.

An efficient low-power mode is implemented to allow very low consumption at low frequency. The ADC4 is autonomous in low-power modes down to Stop 2 mode.

A built-in hardware oversampler allows analog performances to be improved while off-loading the related computational burden from the CPU.

The ADC4 main features are:

- High performance
 - 12-, 10-, 8- or 6-bit configurable resolution
 - A/D conversion time: 0.4 µs for 12-bit resolution (2.5 MHz), faster conversion times obtained by lowering resolution
 - Self-calibration
 - Programmable sampling time

- Data alignment with built-in data coherency
- DMA support
- Low-power
 - HCLK frequency reduced for low-power operation while still keeping optimum ADC performance
 - Wait mode: ADC overrun prevented in applications with low frequency HCLK
 - Auto-off mode: ADC automatically powered off except during the active conversion phase, dramatically reducing the ADC power consumption
 - Autonomous mode: In low-power modes down to Stop 2 mode, the ADC4 is automatically switched on when a trigger occurs to start conversion, and it is automatically switched off after conversion. Data are transfered in SRAM with DMA.
 - ADC4 interrupts wake up the device from Stop 0, Stop 1 and Stop 2 modes.
- Analog input channels
 - Up to 19 external analog inputs
 - One channel for the internal temperature sensor (VSENSE)
 - One channel for the internal reference voltage (V_{REFINT})
 - One channel for the internal digital core voltage (V_{CORE})
 - One channel for monitoring the external VBAT power supply pin
 - Connection to two DAC internal channels
- Start-of-conversion can be initiated:
 - By software
 - By hardware triggers with configurable polarity (timer events or GPIO input events)
- Conversion modes
 - Conversion of a single channel or scan of a sequence of channels
 - Selected inputs converted once per trigger in Single mode
 - Selected inputs converted continuously in Continuous mode
 - Discontinuous mode
- Interrupt generation at the end of sampling, end of conversion, end of sequence conversion, and in case of analog watchdog or overrun events, with wake-up from Stop capability
- Analog watchdog
- Oversampler
 - 16-bit data register
 - Oversampling ratio adjustable from 2 to 256
 - Programmable data shift up to 8 bits
- ADC supply requirements: 1.62 to 3.6 V
- ADC input range: V_{SSA} < V_{IN} < V_{REF+}

Note: The ADC4 analog block clock frequency must be between 140 kHz and 55 MHz.

3.25.3 Temperature sensor

The temperature sensor generates a voltage V_{SENSE} that varies linearly with temperature. The temperature sensor is internally connected to ADC1 and ADC4 input channel that is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it must be calibrated to obtain a good accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by STMicroelectronics in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	Temperature sensor 14-bit raw data acquired by ADC1 at 30 °C (\pm 5 °C), V _{DDA} = V _{REF+} = 3.0 V (\pm 10 mV)	0x0BFA 0710 - 0x0BFA 0711
TS_CAL2	Temperature sensor 14-bit raw data acquired by ADC1 at 130 °C (\pm 5 °C), V _{DDA} = V _{REF+} = 3.0 V (\pm 10 mV)	0x0BFA 0742 - 0x0BFA 0743

Table 16. Temperature sensor calibration values

3.25.4 Internal voltage reference (VREFINT)

The VREFINT provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to ADC1 and ADC4 input channels.

The precise voltage of VREFINT is individually measured for each part by STMicroelectronics during production test and stored in the system memory area. It is accessible in read-only mode.

Table 17. Internal voltage reference calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	14-bit raw data acquired by ADC1 at 30 °C (± 5 °C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x0BFA 07A5 - 0x0BFA 07A6

3.25.5 V_{BAT} battery voltage monitoring

This embedded hardware enables the application to measure the V_{BAT} battery voltage using ADC1 or ADC4 input channel. As the V_{BAT} voltage may be higher than the V_{DDA}, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by four. As a consequence, the converted digital value is a quarter of the V_{BAT} voltage.

3.26 Digital to analog converter (DAC)

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data may be left- or right-aligned.

The DAC features two output channels, each with its own converter. In dual DAC channel mode, conversions can be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with others analog peripherals) is available for better resolution. An internal reference can also be set on the same input.

The DAC_OUTx pin can be used as general purpose input/output (GPIO) when the DAC output is disconnected from output pad and connected to on chip peripheral. The DAC output buffer can be optionally enabled to allow a high drive output current. An individual calibration can be applied on each DAC output channel. The DAC output channels support a low-power mode, the sample and hold mode.

The digital interface supports the following features:

- One DAC interface, maximum two output channels
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave and triangular-wave generation
- Sawtooth wave generation
- Dual DAC channel for independent or simultaneous conversions
- DMA capability for each channel including DMA underrun error detection
- Double data DMA capability to reduce the bus activity
- External triggers for conversion
- DAC output channel buffered/unbuffered modes
- Buffer offset calibration
- Each DAC output can be disconnected from the DAC_OUTx output pin
- DAC output connection to on chip peripherals
- Sample and hold mode for low-power operation in Stop mode. The DAC voltage can be changed autonomously with the DMA while the device is in Stop mode.
- Autonomous mode to reduce the power consumption for the system
- Voltage reference input

3.27 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer that can be used as voltage reference for ADCs, DACs and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports four voltages: 1.5 V, 1.8 V, 2.048 V and 2.5 V.

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

3.28 Comparator (COMP)

The devices embed one rail-to-rail comparator with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output channels
- Internal reference voltage or submultiple (1/4, 1/2, 3/4)

The comparator can wake up from Stop 0, Stop 1 and Stop 2 modes, generate interrupts and breaks for the timers.

3.29 Operational amplifier (OPAMP)

The devices embed one operational amplifier with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low-input bias current
- Low-offset voltage
- Low-power mode
- Rail-to-rail input

3.30 Multi-function digital filter (MDF) and audio digital filter (ADF)

The table below lists the set of features implemented into the MDF and the ADF.

MDF modes/features ⁽¹⁾	ADF1	MDF1
Number of filters (DFLTx) and serial interfaces (SITFx)	1	2
ADF_CKI0 / MDF_CKIy connected to pins	-	Х
Sound activity detection (SAD)	Х	-
RXFIFO depth (number of 24-bit words)	4	4
ADC connected to ADCITF1	-	ADC1
ADC connected to ADCITF2	-	-
Motor dedicated features (SCD, OLD, OEC, INT, snapshot, break)	-	Х
Main path with CIC4, CIC5	Х	Х
Main path with CIC1,2, 3 or FastSinc	-	Х
RSFLT, HPF, SAT, SCALE, DLY, Discard functions	Х	Х
Autonomous in Stop mode	X ⁽²⁾	X ⁽³⁾

1. X = supported.

2. Stop 0, Stop 1 and Stop 2 modes only.

3. Stop 0 and Stop 1 modes only.

3.30.1 Multi-function digital filter (MDF)

The MDF is a high-performance module dedicated to the connection of external sigma-delta ($\Sigma\Delta$) modulators. It is mainly targeted for the following applications:

- audio capture signals
- motor control
- metering

The MDF features two digital serial interfaces (SITFx) and digital filters (DFLTx) with flexible digital processing options to offer up to 24-bit final resolution.

The DFLTx of the MDF also include the filters of the ADF (audio digital filter).

The MDF can receive, via its serial interfaces, streams coming from various digital sensors.

The MDF supports the following standards allowing the connection of various $\Sigma\Delta$ modulator sensors:

- SPI interface
- Manchester coded 1-wire interface
- PDM interface

A flexible BSMX (bitstream matrix) allows the connection of any incoming bitstream to any filter.

The MDF converts an input data stream into clean decimated digital data words. This conversion is done thanks to low-pass digital filters and decimation blocks. In addition it is possible to insert a high-pass filter or DC offset correction block.

The conversion speed and resolution are adjustable according to configurable parameters for digital processing: filter type, filter order, decimation ratio, integrator length. The maximum output data resolution is up to 24 bits. There are two conversion modes: single conversion and continuous modes. The data can be automatically stored in a system RAM buffer through DMA, thus reducing the software overhead.

A flexible trigger interface can be used to control the conversion start. This timing control can trigger simultaneous conversions or insert a programmable delay between conversions.

The MDF features an OLD (out-off limit detectors) function. There is one OLD for each digital filter chain. Independent programmable thresholds are available for each OLD, making it very suitable for over-current detection.

A SCD (short circuit detector) is also available for every selected bitstream. The SCD is able to detect a short-circuit condition with a very short latency. Independent programmable thresholds are offered in order to define the short circuit condition.

All the digital processing is performed using only the kernel clock. The MDF requests the bus interface clock (AHB clock) only when data must be transfered or when a specific event requests the attention of the system processor.

The MDF main features are:

- AHB interface
- Two serial digital inputs:
 - configurable SPI interface to connect various digital sensors
 - configurable Manchester coded interface support
 - compatible with PDM interface to support digital microphones
- Two common clock input/output for ΣΔ modulators
- Flexible BSMX for connection between filters and digital inputs
- Two inputs to connect the internal ADCs
- Two flexible digital filter paths, including:
 - A configurable CIC filter:
 - Can be split into two CIC filters: high-resolution filter and out-off limit detector
 - Can be configured in Sinc⁴ filter
 - Can be configured in Sinc⁵ filter
 - Adjustable decimation ratio
 - A reshape filter to improve the out-off band rejection and in-band ripple
 - A high-pass filter to cancel the DC offset

- An offset error cancellation
- Gain control
- Saturation blocks
- An out-off limit detector
- Short-circuit detector
- Clock absence detector
- 16- or 24-bit signed output data resolution
- Continuous or single conversion
- Possibility to delay independently each bitstream
- Various trigger possibilities
- Break generation on out-of limit or short-circuit detector events
- Autonomous functionality in Stop modes
- DMA can be used to read the conversion data
- Interrupts services

3.30.2 Audio digital filter (ADF)

The ADF is a high-performance module dedicated to the connection of external $\Sigma\Delta$ modulators. It is mainly targeted for the following applications:

- audio capture signals
- metering

The ADF features one digital serial interface (SITF0) and one digital filter (DFLT0) with flexible digital processing options to offer up to 24-bit final resolution.

The DLFT0 of the ADF is a subset of the digital filters included into the MDF.

The ADF serial interface supports several standards allowing the connection of various $\Sigma\Delta$ modulator sensors:

- SPI interface
- Manchester coded 1-wire interface
- PDM interface

A flexible BSMX allows the connection of any incoming bitstream to any filter.

The ADF converts an input data stream into clean decimated digital data words. This conversion is done thanks to low-pass digital filters and decimation blocks. In addition it is possible to insert a high-pass filter or a DC offset correction block.

The conversion speed and resolution are adjustable according to configurable parameters for digital processing: filter type, filter order, decimation ratio. The maximum output data resolution is up to 24 bits. There are two conversion modes: single conversion and continuous modes. The data can be automatically stored in a system RAM buffer through DMA, thus reducing the software overhead.

A SAD (sound activity detector) is available for the detection of "speech-like" signals. The SAD is connected at the output of DFLT0. Several parameters can be programmed to adjust properly the SAD to the sound environment. The SAD can strongly reduce the power consumption by preventing the storage of samples into the system memory as long as the observed signal does not match the programmed criteria.

A flexible trigger interface can be used to control the start of conversion of the ADF.

All the digital processing is performed using only the kernel clock. The ADF requests the bus interface clock (AHB clock) only when data must be transfered or when a specific event requests the attention of the system processor.

The ADF main features are:

- AHB interface
- One serial digital input:
 - Configurable SPI interface to connect various digital sensors
 - Configurable Manchester coded interface support
 - Compatible with PDM interface to support digital microphones
- Two common clocks input/output for ΣΔ modulators
- Flexible BSMX for connection between filters and digital inputs
- One flexible digital filter path, including:
 - A configurable CIC filter:
 - Can be configured in Sinc⁴ filter
 - Can be configured in Sinc⁵ filter
 - Adjustable decimation ratio
 - A reshape filter to improve the out-off band rejection and in-band ripple
 - A high-pass filter to cancel the DC offset
 - Gain control
 - Saturation blocks
- Clock absence detector
- Sound activity detector
- 16- or 24-bit signed output data resolution
- Continuous or single conversion
- Possibility to delay independently each bitstream
- Various trigger possibilities
- Autonomous mode in Stop 0, Stop 1 and Stop 2 modes
- Wake-up from Stop with all interrupts
- DMA can be used to read the conversion data
- Interrupts services

3.31 Digital camera interface (DCMI)

The DCMI is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG).

This interface is for use with black and white cameras, X24 and X5 cameras, and it is assumed that all preprocessing such as resizing is performed in the camera module.

The DCMI features are:

- 8-, 10-, 12- or 14-bit parallel interface
- Embedded/external line and frame synchronization
- Continuous or snapshot mode
- Crop feature
- Supports the following data formats:
 - 8/10/12/14-bit progressive video: either monochrome or raw Bayer
 - YCbCr 4:2:2 progressive video
 - RGB 565 progressive video
 - Compressed data: JPEG

3.32 Parallel synchronous slave interface (PSSI)

The PSSI and the DCMI use the same circuitry. As a result, these two peripherals cannot be used at the same time: when using the PSSI, the DCMI registers cannot be accessed, and vice versa. In addition, the PSSI and the DCMI share the same alternate functions and the same interrupt vector.

The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It enables the transmitter to send a data valid signal that indicates when the data is valid, and the receiver to output a flow control signal that indicates when it is ready to sample the data.

The PSSI peripheral main features are the following:

- Slave mode operation
- 8-bit or 16-bit parallel data input or output
- 4-word (16-byte) FIFO
- Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output

When selected, these inputs can either enable the transmitter to indicate when the data is valid, or allow the receiver to indicate when it is ready to sample the data, or both.

3.33 Touch sensing controller (TSC)

The TSC provides a simple solution to add capacitive sensing functionality to any application. A capacitive sensing technology is able to detect finger presence near an electrode that is protected from direct touch by a dielectric (such as glass or plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The TSC is fully supported by the STMTouch touch sensing firmware library that is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The TSC main features are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 20 capacitive sensing channels
- Up to eight capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to three capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

3.34 True random number generator (RNG)

The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component.

The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG).

The true random generator:

- delivers 32-bit true random numbers, produced by an analog entropy source conditioned by a NIST SP800-90B approved conditioning stage
- can be used as entropy source to construct a non-deterministic random bit generator (NDRBG)
- produces four 32-bit random samples every 412 AHB clock cycles if f_{AHB} < 77 MHz (256 RNG clock cycles otherwise)
- embeds startup and NIST SP800-90B approved continuous health tests (repetition count and adaptive proportion tests), associated with specific error management
- can be disabled to reduce power consumption, or enabled with an automatic low-power mode (default configuration)
- has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored)

3.35 HASH hardware accelerator (HASH)

The HASH is a fully compliant implementation of the secure hash algorithm (SHA-1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm. HMAC is suitable for applications requiring message authentication.

The HASH computes FIPS (Federal information processing standards) approved digests of length of 160, 224, 256 bits, for messages of up to $(2^{64} - 1)$ bits. It also computes 128 bits digests for the MD5 algorithm.

The HASH main features are:

- Suitable for data authentication applications, compliant with:
 - Federal Information Processing Standards Publication FIPS PUB 180-4, Secure Hash Standard (SHA-1 and SHA-2 family)
 - Federal Information Processing Standards Publication FIPS PUB 186-4, *Digital* Signature Standard (DSS)
 - Internet Engineering Task Force (IETF) Request For Comments RFC 1321, MD5 Message-Digest Algorithm
 - Internet Engineering Task Force (IETF) Request For Comments RFC 2104, HMAC: Keyed-Hashing for Message Authentication and Federal Information Processing Standards Publication FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC)
- Fast computation of SHA-1, SHA-224, SHA-256, and MD5
 - 82 (respectively 66) clock cycles for processing one 512-bit block of data using SHA-1 (respectively SHA-256) algorithm
 - 66 clock cycles for processing one 512-bit block of data using MD5 algorithm
- Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to form the digest of the whole message:
 - Automatic 32-bit words swapping to comply with the internal little-endian representation of the input bit string
 - Word swapping supported: bits, bytes, half-words and 32-bit words
- Automatic padding to complete the input bit string to fit digest minimum block size of 512 bits (16 × 32 bits)
- Single 32-bit input register associated to an internal input FIFO of sixteen 32-bit words, corresponding to one block size
- AHB slave peripheral, accessible through 32-bit word accesses only (else an AHB error is generated)
- 8 × 32-bit words (H0 to H7) for output message digest
- Automatic data flow control with support of direct memory access (DMA) using one channel. Single or fixed burst of 4 supported.
- Interruptible message digest computation, on a per-32-bit word basis
 - Re-loadable digest registers
 - Hashing computation suspend/resume mechanism, including using DMA

3.36 Timers and watchdogs

The devices include two advanced control timers, up to seven general-purpose timers, two basic timers, four low-power timers, two watchdog timers and two SysTick timers.

The table below compares the features of the advanced control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16 bits	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2, TIM3, TIM4, TIM5	32 bits	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16 bits	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16, TIM17	16 bits	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16 bits	Up	Any integer between 1 and 65536	Yes	0	No

 Table 19. Timer feature comparison

3.36.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0 100%)
- One-pulse mode output

In Debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.

Many features are shared with the general-purpose TIMx timers (described in the next section) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the *Timer Link* feature for synchronization or event chaining.

3.36.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,TIM17)

There are up to seven synchronizable general-purpose timers embedded in the STM32U535xx devices (see *Table 19* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

• TIM2, TIM3, TIM4 and TIM5

They are full-featured general-purpose timers with 32-bit auto-reload up/downcounter and 16-bit prescaler.

These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the *Timer Link* feature for synchronization or event chaining.

The counters can be frozen in Debug mode.

All have independent DMA request generation and support quadrature encoders.

• TIM15, 16 and 17

They are general-purpose timers with mid-range features.

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has two channels and one complementary channel
- TIM16 and TIM17 have one channel and one complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the *Timer Link* feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in Debug mode.

3.36.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebase.

3.36.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4)

The devices embed four low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by HSI16, MSI, LSE, LSI or an external clock. They are able to wake up the system from Stop mode.

LPTIM1, LPTIM3, and LPTIM4 are active in Stop 0, Stop 1 and Stop 2 modes.

LPTIM2 is active in Stop 0 and Stop 1 mode.

The low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 3-bit prescaler with eight possible dividing factors (1, 2, 4, 8, 16, 32, 64, 128)
- Selectable clock
 - Internal clock sources: LSE, LSI, HSI16, MSIK (LPTIM1, LPTIM3, LPTIM4 only) or APB clock (LPTIM2 only)
 - External clock source over LPTIM input (working with no LP oscillator running, used by *Pulse Counter* application)

- 16-bit ARR autoreload register
- 16-bit capture/compare register
- Continuous/One-shot mode
- Selectable software/hardware input trigger
- Programmable digital glitch filter
- Configurable output: pulse, PWM
- Configurable I/O polarity
- Encoder mode
- Repetition counter
- Up to 2 independent channels for:
 - Input capture
 - PWM generation (edge-aligned mode)
 - One-pulse mode output
- Interrupt generation on 10 events
- DMA request generation on the following events:
 - Update event
 - Input capture

3.36.5 Infrared interface (IRTIM)

An infrared interface (IRTIM) for remote control is available on the device. It can be used with an infrared LED to perform remote control functions. It uses internal connections with TIM16 and TIM17.

3.36.6 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and, as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in Debug mode.

3.36.7 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode.

3.36.8 SysTick timer

The Cortex-M33 with TrustZone embeds two SysTick timers.

When TrustZone is activated, two SysTick timer are available:

- SysTick, secure instance
- SysTick, nonsecure instance

When TrustZone is disabled, only one SysTick timer is available. This timer (secure or non-secure) is dedicated to real-time operating systems, but can also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.37 Real-time clock (RTC), tamper and backup registers

3.37.1 Real-time clock (RTC)

The RTC supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), weekday, date, month, year, in BCD (binary-coded decimal) format
- Binary mode with 32-bit free-running counter
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
- Two programmable alarms
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy
- Timestamp feature that can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode
- 17-bit auto-reload wake-up timer (WUT) for periodic events with programmable resolution and period
- TrustZone support:
 - RTC fully securable
 - Alarm A, alarm B, wake-up timer and timestamp individual secure or nonsecure configuration
 - Alarm A, alarm B, wake-up timer and timestamp individual privileged protection

The RTC is supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The RTC clock sources can be one of the following:

- 32.768 kHz external crystal (LSE)
- external resonator or oscillator (LSE)
- internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- high-speed external clock (HSE), divided by a prescaler in the RCC.

The RTC is functional in V_{BAT} mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in V_{BAT} mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (alarm, wake-up timer, timestamp) can generate an interrupt and wake-up the device from the low-power modes.

3.37.2 Tamper and backup registers (TAMP)

The anti-tamper detection circuit is used to protect sensitive data from external attacks. 32 32-bit backup registers are retained in all low-power modes and also in V_{BAT} mode. The backup registers, as well as other secrets in the device, are protected by this anti-tamper detection circuit with eight tamper pins and eleven internal tampers. The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper that increases the security level by auto checking that the tamper pins are not externally opened or shorted.

TAMP main features:

- A tamper detection can erase the backup registers, backup SRAM, SRAM2, caches and HASH peripherals.
- 32 32-bit backup registers:
 - The backup registers (TAMP_BKPxR) are implemented in the backup domain that remains powered-on by V_{BAT} when the V_{DD} power is switched off.
- Up to 8 tamper pins for 8 external tamper detection events:
 - Active tamper mode: continuous comparison between tamper output and input to protect from physical open-short attacks
 - Flexible active tamper I/O management: from 4 meshes (each input associated to its own exclusive output) to 7 meshes (single output shared for up to 7 tamper inputs)
 - Passive tampers: ultra-low power edge or level detection with internal pull-up hardware management
 - Configurable digital filter
- 11 internal tamper events to protect against transient or environmental perturbation attacks:
 - Backup domain voltage monitoring
 - Temperature monitoring
 - LSE monitoring
 - RTC calendar overflow
 - JTAG/SWD access if RDP different from 0
 - Monotonic counter overflow
 - RNG fault
 - Independent watchdog reset when tamper flag is already set
 - 3 ADC4 watchdogs
- Each tamper can be configured in two modes:
 - Hardware mode: immediate erase of secrets on tamper detection, including backup registers erase
 - Software mode: erase of secrets following a tamper detection launched by software
- Any tamper detection can generate a RTC time stamp event.

- TrustZone support:
 - Tamper secure or nonsecure configuration
 - Backup registers configuration in 3 configurable-size areas:
 - 1 read/write secure area
 - 1 write secure/read nonsecure area
 - 1 read/write nonsecure area
- Tamper configuration and backup registers privilege protection
- Monotonic counter

3.38 Inter-integrated circuit interface (I2C)

The device embeds four I2C. Refer to *Table 20* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and Master modes, multimaster capability
 - Standard-mode (Sm), with a bit rate up to 100 Kbit/s
 - Fast-mode (Fm), with a bit rate up to 400 Kbit/s
 - Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System management bus (SMBus) specification rev 3.0 compatibility:
 - Hardware PEC (packet error checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power system management protocol (PMBus) specification rev 1.3 compatibility
- Independent clock: a choice of independent clock sources allowing the I²C communication speed to be independent from the PCLK reprogramming
- Autonomous functionality in Stop modes with wake-up from Stop capability
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 20. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 Kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 Kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х

Table 20. 120 Implementation (continued)												
I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4								
SMBus/PMBus hardware support	Х	Х	Х	Х								
Independent clock	Х	Х	Х	Х								
Autonomous in Stop 0, Stop 1 mode with wake-up capability	Х	Х	Х	Х								
Autonomous in Stop 2 mode with wake-up capability	-	-	Х	-								

Table 20. I2C implementation (continued)

1. X: supported

3.39 Universal synchronous/asynchronous receiver transmitter (USART/UART) and low-power universal asynchronous receiver transmitter (LPUART)

The devices embed two universal synchronous receiver transmitters (USART1, USART3), two universal asynchronous receiver transmitters (UART4, UART5) and one low-power universal asynchronous receiver transmitter (LPUART1).

USART modes/features ⁽¹⁾	USART1/3	UART4/5	LPUART1	
Hardware flow control for modem	Х	Х	Х	
Continuous communication using DMA	Х	Х	Х	
Multiprocessor communication	Х	Х	Х	
Synchronous SPI mode (master/slave)	Х	-	-	
Smartcard mode	Х	-	-	
Single-wire half-duplex communication	Х	Х	Х	
IrDA SIR ENDEC block	Х	Х	-	
LIN mode	Х	Х	-	
Dual-clock domain and wake-up from Stop mode	X ⁽²⁾	X ⁽²⁾	X ⁽³⁾	
Receiver timeout interrupt	Х	Х	-	
Modbus communication	Х	Х	-	
Auto-baud rate detection	Х	Х	-	
Driver enable	Х	Х	Х	
USART data length		7, 8 and 9 bits	•	
Tx/Rx FIFO	Х	Х	Х	
Tx/Rx FIFO size		8 bytes	•	
Autonomous mode	Х	Х	Х	

Table 21. USART, UART, and LPUART features

1. X = supported.

2. Wake-up supported from Stop 0 and Stop 1 modes.

3. Wake-up supported from Stop 0, Stop 1 and Stop 2 modes.

3.39.1 Universal synchronous/asynchronous receiver transmitter (USART/UART)

The USART offers a flexible means to perform full-duplex data exchange with external equipments requiring an industry standard NRZ asynchronous serial data format. A very wide range of baud rates can be achieved through a fractional baud rate generator.

The USART supports both synchronous one-way and half-duplex single-wire communications, as well as LIN (local interconnection network), Smartcard protocol, IrDA (infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS). Multiprocessor communications are also supported.

High-speed data communications up to 20 Mbauds are possible by using the DMA (direct memory access) for multibuffer configuration.

The USART main features are:

- Full-duplex asynchronous communication
- NRZ standard format (mark/space)
- Configurable oversampling method by 16 or 8 to achieve the best compromise between speed and clock tolerance
- Baud rate generator systems
- Two internal FIFOs for transmit and receive data Each FIFO can be enabled/disabled by software and come with a status flag.
- A common programmable transmit and receive baud rate
- Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
- Auto baud rate detection
- Programmable data word length (7, 8 or 9 bits)
- Programmable data order with MSB-first or LSB-first shifting
- Configurable stop bits (1 or 2 stop bits)
- Synchronous SPI master/slave mode and clock output/input for synchronous communications
- SPI slave transmission underrun error flag
- Single-wire half-duplex communications
- Continuous communications using DMA
- Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
- Separate enable bits for transmitter and receiver
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Communication control/error detection flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Interrupt sources with flags
- Multiprocessor communications: wake-up from Mute mode by idle line detection or address mark detection
- Autonomous functionality in Stop mode with wake-up from stop capability

- LIN master synchronous break send capability and LIN slave break detection capability
 - 13-bit break generation and 10/11-bit break detection when USART is hardware configured for LIN
- IrDA SIR encoder decoder supporting 3/16-bit duration for Normal mode
- Smartcard mode
 - Supports the T = 0 and T = 1 asynchronous protocols for smartcards as defined in the ISO/IEC 7816-3 standard
 - 0.5 and 1.5 stop bits for Smartcard operation
- Support for Modbus communication
 - Timeout feature
 - CR/LF character recognition

3.39.2 Low-power universal asynchronous receiver transmitter (LPUART)

The LPUART supports bidirectional asynchronous serial communication with minimum power consumption. It also supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher-speed clock can be used to reach higher baudrates.

The LPUART interface can be served by the DMA controller.

The LPUART main features are:

- Full-duplex asynchronous communications
- NRZ standard format (mark/space)
- Programmable baud rate
- From 300 baud/s to 9600 baud/s using a 32.768 kHz clock source
- Higher baud rates can be achieved by using a higher frequency clock source
- Two internal FIFOs to transmit and receive data Each FIFO can be enabled/disabled by software and come with status flags for FIFO states.
- Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
- Programmable data word length (7 or 8 or 9 bits)
- Programmable data order with MSB-first or LSB-first shifting
- Configurable stop bits (1 or 2 stop bits)
- Single-wire half-duplex communications
- Continuous communications using DMA
- Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
- Separate enable bits for transmitter and receiver
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver

- Transfer detection flags:
 - Receive buffer full
 - Transmit buffer empty
 - Busy and end of transmission flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Four error detection flags:
 - Overrun error
 - Noise detection
 - Frame error
 - Parity error
- Interrupt sources with flags
- Multiprocessor communications: wake-up from Mute mode by idle line detection or address mark detection
- Autonomous functionality in Stop mode with wake-up from Stop capability

3.40 Serial peripheral interface (SPI)

The devices embed three serial peripheral interfaces (SPI) that can be used to communicate with external devices while using the specific synchronous protocol. The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices.

The interface can be configured as master or slave and can operate in multi-slave or multi-master configurations. The device configured as master provides communication clock (SCK) to the slave device. The slave select (SS) and ready (RDY) signals can be applied optionally just to setup communication with concrete slave and to assure it handles the data flow properly. The Motorola[®] data format is used by default, but some other specific modes are supported as well.

The SPI main features are:

- Full-duplex synchronous transfers on three lines
- Half-duplex synchronous transfer on two lines (with bidirectional data line)
- Simplex synchronous transfers on two lines (with unidirectional data line)
- 4-bit to 32-bit data size selection or fixed to 8-bit and 16-bit only
- Multi master or multi slave mode capability
- Dual-clock domain, separated clock for the peripheral kernel that can be independent of PCLK
- Baud rate prescaler up to kernel frequency/2 or bypass from RCC in Master mode
- Protection of configuration and setting
- Hardware or software management of SS for both master and slave
- Adjustable minimum delays between data and between SS and data flow
- Configurable SS signal polarity and timing, MISO x MOSI swap capability
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting

- Programmable number of data within a transaction to control SS and CRC
- Dedicated transmission and reception flags with interrupt capability
- SPI Motorola[®] and Texas Instruments[®] formats support
- Hardware CRC feature can secure communication at the end of transaction by:
 - Adding CRC value in Tx mode
 - Automatic CRC error checking for Rx mode
- Error detection with interrupt capability in case of data overrun, CRC error, data underrun at slave, mode fault at master
- Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability
- Programmable number of data in transaction
- Configurable FIFO thresholds (data packing)
- Configurable behavior at slave underrun condition (support of cascaded circular buffers)
- Autonomous functionality in Stop modes (handling of the transaction flow and required clock distribution) with wake-up from stop capability
- Optional status pin RDY signalizing the slave device ready to handle the data flow.

SPI feature	SPI1, SPI2 (full feature set instances)	SPI3 (limited feature set instance)		
Data size	Configurable from 4 to 32-bit	8/16-bit		
CRC computation	CRC polynomial length configurable from 5 to 33-bit	CRC polynomial length configurable from 9 to 17-bit		
Size of FIFOs	16x 8-bit	8x 8-bit		
Number of transfered data	Unlimited, expandable	Up to 1024, no data counter		
Autonomous in Stop 0, Stop 1 mode with wake-up capability	Yes	Yes		
Autonomous in Stop 2 mode with wake-up capability	No	Yes		

Table 22. SPI features

3.41 Serial audio interfaces (SAI)

The devices embed one SAI. Refer to *Table 23: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks that can be transmitters or receivers with their respective FIFO
- 8-word integrated FIFOs for each audio sub-block
- Synchronous or Asynchronous mode between the audio sub-blocks
- Master or slave configuration independent for both audio sub-blocks
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode

- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out
- Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame
- Number of bits by frame may be configurable
- Frame synchronization active level configurable (offset, bit length, level)
- First active bit position in the slot is configurable
- LSB first or MSB first for data transfer
- Mute mode
- Stereo/mono audio frame capability
- Communication clock strobing edge configurable (SCK)
- Error flags with associated interrupts if enabled respectively
 - Overrun and underrun detection
 - Anticipated frame synchronization signal detection in Slave mode
 - Late frame synchronization signal detection in Slave mode
 - Codec not ready for the AC'97 mode in reception
- Interruption sources when enabled:
 - Errors
 - FIFO requests
- DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

Table 23	. SAI	implementation
----------	-------	----------------

SAI features ⁽¹⁾	SAI1
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х
Mute mode	Х
Stereo/mono audio frame capability.	Х
16 slots	Х
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х
FIFO size	X (8 words)
SPDIF	Х
PDM	Х

1. X: supported

3.42 Secure digital input/output and MultiMediaCards interface (SDMMC)

The SDMMC (SD/SDIO embedded MultiMediaCard *e*•MMC[™] host interface) provides an interface between the AHB bus and SD memory cards, SDIO cards and *e*•MMC devices.

The MultiMediaCard system specifications are available through the MultiMediaCard association website at www.mmca.org, published by the MMCA technical committee.

SD memory card and SD I/O card system specifications are available through the SD card Association website at www.sdcard.org.

The SDMMC features include the following:

- Compliance with Embedded MultiMediaCard System Specification Version 5.1 Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit (HS200 SDMMC_CK speed limited to maximum allowed I/O speed) (HS400 is not supported).
- Full compatibility with previous versions of MultiMediaCards (backward compatibility).
- Full compliance with SD memory card specifications version 6.0 (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported).
- Full compliance with SDIO card specification version 4.0 Card support for two different databus modes: 1-bit (default) and 4-bit (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported).
- Data transfer up to 208 Mbyte/s for the 8-bit mode (Depending maximum allowed I/O speed).
- Data and command output enable signals to control external bidirectional drivers
- IDMA linked list support

The MultiMediaCard/SD bus connects cards to the host.

The current version of the SDMMC supports only one SD/SDIO/e•MMC card at any one time and a stack of e•MMC.

SDMMC modes/features ⁽¹⁾	SDMMC1
Variable delay (SDR104, HS200)	Х
SDMMC_CKIN	Х
SDMMC_CDIR, SDMMC_D0DIR	Х
SDMMC_D123DIR	Х

Table 2	4. SDMMC	features
---------	----------	----------

1. X = supported.

3.43 Controller area network (FDCAN)

The controller area network (CAN) subsystem consists of one CAN module, a shared message RAM memory and a configuration block.

The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

A 0.8-Kbyte message RAM implements filters, receives FIFOs, transmits event FIFOs and transmits FIFOs.

The FDCAN main features are:

DS14217 Rev 4

- Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4
- CAN FD with maximum 64 data bytes supported
- CAN error logging
- AUTOSAR and J1939 support
- Improved acceptance filtering
- 2 receive FIFOs of three payloads each (up to 64 bytes per payload)
- Separate signaling on reception of high priority messages
- Configurable transmit FIFO / queue of three payload (up to 64 bytes per payload)
- Configurable transmit Event FIFO
- Programmable loop-back test mode
- Maskable module interrupts
- Two clock domains: APB bus interface and CAN core kernel clock
- Power-down support

3.44 USB full speed (USB)

USB main features

- USB specification version 2.0 full-speed compliant
- Host and device functions
- 2048 bytes of dedicated SRAM data buffer memory with 32-bit access
- USB clock recovery
- Configurable number of endpoints from 1 to 8
- Cyclic redundancy check (CRC) generation/checking, non-return-to-zero inverted (NRZI) encoding/decoding, and bit-stuffing
- Isochronous transfers support
- Double-buffered bulk/isochronous endpoint support
- USB suspend/resume operations
- Frame-locked clock pulse generation
- USB 2.0 Link power management support
- Battery charging specification revision 1.2 support in device

3.45 Development support

3.45.1 Serial-wire/JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded and is a combined JTAG and serial-wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using two pins only instead of five required by the JTAG (JTAG pins can be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.45.2 Embedded Trace Macrocell

The Arm Embedded Trace Macrocell (ETM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device.

Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The ETM operates with third party debugger software tools.

4 Pinout, pin description, and alternate functions

4.1 **Pinout/ballout schematics**

1. The above figure shows the package top view.

Figure 9. UFQFPN48 SMPS pinout

1. The above figure shows the package top view.

Figure 11. LQFP64_SMPS pinout

1. The above figure shows the package top view.

Figure 13. UFBGA64_SMPS ballout

Figure 14. UFBGA64 ballout

Figure 16. WLCSP72_SMPS ballout

Figure 17. LQFP100_SMPS ballout

Figure 18. LQFP100 pinout

Figure 19. UFBGA100_SMPS ballout

Figure 20. UFBGA100 ballout

4.2 Pin description

	Name	Abbreviation	Definition						
Pi	n name		ed in brackets below the pin name, the pin function during reset is the same as the actual pin name						
		S	Supply pin						
Р	'in type	I	Input only pin						
		I/O	Input/output pin						
		FT	5V-tolerant I/O						
		TT	3.6V-tolerant I/O						
		RST	Bidirectional reset pin with embedded weak pull-up resistor						
		Option for TT or FT I/Os ⁽¹⁾							
		a	I/O with analog switch function supplied by V{DDA}						
I/O	structure	_f	I/O Fm+ capable						
		_h	I/O with high-speed low-voltage mode						
		_0	I/O with OSC32_IN/OSC32_OUT capability						
		\$	I/O supplied only by V{DDIO2}						
		_t	I/O with tamper function supplied by V _{SW}						
		_u	I/O with USB function supplied by V _{DDUSB}						
		_v	I/O very high-speed capable						
	Notes	Unless otherwise specified by a note, all I/Os are set as analog inputs during a reset.							
Pin	Alternate functions	Functions selected through GPIOx_AFR registers							
functions	Additional functions	Functions directly selected	unctions directly selected/enabled through peripheral registers						

Table 25.	Legend/abbreviations	used in the	pinout table
	Logenalabbieriations		piniout tubic

1. The related I/O structures in the table below are a concatenation of various options. Examples: FT_hat, FT_fs, FT_u, TT_a.

5

										Та	ble 2	6. ST	M32U535xx p	in/ba	ll definiti	ons ⁽	1)	
	Pin number																	
	LQFP48 SMPS UFQFPN48 SMPS	MLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	-	-	-	-	-	1	B1	-	-	-	1	B2	PE2	I/O	FT_ha	-	TRACECLK, TIM3_ETR, SAI1_CK1, TSC_G7_IO1, LPGPIO1_P14, SAI1_MCLK_A, EVENTOUT	-
	-	C11	-	-	-	2	B2	-	-	-	2	A1	PE3	I/O	FT_hat	-	TRACED0, TIM3_CH1, OCTOSPI1_DQS, TSC_G7_IO2, LPGPIO1_P15, SAI1_SD_B, EVENTOUT	TAMP_IN6/ TAMP_OUT3
	-	B12	-	-	-	3	В3	-	-	-	3	B1	PE4	I/O	FT_hat	-	TRACED1, TIM3_CH2, SAI1_D2, TSC_G7_IO3, DCMI_D4/PSSI_D4, SAI1_FS_A, EVENTOUT	WKUP1, TAMP_IN7/ TAMP_OUT8
	-	D10	-	-	-	4	D3	-	-	-	4	C2	PE5	I/O	FT_hat	-	TRACED2, TIM3_CH3, SAI1_CK2, TSC_G7_IO4, DCMI_D6/PSSI_D6, SAI1_SCK_A, EVENTOUT	WKUP2, TAMP_IN8/ TAMP_OUT7
	-	-	-	-	-	5	C2	-	-	-	5	D2	PE6	I/O	FT_ht	-	TRACED3, TIM3_CH4, SAI1_D1, DCMI_D7/PSSI_D7, SAI1_SD_A, EVENTOUT	WKUP3, TAMP_IN3/ TAMP_OUT6
Î	1	B14	1	B1	B15	6	C1	1	1	B2	6	E2	VBAT	S	-	-	-	VBAT
	2	D12	2	В3	C14	7	E3	2	2	A2	7	C1	PC13	I/O	FT	(2) (3)	EVENTOUT	WKUP2, RTC_TS/ RTC_OUT1, TAMP_IN1/ TAMP_OUT2

STM32U535xx

97/301

DS14217 Rev 4

98/301

DS14217 Rev 4

5

	Table 26. STM32U											535xx pin/ball	defi	nitions ⁽¹⁾	(coi	ntinued)	
	Pin number																
LQFP48 SMPS UFOFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 IIFOEDN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
3	C13	3	C1	C16	8	D1	3	3	A1	8	D1	PC14- OSC32_IN (PC14)	I/O	FT_o	(2) (3)	EVENTOUT	OSC32_IN
4	D14	4	C2	D15	9	D2	4	4	B1	9	E1	PC15- OSC32_OUT (PC15)	I/O	FT_o	(2) (3)	EVENTOUT	OSC32_OUT
-	-	1	-	-	10	L10	-	-	-	10	D3	VSS	S	-	-	-	-
-	-	1	-	-	11	B7	-	-	-	11	C4	VDD	S	-	-	-	-
5	E13	5	D1	E16	12	E1	5	5	C1	12	F1	PH0- OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
6	E11	6	D2	F15	13	E2	6	6	D1	13	G1	PH1- OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
7	E9	7	E1	E14	14	F1	7	7	E1	14	H2	NRST	I/O	RST	-	-	NRST
-	-	8	E2	-	15	F2	-	8	E3	15	H1	PC0	I/O	FT_fha	-	LPTIM1_IN1, OCTOSPI1_IO7, I2C3_SCL(boot), SPI2_RDY, LPUART1_RX, SDMMC1_D5, LPTIM2_IN1, EVENTOUT	ADC1_IN1, ADC4_IN1
-	-	9	E3	F13	16	G1	-	9	E2	16	J2	PC1	I/O	FT_fhav	-	TRACED0, LPTIM1_CH1, SPI2_MOSI, I2C3_SDA(boot), LPUART1_TX, OCTOSPI1_IO4, SAI1_SD_A, EVENTOUT	ADC1_IN2, ADC4_IN2

Pinout, pin description, and alternate functions

STM32U535xx

5

DS14217 Rev 4

99/301

								Tabl	e 26	. STI	M32U	535xx pin/bal	defi	nitions ⁽¹⁾) (co	ntinued)	
					Pin n	umbe	er										
LQFP48 SMPS UFOFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFOFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	10	E4	-	17	G2	-	10	F2	17	J3	PC2	I/O	FT_ha	-	LPTIM1_IN2, SPI2_MISO, MDF1_CCK1, OCTOSPI1_IO5, LPGPIO1_P5, EVENTOUT	ADC1_IN3, ADC4_IN3
-	-	11	F2	-	18	НЗ	-	11	G1	18	K2	PC3	I/O	FT_ha	-	LPTIM1_ETR, LPTIM3_CH1, SAI1_D1, SPI2_MOSI, OCTOSPI1_IO6, SAI1_SD_A, LPTIM2_ETR, EVENTOUT	ADC1_IN4, ADC4_IN4
8	F14	12	F1	G16	19	H2	8	12	F1	19	J1	VSSA	S	-	-	-	-
-	-	-	-	-	-	-	-	-	-	20	K1	VREF-	S	-	-	-	-
-	-	-	-	-	20	H1	-	-	-	21	L1	VREF+	S	-	-	-	VREFBUF_OUT
9	F12	13	G1	G14	21	J1	9	13	H1	22	M1	VDDA	S	-	-	-	-
10	F10	14	E5	H15	22	J3	10	14	G2	23	L2	PA0	I/O	FT_hat	-	TIM2_CH1, TIM5_CH1, TIM8_ETR, SPI3_RDY, UART4_TX, OCTOSPI1_NCS, AUDIOCLK, TIM2_ETR, EVENTOUT	OPAMP1_VINP, ADC1_IN5, WKUP1, TAMP_IN2/ TAMP_OUT1
11	G13	15	F3	E12	23	J2	11	15	H2	24	M2	PA1	I/O	FT_hat	-	LPTIM1_CH2, TIM2_CH2, TIM5_CH2, I2C1_SMBA, SPI1_SCK, UART4_RX, OCTOSPI1_DQS, LPGPIO1_P0, TIM15_CH1N, EVENTOUT	OPAMP1_VINM , ADC1_IN6, WKUP3, TAMP_IN5/ TAMP_OUT4
12	E7	16	G2	F11	24	К1	12	16	F3	25	К3	PA2	I/O	FT_ha	-	TIM2_CH3, TIM5_CH3, SPI1_RDY, LPUART1_TX, OCTOSPI1_NCS, TIM15_CH1, EVENTOUT	COMP1_INP3, ADC1_IN7, WKUP4/LSCO

STM32U535xx

Pinout, pin description, and alternate functions

100/301

DS14217 Rev 4

5

_							•	Tabl	e 26	. STI	M32U	535xx pin/bal	defi	nitions ⁽¹⁾	(co	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFOFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
13	D6	17	H2	G12	25	K2	13	17	G3	26	L3	PA3	I/O	TT_hav	-	TIM2_CH4, TIM5_CH4, SAI1_CK1, LPUART1_RX, OCTOSPI1_CLK, LPGPIO1_P1, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_VOU T, ADC1_IN8, WKUP5
-	H14	18	-	J16	26	K3	-	18	C2	27	E3	VSS	S	-	-	-	-
-	H12	19	H1	J14	27	C3	-	19	E6	28	G11	VDD	S	-	-	-	-
14	G11	20	F4	H13	28	L1	14	20	H3	29	М3	PA4	I/O	TT_ha	-	OCTOSPI1_NCS, SPI1_NSS(boot), SPI3_NSS, DCMI_HSYNC/PSSI_DE, SAI1_FS_B, LPTIM2_CH1, EVENTOUT	ADC1_IN9, ADC4_IN9, DAC1_OUT1, WKUP2
15	F8	21	G3	E10	29	L2	15	21	F4	30	K4	PA5	I/O	TT_a	-	CSLEEP, TIM2_CH1, TIM2_ETR, TIM8_CH1N, PSSI_D14, SPI1_SCK(boot), USART3_RX, LPTIM2_ETR, EVENTOUT	ADC1_IN10, ADC4_IN10, DAC1_OUT2, WKUP6
16	G9	22	F5	H11	30	M1	16	22	G4	31	L4	PA6	I/O	FT_ha	-	CDSTOP, TIM1_BKIN, TIM3_CH1, TIM8_BKIN, DCMI_PIXCLK/PSSI_PDCK, SPI1_MISO(boot), USART3_CTS, LPUART1_CTS, OCTOSPI1_IO3, LPGPIO1_P2, TIM16_CH1, EVENTOUT	ADC1_IN11, ADC4_IN11, WKUP7

Pinout, pin description, and alternate functions

STM32U535xx

DS14217
Rev 4

	`
¢	C,
5	1
9	3
•	-

					Pin n	umbe			-							,	
LQFP48 SMPS UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
17	H10	23	H3	J12	31	M2	17	23	H4	32	M4	PA7	I/O	FT_fha	-	SRDSTOP, TIM1_CH1N, TIM3_CH2, TIM8_CH1N, I2C3_SCL, SPI1_MOSI(boot), USART3_TX, OCTOSPI1_IO2, LPTIM2_CH2, TIM17_CH1, EVENTOUT	ADC1_IN12, ADC4_IN20, WKUP8
-	-	-	-	-	-	-	-	24	H5	33	K5	PC4	I/O	FT_ha	-	USART3_TX, OCTOSPI1_IO7, EVENTOUT	COMP1_INM2, ADC1_IN13, ADC4_IN22
-	-	-	-	-	-	-	-	25	H6	34	L5	PC5	I/O	FT_at	-	TIM1_CH4N, SAI1_D3, PSSI_D15, USART3_RX, EVENTOUT	COMP1_INP1, ADC1_IN14, ADC4_IN23, WKUP5, TAMP_IN4/ TAMP_OUT5
18	F6	24	H4	G10	32	L3	18	26	F5	35	M5	PB0	I/O	TT_ha	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, LPTIM3_CH1, SPI1_NSS, USART3_CK, OCTOSPI1_IO1, LPGPIO1_P9, COMP1_OUT, AUDIOCLK, EVENTOUT	ADC1_IN15, ADC4_IN18
19	F4	25	G5	G8	33	М3	19	27	G5	36	M6	PB1	I/O	FT_ha	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LPTIM3_CH2, MDF1_SDI0, USART3_RTS_DE, LPUART1_RTS_DE, OCTOSPI1_IO0, LPGPIO1_P3, LPTIM2_IN1, EVENTOUT	COMP1_INM1, ADC1_IN16, ADC4_IN19, WKUP4

Table 26. STM32U535xx pin/ball definitions⁽¹⁾ (continued)

102/301

DS14217 Rev 4

						Tabl	e 26	. STI	M32U	535xx pin/ball	defi	nitions ⁽¹⁾	(co	ntinued)
			Pin n	umbe	er									
LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 IIFOFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions

LQFP48 SMPS UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	G7	26	G4	J10	34	L4	20	28	G6	37	L6	PB2	I/O	FT_hat	-	LPTIM1_CH1, TIM8_CH4N, I2C3_SMBA, SPI1_RDY, MDF1_CKI0, OCTOSPI1_DQS, EVENTOUT	COMP1_INP2, ADC1_IN17, WKUP1, RTC_OUT2
-	-	-	-	-	35	K5	-	-	-	38	M7	PE7	I/O	FT_h	-	TIM1_ETR, SAI1_SD_B, EVENTOUT	WKUP6
-	-	-	-	-	36	M4	-	-	-	39	L7	PE8	I/O	FT_h	-	TIM1_CH1N, SAI1_SCK_B, EVENTOUT	WKUP7
-	-	-	-	-	37	L5	-	-	-	40	M8	PE9	I/O	FT_hv	-	TIM1_CH1, ADF1_CCK0, MDF1_CCK0, OCTOSPI1_NCLK, SAI1_FS_B, EVENTOUT	-
-	-	-	-	-	38	M5	-	-	-	41	L8	PE10	I/O	FT_hav	-	TIM1_CH2N, ADF1_SDI0, TSC_G5_IO1, OCTOSPI1_CLK, SAI1_MCLK_B, EVENTOUT	_
-	-	-	-	-	39	L6	-	-	-	42	M9	PE11	I/O	FT_ha	-	TIM1_CH2, SPI1_RDY, TSC_G5_IO2, OCTOSPI1_NCS, EVENTOUT	-
-	-	-	-	-	40	M6	-	-	-	43	L9	PE12	I/O	FT_ha	-	TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, OCTOSPI1_IO0, EVENTOUT	-
-	-	-	-	-	41	L7	-	-	-	44	M10	PE13	I/O	FT_ha	-	TIM1_CH3, SPI1_SCK, TSC_G5_IO4, OCTOSPI1_IO1, EVENTOUT	-
-	-	-	-	-	42	M7	-	-	-	45	M11	PE14	I/O	FT_h	-	TIM1_CH4, TIM1_BKIN2, SPI1_MISO, OCTOSPI1_IO2, EVENTOUT	-

Pinout, pin description, and alternate functions

STM32U535xx

2

DS14217 Rev 4

103/301

							-	Tabl	e 26	. STN	//32U5	535xx pin/ball	defi	nitions ⁽¹⁾	(coi	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	43	L8	-	-	-	46	M12	PE15	I/O	FT_h	-	TIM1_BKIN, TIM1_CH4N, SPI1_MOSI, OCTOSPI1_IO3, EVENTOUT	-
-	-	27	F6	H9	44	M8	21	29	G7	47	L10	PB10	I/O	FT_fhv	-	TIM2_CH3, LPTIM3_CH1, I2C4_SCL, I2C2_SCL(boot), SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, OCTOSPI1_CLK, LPGPIO1_P4, COMP1_OUT, SAI1_SCK_A, EVENTOUT	WKUP8
-	-	-	-	-	45	K8	-	-	-	-	-	PB11	I/O	FT_fh	-	TIM2_CH4, I2C4_SDA, I2C2_SDA(boot), SPI2_RDY, USART3_RX, LPUART1_TX, OCTOSPI1_NCS, EVENTOUT	-
20	H8	28	H5	J8	46	M9	-	-	-	-	-	VLXSMPS	S	-	-	-	-
21	H6	29	H6	J6	47	M10	-	-	-	-	-	VDDSMPS	S	-	-	-	-
22	G5	30	G6	H5	48	L9	-	-	-	-	-	VSSSMPS	S	-	-	-	-
-	-	-	-	-	-	-	22	30	H7	48	L11	VCAP	S	-	-	-	-
23	H4		H7	J4	49	K9	-	-	-	-	-	VDD11	S	-	-	-	-
24	G3	32	B2	H3	50	C4	23	31	D4	49	F11	VSS	S	-	-	-	-
25	H2	33	A1	J2	51	K10	24	32	D2	50	G12	VDD	S	-	-	-	-

STM32U535xx

Pinout, pin description, and alternate functions

104/301

U
S
<u>→</u>
4
N.
<u> </u>
~
ת
Rev
ž
•
-+-

|--|

Table 26. STM32U535xx pin/ball definitions⁽¹⁾ (continued)

	Pin number																
LQFP48 SMPS UFOFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	E3	-	-	-	-	-	25	33	H8	51	L12	PB12	I/O	FT_hav	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS(boot), MDF1_SDI1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, OCTOSPI1_NCLK, TIM15_BKIN, EVENTOUT	-
26	G1	34	G8	G4	52	L11	26	34	G8	52	K12	PB13	I/O	FT_fa	-	TIM1_CH1N, LPTIM3_IN1, I2C2_SCL, SPI2_SCK(boot), MDF1_CKI1, USART3_CTS, LPUART1_CTS, TSC_G1_IO2, TIM15_CH1N, EVENTOUT	-
27	E1	35	E6	G2	53	M11	27	35	F8	53	K11	PB14	I/O	FT_fa	-	TIM1_CH2N, LPTIM3_ETR, TIM8_CH2N, I2C2_SDA, SPI2_MISO(boot), USART3_RTS_DE, TSC_G1_IO3, TIM15_CH1, EVENTOUT	-
28	F2	36	F7	H1	54	M12	28	36	F7	54	K10	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, LPTIM2_IN2, TIM8_CH3N, SPI2_MOSI(boot), TIM15_CH2, EVENTOUT	WKUP7
-	-	-	-	-	55	J10	-	-	-	55	K9	PD8	I/O	FT_h	-	USART3_TX, DCMI_HSYNC/PSSI_DE, EVENTOUT	-
-	-	-	-	-	56	K11	-	-	-	56	K8	PD9	I/O	FT_h	-	LPTIM2_IN2, USART3_RX, DCMI_PIXCLK/PSSI_PDCK, LPTIM3_IN1, EVENTOUT	-

5

DS14217 Rev 4

105/301

							•	Tabl	e 26	. STI	M32U	535xx pin/bal	defi	nitions ⁽¹⁾	(co	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFQFDN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	57	L12	-	-	-	57	J12	PD10	I/O	FT_ha	-	LPTIM2_CH2, USART3_CK, TSC_G6_IO1, LPTIM3_ETR, EVENTOUT	-
-	-	-	-	-	58	K12	-	-	-	58	J11	PD11	I/O	FT_ha	-	I2C4_SMBA, USART3_CTS, TSC_G6_IO2, LPTIM2_ETR, EVENTOUT	ADC4_IN15
-	-	-	-	-	59	H10	-	-	-	59	J10	PD12	I/O	FT_fha	-	TIM4_CH1, I2C4_SCL, USART3_RTS_DE, TSC_G6_IO3, LPTIM2_IN1, EVENTOUT	ADC4_IN16
-	-	-	-	-	60	J11	-	-	-	60	H12	PD13	I/O	FT_fha	-	TIM4_CH2, I2C4_SDA, TSC_G6_IO4, LPGPIO1_P6, LPTIM4_IN1, LPTIM2_CH1, EVENTOUT	ADC4_IN17
-	-	-	-	-	61	J12	-	-	-	61	H11	PD14	I/O	FT_h	-	TIM4_CH3, LPTIM3_CH1, EVENTOUT	-
-	-	-	-	-	62	H11	-	-	-	62	H10	PD15	I/O	FT_h	-	TIM4_CH4, LPTIM3_CH2, EVENTOUT	-
-	-	-	-	G6	-	-	-	-	-	-	-	PG2	I/O	FT_hs	(5)	SPI1_SCK, EVENTOUT	_
-	-	-	-	H7	-	-	-	-	-	-	-	PG3	I/O	FT_hs	(5)	SPI1_MISO, EVENTOUT	-
-	-	-	-	F1	-	-	-	-	-	-	-	PG4	I/O	FT_hs	(5)	SPI1_MOSI, EVENTOUT	-
-	-	-	-	F3	-	-	-	-	-	-	-	PG5	I/O	FT_hs	(5)	SPI1_NSS, LPUART1_CTS, EVENTOUT	-
-	-	-	-	F5	-	-	-	-	-	-	-	PG6	I/O	FT_hs	(5)	OCTOSPI1_DQS, I2C3_SMBA, SPI1_RDY, LPUART1_RTS_DE, EVENTOUT	-

STM32U535xx

Pinout, pin description, and alternate functions

106/301

DS14217 Rev 4

								Tabl	e 26	. STI	M32U	535xx pin/ball	defi	nitions ⁽¹⁾	(co	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFOFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	F7	-	-	-	-	-	-	-	PG7	I/O	FT_fhs	(5)	SAI1_CK1, I2C3_SCL, OCTOSPI1_DQS, MDF1_CCK0, LPUART1_TX, SAI1_MCLK_A, EVENTOUT	-
-	-	-	-	E2	-	-	-	-	-	-	-	PG8	I/O	FT_fs	(5)	I2C3_SDA, LPUART1_RX, EVENTOUT	-
-	-	-	-	D3	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	-	-	-	D1	-	-	-	-	-	I	-	VDDIO2	S	-	-	-	-
-	-	37	F8	-	63	H12	-	37	F6	63	E12	PC6	I/O	FT_ha	-	CSLEEP, TIM3_CH1, TIM8_CH1, SDMMC1_D0DIR, TSC_G4_IO1, DCMI_D0/PSSI_D0, SDMMC1_D6, EVENTOUT	-
-	-	38	E7	-	64	G11	-	38	E7	64	E11	PC7	I/O	FT_ha	-	CDSTOP, TIM3_CH2, TIM8_CH2, SDMMC1_D123DIR, TSC_G4_IO2, DCMI_D1/PSSI_D1, SDMMC1_D7, LPTIM2_CH2, EVENTOUT	-
-	-	39	E8	-	65	G12	-	39	E8	65	E10	PC8	I/O	FT_ha	-	SRDSTOP, TIM3_CH3, TIM8_CH3, TSC_G4_IO3, DCMI_D2/PSSI_D2, SDMMC1_D0, LPTIM3_CH1, EVENTOUT	-

5

DS14217 Rev 4

								Tabl	e 26	. STI	M32U	535xx pin/bal	defi	nitions ⁽¹⁾	(co	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFOFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	40	D8	-	66	F11	-	40	D8	66	D12	PC9	I/O	FT_ha	-	TRACED0, TIM8_BKIN2, TIM3_CH4, TIM8_CH4, DCMI_D3/PSSI_D3, TSC_G4_IO4, USB_NOE, SDMMC1_D1, LPTIM3_CH2, EVENTOUT	-
29	E5	41	D7	E4	67	F12	29	41	D7	67	D11	PA8	I/O	FT_hv	-	MCO, TIM1_CH1, SAI1_CK2, SPI1_RDY, USART1_CK, USB_SOF, TRACECLK, SAI1_SCK_A, LPTIM2_CH1, EVENTOUT	-
30	D2	42	D6	F9	68	E11	30	42	C7	68	D10	PA9	I/O	FT	-	TIM1_CH2, SPI2_SCK, DCMI_D0/PSSI_D0, USART1_TX(boot), SAI1_FS_A, TIM15_BKIN, EVENTOUT	-
31	D4	43	D5	E6	69	E12	31	43	C6	69	C12	PA10	I/O	FT	-	CRS_SYNC, TIM1_CH3, LPTIM2_IN2, SAI1_D1, DCMI_D1/PSSI_D1, USART1_RX(boot), SAI1_SD_A, TIM17_BKIN, EVENTOUT	-
32	C1	44	C8	C2	70	D12	32	44	C8	70	B12	PA11	I/O	FT_u	-	TIM1_CH4, TIM1_BKIN2, SPI1_MISO, USART1_CTS, FDCAN1_RX, EVENTOUT	USB_DM(boot)
33	C3	45	C7	C4	71	D11	33	45	B8	71	A12	PA12	I/O	FT_u	-	TIM1_ETR, SPI1_MOSI, OCTOSPI1_NCS, USART1_RTS_DE, FDCAN1_TX, EVENTOUT	USB_DP(boot)

STM32U535xx

Pinout, pin description, and alternate functions

107/301

108/301

DS14217 Rev 4

5

							-	Tabl	e 26	. STI	M32U	535xx pin/ball	defi	nitions ⁽¹⁾	(co	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFQFPN48 SMPS		LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
34	C5	46	C6	D5	72	C12	34	46	A8	72	A11	PA13 (JTMS/ SWDIO)	I/O	FT	(4)	JTMS/SWDIO, IR_OUT, USB_NOE, SAI1_SD_B, EVENTOUT	-
-	B2	47	G7	B3	-	-	-	47	D5	-	-	VSS	S	-	-	-	-
-	-	48	B8	B1	73	E10	-	48	E5	73	C11	VDDUSB	S	-	-	-	-
35	I	-	-	-	74	C8	35	-	-	74	F12	VSS	S	-	-	-	-
36	A1	-	H8	A2	75	C10	36	-	-	75	G2	VDD	S	-	-	-	-
37	A5	49	C5	E8	76	C11	37	49	A7	76	A10	PA14 (JTCK/ SWCLK)	I/O	FT	(4)	JTCK/SWCLK, LPTIM1_CH1, I2C1_SMBA, I2C4_SMBA, USB_SOF, SAI1_FS_B, EVENTOUT	-
38	A3	50	C4	D7	77	B12	38	50	A6	77	A9	PA15 (JTDI)	I/O	FT	(4)	JTDI, TIM2_CH1, TIM2_ETR, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, UART4_RTS_DE, EVENTOUT	-
-	-	51	A7	-	78	A12	-	51	B7	78	B11	PC10	I/O	FT_ha	-	TRACED1, LPTIM3_ETR, ADF1_CCK1, SPI3_SCK, USART3_TX(boot), UART4_TX, TSC_G3_IO2, DCMI_D8/PSSI_D8, LPGPIO1_P8, SDMMC1_D2, EVENTOUT	-

Pinout, pin description, and alternate functions

STM32U535xx
109/301

	Pin number																
LQFP48 SMPS UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	52	В5	-	79	B11	-	52	B6	79	C10	PC11	I/O	FT_ha	-	LPTIM3_IN1, ADF1_SDI0, DCMI_D2/PSSI_D2, OCTOSPI1_NCS, SPI3_MISO, USART3_RX(boot), UART4_RX, TSC_G3_IO3, DCMI_D4/PSSI_D4, SDMMC1_D3, EVENTOUT	-
-	-	53	B6	-	80	C9	-	53	C5	80	B10	PC12	I/O	FT_hav	-	TRACED3, SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, DCMI_D9/PSSI_D9, LPGPIO1_P10, SDMMC1_CK, EVENTOUT	-
-	-	-	-	-	81	A11	-	-	-	81	C9	PD0	I/O	FT_h	-	TIM8_CH4N, SPI2_NSS, FDCAN1_RX, EVENTOUT	-
-	-	-	-	-	82	B10	-	-	-	82	B9	PD1	I/O	FT_h	-	SPI2_SCK, FDCAN1_TX, EVENTOUT	-
-	-	54	A6	-	83	A10	-	54	В5	83	C8	PD2	I/O	FT_h	-	TRACED2, TIM3_ETR, USART3_RTS_DE, UART5_RX, TSC_SYNC, DCMI_D11/PSSI_D11, LPGPIO1_P7, SDMMC1_CMD, LPTIM4_ETR, EVENTOUT	-
-	-	-	-	-	84	В9	-	-	-	84	B8	PD3	I/O	FT_hv	-	SPI2_SCK, DCMI_D5/PSSI_D5, SPI2_MISO, MDF1_SDI0, OCTOSPI1_NCS, EVENTOUT	-

Table 26. STM32U535xx pin/ball definitions⁽¹⁾ (continued)

DS14217 Rev 4

Table 26. STM32U535xx pin/ball definitions⁽¹⁾ (continued)

						Pin n	umbe	r										
I OFP48 SMPS	UFQFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	-	-	-	-	-	85	A9	-	-	-	85	B7	PD4	I/O	FT_h	-	SPI2_MOSI, MDF1_CKI0, OCTOSPI1_IO4, EVENTOUT	-
	-	-	-	-	-	86	A8	-	-	-	86	A6	PD5	I/O	FT_h	-	SPI2_RDY, OCTOSPI1_IO5, EVENTOUT	-
	-	-	-	-	-	87	B8	-	-	-	87	B6	PD6	I/O	FT_hv	-	SAI1_D1, DCMI_D10/PSSI_D10, SPI3_MOSI, MDF1_SDI1, OCTOSPI1_IO6, SAI1_SD_A, EVENTOUT	-
	-	-	-	-	-	88	A7	-	-	-	88	A5	PD7	I/O	FT_h	-	MDF1_CKI1, OCTOSPI1_IO7, LPTIM4_OUT, EVENTOUT	-
	-	-	-	-	B5	-	-	-	-	-	-	-	PG9	I/O	FT_hs	(5)	OCTOSPI1_IO6, SPI3_SCK(boot), USART1_TX, TIM15_CH1N, EVENTOUT	-
	-	-	-	-	A4	-	-	-	-	-	-	-	PG10	I/O	FT_hs	(5)	LPTIM1_IN1, OCTOSPI1_IO7, SPI3_MISO(boot), USART1_RX, TIM15_CH1, EVENTOUT	-
	-	-	-	-	C6	-	-	-	-	-	-	-	PG11	I/O	FT_hs	(5)	LPTIM1_IN2, OCTOSPI1_IO5, SPI3_MOSI, USART1_CTS, TIM15_CH2, EVENTOUT	-
	-	-	-	-	D9	-	-	-	-	-	-	-	PG12	I/O	FT_hs	(5)	LPTIM1_ETR, OCTOSPI1_NCS, SPI3_NSS(boot), USART1_RTS_DE, EVENTOUT	-
	-	-	-	-	C8	-	-	-	-	-	-	-	PG13	I/O	FT_fhs	(5)	I2C1_SDA, SPI3_RDY, USART1_CK, EVENTOUT	-

Pinout, pin description, and alternate functions

5

S
-
4
N
\rightarrow
7
_
Rev
Ð
<
4

	Table 26. STM32U										M32U	535xx pin/ball	defi	nitions ⁽¹⁾	(co	ntinued)	
					Pin n	umbe	r										
LQFP48 SMPS UFOFPN48 SMPS	WLCSP56 SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFOFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	A6	-	-	-	-	-	-	-	PG14	I/O	FT_fhs	(5)	LPTIM1_CH2, I2C1_SCL, EVENTOUT	-
-	-	-	-	B7	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	-	-	-	A8	-	-	-	-	-	-	-	VDDIO2	S	-	-	-	-
-	-	-	-	В9	-	-	-	-	-	-	-	PG15	I/O	FT_hs	(5)	LPTIM1_CH1, I2C1_SMBA, OCTOSPI1_DQS, DCMI_D13/PSSI_D13, EVENTOUT	-
39	B4	55	A5	C10	89	B6	39	55	A5	89	A8	PB3 (JTDO/ TRACESWO)	I/O	FT_fa	-	JTDO/TRACESWO, TIM2_CH2, LPTIM1_CH1, ADF1_CCK0, I2C1_SDA, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, CRS_SYNC, LPGPIO1_P11, SAI1_SCK_B, EVENTOUT	COMP1_INP4
40	В6	56	B4	A10	90	A6	40	56	A4	90	A7	PB4 (NJTRST)	I/O	FT_fa	(4)	NJTRST, LPTIM1_CH2, TIM3_CH1, ADF1_SDI0, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS, UART5_RTS_DE, TSC_G2_IO1, DCMI_D12/PSSI_D12, LPGPI01_P12, SAI1_MCLK_B, TIM17_BKIN, EVENTOUT	COMP1_INP5

DS1	
421	
7	
Rev	
4	

Pin number LQFP48 SMPS UFQFPN48 SMPS UFBGA100 SMPS I/O structure WLCSP56 SMPS WLCSP72 SMPS **UFBGA64 SMPS** LQFP100 SMPS LQFP64 SMPS Pin type Pin name UFBGA100 Notes **UFQFPN48 UFBGA64** LQFP100 Additional LQFP64 LQFP48 (function Alternate functions functions after reset) LPTIM1 IN1, TIM3 CH2, OCTOSPI1 NCLK, I2C1 SMBA, SPI1 MOSI, SPI3 MOSI(boot), USART1 CK, UART5 CTS, I/O FT_hav 57 A7 D4 D11 91 B5 57 C4 91 C5 PB5 WKUP6 41 41 -TSC G2 102, DCMI D10/PSSI D10, SAI1 SD B, TIM16 BKIN, **EVENTOUT** LPTIM1 ETR, TIM4 CH1, TIM8 BKIN2, I2C1 SCL(boot), 12C4 SCL, USART1 TX, COMP1 INP6, FT fa C7 58 A4 B11 92 A5 58 D3 92 B5 PB6 I/O 42 42 -TSC G2 103, WKUP3 DCMI D5/PSSI D5, SAI1_FS_B, TIM16 CH1N, EVENTOUT LPTIM1 IN2, TIM4 CH2, TIM8 BKIN, I2C1 SDA(boot), PVD IN, I2C4 SDA, USART1 RX, 43 D8 59 D3 D13 93 A4 43 59 C3 93 Β4 PB7 I/O FT fhav -UART4 CTS, TSC G2 IO4, WKUP4 DCMI VSYNC/PSSI RDY, TIM17 CH1N, EVENTOUT 60 A3 A12 94 A3 60 B4 94 I/O 44 B8 44 A4 PH3-BOOT0 FT -**EVENTOUT** BOOT0 TIM4 CH3, SAI1 CK1, I2C1 SCL, MDF1 CCK0, SPI3 RDY, SDMMC1 CKIN, 61 C3 C12 95 Β4 61 B3 95 A3 PB8 I/O FT_fh FDCAN1_RX(boot), 45 A9 45 WKUP5 -DCMI D6/PSSI D6, SDMMC1 D4, SAI1 MCLK A, TIM16 CH1, EVENTOUT

Table 26. STM32U535xx pin/ball definitions⁽¹⁾ (continued)

Pinout, pin description, and alternate functions

DS1421	
7	
Rev	
4	

					Pin n	umbe	r										
LQFP48 SMPS	SMPS	LQFP64 SMPS	UFBGA64 SMPS	WLCSP72 SMPS	LQFP100 SMPS	UFBGA100 SMPS	LQFP48 UFQFPN48	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	C9	-	-	-	96	A1	46	62	A3	96	В3	PB9	I/O	FT_fh	-	IR_OUT, TIM4_CH4, SAI1_D2, I2C1_SDA, SPI2_NSS, SDMMC1_CDIR, FDCAN1_TX(boot), DCMI_D7/PSSI_D7, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT	-
-	-	-	-	-	97	A2	-	-	-	97	C3	PE0	I/O	FT_h	-	TIM4_ETR, DCMI_D2/PSSI_D2, LPGPIO1_P13, TIM16_CH1, EVENTOUT	-
-	-	-	-	-	-	-	-	-	-	98	A2	PE1	I/O	FT_h	-	DCMI_D3/PSSI_D3, TIM17_CH1, EVENTOUT	-
46	A11	62	A2	A14	98	C5	-	-	-	-	-	VDD11	S	-	-	-	-
47	B10	63	B7	B13	99	D10	47	63	D6	99	F2	VSS	S	-	-	-	-
48	A13	64	A8	A16	100	K4	48	64	E4	100	H3	VDD	S	-	-	-	-

Table 26. STM32U535xx pin/ball definitions⁽¹⁾ (continued)

1. Function availability depends on the chosen device.

2. PC13, PC14, and PC15 are supplied through the power switch (by V_{SW}). Since the switch only sinks a limited amount of current (3 mA), the use of PC13 to PC15 GPIOs in output mode is limited:

- The speed must not exceed 2 MHz with a maximum load of 30 pF.

- These GPIOs must not be used as current sources (for example to drive a LED).

3. After a backup domain power-up, PC13, PC14, and PC15 operate as GPIOs. Their function depends then on the content of the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the backup domain and RTC register descriptions in the product reference manual.

4. After reset, this pin is configured as JTAG/SWD alternate functions. The internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

5. Power supply is VDDIO2.

4.3 Alternate functions

Table 27. Alternate function AF0 to AF7⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
ļ	Port	CRS/LPTIM1/ SYS_AF	LPTIM1/ TIM1/2/8	LPTIM1/2/3/ TIM1/2/3/4/5	ADF1/I2C4/ OCTOSPI/ SAI1/SPI2/ TIM1/8/ USB	DCMI/ I2C1/2/3/4/ LPTIM3	DCMI/I2C4/ MDF1/ OCTOSPI/ SPI1/2/3	I2C3/MDF1/ OCTOSPI/ SPI3	USART1/3
	PA0	-	TIM2_CH1	TIM5_CH1	TIM8_ETR	-	-	SPI3_RDY	-
	PA1	LPTIM1_CH2	TIM2_CH2	TIM5_CH2	-	I2C1_SMBA	SPI1_SCK	-	-
	PA2	-	TIM2_CH3	TIM5_CH3	-	-	SPI1_RDY	-	-
	PA3	-	TIM2_CH4	TIM5_CH4	SAI1_CK1	-	-	-	-
	PA4	-	-	-	OCTOSPI1_NCS	-	SPI1_NSS	SPI3_NSS	-
	PA5	CSLEEP	TIM2_CH1	TIM2_ETR	TIM8_CH1N	PSSI_D14	SPI1_SCK	-	USART3_RX
	PA6	CDSTOP	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	DCMI_PIXCLK/ PSSI_PDCK	SPI1_MISO	-	USART3_CTS
	PA7	SRDSTOP	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	I2C3_SCL	SPI1_MOSI	-	USART3_TX
Port A	PA8	MCO	TIM1_CH1	-	SAI1_CK2	-	SPI1_RDY	-	USART1_CK
Pol	PA9	-	- TIM1_CH2		SPI2_SCK	-	DCMI_D0/ PSSI_D0	-	USART1_TX
	PA10	CRS_SYNC	CRS_SYNC TIM1_CH3		SAI1_D1	-	DCMI_D1/ PSSI_D1	-	USART1_RX
	PA11	-	TIM1_CH4	TIM1_BKIN2	-	-	SPI1_MISO	-	USART1_CTS
	PA12	- TIM1_ETR		-	-	-	SPI1_MOSI	OCTOSPI1_ NCS	USART1_ RTS_DE
	PA13	JTMS/SWDIO	IR_OUT	-	-	-	-	-	-
	PA14	JTCK/SWCLK	LPTIM1_CH1	-	-	I2C1_SMBA	I2C4_SMBA	-	-
	PA15	JTDI	TIM2_CH1	TIM2_ETR	-	-	SPI1_NSS	SPI3_NSS	USART3_ RTS_DE

Pinout, pin description, and alternate functions

STM32U535xx

114/301

DS14217 Rev 4

5

S
~
2
ມ
Ň
C
53
ω
(J)
×
Q

Pinout, pin description, and alternate functions

	Port PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8	450	454	450	452	A F 4	455	AFC	A F 7
	PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
ł	Port	CRS/LPTIM1/ SYS_AF	LPTIM1/ TIM1/2/8	LPTIM1/2/3/ TIM1/2/3/4/5	ADF1/I2C4/ OCTOSPI/ SAI1/SPI2/ TIM1/8/ USB	DCMI/ I2C1/2/3/4/ LPTIM3	DCMI/I2C4/ MDF1/ OCTOSPI/ SPI1/2/3	I2C3/MDF1/ OCTOSPI/ SPI3	USART1/3
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	LPTIM3_CH1	SPI1_NSS	-	USART3_CK
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	LPTIM3_CH2	-	MDF1_SDI0	USART3_ RTS_DE
	PB2	-	LPTIM1_CH1	-	TIM8_CH4N	I2C3_SMBA	SPI1_RDY	MDF1_CKI0	-
	PB3	JTDO/ TRACESWO	TIM2_CH2	LPTIM1_CH1	ADF1_CCK0	I2C1_SDA	SPI1_SCK	SPI3_SCK	USART1_ RTS_DE
	PB4	NJTRST	LPTIM1_CH2	TIM3_CH1	ADF1_SDI0	I2C3_SDA	SPI1_MISO	SPI3_MISO	USART1_CTS
	PB5	-	LPTIM1_IN1	TIM3_CH2	OCTOSPI1_NCLK	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	-	LPTIM1_ETR	TIM4_CH1	TIM8_BKIN2	I2C1_SCL	I2C4_SCL	-	USART1_TX
ort B	PB7	-	LPTIM1_IN2	TIM4_CH2	TIM8_BKIN	I2C1_SDA	I2C4_SDA	-	USART1_RX
Å	PB8	-	-	TIM4_CH3	SAI1_CK1	I2C1_SCL	MDF1_CCK0	SPI3_RDY	-
	PB9	-	IR_OUT	TIM4_CH4	SAI1_D2	I2C1_SDA	SPI2_NSS	-	-
	PB10	-	TIM2_CH3	LPTIM3_CH1	I2C4_SCL	I2C2_SCL	SPI2_SCK	-	USART3_TX
	PB11	-	TIM2_CH4	-	I2C4_SDA	I2C2_SDA	SPI2_RDY	-	USART3_RX
	PB12	-	TIM1_BKIN	-	-	I2C2_SMBA	SPI2_NSS	MDF1_SDI1	USART3_CK
	PB13	-	TIM1_CH1N	LPTIM3_IN1	-	I2C2_SCL	SPI2_SCK	MDF1_CKI1	USART3_CTS
	PB14	-	TIM1_CH2N	LPTIM3_ETR	TIM8_CH2N	I2C2_SDA	SPI2_MISO	-	USART3_ RTS_DE
	PB15	RTC_REFIN	TIM1_CH3N	LPTIM2 IN2	TIM8_CH3N	-	SPI2_MOSI	-	-

DS14217 Rev 4

5

115/301

DS14217 Rev 4

5

				Table 27. Alter	nate function AF0	to AF7 ⁽¹⁾ (cont	inued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	CRS/LPTIM1/ SYS_AF	LPTIM1/ TIM1/2/8	LPTIM1/2/3/ TIM1/2/3/4/5	ADF1/I2C4/ OCTOSPI/ SAI1/SPI2/ TIM1/8/ USB	DCMI/ I2C1/2/3/4/ LPTIM3	DCMI/I2C4/ MDF1/ OCTOSPI/ SPI1/2/3	I2C3/MDF1/ OCTOSPI/ SPI3	USART1/3
	PC0	-	LPTIM1_IN1	-	OCTOSPI1_IO7	I2C3_SCL	SPI2_RDY	-	-
	PC1	TRACED0	LPTIM1_CH1	-	SPI2_MOSI	I2C3_SDA	-	-	-
	PC2	-	LPTIM1_IN2	-	-	-	SPI2_MISO	MDF1_CCK1	-
	PC3	-	LPTIM1_ETR	LPTIM3_CH1	SAI1_D1	-	SPI2_MOSI	-	-
	PC4	-	-	-	-	-	-	-	USART3_TX
	PC5	-	TIM1_CH4N	-	SAI1_D3	PSSI_D15	-	-	USART3_RX
	PC6	CSLEEP	-	TIM3_CH1	TIM8_CH1	-	-	-	-
	PC7	CDSTOP	-	TIM3_CH2	TIM8_CH2	-	-	-	-
Port C	PC8	SRDSTOP	-	TIM3_CH3	TIM8_CH3	-	-	-	-
Å	PC9	TRACED0	TIM8_BKIN2	TIM3_CH4	TIM8_CH4	DCMI_D3/ PSSI_D3	-	-	-
	PC10	TRACED1	-	LPTIM3_ETR	ADF1_CCK1	-	-	SPI3_SCK	USART3_TX
	PC11	-	-	LPTIM3_IN1	ADF1_SDI0	DCMI_D2/ PSSI_D2	OCTOSPI1_ NCS	SPI3_MISO	USART3_RX
	PC12	TRACED3	-	-	-	-	-	SPI3_MOSI	USART3_CK
	PC13	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	_	-	-

Pinout, pin description, and alternate functions

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	CRS/LPTIM1/ SYS_AF	LPTIM1/ TIM1/2/8	LPTIM1/2/3/ TIM1/2/3/4/5	ADF1/I2C4/ OCTOSPI/ SAI1/SPI2/ TIM1/8/ USB	DCMI/ I2C1/2/3/4/ LPTIM3	DCMI/I2C4/ MDF1/ OCTOSPI/ SPI1/2/3	I2C3/MDF1/ OCTOSPI/ SPI3	USART1/3
	PD0	-	-	-	TIM8_CH4N	-	SPI2_NSS	-	-
	PD1	-	-	-	-	-	SPI2_SCK	-	-
	PD2	TRACED2	-	TIM3_ETR	-	-	-	-	USART3_ RTS_DE
	PD3	-	-	-	SPI2_SCK	DCMI_D5/ PSSI_D5	SPI2_MISO	MDF1_SDI0	-
	PD4	-	-	-	-	-	SPI2_MOSI	MDF1_CKI0	-
	PD5	-	-	-	-	-	SPI2_RDY	-	-
٥	PD6	-	-	-	SAI1_D1	DCMI_D10/ PSSI_D10	SPI3_MOSI	MDF1_SDI1	-
Port D	PD7	-	-	-	-	-	-	MDF1_CKI1	-
	PD8	-	-	-	-	-	-	-	USART3_T
	PD9	-	-	LPTIM2_IN2	-	-	-	-	USART3_R
	PD10	-	-	LPTIM2_CH2	-	-	-	-	USART3_C
	PD11	-	-	-	-	I2C4_SMBA	-	-	USART3_C
	PD12	-	-	TIM4_CH1	-	I2C4_SCL	-	-	USART3_ RTS_DE
	PD13	-	-	TIM4_CH2	-	I2C4_SDA	-	-	-
	PD14	-	-	TIM4_CH3	-	-	-	-	-
	PD15	-	-	TIM4_CH4	-	-	-	-	-

117/301

STM32U535xx

Pinout, pin description, and alternate functions

DS14217 Rev 4

				Table 27. Alter	nate function AF0	to AF7 ⁽¹⁾ (cont	inued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	CRS/LPTIM1/ SYS_AF	LPTIM1/ TIM1/2/8	LPTIM1/2/3/ TIM1/2/3/4/5	ADF1/I2C4/ OCTOSPI/ SAI1/SPI2/ TIM1/8/ USB	DCMI/ I2C1/2/3/4/ LPTIM3	DCMI/I2C4/ MDF1/ OCTOSPI/ SPI1/2/3	I2C3/MDF1/ OCTOSPI/ SPI3	USART1/3
	PE0	-	-	TIM4_ETR	-	-	-	-	-
	PE1	-	-	-	-	-	-	-	-
	PE2	TRACECLK	-	TIM3_ETR	SAI1_CK1	-	-	-	-
	PE3	TRACED0	-	TIM3_CH1	OCTOSPI1_DQS	-	-	-	-
	PE4	TRACED1	-	TIM3_CH2	SAI1_D2	-	-	-	-
	PE5	TRACED2	-	TIM3_CH3	SAI1_CK2	-	-	-	-
	PE6	TRACED3	-	TIM3_CH4	SAI1_D1	-	-	-	-
ш	PE7	-	TIM1_ETR	-	-	-	-	-	-
Port	PE8	-	TIM1_CH1N	-	-	-	-	-	-
	PE9	-	TIM1_CH1	-	ADF1_CCK0	-	-	MDF1_CCK0	-
	PE10	-	TIM1_CH2N	-	ADF1_SDI0	-	-	-	-
	PE11	-	TIM1_CH2	-	-	-	SPI1_RDY	-	-
	PE12	-	TIM1_CH3N	-	-	-	SPI1_NSS	-	-
	PE13	-	TIM1_CH3	-	-	-	SPI1_SCK	-	-
	PE14	-	TIM1_CH4	TIM1_BKIN2	-	-	SPI1_MISO	-	-
	PE15	-	TIM1_BKIN	-	TIM1_CH4N	-	SPI1_MOSI	-	-

Pinout, pin description, and alternate functions

5

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
I	Port	CRS/LPTIM1/ SYS_AF	LPTIM1/ TIM1/2/8	LPTIM1/2/3/ TIM1/2/3/4/5	ADF1/I2C4/ OCTOSPI/ SAI1/SPI2/ TIM1/8/ USB	DCMI/ I2C1/2/3/4/ LPTIM3	DCMI/I2C4/ MDF1/ OCTOSPI/ SPI1/2/3	I2C3/MDF1/ OCTOSPI/ SPI3	USART1/3
	PG2	-	-	-	-	-	SPI1_SCK	-	-
	PG3	-	-	-	-	-	SPI1_MISO	-	-
	PG4	-	-	-	-	-	SPI1_MOSI	-	-
	PG5	-	-	-	-	-	SPI1_NSS	-	-
	PG6	-	-	-	OCTOSPI1_DQS	I2C3_SMBA	SPI1_RDY	-	-
	PG7	-	-	-	SAI1_CK1	I2C3_SCL	OCTOSPI1_ DQS	MDF1_CCK0	-
Ċ	PG8	-	-	-	-	I2C3_SDA	-	-	-
Port	PG9	-	-	-	-	-	OCTOSPI1_IO6	SPI3_SCK	USART1_TX
_	PG10	-	LPTIM1_IN1	-	-	-	OCTOSPI1_IO7	SPI3_MISO	USART1_R>
	PG11	-	LPTIM1_IN2	-	OCTOSPI1_IO5	-	-	SPI3_MOSI	USART1_CT
	PG12	-	LPTIM1_ETR	-	-	-	OCTOSPI1_ NCS	SPI3_NSS	USART1_ RTS_DE
	PG13	-	-	-	-	I2C1_SDA	-	SPI3_RDY	USART1_CH
	PG14	-	LPTIM1_CH2	-	-	I2C1_SCL	-	-	-
	PG15	-	LPTIM1_CH1	-	-	I2C1_SMBA	OCTOSPI1_ DQS	-	-
т	PH0	-	-	-	-	-	-	-	-
Port F	PH1	-	-	-	-	-	-	-	-
٩	PH3	-	-	-	-	-	_	-	-

7

119/301

STM32U535xx

Pinout, pin description, and alternate functions

				Table 28. Alter	rnate function A	F8 to AF15⁽¹⁾			
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/ SDMMC1/ UART4/5	CAN1/ TSC	CRS/DCMI/ OCTOSPI/ USB	LPGPIO1	COMP1/ SDMMC1/ SYS_AF	LPTIM2/4/ SAI1	LPTIM2/3/ TIM2/15/16/17	EVENTOUT
	PA0	UART4_TX	-	OCTOSPI1_NCS	-	-	AUDIOCLK	TIM2_ETR	EVENTOUT
	PA1	UART4_RX	-	OCTOSPI1_DQS	LPGPIO1_P0	-	-	TIM15_CH1N	EVENTOUT
	PA2	LPUART1_TX	-	OCTOSPI1_NCS	-	-	-	TIM15_CH1	EVENTOUT
	PA3	LPUART1_RX	-	OCTOSPI1_CLK	LPGPIO1_P1	-	SAI1_MCLK_A	TIM15_CH2	EVENTOUT
	PA4	-	-	DCMI_HSYNC/ PSSI_DE	-	-	SAI1_FS_B	LPTIM2_CH1	EVENTOUT
	PA5	-	-	-	-	-	-	LPTIM2_ETR	EVENTOUT
	PA6	LPUART1_CTS	-	OCTOSPI1_IO3	LPGPIO1_P2	-	-	TIM16_CH1	EVENTOUT
Port A	PA7	-	-	OCTOSPI1_IO2	-	-	LPTIM2_CH2	TIM17_CH1	EVENTOUT
٩	PA8	-	-	USB_SOF	-	TRACECLK	SAI1_SCK_A	LPTIM2_CH1	EVENTOUT
	PA9	-	-	-	-	-	SAI1_FS_A	TIM15_BKIN	EVENTOUT
	PA10	-	-	-	-	-	SAI1_SD_A	TIM17_BKIN	EVENTOUT
	PA11	-	FDCAN1_RX	USB_DM	-	-	-	-	EVENTOUT
	PA12	-	FDCAN1_TX	USB_DP	-	-	-	-	EVENTOUT
	PA13	-	-	USB_NOE	-	-	SAI1_SD_B	-	EVENTOUT
	PA14	-	-	USB_SOF	-	-	SAI1_FS_B	-	EVENTOUT
	PA15	UART4_RTS_DE	-	-	-	-	-	-	EVENTOUT

DS14217 Rev 4

STM32U535xx

Pinout, pin description, and alternate functions

2

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
I	Port	LPUART1/ SDMMC1/ UART4/5	CAN1/ TSC	CRS/DCMI/ OCTOSPI/ USB	LPGPIO1	COMP1/ SDMMC1/ SYS_AF	LPTIM2/4/ SAI1	LPTIM2/3/ TIM2/15/16/17	EVENTOUT
	PB0	-	-	OCTOSPI1_IO1	LPGPIO1_P9	COMP1_OUT	AUDIOCLK	-	EVENTOUT
	PB1	LPUART1_ RTS_DE	-	OCTOSPI1_IO0	LPGPIO1_P3	-	-	LPTIM2_IN1	EVENTOUT
	PB2	-	-	OCTOSPI1_DQS	-	-	-	-	EVENTOUT
	PB3	-	-	CRS_SYNC	LPGPIO1_P11	-	SAI1_SCK_B	-	EVENTOUT
	PB4	UART5_RTS_DE	TSC_G2_IO1	DCMI_D12/ PSSI_D12	LPGPIO1_P12	-	SAI1_MCLK_B	TIM17_BKIN	EVENTOUT
	PB5	UART5_CTS	TSC_G2_IO2	DCMI_D10/ PSSI_D10	-	-	SAI1_SD_B	TIM16_BKIN	EVENTOUT
	PB6	-	TSC_G2_IO3	DCMI_D5/PSSI_D5	-	-	SAI1_FS_B	TIM16_CH1N	EVENTOUT
Port B	PB7	UART4_CTS	TSC_G2_IO4	DCMI_VSYNC/ PSSI_RDY	-	-	-	TIM17_CH1N	EVENTOUT
	PB8	SDMMC1_CKIN	FDCAN1_RX	DCMI_D6/PSSI_D6	-	SDMMC1_D4	SAI1_MCLK_A	TIM16_CH1	EVENTOUT
	PB9	SDMMC1_CDIR	FDCAN1_TX	DCMI_D7/PSSI_D7	-	SDMMC1_D5	SAI1_FS_A	TIM17_CH1	EVENTOUT
	PB10	LPUART1_RX	TSC_SYNC	OCTOSPI1_CLK	LPGPIO1_P4	COMP1_OUT	SAI1_SCK_A	-	EVENTOUT
	PB11	LPUART1_TX	-	OCTOSPI1_NCS	-	-	-	-	EVENTOUT
	PB12	LPUART1_ RTS_DE	TSC_G1_IO1	OCTOSPI1_NCLK	-	-	-	TIM15_BKIN	EVENTOUT
	PB13	LPUART1_CTS	TSC_G1_IO2	-	-	-	-	TIM15_CH1N	EVENTOUT
	PB14	-	TSC_G1_IO3	-	-	-	-	TIM15_CH1	EVENTOUT
	PB15	-	-	-	-	-	-	TIM15_CH2	EVENTOUT

5

121/301

STM32U535xx

Pinout, pin description, and alternate functions

<u>→</u>
N
Ň
5
g
Ģ
-

			-	Table 28. Alternate	function AF8 to	AF15 ⁽¹⁾ (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/ SDMMC1/ UART4/5	CAN1/ TSC	CRS/DCMI/ OCTOSPI/ USB	LPGPI01	COMP1/ SDMMC1/ SYS_AF	LPTIM2/4/ SAI1	LPTIM2/3/ TIM2/15/16/17	EVENTOUT
	PC0	LPUART1_RX	-	-	-	SDMMC1_D5	-	LPTIM2_IN1	EVENTOUT
	PC1	LPUART1_TX	-	OCTOSPI1_IO4	-	-	SAI1_SD_A	-	EVENTOUT
	PC2	-	-	OCTOSPI1_IO5	LPGPIO1_P5	-	-	-	EVENTOUT
	PC3	-	-	OCTOSPI1_IO6	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOUT
	PC4	-	-	OCTOSPI1_IO7	-	-	-	-	EVENTOUT
	PC5	-	-	-	-	-	-	-	EVENTOUT
	PC6	SDMMC1_D0DIR	TSC_G4_IO1	DCMI_D0/PSSI_D0	-	SDMMC1_D6	-	-	EVENTOUT
Port C	PC7	SDMMC1_D123D IR	TSC_G4_IO2	DCMI_D1/PSSI_D1	-	SDMMC1_D7	-	LPTIM2_CH2	EVENTOUT
д	PC8	-	TSC_G4_IO3	DCMI_D2/PSSI_D2	-	SDMMC1_D0	-	LPTIM3_CH1	EVENTOUT
	PC9	-	TSC_G4_IO4	USB_NOE	-	SDMMC1_D1	-	LPTIM3_CH2	EVENTOUT
	PC10	UART4_TX	TSC_G3_IO2	DCMI_D8/PSSI_D8	LPGPIO1_P8	SDMMC1_D2	-	-	EVENTOUT
	PC11	UART4_RX	TSC_G3_IO3	DCMI_D4/PSSI_D4	-	SDMMC1_D3	-	-	EVENTOUT
	PC12	UART5_TX	TSC_G3_IO4	DCMI_D9/PSSI_D9	LPGPIO1_P10	SDMMC1_CK	-	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-	-	-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	EVENTOUT

			-	Table 28. Alternate	function AF8 to	AF15 ⁽¹⁾ (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/ SDMMC1/ UART4/5	CAN1/ TSC	CRS/DCMI/ OCTOSPI/ USB	LPGPI01	COMP1/ SDMMC1/ SYS_AF	LPTIM2/4/ SAI1	LPTIM2/3/ TIM2/15/16/17	EVENTOUT
	PD0	-	FDCAN1_RX	-	-	-	-	-	EVENTOUT
	PD1	-	FDCAN1_TX	-	-	-	-	-	EVENTOUT
	PD2	UART5_RX	TSC_SYNC	DCMI_D11/ PSSI_D11	LPGPIO1_P7	SDMMC1_ CMD	LPTIM4_ETR	-	EVENTOUT
	PD3	-	-	OCTOSPI1_NCS	-	-	-	-	EVENTOUT
	PD4	-	-	OCTOSPI1_IO4	-	-	-	-	EVENTOUT
	PD5	-	-	OCTOSPI1_IO5	-	-	-	-	EVENTOUT
	PD6	-	-	OCTOSPI1_IO6	-	-	SAI1_SD_A	-	EVENTOUT
Δ	PD7	-	-	OCTOSPI1_IO7	-	-	LPTIM4_OUT	-	EVENTOUT
Port D	PD8	-	-	DCMI_HSYNC/ PSSI_DE	-	-	-	-	EVENTOUT
	PD9	-	-	DCMI_PIXCLK/ PSSI_PDCK	-	-	-	LPTIM3_IN1	EVENTOUT
	PD10	-	TSC_G6_IO1	-	-	-	-	LPTIM3_ETR	EVENTOUT
	PD11	-	TSC_G6_IO2	-	-	-	-	LPTIM2_ETR	EVENTOUT
	PD12	-	TSC_G6_IO3	-	-	-	-	LPTIM2_IN1	EVENTOUT
	PD13	-	TSC_G6_IO4	-	LPGPIO1_P6	-	LPTIM4_IN1	LPTIM2_CH1	EVENTOUT
	PD14	-	-	-	-	-	-	LPTIM3_CH1	EVENTOUT
	PD15	-	-	-	-	-	-	LPTIM3_CH2	EVENTOUT

5

123/301

STM32U535xx

Pinout, pin description, and alternate functions

1	-
	N
	4
	W
	õ
	-

				Table 28. Alternate	function AF8 to	AF15 ⁽¹⁾ (cont	inued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/ SDMMC1/ UART4/5	CAN1/ TSC	CRS/DCMI/ OCTOSPI/ USB	LPGPIO1	COMP1/ SDMMC1/ SYS_AF	LPTIM2/4/ SAI1	LPTIM2/3/ TIM2/15/16/17	EVENTOUT
	PE0	-	-	DCMI_D2/PSSI_D2	LPGPIO1_P13	-	-	TIM16_CH1	EVENTOUT
	PE1	-	-	DCMI_D3/PSSI_D3	-	-	-	TIM17_CH1	EVENTOUT
	PE2	-	TSC_G7_IO1	-	LPGPIO1_P14	-	SAI1_MCLK_A	-	EVENTOUT
	PE3	-	TSC_G7_IO2	-	LPGPIO1_P15	-	SAI1_SD_B	-	EVENTOUT
	PE4	-	TSC_G7_IO3	DCMI_D4/PSSI_D4	-	-	SAI1_FS_A	-	EVENTOUT
	PE5	-	TSC_G7_IO4	DCMI_D6/PSSI_D6	-	-	SAI1_SCK_A	-	EVENTOUT
	PE6	-	-	DCMI_D7/PSSI_D7	-	-	SAI1_SD_A	-	EVENTOUT
ш	PE7	-	-	-	-	-	SAI1_SD_B	-	EVENTOUT
Port	PE8	-	-	-	-	-	SAI1_SCK_B	-	EVENTOUT
	PE9	-	-	OCTOSPI1_NCLK	-	-	SAI1_FS_B	-	EVENTOUT
	PE10	-	TSC_G5_IO1	OCTOSPI1_CLK	-	-	SAI1_MCLK_B	-	EVENTOUT
	PE11	-	TSC_G5_IO2	OCTOSPI1_NCS	-	-	-	-	EVENTOUT
	PE12	-	TSC_G5_IO3	OCTOSPI1_IO0	-	-	-	-	EVENTOUT
	PE13	-	TSC_G5_IO4	OCTOSPI1_IO1	-	-	-	-	EVENTOUT
	PE14	-	-	OCTOSPI1_IO2	-	-	-	-	EVENTOUT
	PE15	-	-	OCTOSPI1_IO3	-	-	-	-	EVENTOUT

5

	Table 28. Alternate function AF8 to AF15 ⁽¹⁾ (continued)										
	AF8 AF9 AF10			AF10	AF11	AF12	AF13	AF14	AF15		
	Port	LPUART1/ SDMMC1/ UART4/5	CAN1/ TSC	CRS/DCMI/ OCTOSPI/ USB	LPGPIO1	COMP1/ SDMMC1/ SYS_AF	LPTIM2/4/ SAI1	LPTIM2/3/ TIM2/15/16/17	EVENTOUT		
	PG2	-	-	-	-	-	-	-	EVENTOUT		
	PG3	-	-	-	-	-	-	-	EVENTOUT		
	PG4	-	-	-	-	-	-	-	EVENTOUT		
	PG5	LPUART1_CTS	-	-	-	-	-	-	EVENTOUT		
	PG6	LPUART1_ RTS_DE	-	-	-	-	-	-	EVENTOUT		
	PG7	LPUART1_TX	-	-	-	-	SAI1_MCLK_A	-	EVENTOUT		
Port G	PG8	LPUART1_RX	-	-	-	-	-	-	EVENTOUT		
Por	PG9	-	-	-	-	-	-	TIM15_CH1N	EVENTOUT		
	PG10	-	-	-	-	-	-	TIM15_CH1	EVENTOUT		
	PG11	-	-	-	-	-	-	TIM15_CH2	EVENTOUT		
	PG12	-	-	-	-	-	-	-	EVENTOUT		
	PG13	-	-	-	-	-	-	-	EVENTOUT		
	PG14	-	-	-	-	-	-	-	EVENTOUT		
	PG15	-	-	DCMI_D13/ PSSI_D13	-	-	-	-	EVENTOUT		
-	PH0	-	-	-	-	-	-	-	EVENTOUT		
Port H	PH1	-	-	-	-	-	-	-	EVENTOUT		
LT.	PH3	-	-	-	-	-	-	-	EVENTOUT		

Table 28 Alternate function AER to AE1c(1) (continued)

1. For AF0 to AF7, refer to the previous table.

DS14217 Rev 4

57

125/301

STM32U535xx

Pinout, pin description, and alternate functions

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes, and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range and supply voltage range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 21.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 22.

5.1.6 **Power supply scheme**

Each power supply pair (such as V_{DD}/V_{SS} or V_{DDA}/V_{SSA}) must be decoupled with filtering ceramic capacitors as shown in *Figure 23* and *Figure 24*. These capacitors must be placed

as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the proper functionality of the device.

Figure 23. STM32U535xx power supply scheme (without SMPS)

The external capacitor on VCAP pin requires the following characteristics:

- C_{OUT} = 4.7 μF or 2 × 2.2 μF ±20%
- $C_{OUT} ESR < 20 \text{ m}\Omega \text{ at } 3 \text{ MHz}$
- C_{OUT} rated voltage ≥ 10 V

Figure 24. STM32U535xQ power supply scheme (with SMPS)

Note: SMPS and LDO regulators provide, in a concurrent way, the V_{CORE} supply depending on application requirements. However, only one of them is active at the same time. When SMPS is active, it feeds the V_{CORE} on the two VDD11 pins supplied by the filtered SMPS VLXSMPS output pin. When LDO is active, it supplies the V_{CORE} and regulates it using the same capacitors on VDD11 pins. It is recommended to add a decoupling capacitor of 100 nF near each VDD11 pin/ball, but it is not mandatory.

The external capacitors on VDD11 pins require the following characteristics:

- C_{OUT} = 2 × 2.2 μF ±20%
- $C_{OUT} ESR < 20 \text{ m}\Omega \text{ at } 3 \text{ MHz}$
- C_{OUT} rated voltage ≥ 10 V

The external capacitor on VDDSMPS pin requires the following characteristics:

- C_{IN} = 10 µF ±20%
- $C_{IN} ESR < 10 \text{ m}\Omega \text{ at } 3 \text{ MHz}$
- C_{IN} rated voltage ≥ 10 V

The external inductance between VLXSMPS and VDD11 requires the following characteristics:

- L = 2.2 µH ±20%
- L I_{SAT} > 0.5 A
- L DCR < 200 mΩ

5.1.7 Current consumption measurement

The I_{DD} parameters given in various tables in the next sections, represent the total MCU consumption including the current supplying V_{DD} , V_{DDIO2} , V_{DDA} , V_{DDUSB} , V_{BAT} and V_{DDSMPS} (if the device embeds the SMPS).

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 29*, *Table 30* and *Table 31* may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit				
V _{DDX} - V _{SS}	External main supply voltage (including $V_{DDSMPS}, V_{DDA}, V_{DDUSB}, V_{BAT}, V_{REF+}$)	-0.3	4.0					
V _{DDIOx} ⁽³⁾ - V _{SS}	I/O supply when HSLV = 0	-0.3	4.0					
VDDIOx` / - VSS	I/O supply when HSLV = 1	-0.3	2.75					
V _{IN} ⁽⁴⁾	Input voltage on FT_xx pins except FT_c pins	V _{SS} - 0.3	$ \begin{array}{l} \text{Min (min (V_{DD}, V_{DDA}, V_{DDUSB}, V_{DDIO2})} \\ + 4.0, \ 6.0)^{(5)(6)} \end{array} $	v				
VIN	Input voltage on FT_t pins in V _{BAT} mode	V _{SS} - 0.3	Min (min (V _{BAT} , V _{DDA} , V _{DDUSB} , V _{DDIO2}) + 4.0, 6.0) ⁽⁵⁾⁽⁶⁾	v				
V _{IN} ⁽⁴⁾	Input voltage on FT_c pins	V _{SS} - 0.3	5.5					
VIN` '	Input voltage on any other pins	V _{SS} - 0.3	4.0					
V _{REF+} - V _{DDA}	Allowed voltage difference for V _{REF+} > V _{DDA}	-	0.4					
$ \Delta V_{DDx} $	Variations between different VDDx power pins of the same domain	-	50.0	m\/				
V _{SSx} -V _{SS}	Variations between all the different ground pins ⁽⁷⁾	-	50.0	mV				

Table 29.	Voltage	characteristics ⁽¹⁾⁽²⁾
-----------	---------	-----------------------------------

1. All main power (VDD, VDDSMPS, VDDA, VDDUSB, VDDIO2, VBAT) and ground (VSS, VSSA, VSSSMPS) pins must always be connected to the external power supply, in the permitted range.

 The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O.

3. V_{DDIO1} or V_{DDIO2} , $V_{DDIO1} = V_{DD}$.

4. V_{IN} maximum must always be respected. Refer to *Table 30* for the maximum allowed injected current values.

5. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.

6. This formula has to be applied only on the power supplies related to the I/O structure described in the pin definition table.

7. Including VREF- pin.

Table 30. Current characteristics

Symbol	Ratings	Мах	Unit
∑IV _{DD}	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	200	
∑IV _{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	200	
IV _{DD}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
IV _{SS}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	100	
I _{IO}	Output current sunk by any I/O and control pin	20	mA
ΣI	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	120	
ΣI _(PIN)	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	120	
I _{INJ(PIN)} ⁽³⁾⁽⁴⁾	Injected current on FT_xx, TT_xx, RST pins	-5/+0	
Σ I _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	±25	

1. All main power (VDD, VDDSMPS, VDDA, VDDUSB, VDDIO2, VBAT) and ground (VSS, VSSA, VSSSMPS) pins must always be connected to the external power supplies, in the permitted range.

STM32U535xx

- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins, referring to high pin count QFP packages.
- Positive injection (when V_{IN} > V_{DDIOx}) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 29* for the minimum allowed input voltage values.
- 5. When several inputs are submitted to a current injection, the maximum $\sum |I_{INJ(PIN)}|$ is the absolute sum of the negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	140	C

Table 31. Thermal characteristics

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{DD}	Standard operating	IO_VDD_HSLV ⁽¹⁾ = 0	1.71 ⁽²⁾	-	3.6		
♥ DD	voltage	IO_VDD_HSLV = 1	1.71 ⁽²⁾	-	2.7		
V _{DDSMPS}	Supply voltage for the internal SMPS step-down converter	-			V _{DD}		
		At least one I/O in PG[15:2] used, IO_VDDIO2_HSLV = 0	1.08	-	3.6		
V _{DDIO2}	Supply voltage for PG[15:2] I/Os	At least one I/O in PG[15:2] used, IO_VDDIO2_HSLV = 1	1.08	-	2.7		
		PG[15:2] I/Os not used	0	-	3.6		
M	USB supply voltage	USB used	3.0	-	3.6		
V _{DDUSB}		USB not used	0	-	3.6		
			COMP used	1.58	-	3.6	V
		DAC or OPAMP used	1.60		3.6		
		ADC used	1.62	-	3.6		
V _{DDA}	Analog supply voltage	VREFBUF used (normal mode)	1.8	-	3.6		
		ADC, DAC, COMP, OPAMP, and VREFBUF not used	0	-	3.6		
V_{BAT}	Backup domain supply voltage	-	1.65 ⁽³⁾	-	3.6		
		All I/Os except FT_c and TT_xx pins	-0.3	-	$\begin{array}{l} \mbox{Min(min(V_{DD}, V_{DDA}, V_{DDUSB}, \\ V_{DDIO2}) + 3.6, \ 5.5)^{(4)(5)} \end{array}$		
V _{IN}	I/O input voltage	Input voltage on FT_t pins in V _{BAT} mode	-0.3	-	Min(min(V _{BAT} , V _{DDA} , V _{DDUSB} , V _{DDIO2})+ 3.6, 5.5) ⁽⁴⁾⁽⁵⁾		
		FT_c I/Os	-0.3	-	5.0	1	
		TT_xx I/Os	-0.3	-	V _{DDIOx} + 0.3	1	
I _{IO_SW}	Sum of output current sourced by all I/Os powered by $V_{SW}^{(6)}$	-	-	-	3	mA	

Table 32. General operating conditions

132/301

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Range 1	1.15	1.21	1.27	
V _{CORE}	Internal regulator	Range 2	1.05	1.1	1.15	V
	ON	Range 3	0.95	1.0	1.05	V
		Range 4	0.81	0.9	0.99	
		Range 1	-	-	160	
£	AHB clock	Range 2	-	-	110	
f _{HCLK}	frequency	Range 3	-	-	55	
		Range 4	-	-	25	N 41 1-
	APB1, APB2, APB3 clock frequency	Range 1	-	-	160	MHz
f _{PCLKx}		Range 2	-	-	110	
		Range 3	-	-	55	
		Range 4	-	-	25	
	Ambient temperature	Maximum power dissipation	-40	-	85	
т.	for suffix 6	Low-power dissipation ⁽⁷⁾	-40	-	105	
ΤΑ	Ambient temperature	Maximum power dissipation	-40	-	125	°C
	for suffix 3	Low-power dissipation ⁽⁷⁾	-40	-	130	
ТJ	Junction	Suffix 6 version	-40	-	105	
IJ	temperature range	Suffix 3 version	-40	-	130	

Table 32. General operating conditions (continued)

1. HSLV means high-speed low-voltage mode (refer to the product reference manual).

2. When RESET is released, the functionality is guaranteed down to $V_{\mbox{BORx}}$ min.

3. In V_{BAT} mode, the functionality is guaranteed down to V_{BOR_VBAT} min.

4. This formula has to be applied only on the power supplies related to the I/O structure described by the pin definition table. The maximum I/O input voltage is the smallest value between Min (V_{DD} , V_{DDA} , V_{DDUSB} , V_{DDIO2})+3.6 V, and 5.5V.

- For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDUSB}, V_{DDIO2}) +0.3 V, the internal pull-up and pull-down resistors must be disabled.
- 6. The I/Os powered by V_{SW} are:
 - PC13, PC14, PC15 when VDD is present.

- PC13, PC14, PC15, and all FT_t I/Os in V_{BAT} mode.

7. In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max.

5.3.2 Operating conditions at power-up/power-down

The parameters given in the table below are derived from tests performed under the ambient temperature condition summarized in *Table 32*.

Symbol	Parameter	Conditions	Min	Max	Unit
	V _{DD} rise-time rate	-	0	8	µs/V
t _{VDD}		ULPMEN = 0 (default value)	20	8	µs/v
	V _{DD} fall-time rate	Standby mode, BOR level 0 selected with ULPMEN = 1	250	8	ms/V

Table 33. Operating conditions at power-up/power-down

5.3.3 Embedded reset and power control block characteristics

The parameters given in the table below are derived from tests performed under the ambient temperature conditions summarized in *Table 32*.

Table 34. Embedded reset and power control block characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	-	900	μs

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Rising edge	1.6	1.66	1.71	
V _{BOR0}	Brownout reset threshold 0	Falling edge, range 1, 2, 3	1.58	1.64	1.69]
BORU		Falling edge, range 4 and low-power modes	1.58	1.64	1.69	
V.	Brownout reset threshold 1	Rising edge	1.98	2.08	2.17	
V _{BOR1}		Falling edge	1.9	2.00	2.1	
V _{BOR2}	Brownout reset threshold 2	Rising edge	2.18	2.29	2.39	
VBOR2	brownout reset timeshold 2	Falling edge	2.08	2.18	2.25	
M	Brownout reset threshold 3	Rising edge	2.48	2.59	2.7	
V _{BOR3}	Brownout reset timeshold 5	Falling edge	2.39	2.5	2.61	
V _{BOR4}	Brownout reset threshold 4	Rising edge	2.76	2.88	3.0	
VBOR4	brownout reset timeshold 4	Falling edge	2.67	2.79	2.9	
V	Programmable voltage detector	Rising edge	2.03	2.13	2.23	
V _{PVD0}	threshold 0	Falling edge	1.93	2.03	2.12	V
	D)/D threehold 1	Rising edge	2.18	2.29	2.39	1
V _{PVD1}	PVD threshold 1	Falling edge	2.08	2.18	2.28	-
	D)(D throshold 2	Rising edge	2.33	2.44	2.55	
V _{PVD2}	PVD threshold 2	Falling edge	2.23	2.34	2.44	
M	DVD threshold 2	Rising edge	2.47	2.59	2.7	
V _{PVD3}	PVD threshold 3	Falling edge	2.39	2.50	2.61	-
	D)/D threehold (Rising edge	2.6	2.72	2.83	
V _{PVD4}	PVD threshold 4	Falling edge	2.5	2.62	2.73	
	D)/D threehold 5	Rising edge	2.76	2.88	3.0	
V _{PVD5}	PVD threshold 5	Falling edge	2.66	2.78	2.9	
	D)/D threehold C	Rising edge	2.83	2.96	3.08	
V _{PVD6}	PVD threshold 6	Falling edge	2.76	2.88	3.0	1
V _{hyst_BOR0}	Hysteresis voltage of BOR0	-	-	20	-	
V _{hyst_BOR_PVD}	Hysteresis voltage of BOR (except BOR0) and PVD	-	-	80	-	mV
t _{BOR0_sampling}	BOR0 sampling period	ULPMEN = 1	-	30	55	ms
I _{DD_BOR0} ⁽²⁾	Additional BOR0 consumption if ULPMEN = 0 versus ULPMEN = 1	Standby mode	-	60	-	nA
I _{DD_BOR_PVD} ⁽²⁾	${\rm BOR}^{(3)}$ (except BOR0) and PVD consumption from ${\rm V_{DD}}^{(4)}$	-	-	1	1.5	μA
V _{BOR_VBAT}	V _{BAT} brownout reset threshold	-	1.58	-	1.65	V

 Table 34. Embedded reset and power control block characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{VBAT_BOR} _sampling	V_{BAT} BOR sampling period in V_{BAT} mode	MONEN = 0 ⁽⁵⁾	-	0.5	2.5	s
V	V voltago monitor 1 throshold	Rising edge	1.61	1.68	1.75	
V _{AVM1}	V _{DDA} voltage monitor 1 threshold	Falling edge	1.58	1.65	1.71	
V	V voltage meniter 2 threshold	Rising edge	1.77	1.86	1.95	v
V _{AVM2}	V _{DDA} voltage monitor 2 threshold	Falling edge	1.73	1.82	1.9	v
V _{IO2VM}	V _{DDIO2} voltage monitor threshold	-	0.96	1.01	1.05	
V _{UVM}	V _{DDUSB} voltage monitor threshold	-	1.15	1.22	1.28	
V _{hyst_AVM}	Hysteresis of V _{DDA} voltage monitor	-	-	40	-	mV
I _{DD_VM} ⁽²⁾	Voltage monitor consumption from V _{DD} (AVM1, AVM2, IO2VM or UVM single instance)	-	-	0.4	0.6	
I _{DD_AVM_A} ⁽²⁾	V _{DDA} voltage monitor consumption from V _{DDA} (resistor bridge)	-	-	1.25	1.85	μA

Table 34. Embedded reset and power control block characteristics⁽¹⁾ (continued)

1. Evaluated by characterization and not tested in production, unless otherwise specified.

2. Specified by design. Not tested in production

3. BOR0 is enabled in all modes (except Shutdown), and its consumption is therefore included in the supply current characteristics tables.

4. This is also the consumption saved in Standby mode when ULPMEN = 1.

5. V_{BAT} brownout reset monitoring is discontinuous when MONEN = 0 in PWR_BDCR1, and is continuous when MONEN = 1.

5.3.4 SMPS characteristics

Table 35. SMPS characteristics

Symbol	Parameter	Conditions	Тур	Unit
Erec	Switching frequency (range 1, 2, $3^{(1)}$	V _{DD} > 1.9 V	3	MHz
i ieq	Freq Switching frequency (range 1, 2, 3) ⁽¹⁾		1.5	

1. The SMPS is asynchronous in range 4 and low-power modes.

5.3.5 Embedded voltage reference

The parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 32*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Range 1, 2, 3	1.175	1.215	1.255	
V _{REFINT} ⁽¹⁾	Internal reference voltage	Range 4 and low-power modes	1.170	1.215	1.260	V

Table 36. Embedded internal voltage reference

				,		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{S_vrefint} ⁽²⁾⁽³⁾	ADC sampling time when reading the internal reference voltage	-	12.65	-	-	110
t _{start_vrefint} ⁽³⁾	Start time of reference voltage buffer when the ADC is enabled	-	-	4	6	μs
I _{DD(VREFINTBUF)} (3)	V_{REFINT} buffer consumption from V_{DD} when converted by the ADC	-	-	1.5	2.1	μA
ΔV _{REFINT} ⁽⁴⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	6	11.5	mV
T _{Coeff} ⁽⁴⁾	Average temperature coefficient	–40°C < T _J < +130 °C	-	40	125	ppm/°C
A _{Coeff} ⁽³⁾	Long term stability	1000 hours, T _J = 25 °C	-	400	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Average voltage coefficient	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	500	2900	ppm/V
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	

Table 36. Embedded internal voltage reference (continued)

1. V_{REFINT} does not take into account package and soldering effects.

2. The shortest sampling time for the application can be determined by multiple iterations.

3. Specified by design. Not tested in production.

4. Evaluated by characterization. Not tested in production.

Figure 26. V_{REFINT} versus temperature

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

DS14217 Rev 4

The current consumption is measured as described in *Section 5.1.7: Current consumption measurement*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The flash memory access time is adjusted with the minimum wait-state number, depending on the f_{HCLK} frequency (refer to the tables "Number of wait states according to CPU clock (HCLK) frequency" available in the product reference manual).
- When the peripherals are enabled, $f_{PCLK} = f_{HCLK}$.
- The voltage scaling range is adjusted to f_{HCLK} frequency as follows:
 - Voltage range 1 for 110 MHz < f_{HCLK} ≤ 160 MHz
 - Voltage range 2 for 55 MHz < $f_{HCLK} \le 110$ MHz
 - Voltage range 3 for 25 MHz < $f_{HCLK} \le 55$ MHz
 - Voltage range 4 for $f_{HCLK} \le 25$ MHz

The parameters given in the tables below are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 32*.

S	
~	
ω	
N	
C	
сл	
ũ	
ČΠ	
~	
<u> </u>	
×	

Unit

mΑ

DS14217 Rev 4

5

0		Conditions					Тур					Max ⁽²⁾		
Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C
				24	1.60	1.75	2.20	2.85	4.10	2.10	2.50	3.80	5.70	9.60
				16	1.20	1.30	1.75	2.40	3.65	1.70	2.00	3.30	5.30	9.10
		f _{HCLK} = f _{MSI} ,		12	0.93	1.05	1.50	2.15	3.40	1.40	1.70	3.10	5.00	8.80
		all peripherals and AHB/APB disabled.	Range 4	4	0.40	0.54	0.96	1.60	2.90	0.72	1.20	2.50	4.40	8.30
		Flash bank 2 in power down,	Range 4	2	0.27	0.41	0.84	1.50	2.75	0.59	1.00	2.30	4.30	8.10
		all SRAMs enabled		1	0.21	0.35	0.78	1.45	2.70	0.52	0.93	2.30	4.20	8.10
				0.4	0.17	0.31	0.74	1.40	2.65	0.47		4.20	8.00	
				0.1	0.15	0.29	0.72	1.35	2.65	.65 0.45 0	0.86	2.20	4.10	8.00
I _{DD}	Supply current in			160	13.00	13.50	14.00	15.00	17.00	16.00	17.00	3.10 5.00 8 2.50 4.40 8 2.30 4.30 8 2.30 4.20 8 2.30 4.20 8 2.20 4.20 8 2.20 4.10 8 2.20 24.00 3 18.00 21.00 2 13.00 16.00 2 9.80 13.00 1 9.10 13.00 1	33.0	
(Run)	Run mode	f _{HCLK} = PLL on HSE 16 MHz in bypass mode,	Range 1	140	11.50	12.00	12.50	13.50	15.50	14.00	15.00	18.00	22.00	31.0
		all peripherals and AHB/APB		120	9.90	10.00	11.00	12.00	14.00	12.00	13.00	16.00	21.00	29.0
		disabled,		110	8.35	8.60	9.20	10.00	11.50	9.80	11.00	13.00	16.00	23.0
		Flash bank 2 in power down, all SRAMs enabled	Range 2	72	5.65	5.90	6.50	7.35	8.95	6.80	7.60	9.80	13.00	20.0
				64	5.10	5.30	5.90	6.80	8.35	6.20	6.90	9.10	13.00	19.0
		f _{HCLK} = f _{HSE} bypass mode,		55	4.05	4.25	4.75	5.45	6.85	4.90	5.50	7.10	9.60	15.0
		all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled	Range 3	32	2.50	2.65	3.15	3.90	5.30	3.20	3.70	5.40	7.90	13.0

Table 37. Current consumption in Run mode on LDO, code with data processing running from flash memory, ICACHE ON (1-way), prefetch ON⁽¹⁾ Tvn Conditions

1. The current consumption from SRAM is similar.

2. Evaluated by characterization. Not tested in production.

139/301

ю		Conditions				Тур а	at V _{DD} =	= 1.8 V		Max	at 1.71	V ≤ V _D	_D ≤ 3.6 ∖	v ⁽²⁾⁽³⁾	
Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Un
				24	0.95	1.05	1.30	1.70	2.45	1.30	1.60	2.30	3.60	6.00	
				16	0.69	0.78	1.05	1.45	2.20	0.97	1.20	2.00	3.40	5.70	
		f _{HCLK} = f _{MSI} ,		12	0.45	0.63	0.89	1.30	2.05	0.68	1.10	1.80	3.20	5.50	
		all peripherals disable	Banga 4	4	0.21	0.28	0.49	0.97	1.70	0.41	0.62	1.30	2.80	5.10	
		Flash bank 2 in power down,	Range 4	2	0.15	0.21	0.40	0.89	1.65	0.34	0.55	1.20	2.70	5.10	
IDD		all SRAMs enabled	1 0.12 0.18 0.37 0.85 1.60 0.30	0.30	0.51	1.20	2.70	5.00							
				0.4	0.09	0.16	0.36	0.83	1.60	0.28	0.49	1.20	2.60	5.00	
	Supply			0.1	0.08	0.15	0.35	0.82	1.55	0.26	0.48	1.20	2.60	4.90	
	Supply current in			160	10.00	10.50	11.00	11.50	13.00	13.00	13.00	15.00	18.00	24.00	mA
Run)	Run mode	f _{HCLK} = PLL on HSE 16 MHz in	Range 1	140	8.90	9.15	9.75	10.50	12.00	11.00	12.00	14.00	17.00	23.00	
^I DD c		bypass mode, all peripherals disable,		120	7.70	7.95	8.55	9.30	10.50	9.40	11.00	12.00	16.00	21.00	
		Flash bank 2 in power down,		110	6.00	6.20	6.60	7.25	8.35	7.30	7.80	9.00	12.00	16.00	
		all SRAMs enabled	Range 2	72	4.10	4.30	4.70	5.30	6.40	5.10	5.60	6.80	9.30	14.00	
				64	3.75	3.90	4.30	4.90	6.00	4.70	5.10	6.40	8.80	13.00	
		f _{HCLK} = f _{HSE} bypass mode,		55	2.75	2.85	3.20	3.65	4.55	3.50	3.80	4.70	6.50	9.60	
		all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled	Range 3	32	1.75	1.85	2.20	2.65	3.55	2.30	2.60	3.60	5.40	8.40	

Table 38. Current consumption in Run mode on SMPS, code with data processing

1. The current consumption from SRAM is similar.

2. Evaluated by characterization. Not tested in production.

3. The maximum value is at V_{DD} = 1.71 V in Sleep mode on SMPS.

DS14217 Rev 4

Electrical characteristics

	0		running from flas Conditions	j	,,			at V _{DD} =		-, - 00			t V _{DD} =	3.0 V ⁽²⁾		
	Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
ľ					24	0.63	0.69	0.86	1.10	1.60	0.83	1.10	1.60	2.30	3.80	
					16	0.47	0.52	0.69	0.95	1.45	0.66	0.82	1.40	2.10	3.60	
			f _{HCLK} = f _{MSI} ,		12	0.37	0.43	0.60	0.85	1.35	0.55	0.72	1.30	2.00	3.50	
			all peripherals and AHB/APB disabled,	Danga 4	4	0.17	0.22	0.39	0.65	1.15	0.33	0.49	0.99	1.80	3.30	
			Flash bank 2 in power down,	Range 4	2	0.12	0.18	0.34	0.60	1.10	0.28	0.44	0.94	1.80	3.30	
			all SRAMs enabled		1	0.10	0.15	0.32	0.58	1.05	0.25	0.42	0.91	1.70	3.20	
				0.4	0.08	0.14	0.30	0.56	1.05	0.24	0.40	0.90	1.70	3.20		
					0.1	0.07	0.13	0.30	0.55	1.05	0.23	0.39	0.89	1.70	3.20	
	Supply	unread in		160	7.35	7.55	8.05	8.65	9.70	8.50	9.00	11.00	13.00	16.00	mA	
	(Run)	Run mode	f _{HCLK} = PLL on HSE 16 MHz in Range bypass mode,	Range 1	140	6.55	6.70	7.20	7.75	8.75	7.60	8.10	9.50	12.00	15.00	
			all peripherals and AHB/APB		120	5.65	5.90	6.30	6.90	7.95	6.60	7.20	8.50	11.00	15.00	
			disabled,		110	4.50	4.65	5.00	5.50	6.35	5.30	5.60	6.60	8.10	11.00	
			Flash bank 2 in power down, all SRAMs enabled	Range 2	72	3.15	3.30	3.65	4.10	4.90	3.80	4.10	5.10	6.50	9.20	
					64	2.85	3.00	3.35	3.80	4.60	3.50	3.80	4.80	6.20	8.90	
		f _{HCLK} = f _{HSE} bypass mode,		55	2.20	2.30	2.55	2.90	3.60	2.70	2.90	3.60	4.70	6.80		
			all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled	Range 3	32	1.45	1.55	1.80	2.15	2.80	1.80	2.10	2.80	3.90	5.90	

1. The current consumption from SRAM is similar.

2. Evaluated by characterization. Not tested in production.

141/301

1	_
	4
	\mathcal{N}
	ω
	0
	-

		Table 40. Typical cu running from flash r										
		Condition	ons			Тур				Тур		
Symbol	Parameter	-	Voltage scaling	Code	1.8 V	3 V	3.3 V	Unit	1.8 V	3 V	3.3 V	Unit
				Reduced Code	1.55	1.55	1.55		64.58	64.58	64.58	
		f _{HCLK} = f _{MSI} = 24 MHz,		CoreMark	1.50	1.50	1.50		62.50	62.50	62.50	
I _{DD}	Supply current in	all peripherals disabled, Flash bank 2 in power down,	Range 4	SecureMark	1.65	1.65	1.65	mA	68.75	68.75	68.75	μA/
(Run)	Run mode	SRAM2 enabled,	Range 4	Dhrystone 2.1	1.60	1.60	1.60	IIIA	66.67	66.67	66.67	MHz
		SRAM1, SRAM4 in power down		Fibonacci	1.20	1.20	1.20		50.00	50.00	50.00	
				while	1.10	1.10	1.10		45.83	45.83	45.83	

Table 41. Typical current consumption in Run mode on LDO, with different codes	
running from flash memory, ICACHE ON (1-way), prefetch ON ⁽¹⁾	

<u>o</u>		Conditi	ons			Тур				Тур		
Symbol	Parameter	-	Voltage scaling	Code	1.8 V	3 V	3.3 V	Unit	1.8 V	3 V	3.3 V	Unit
				Reduced Code	1.60	1.60	1.60		66.67	66.67	66.67	
		f _{HCLK} = f _{MSI} = 24 MHz,		CoreMark	1.55	1.55	1.55		64.58	64.58	64.58	
I _{DD}	Supply	all peripherals disabled,	Dense 4	SecureMark	1.70	1.70	1.70		70.83	70.83	70.83	μA/
(Run)	current in Run mode	Flash bank 2 in power down,	Range 4	Dhrystone 2.1	1.65	1.65	1.65	mA	68.75	68.75	68.75	MHz
		all SRAMs enabled		Fibonacci	1.25	1.25	1.25		52.08	52.08	52.08	
				While(1)	1.15	1.15	1.15		47.92	47.92	47.92	

2

Table 41. Typical current consumption in Run mode on LDO, with different codes running from flash memory ICACHE ON (1-way) prefetch ON⁽¹⁾ (continued)

		running from fla	sh memory	y, ICACHE ON (1-way),	prefetch	ON''' (continue	ed)			
		Conditi	ons			Тур						
Symbol	Parameter	-	Voltage scaling	Code	1.8 V	3 V	3.3 V	Unit	1.8 V	3 V	3.3 V	Uni
		((()))) () () () () () () (Reduced Code	13.00	13.00	13.00		81.25	81.25	81.25	
		f _{HCLK} = f _{PLL} = 160 MHz, PLL on HSE 16 MHz in bypass		CoreMark	13.00	13.00	13.00		81.25	81.25	81.25	
		mode,	Range 1	SecureMark	14.00	14.00	14.00		87.50	87.50	87.50	
		all peripherals disabled,	Range	Dhrystone 2.1	13.50	13.50	13.50		84.38	84.38	84.38	
		Flash bank 2 in power down, all SRAMs enabled		Fibonacci	10.50	10.50	10.50		65.63	65.63	65.63	
				While	9.65	9.70	9.70		60.31	60.63	60.63	
				Reduced Code	8.30	8.35	8.35		75.45	75.91	75.91	
	Supply current in Run mode	f _{HCLK} = f _{PLL} = 110 MHz, PLL on HSE 16 MHz in bypass mode, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled		CoreMark	8.25	8.25	8.30		75.00	75.00	75.45	
I _{DD}			Range 2	SecureMark	9.05	9.10	9.10	mA	82.27	82.73	82.73	μA
(Run)				Dhrystone 2.1	8.75	8.80	8.80	IIIA	79.55	80.00	80.00	MHz
				Fibonacci	6.60	6.65	6.65		60.00	60.45	60.45	
				While	6.20	6.25	6.25		56.36	56.82	56.82	
				Reduced Code	4.00	4.05	4.05		72.73	73.64	73.64	
		f _{HCLK} = f _{HSE} = 55 MHz,		CoreMark	3.95	4.00	4.05		71.82	72.73	73.64	
		all peripherals disable,	Range 3	SecureMark	4.35	4.40	4.40	7	79.09	80.00	80.00	
		Flash bank 2 in power down,	range s	Dhrystone 2.1	4.20	4.25	4.25		76.36	77.27	77.27	
		all SRAMs enabled		Fibonacci	3.10	3.15	3.20		56.36	57.27	58.18	
				While	2.85	2.90	2.95]	51.82	52.73	53.64	

1. The current consumption from SRAM is similar.

DS14217 Rev 4

143/301

		Table 42. Typical cur running from flash n		•								
Symbol	Parameter	Conditions			Тур				Тур			
		-	Voltage scaling	Code	1.8 V	3 V	3.3 V	Unit	1.8 V	3 V	3.3 V	Unit
I _{DD} (Run)	Supply current in Run mode	f _{HCLK} = f _{MSI} = 24 MHz, all peripherals disabled, Flash bank 2 in power down, SRAM2 enabled, SRAM1, SRAM4 in power down	Range 4	Reduced Code	0.91	0.60	0.56	mA	37.92	24.79	23.33	μA/ MHz
				CoreMark	0.88	0.58	0.54		36.67	23.96	22.50	
				SecureMark	0.97	0.64	0.60		40.42	26.46	25.00	
				Dhrystone 2.1	0.95	0.62	0.58		39.38	25.63	24.17	
				Fibonacci	0.71	0.47	0.44		29.38	19.38	18.13	
				while	0.62	0.41	0.39		26.00	17.27	16.25	

Symbol

Table 43. Typical current consumption in Run mode on SMPS, with different codes running from flash memory, ICACHE ON (1-way), prefetch ON⁽¹⁾ Conditions Тур Тур Unit Code 1.8 V 3.3 V 3.3 V 3 V 1.8 V 3 V Reduced Code 0.95 0.63 0.59 39.38 26.04 24.58

CoreMark

SecureMark

Dhrystone 2.1

Fibonacci

while

0.91

1.00

0.98

0.74

0.67

0.57

0.63

0.61

0.47

0.43

0.61

0.67

0.65

0.50

0.46

37.92

41.67

40.63

30.83

27.92

mΑ

25.21

27.71

26.88

20.63

18.96

23.75

26.04

25.42

19.38

17.71

ă				
Symbo	Parameter	-	Voltage scaling	
I _{DD} (Run)	Supply current in Run mode	f _{HCLK} = f _{MSI} = 24 MHz, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled	Range 4	

Unit

μA/

MHz
ပု
Ξ
32(
53
б Х
×

Electrical characteristics

3			Table 43. Typical cur running from flas										
	loc		Conditi	ions			Тур				Тур		
	Symbol	Parameter	-	Voltage scaling	Code	1.8 V	3 V	3.3 V	Unit	1.8 V	3 V	3.3 V	Unit
					Reduced Code	10.00	7.35	6.95		62.50	45.94	43.44	
			$f_{HCLK} = f_{PLL} = 160 \text{ MHz},$ PLL on HSE 16 MHz in bypass		CoreMark	10.00	7.30	6.90		62.50	45.63	43.13	
			mode,	Dense 1	SecureMark	11.00	7.95	7.45		68.75	49.69	46.56	
			all peripherals disabled,	Range 1	Dhrystone 2.1	10.50	7.70	7.30		65.63	48.13	45.63	
			Flash bank 2 in power down, all SRAMs enabled		Fibonacci	8.05	5.90	5.55		50.31	36.88	34.69	
					while	7.55	5.55	5.25		47.19	34.69	32.81	
					Reduced Code	6.00	4.50	4.30	-	54.55	40.91	39.09	
J			$f_{HCLK} = f_{PLL} = 110 \text{ MHz},$ PLL on HSE 16 MHz in bypass		CoreMark	5.95	4.45	4.25	-	54.09	40.45	38.64	
	I _{DD}	Supply	mode,	Denge 2	SecureMark	6.50	4.90	4.65		59.09	44.55	42.27	μA/
i 1	(Run)	current in Run mode	all peripherals disabled,	Range 2	Dhrystone 2.1	6.30	4.70	4.50	mA	57.27	42.73	40.91	MHz
			Flash bank 2 in power down, all SRAMs enabled		Fibonacci	4.80	3.65	3.50		43.64	33.18	31.82	
•					while	4.55	3.45	3.30		41.36	31.36	30.00	
					Reduced Code	2.75	2.20	2.10		50.00	40.00	38.18	
			f _{HCLK} = f _{HSE} = 55 MHz,		CoreMark	2.70	2.15	2.10		49.09	39.09	38.18	
			all peripherals disabled,	Denge	SecureMark	2.95	2.35	2.25		53.64	42.73	40.91	
			Flash bank 2 in power down,	Range 3	Dhrystone 2.1	2.85	2.25	2.20		51.82	40.91	40.00	
			all SRAMs enabled		Fibonacci	2.15	1.75	1.70		39.09	31.82	30.91	
					while	2.00	1.65	1.60		36.36	30.00	29.09	

1. The current consumption from SRAM is similar.

Electrical
characteristics

			Conditions	5		I		Тур					Max ⁽¹⁾			
	Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	U
					24	0.49	0.63	1.05	1.70	2.95	0.73	1.20	2.50	4.40	8.10	
					16	0.37	0.51	0.93	1.60	2.85	0.60	1.10	2.30	4.30	8.00	1
					12	0.31	0.45	0.88	1.55	2.80	0.54	0.96	2.30	4.20	8.00	1
			f _{HCLK} = f _{MSI} ,	Range 4	4	0.16	0.30	0.72	1.40	2.65	0.37	0.79	2.10	4.10	7.80	1
			all peripherals disabled	Range 4	2	0.13	0.27	0.69	1.35	2.60	0.34	0.76	2.10	4.00	7.80	
	Supply		1	0.12	0.26	0.68	1.35	2.60	0.32	0.74	2.00	4.00	7.80			
				0.4	0.11	0.24	0.67	1.30	2.55	0.31	0.72	2.00	3.90	7.70		
	I _{DD}	Supply current in			0.1	0.10	0.24	0.66	1.30	2.55	0.30	0.72	2.00	3.90	7.70	
	(Sleep)	Sleep mode			160	4.10	4.35	5.05	6.00	7.85	5.10	6.00	8.90	14.00	22.00	
		mode		Range 1	140	3.65	3.90	4.60	5.60	7.40	4.60	5.50	8.40	13.00	21.00	
			f _{HCLK} = PLL on HSE 16 MHz in bypass mode,		120	3.20	3.45	4.15	5.15	6.95	4.10	5.10	7.90	13.00	21.00	
			all peripherals disabled		110	2.75	2.95	3.50	4.35	5.95	3.40	4.20	6.30	9.50	16.00	
				Range 2	72	1.95	2.20	2.75	3.60	5.15	2.60	3.30	5.50	8.70	15.00	
					64	1.80	2.00	2.60	3.45	5.00	2.40	3.10	5.30	8.50	15.00	
			f _{HCLK} = f _{HSE} bypass mode,	Bango 2	55	1.30	1.45	1.95	2.70	4.05	1.70	2.30	3.90	6.40	12.00	
			all peripherals disabled	Range 3	32	0.89	1.05	1.55	2.25	3.65	1.30	1.80	3.50	5.90	11.00	1

1. Evaluated by characterization. Not tested in production.

		Table 45. Current cons	sumption i	in Sleep	mode	on SM	PS, fla	sh mem	nory in p	ower	down				
		Conditions	S			Тур	at V _{DD}	= 1.8 V		Мах	at 1.71	V≤V _D	_D ≤ 3.6 ₪	V ⁽¹⁾ (2)	
Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Uni
				24	0.25	0.30	0.60	0.99	1.75	0.36	0.57	1.40	2.70	5.10	
				16	0.18	0.25	0.48	0.92	1.65	0.29	0.51	1.20	2.60	5.00	
				12	0.16	0.22	0.42	0.89	1.65	0.26	0.48	1.20	2.60	5.00	
		f _{HCLK} = f _{MSI} ,	Danga 4	4	0.07	0.14	0.33	0.80	1.55	0.17	0.39	1.10	2.50	4.80	
		all peripherals disabled	Range 4	2	0.06	0.13	0.33	0.78	1.50	0.15	0.37	1.10	2.50	4.80	
				1	0.05	0.12	0.32	0.77	1.50	0.14	0.36	1.10	2.50	4.80	
			0.4	0.04	0.11	0.32	0.77	1.50	0.13	0.35	1.00	2.50	4.80		
I _{DD}	Supply current in			0.1	0.04	0.11	0.32	0.76	1.50	0.12	0.35	1.00	2.40	4.80	
(Sleep				160	3.30	3.50	4.00	4.75	6.15	4.10	4.70	6.40	9.60	16.00	111/-4
			Range 1	140	2.95	3.15	3.70	4.45	5.80	3.70	4.30	6.00	9.20	15.00	
		f _{HCLK} = PLL on HSE 16 MHz in bypass mode,		120	2.60	2.80	3.35	4.10	5.45	3.30	3.90	5.60	8.80	15.00	
		all peripherals disabled		110	2.10	2.25	2.65	3.25	4.30	2.60	3.10	4.30	6.70	11.00	
			Range 2	72	1.55	1.70	2.10	2.70	3.75	2.00	2.40	3.70	6.10	11.00	
				64	1.45	1.60	2.00	2.55	3.65	1.90	2.30	3.60	5.90	10.00	
		f _{HCLK} = f _{HSE} bypass mode,	Range 3	55	0.96	1.05	1.40	1.85	2.70	1.30	1.60	2.50	4.30	7.30	
		all peripherals disabled	range 5	32	0.70	0.81	1.10	1.60	2.45	0.91	1.30	2.20	4.00	7.00	

1. Evaluated by characterization. Not tested in production.

2. The maximum value is at V_{DD} = 1.71 V in Sleep mode on SMPS.

Π
_
Φ
0
+
⊐.
0
X
<u> </u>
_
n
Т
5
¥
<u></u>
~
<u>Q</u>
×
¥
<u> </u>
S
Ť.
Ξ.
2
S

Ľ

148/301	ō		Conditions	lash mem S			Typ at V _{DD} = 3.0 V						Max at V _{DD} = 3.0 V ⁽¹⁾					
	Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	30°C	55°C	85°C	105°C	125°C	Unit		
					24	0.18	0.23	0.40	0.65	1.15	0.25	0.41	0.90	1.70	3.20			
					16	0.13	0.19	0.35	0.60	1.10	0.20	0.36	0.86	1.70	3.10			
					12	0.11	0.17	0.33	0.58	1.05	0.18	0.34	0.83	1.60	3.10			
			f _{HCLK} = f _{MSI} ,	Range 4	4	0.05	0.11	0.27	0.52	1.00	0.12	0.28	0.77	1.60	3.00			
			all peripherals disabled	Trange 4	2	0.04	0.09	0.26	0.51	1.00	0.11	0.26	0.75	1.60	3.00			
					1	0.04	0.09	0.25	0.51	1.00	0.10	0.26	0.75	1.50	3.00			
		Supply current in			0.4	0.03	0.08	0.25	0.50	0.99	0.09	0.25	0.74	1.50	3.00			
Dg	I _{DD}				0.1	0.03	0.08	0.25	0.50	0.99	0.09	0.25	0.74	1.50	3.00	mA		
DS14217 Rev	(Sleep)	Sleep mode			160	2.55	2.70	3.10	3.65	4.65	3.00	3.40	4.70	6.60	11.00	IIIA		
17 R				Range 1	140	2.30	2.45	2.85	3.40	4.40	2.70	3.20	4.40	6.30	9.90			
lev 4			f _{HCLK} = PLL on HSE 16 MHz in bypass mode,		120	2.05	2.20	2.60	3.15	4.15	2.50	2.90	4.10	6.00	9.60			
-			all peripherals disabled		110	1.70	1.80	2.10	2.55	3.35	2.00	2.30	3.20	4.60	7.30			
				Range 2	72	1.30	1.40	1.70	2.15	2.95	1.60	1.90	2.80	4.20	6.90			
l.					64	1.20	1.35	1.65	2.05	2.85	1.50	1.80	2.70	4.10	6.70			
			f _{HCLK} = f _{HSE} bypass mode,	Range 3	55	0.88	0.97	1.20	1.55	2.20	1.10	1.30	2.00	3.10	5.10			
			all peripherals disabled	Trange 3	32	0.67	0.75	0.99	1.35	2.00	0.82	1.10	1.80	2.80	4.80			

1. Evaluated by characterization. Not tested in production.

S
- i
2
ω
N
5
8
ŝ
σ
×
×

		Conditions					Тур					Max ^{(*}	I)		
Symbol	Parameter	-	Voltage scaling	f _{HCLK} (MHz)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Uı
			Range 4	24	0.01	0.04	0.13	0.27	0.54	0.04	0.12	0.38	0.81	1.63	
	LDO		Range 1	160	0.03	0.08	0.21	0.41	0.80	0.10	0.23	0.63	1.24	2.39	
	LDO		Range 2	110	0.02	0.06	0.17	0.35	0.69	0.07	0.18	0.52	1.05	2.08	
			Range 3	55	0.02	0.05	0.15	0.30	0.60	0.05	0.15	0.44	0.90	1.80	
		SRAM1 supply	Range 4	24	0.005	0.01	0.05	0.10	0.21	0.01	0.04	0.15	0.31	0.62	
ا _ط ا	SMPS	current in Run/Sleep mode	Range 1	160	0.02	0.04	0.11	0.22	0.42	0.06	0.12	0.34	0.67	1.27	
(SRAM1)	VDD = 3.0 V	(SRAM1PD = 1 versus	Range 2	110	0.01	0.03	0.09	0.18	0.34	0.04	0.09	0.26	0.53	1.02	m
		SRAM1PD = 0)	Range 3	55	0.01	0.02	0.07	0.14	0.28	0.02	0.07	0.21	0.42	0.85	
			Range 4	24	0.01	0.02	0.08	0.17	0.35	0.03	0.08	0.25	0.54	1.09	
	SMPS ⁽²⁾		Range 1	160	0.03	0.07	0.19	0.37	0.70	0.10	0.22	0.60	1.17	2.22	
	SIVIPS(-/		Range 2	110	0.02	0.05	0.15	0.29	0.57	0.06	0.16	0.46	0.92	1.80	
			Range 3	55	0.01	0.04	0.11	0.24	0.47	0.04	0.12	0.36	0.74	1.50	1

- - - -. . .

1. Evaluated by characterization. Not tested in production.

2. The typical value is measured at V_{DD} = 1.8 V. The maximum value is for 1.71 V $\leq V_{DD} \leq$ 3.6 V and is at V_{DD} = 1.71 V in Run/Sleep mode on SMPS.

150/301

Table 48. Static power consumption of flash banks, when supplied by LDO/SMPS

Symbol	Parameter			Тур					Max ⁽¹⁾)		Unit
Symbol	Farameter	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
I _{DD} (Flash_Bank1) ⁽²⁾	Flash bank 1 static consumption in normal mode (PD1 = 1 versus PD1 = 0)	45.0	45.0	50.0	50.0	100.0	60.0	100.0	100.0	100.0	150.0	
I _{DD} (Flash_Bank2) ⁽²⁾	Flash bank 2 static consumption in normal mode (PD2 = 1 versus PD2 = 0)	45.0	45.0	50.0	50.0	100.0	60.0	100.0	100.0	100.0	150.0	μA
I _{DD} (Flash_Bank_LPM) ⁽³⁾	One flash bank additional static consumption in normal mode versus low-power mode (LPM = 0 versus LPM = 1)	25.0	25.0	25.0	25.0	50.0	40.0	40.0	40.0	40.0	70.0	

1. Evaluated by characterization. Not tested in production.

2. When one bank is in power-down, this consumption is saved. When the flash memory is in power down in Sleep mode (SLEEP_PD =1), Bank 1 and Bank 2 are in power down.

3. If no bank is in power-down, the flash memory additional static consumption in normal mode versus low-power mode is 2 x I_{DD(Flash Bank LPM)}.

		Table 49. Cur	rent col	nsumpti	on in St	op u mo	ae on Li	0					
Symbol	Parameter	Conditions			Тур					Max ⁽¹⁾			Unit
Symbol	Farameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
	Quarte compart in Oton Quarted	1.8	74.5	165	435	845	1600	230	500	1400	2600	4800	
	Supply current in Stop 0 mode, regulator in Range 4,	2.4	74.5	165	435	845	1600	230	500	1400	2600	4800	
	RTC disabled,	3.0	74.5	165	440	845	1600	230	500	1400	2600	4800	
	8-Kbyte SRAM2 + ICACHE	3.3	75.0	165	440	850	1600	230	500	1400	2600	4800	
retained	3.6	76.0	170	440	850	1650	230	510	1400	2600	5000	μA	
I _{DD(Stop 0)}	1.8	79.0	175	465	905	1750	240	530	1400	2800	5300	μΑ	
	Supply current in Stop 0 mode,	2.4	79.0	175	465	910	1750	240	530	1400	2800	5300	
regulator in Range 4, RTC disabled, All SRAMs retained	3.0	79.0	175	465	910	1750	240	530	1400	2800	5300		
	· ·	3.3	79.5	175	465	910	1750	240	530	1400	2800	5300	
		3.6	80.5	180	470	915	1750	250	540	1500	2800	5300	

Table 49. Current consumption in Stop 0 mode on LDO

STM32U535xx

1. Evaluated by characterization. Not tested in production.

Symbol	Parameter	Conditions			Тур					Max ⁽¹⁾			Unit
Symbol	Faiametei	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
		1.8	26.0	73.0	215	400	945	78.0	220	650	1200	2900	
	Supply current in Stop 0 mode, regulator in Range 4,	2.4	23.5	64.5	190	375	735	71.0	200	570	1200	2300	
	RTC disabled,	3.0	20.5	55.0	160	320	625	62.0	170	480	960	1900	
1	8-Kbyte SRAM2 + ICACHE retained	3.3	19.5	52.0	150	300	590	59.0	160	450	900	1800	
	retained	3.6	19.0	50.5	145	290	560	57.0	160	440	870	1700	
DD(Stop 0)		1.8	28.5	78.0	235	455	1050	86.0	240	710	1400	3200	μA
	Supply current in Stop 0 mode,	2.4	25.5	68.5	200	405	795	77.0	210	600	1300	2400	
	regulator in Range 4, RTC disabled,	3.0	22.0	58.5	170	340	675	66.0	180	510	1100	2100	
	All SRAM retained	3.3	21.0	55.5	160	325	635	63.0	170	480	980	2000	1
		3.6	20.5	53.5	155	310	605	62.0	170	470	930	1900	

Table 50. Current consumption in Stop 0 mode on SMPS

1. Evaluated by characterization. Not tested in production.

Table 51. Current consumption in Stop 1 mode on LDO

Symbol	Parameter	Conditions			Тур			Max ⁽¹⁾					
	rarameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
		1.8	41.5	130	385	770	1500	130	390	1200	2400	4500	
	Supply current in Stop 1 mode,	2.4	44.5	130	385	770	1500	140	390	1200	2400	4500	
I _{DD (Stop 1)}	RTC disabled, 8-Kbyte SRAM2 + ICACHE	3.0	47.0	130	385	775	1500	150	390	1200	2400	4500	μA
	retained	3.3	46.0	130	390	775	1500	140	390	1200	2400	4500	
		3.6	45.5	135	390	780	1500	140	410	1200	2400	4500	

DS14217 Rev 4

5

Electrica	
I characteri	
istics	

STM32U535xx

	Tab	le 51. Currer	nt consu	mption	in Stop 1	. mode c	on LDO (o	continue	ed)				
Symbol	Parameter	Conditions			Тур					Max ⁽¹⁾			Un
Symbol	Farameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	
		1.8	48.5	135	410	830	1600	150	410	1300	2500	4800	
	Supply current in Stop 1 mode,	2.4	48.0	135	410	830	1650	150	410	1300	2500	5000	
I _{DD (Stop 1)}	RTC disabled, All SRAMs retained	3.0	50.0	140	415	830	1650	150	420	1300	2500	5000	
		3.3	49.5	140	415	835	1650	150	420	1300	2600	5000	
		3.6	49.5	140	420	840	1650	150	420	1300	2600	5000	
		1.8	45.0	130	385	770	1500	140	390	1200	2400	4500	
	Supply current in Stop 1 mode,	2.4	45.0	130	385	770	1500	140	390	1200	2400	4500	
	RTC ⁽²⁾ clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE	3.0	47.0	130	385	775	1500	150	390	1200	2400	4500	
	retained	3.3	46.5	130	390	780	1500	140	390	1200	2400	4500	
		3.6	46.5	135	390	780	1500	140	410	1200	2400	4500	μA
		1.8	45.0	125	375	755	1450	140	380	1200	2300	4400	μΑ
	Supply current in Stop 1 mode, RTC ⁽²⁾ clocked by LSE	2.4	44.0	130	380	765	1500	140	390	1200	2300	4500	
I _{DD} (Stop 1 with RTC)	bypassed at 32768 Hz,	3.0	46.5	130	380	765	1500	140	390	1200	2300	4500	
with KTC)	8-Kbyte SRAM2 + ICACHE retained	3.3	46.5	130	380	765	1500	140	390	1200	2300	4500	
		3.6	46.0	145	385	770	1500	140	440	1200	2400	4500	
	Supply current in Stop 1 mode,	1.8	44.5	130	385	770	1500	-	-	-	-	-	
	RTC ⁽²⁾ clocked by LSE quartz in	2.4	45.0	130	385	770	1500	-	-	-	-	-	
	low-drive mode, LSESYSEN = 0 in RCC_BDCR,	3.0	47.0	130	385	775	1500	-	-	-	-	-	
	8-Kbyte SRAM2 + ICACHE	3.3	47.0	130	385	775	1500	-	-	-	-	-	
	retained	3.6	46.5	135	390	780	1500	-	-	-	-	-	

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

DS14217 Rev 4

5

S
-
3
ω
2
5
ພ
σī
X
×

	Table 52. Current consumption duri	ng wake-up from Stop 1 mode on Ll	00			
Symbol	Parameter	Conditions	Тур	Unit		
Symbol	Farameter	-	V _{DD} (V)	25°C	Unit	
		Wake-up clock is MSI 24 MHz		40		
	Electrical charge consumed during wake-up from Stop 1 mode	Wake-up clock is HSI 16 MHz	3.0	40	nAs	
		Wake-up clock is MSI 1 MHz		70		

Cumhal	Devenueter	Conditions			Тур			Max ⁽¹⁾					– Unit
Symbol	Parameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
		1.8	26.0	72.5	215	400	945	78.0	220	650	1200	2900	
	Supply current in Stop 1 mode,	2.4	23.5	64.0	185	375	735	71.0	200	560	1200	2300	
	RTC disabled, 8-Kbyte SRAM2 + ICACHE retained	3.0	20.0	54.5	160	320	625	60.0	170	480	960	1900	
		3.3	19.0	51.5	150	300	590	57.0	160	450	900	1800	
		3.6	19.0	50.0	145	285	560	57.0	150	440	860	1700	
DD(Stop 1)		1.8	28.0	78.0	235	455	1000	84.0	240	710	1400	3000	μA
	Supply current in Stop 1 mode,	2.4	25.0	68.5	200	405	795	75.0	210	600	1300	2400	
	RTC disabled,	3.0	21.5	58.0	170	340	675	65.0	180	510	1100	2100	
	All SRAMs retained	3.3	20.5	55.0	160	320	635	62.0	170	480	960	2000	1
		3.6	20.5	53.5	155	310	605	62.0	170	470	930	1900	1

Table 53. Current consumption in Stop 1 mode on SMPS

DS14217 Rev 4

5

Electrical
characteristic

STM32U535xx

Cumb al	Deveryoter	Conditions			Тур			Max ⁽¹⁾					Unit
Symbol	Parameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	
		1.8	26.0	73.0	215	400	945	78.0	220	650	1200	2900	
	Supply current in Stop 1 mode,	2.4	23.5	64.5	190	375	735	71.0	200	570	1200	2300	1
	RTC ⁽²⁾ clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE	3.0	20.5	55.0	160	320	625	62.0	170	480	960	1900	1
	retained	3.3	19.5	52.0	150	300	590	59.0	160	450	900	1800	
		3.6	19.5	50.5	145	290	565	59.0	160	440	870	1700	1
	Supply current in Stop 1 mode, RTC ⁽²⁾ clocked by LSE bypassed at 32768 Hz,	1.8	22.0	60.0	210	310	910	66.0	180	630	930	2800	1
		2.4	23.5	63.0	185	365	710	71.0	190	560	1100	2200	
DD(Stop 1 with RTC)		3.0	20.5	54.0	155	310	605	62.0	170	470	930	1900	μA
wiul RIC)	8-Kbyte SRAM2 + ICACHE retained	3.3	19.5	51.0	145	295	570	59.0	160	440	890	1800	
		3.6	19.5	49.5	140	280	545	59.0	150	420	840	1700	1
	Supply current in Stop 1 mode,	1.8	26.0	73.0	215	400	945	-	-	-	-	-	
	RTC ⁽²⁾ clocked by LSE quartz	2.4	23.5	64.5	190	375	735	-	-	-	-	-	
	in low-drive mode, LSESYSEN = 0 in RCC BDCR,	3.0	20.5	55.0	160	320	625	-	-	-	-	-	
	8-Kbyte SRAM2 + ICACHE	3.3	19.5	52.0	150	300	590	-	-	-	-	-	1
	retained	3.6	19.5	50.5	145	290	565	-	-	-	-	-	1

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

DS14217 Rev 4

		Table 54. Current consumption durin	g wake-up from Stop 1 mode on SN	1PS			
	Symbol	Parameter	Conditions	Тур	Unit		
	Symbol	Falametei	-	V _{DD} (V)	25°C	Unit	
			Wake-up clock is MSI 24 MHz		40	nAs	
		Electrical charge consumed during wake-up from Stop 1 mode	Wake-up clock is HSI 16 MHz	3.0	40		
			Wake-up clock is MSI 1 MHz		70		

Table 55. Current consumption in Stop 2 mode on LDO

Cumhal	Parameter	Conditions			Тур			Max ⁽¹⁾					
Symbol	rananeter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Uni
		1.8	7.10	18.00	55.00	110.00	230.00	22.00	54.00	170.00	330.00	690.00	
	Supply current in Stop 2	2.4	7.60	19.50	55.50	115.00	230.00	23.00	59.00	170.00	350.00	690.00	1
	mode, RTC disabled, 8-Kbyte SRAM2 + ICACHE	3.0	7.80	21.50	56.00	115.00	230.00	24.00	65.00	170.00	350.00	690.00	1
	retained	3.3	7.85	22.00	57.00	115.00	235.00	24.00	66.00	180.00	350.00	710.00	1
		3.6	8.30	21.00	58.50	120.00	240.00	25.00	63.00	180.00	360.00	720.00	- uA
DD(Stop 2)		1.8	11.00	27.50	84.50	175.00	365.00	33.00	83.00	260.00	530.00	1100.00	μΑ
	Supply current in Stop 2	2.4	11.50	29.00	85.50	175.00	365.00	35.00	87.00	260.00	530.00	1100.00	1
r	Mode, RTC disabled, All SRAMs retained	3.0	12.00	31.50	85.50	180.00	370.00	36.00	95.00	260.00	540.00	1200.00	1
		3.3	12.00	32.50	86.50	180.00	370.00	36.00	98.00	260.00	540.00	1200.00	1
		3.6	12.00	30.50	88.50	185.00	380.00	36.00	92.00	270.00	560.00	1200.00	1

5

Electrical
characteristic

0h.al	Demonster	Conditions			Тур					Max ⁽¹⁾)		
Symbol	Parameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Uni
		1.8	7.40	18.00	55.00	115.00	230.00	23.00	54.00	170.00	350.00	690.00	
	Supply current in Stop 2 mode, RTC ⁽²⁾ clocked by	2.4	7.80	20.00	55.50	115.00	230.00	24.00	60.00	170.00	350.00	690.00	1
	LSI 32 kHz,	3.0	8.20	22.00	56.00	115.00	230.00	25.00	66.00	170.00	350.00	690.00]
	8-Kbyte SRAM2 + ICACHE retained	3.3	8.30	22.00	57.00	115.00	235.00	25.00	66.00	180.00	350.00	710.00	1
		3.6	8.80	21.50	59.00	120.00	240.00	27.00	65.00	180.00	360.00	720.00	1
	Supply current in Stop 2 mode, RTC ⁽²⁾ clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained	1.8	7.25	18.00	55.00	110.00	230.00	22.00	54.00	170.00	330.00	690.00	Ī
		2.4	7.60	19.50	55.50	115.00	230.00	23.00	59.00	170.00	350.00	690.00]
		3.0	7.90	21.50	56.00	115.00	230.00	24.00	65.00	170.00	350.00	690.00]
		3.3	8.00	22.00	57.00	115.00	235.00	24.00	66.00	180.00	350.00	710.00	μΑ
DD(Stop 2		3.6	8.40	21.00	59.00	120.00	240.00	26.00	63.00	180.00	360.00	720.00	
with RTC)		1.8	7.30	17.50	54.00	110.00	225.00	22.00	53.00	170.00	330.00	680.00	Τ μΑ
	Supply current in Stop 2 mode, RTC ⁽²⁾ clocked by	2.4	7.75	19.50	55.00	115.00	225.00	24.00	59.00	170.00	350.00	680.00	1
	LSE bypassed at 32768 Hz,	3.0	8.10	21.50	55.50	115.00	230.00	25.00	65.00	170.00	350.00	690.00	1
	8-Kbyte SRAM2 + ICACHE retained	3.3	8.30	22.00	56.50	115.00	230.00	25.00	66.00	170.00	350.00	690.00	1
		3.6	9.80	21.50	58.50	120.00	235.00	30.00	65.00	180.00	360.00	710.00	1
	Supply current in Stop 2	1.8	7.45	18.00	55.00	115.00	230.00	-	-	-	-	-	1
	mode, RTC ⁽²⁾ clocked by	2.4	7.85	20.00	56.00	115.00	230.00	-	-	-	-	-]
	LSE quartz in low-drive mode,	3.0	8.20	22.00	56.50	115.00	230.00	-	-	-	-	-]
	8-Kbyte SRAM2 + ICACHE	3.3	8.25	22.50	57.00	115.00	235.00	-	-	-	-	-]
	retained	3.6	8.65	21.50	59.00	120.00	240.00	-	-	-	-	-]

Table 55. Current consumption in Stop 2 mode on LDO (continued)

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

DS14217 Rev 4

S
-
_
<
ω
N
_
C)
Č.
ČΠ
<u> </u>
\sim
×
F.4

	Table 56. SRAM static power con	sumpti	on in S	top 2 w	vhen su	pplied	by LDC)				
Querry has h	Demonster		Max ⁽¹⁾					Unit				
Symbol	Parameter	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	
I _{DD(SRAM1_64kB)} ⁽²⁾	SRAM1 64-Kbyte page x static consumption (SRAM1PDSx = 1 versus SRAM1PDSx = 0)	0.9	2.1	6.3	12.6	28.5	2.8	6.3	19.0	38.0	86.0	
I _{DD(SRAM2_8KB)} ⁽³⁾	SRAM2 8-Kbyte page 1 static consumption (SRAM2PDS1 = 1 versus SRAM2PDS1 = 0)	0.2	0.5	1.5	3.2	6.6	0.7	1.5	4.5	9.7	20.0	
I _{DD(SRAM2_56KB)} ⁽³⁾	SRAM2 56-Kbyte page 2 static consumption (SRAM2PDS2 = 1 versus SRAM2PDS2 = 0)	1.1	2.8	8.4	17.3	37.8	3.3	8.4	26.0	52.0	120.0	
I _{DD(SRAM4)}	SRAM4 static consumption (SRAM4PDS = 1 versus SRAM4PDS = 0)	0.3	0.6	2.0	4.1	8.4	0.9	1.8	6.0	13.0	26.0	
I _{DD(ICRAM)}	ICACHE SRAM static consumption (ICRAMPDS = 1 versus ICRAMPDS = 0)	0.2	0.4	1.3	2.7	5.6	0.5	1.2	3.9	8.2	17.0	μA
IDD(DC1RAM)	DCACHE1 SRAM static consumption (DC1RAMPDS = 1 versus DC1RAMPDS = 0)	0.1	0.2	0.8	1.6	3.0	0.3	0.6	2.4	4.9	9.2	Ì
I _{DD(PRAM)}	FMAC, FDCAN and USB SRAM static consumption (PRAMPDS = 1 versus PRAMPDS = 0)	0.1	0.1	0.5	0.9	1.7	0.3	0.3	1.5	2.7	5.1	Ì

DS14217 Rev 4

1. Evaluated by characterization. Not tested in production.

2. SRAM1 total consumption is $3 \times I_{DD(SRAM1_{64KB})}$.

3. SRAM2 total consumption is $I_{DD(SRAM2_8KB)} + I_{DD(SRAM2_56KB)}$.

Symbol	Parameter	Conditions	Тур	– Unit	
	Farameter	-	V _{DD} (V)	25°C	
		Wake-up clock is MSI 24 MHz		30	
	Electrical charge consumed during wake-up from Stop 2 mode	Wake-up clock is HSI 16 MHz	3.0	30	nAs
		Wake-up clock is MSI 1 MHz		70	1

Table 57. Current consumption during wake-up from Stop 2 mode on LDO

Ш
_
¥.
Q
=
<u> </u>
C C
മ
_
0
÷
2
¥
പ്
~
<u> </u>
ö
÷.
-
<u>s</u>
=
0
ö
•

DS14217 Rev 4

		Table 58. C	Current o	consump	tion in S	Stop 2 m	ode on S	SMPS					
Cumhal	Devenuetor	Conditions			Тур			Max ⁽¹⁾					
Symbol	Parameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	- Uni
		1.8	3.70	9.9	30.5	64.5	135	11.0	30.0	90.0	190.0	400.0	
	Supply current in Stop 2 mode,	2.4	3.40	9.0	27.5	58.0	120	11.0	27.0	81.0	170.0	350.0	1
	RTC disabled, 8-Kbyte SRAM2 + ICACHE retained	3.0	3.00	7.9	24.0	51.0	110	8.9	24.0	71.0	150.0	320.0	
		3.3	3.05	7.9	23.5	49.5	105	8.9	23.0	69.0	150.0	310.0	
		3.6	3.50	8.5	24.0	50.0	105	10.0	25.0	69.0	150.0	300.0	
DD(Stop 2)		1.8	5.90	15.0	46.5	100.0	210	18.0	45.0	140.0	300.0	620.0	μA
	Supply current in Stop 2 mode,	2.4	5.35	13.5	41.5	88.0	185	16.0	41.0	130.0	260.0	550.0	1
	RTC disabled,	3.0	4.60	11.5	36.0	76.5	160	14.0	35.0	110.0	230.0	470.0	
	all SRAMs retained	3.3	4.60	11.5	34.5	73.5	155	14.0	34.0	110.0	220.0	460.0	1
		3.6	4.95	12.0	34.5	72.5	155	15.0	35.0	110.0	220.0	450.0	1

158/301

7

S	
~	
>	
ω	
N	
S	
ω	
SI U	
¥ .	
<u> </u>	
×	

Electrical characteristics

•	Descrite	Conditions		Тур				Max ⁽¹⁾					
Symbol	Parameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	- U
		1.8	3.95	10.0	31.0	65.0	135	12.0	30.0	92.0	200.0	400.0	
	Supply current in Stop 2 mode,	2.4	3.70	9.3	28.0	58.0	120	11.0	28.0	83.0	170.0	350.0	
	RTC ⁽²⁾ clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE	3.0	3.40	8.3	24.5	51.5	110	11.0	25.0	72.0	150.0	320.0	
	retained	3.3	3.50	8.3	24.0	50.0	105	11.0	25.0	70.0	150.0	310.0	
		3.6	4.00	9.0	24.5	50.5	105	12.0	26.0	71.0	150.0	300.0	
	Supply current in Stop 2 mode, RTC ⁽²⁾ clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained	1.8	3.80	10.0	30.5	64.5	135	12.0	30.0	90.0	190.0	400.0	
		2.4	3.50	9.1	27.5	58.0	120	11.0	27.0	81.0	170.0	350.0	
		3.0	3.10	8.0	24.5	51.0	110	9.2	24.0	72.0	150.0	320.0	
		3.3	3.20	8.0	24.0	50.0	105	9.4	24.0	70.0	150.0	310.0	
DD(Stop 2		3.6	3.65	8.6	24.5	50.5	105	11.0	25.0	71.0	150.0	300.0	- 1
with RTC)		1.8	3.35	8.5	26.0	55.0	115	10.0	26.0	77.0	170.0	340.0	ŀ
	Supply current in Stop 2 mode, RTC ⁽²⁾ clocked by LSE	2.4	3.65	9.1	27.0	56.5	120	11.0	27.0	80.0	170.0	350.0	
	bypassed at 32768 Hz,	3.0	3.30	8.1	24.0	50.0	105	9.8	24.0	71.0	150.0	310.0	
	8-Kbyte SRAM2 + ICACHE retained	3.3	3.45	8.2	23.5	49.0	100	11.0	24.0	69.0	150.0	290.0	
		3.6	4.00	8.8	24.0	49.5	100	12.0	26.0	69.0	150.0	290.0	
		1.8	4.00	10.5	31.0	65.0	135	-	-	-	-	-	
	Supply current in Stop 2 mode, RTC ⁽²⁾ clocked by LSE quartz in	2.4	3.70	9.3	28.0	58.5	120	-	-	-	-	-	
	low-drive mode,	3.0	3.35	8.3	24.5	51.5	110	-	-	-	-	-	
	8-Kbyte SRAM2 + ICACHE retained	3.3	3.40	8.3	24.0	50.0	105	-	-	-	-	-	
		3.6	3.90	8.9	24.5	50.5	105	-	-	-	-	-	

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

DS14217 Rev 4

5

Electrical	
characteris	
stics	

Unit

μA

Max⁽¹⁾

7.2

1.8

9.6

2.1

1.5

0.9

0.6

85°C 105°C 125°C

16.0

3.7

21.0

4.8

3.0

1.8

0.9

34.0

8.2

45.0

11.0

6.9

4.0

2.2

160/301

Symbol

I_{DD(SRAM1_64kB)}⁽²⁾

 $I_{\text{DD}(\text{SRAM2}_8\text{KB})}^{(3)}$

I_{DD(SRAM2_56KB)}⁽³⁾

I_{DD(SRAM4)}

I_{DD(ICRAM)}

IDD(DC1RAM)

I_{DD(PRAM)}

DS14217 Rev 4

1. Evaluated by characterization. Not tested in production.

2. SRAM1 total consumption is 3 × I_{DD(SRAM1 64KB)}.

3. SRAM2 total consumption is I_{DD(SRAM2_8KB)} + I_{DD(SRAM2_56KB)}.

Parameter

SRAM1 64-Kbyte page x static consumption

(SRAM1PDSx = 1 versus SRAM1PDSx = 0)SRAM2 8-Kbyte page 1 static consumption

(SRAM2PDS1 = 1 versus SRAM2PDS1 = 0)

SRAM2 56-Kbyte page 2 static consumption

(SRAM2PDS2 = 1 versus SRAM2PDS2 = 0)

(SRAM4PDS = 1 versus SRAM4PDS = 0)

(ICRAMPDS = 1 versus ICRAMPDS = 0)

(DC1RAMPDS = 1 versus DC1RAMPDS = 0)

FMAC, FDCAN and USB SRAM static consumption

ICACHE SRAM static consumption

DCACHE1 SRAM static consumption

(PRAMPDS = 1 versus PRAMPDS = 0)

SRAM4 static consumption

		Table 60. Current consumption durin	g wake-up from Stop 2 mode on SN	/IPS		
Symbol	Parameter	Conditions	Тур	Unit		
	Falanetei	-	V _{DD} (V)	25°C	Onic	
			Wake-up clock is MSI 24 MHz		30	
Q _{DD(wakeup} from Stop 2)	Electrical charge consumed during wake-up from Stop 2 mode	Wake-up clock is HSI 16 MHz	3.0	30	nAs	
			Wake-up clock is MSI 1 MHz		70	

Table 59. SRAM static power consumption in Stop 2 when supplied by SMPS

25°C

0.3

0.1

0.4

0.1

0.1

0.0

0.0

55°C

0.8

0.2

1.0

0.2

0.2

0.1

0.1

Тур

85°C

2.4

0.6

3.2

0.7

0.5

0.3

0.2

105°C

5.2

1.2

7.0

1.6

1.0

0.6

0.3

125°C

11.2

2.7

14.9

3.4

2.3

1.3

0.7

25°C

1.1

0.2

1.2

0.3

0.2

0.1

0.1

55°C

2.4

0.6

3.1

0.7

0.5

0.3

0.2

S
Ľ
\leq
ω
Ν
5
ω
Ö
×.
2

S
-
<
ω
N
S
ω
ČΓ
\sim
<u> </u>
×

		Table 61.	Current	consum	otion in	Stop 3 m	node on	LDO					
Symbol	Parameter	Conditions			Тур			Max ⁽¹⁾					11
Symbol	Faranieler	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
		1.8	4.10	12.5	38.5	83	175	13.0	38.0	120.0	250.0	520.0	
	Supply current in Stop 3 mode,	2.4	4.25	12.0	39.0	84	180	13.0	36.0	120.0	250.0	530.0	
	RTC disabled, 8-Kbyte SRAM2 + ICACHE retained	3.0	4.55	12.0	39.5	86	180	14.0	36.0	120.0	260.0	530.0	
		3.3	4.60	12.5	40.5	87	185	14.0	37.0	120.0	260.0	550.0	
		3.6	5.70	14.5	42.5	90	185	17.0	43.0	130.0	270.0	540.0	
DD(Stop 3)		1.8	6.45	21.5	71.0	160	345	20.0	65.0	220.0	480.0	1100.0	μA
	Supply current in Stop 3 mode, RTC disabled, all SRAMs retained	2.4	7.35	20.0	71.5	160	350	22.0	60.0	220.0	480.0	1100.0	-
		3.0	7.90	20.5	72.0	160	350	24.0	62.0	220.0	480.0	1100.0	
		3.3	7.70	20.5	73.0	165	355	23.0	61.0	220.0	490.0	1100.0	
		3.6	9.35	23.5	75.0	165	360	28.0	70.0	230.0	490.0	1100.0	

5

Electrica	
I characteri	
istics	

0	Parameter	Conditions			Тур			Max ⁽¹⁾					
Symbol		V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Un
		1.8	4.25	12.5	38.5	84	175	13.0	38.0	120.0	250.0	520.0	
	Supply current in Stop 3 mode,	2.4	4.55	12.0	39.0	84	180	14.0	36.0	120.0	250.0	530.0	
	RTC ⁽²⁾ clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE	3.0	4.90	12.5	40.0	86	180	15.0	38.0	120.0	260.0	530.0	
	retained	3.3	5.10	13.0	41.0	87	185	16.0	39.0	130.0	260.0	550.0	
		3.6	6.20	15.0	43.0	90	190	19.0	44.0	130.0	270.0	560.0	
	Supply current in Stop 3 mode, RTC ⁽²⁾ clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained	1.8	3.90	12.5	38.5	83	175	12.0	38.0	120.0	250.0	520.0	
		2.4	4.40	12.0	39.0	84	180	14.0	36.0	120.0	250.0	530.0	
		3.0	4.75	12.5	40.0	86	180	15.0	38.0	120.0	260.0	530.0	
		3.3	4.75	12.5	41.0	87	185	14.0	37.0	130.0	260.0	550.0	
D(Stop 3		3.6	5.85	14.5	42.5	90	190	17.0	43.0	130.0	270.0	560.0	1
vith RTC)		1.8	4.30	12.5	38.0	82	175	13.0	38.0	120.0	250.0	520.0	μ
	Supply current in Stop 3 mode, RTC ⁽²⁾ clocked by LSE	2.4	4.50	12.0	39.0	84	175	14.0	36.0	120.0	250.0	520.0	
	bypassed at 32768 Hz,	3.0	5.00	12.5	39.5	85	180	15.0	38.0	120.0	250.0	530.0	
	8-Kbyte SRAM2 + ICACHE retained	3.3	5.10	12.5	40.5	86	180	16.0	37.0	120.0	260.0	530.0	
		3.6	6.05	15.5	42.5	89	185	18.0	46.0	130.0	270.0	540.0	
		1.8	4.20	13.0	39.0	84	175	-	-	-	-	-	
	Supply current in Stop 3 mode, RTC ⁽²⁾ clocked by LSE quartz in	2.4	4.65	12.5	39.5	85	180	-	-	-	-	-	1
	low-drive mode,	3.0	5.10	12.5	40.5	86	180	-	-	-	-	-	1
	8-Kbyte SRAM2 + ICACHE retained	3.3	5.10	13.0	41.0	88	185	-	-	-	-	-	-
		3.6	6.25	15.0	43.0	90	190	-	-	-	-	-	

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

DS14217 Rev 4

Ľ

	Proventer			Тур			Max ⁽¹⁾					
Symbol	Parameter		55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Uni
I _{DD(SRAM1_64kB)} ⁽²⁾	SRAM1 64-Kbyte page x static consumption (SRAM1PDSx = 1 versus SRAM1PDSx = 0)	0.8	1.8	6.9	16.1	36.4	2.4	5.4	21.0	49.0	110.0	
I _{DD(SRAM2_8KB)} ⁽³⁾	SRAM2 8-Kbyte page 1 static consumption (SRAM2PDS1 = 1 versus SRAM2PDS1 = 0)	0.3	0.6	2.6	5.8	13.2	0.8	1.8	7.8	18.0	40.0	
I _{DD(SRAM2_56KB)} ⁽³⁾	SRAM2 56-Kbyte page 2 static consumption (SRAM2PDS2 = 1 versus SRAM2PDS2 = 0)	1.0	2.2	8.5	19.5	43.3	3.0	6.6	26.0	59.0	130.0	
I _{DD(SRAM4)}	SRAM4 static consumption (SRAM4PDS = 1 versus SRAM4PDS = 0)	0.2	0.4	1.8	4.1	9.7	0.6	1.2	5.4	13.0	30.0	
I _{DD(ICRAM)}	ICACHE SRAM static consumption (ICRAMPDS = 1 versus ICRAMPDS = 0)	0.1	0.3	1.3	2.6	6.4	0.4	0.9	3.9	7.8	20.0	μA
I _{DD(DC1RAM)}	DCACHE1 SRAM static consumption (DC1RAMPDS = 1 versus DC1RAMPDS = 0)	0.0	0.1	0.7	1.3	3.5	0.0	0.3	2.1	3.9	11.0	
I _{DD(PRAM)}	FMAC, FDCAN and USB SRAM static consumption (PRAMPDS = 1 versus PRAMPDS = 0)	0.1	0.1	0.4	0.7	2.6	0.2	0.3	1.2	2.2	7.8	

1. Evaluated by characterization. Not tested in production.

2. SRAM1 total consumption is $3 \times I_{DD(SRAM1_{64KB})}$.

3. SRAM2 total consumption is $I_{DD(SRAM2_8KB)} + I_{DD(SRAM2_56KB)}$.

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Unit	
Cymbol	i arameter	-	V _{DD} (V)	25°C	Onic
Q _{DD(wakeup} from Stop 3)		Wake-up clock is MSI 24 MHz		430	
	Electrical charge consumed during wake-up from Stop 3 mode	Wake-up clock is HSI 16 MHz	3.0	410	nAs
		Wake-up clock is MSI 1 MHz		610	

Table 63. Current consumption during wake-up from Stop 3 mode on LDO

5

1. Evaluated by characterization in worse case condition ($V_{DD11} = 0.7 V$ before wake-up).

163/301

DS14217 Rev 4

Ш
_
Ð
o
_
Ξ.
0
à
<u> </u>
_
o.
5
0
=
ດັ
5
<u> </u>
Ъ.
¥
<u> </u>
S
±.
5
26

		Table 64. Cu	urrent co	onsumpt	tion in S	top 3 mc	ode on S	MPS						
Symbol	Parameter	Conditions			Тур			Max ⁽¹⁾						
Symbol		V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit	
		1.8	1.75	5.65	19.5	43.5	95.0	5.2	17.0	57.0	130.0	280.0		
	Supply current in Stop 3 mode,	2.4	1.50	4.65	16.0	36.0	79.5	4.4	14.0	47.0	110.0	230.0		
	RTC disabled, 8-Kbyte SRAM2 + ICACHE retained	3.0	1.40	4.25	14.5	32.5	72.5	4.1	13.0	42.0	93.0	210.0		
		3.3	1.55	4.40	14.5	32.5	71.5	4.4	13.0	42.0	93.0	210.0		
		3.6	2.05	5.15	15.5	33.5	72.5	5.6	15.0	44.0	94.0	210.0	μA	
DD(Stop 3)		1.8	3.05	9.75	35.0	80.0	175.0	9.1	29.0	110.0	240.0	520.0	μΑ	
	Supply current in Stop 3 mode,	2.4	2.45	7.80	28.0	64.0	145.0	7.3	24.0	83.0	190.0	430.0		
	RTC disabled,	3.0	2.20	6.90	24.5	56.0	125.0	6.5	21.0	72.0	170.0	370.0		
	all SRAMs retained	3.3	2.30	6.90	24.0	54.5	120.0	6.7	21.0	70.0	160.0	350.0	1	
		3.6	2.75	7.50	24.5	54.5	120.0	7.7	22.0	71.0	160.0	350.0		

2

0	Demonstern	Conditions			Тур					Max ⁽¹⁾			-ι
Symbol	Parameter	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	- (
		1.8	2.05	5.90	20.0	44.0	95.5	6.1	18.0	59.0	130.0	280.0	T
	Supply current in Stop 3 mode,	2.4	1.80	5.00	16.5	36.5	80.0	5.3	15.0	48.0	110.0	230.0	
	RTC ⁽²⁾ clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE	3.0	1.80	4.65	15.0	33.0	72.5	5.3	14.0	44.0	95.0	210.0	
	retained	3.3	2.00	4.85	15.0	32.5	71.5	5.8	14.0	43.0	93.0	210.0	
		3.6	2.55	5.65	16.0	34.0	73.0	7.1	16.0	45.0	96.0	210.0	
	Supply current in Stop 3 mode, RTC ⁽²⁾ clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained	1.8	1.90	5.75	19.5	43.5	95.0	5.6	17.0	57.0	130.0	280.0	
		2.4	1.60	4.75	16.0	36.0	79.5	4.7	14.0	47.0	110.0	230.0	
		3.0	1.50	4.40	14.5	32.5	72.5	4.4	13.0	42.0	93.0	210.0	
		3.3	1.65	4.55	14.5	32.5	71.5	4.7	13.0	42.0	93.0	210.0	
DD(Stop 3		3.6	2.20	5.30	15.5	33.5	72.5	6.1	15.0	44.0	94.0	210.0	0 μΑ
with RTC)		1.8	1.95	5.70	19.0	42.5	91.5	5.8	17.0	56.0	130.0	270.0	1
	Supply current in Stop 3 mode, RTC ⁽²⁾ clocked by LSE bypassed	2.4	1.75	4.85	16.0	35.5	77.0	5.2	15.0	47.0	110.0	220.0	.0
	at 32768 Hz,	3.0	1.75	4.55	14.5	32.0	70.0	5.1	14.0	42.0	92.0	200.0	1
	8-Kbyte SRAM2 + ICACHE retained	3.3	1.95	4.75	14.5	32.0	69.0	5.6	14.0	42.0	91.0	200.0	1
		3.6	2.50	5.55	15.5	33.0	70.5	7.0	16.0	44.0	93.0	200.0	1
		1.8	2.15	6.05	20.0	44.0	96.0	-	-	-	-	-	
	Supply current in Stop 3 mode, RTC ⁽²⁾ clocked by LSE quartz in	2.4	1.90	5.10	16.5	36.5	80.0	-	-	-	-	-	1
	low-drive mode,	3.0	1.85	4.75	15.0	33.0	73.0	-	-	-	-	-	_
	8-Kbyte SRAM2 + ICACHE retained	3.3	2.00	4.95	15.0	33.0	72.0	-	-	-	-	-	
		3.6	2.55	5.70	16.0	34.0	73.5	-	-	-	-	-	1

Table 64. Current consumption in Stop 3 mode on SMPS (continued)

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

DS14217 Rev 4

571

Electrical
characteristics

DS14217 Rev 4

166/301

Symbol

I_{DD(SRAM1_64kB)}⁽²⁾

I_{DD(SRAM2_8KB)}⁽³⁾

I_{DD(SRAM2_56KB)}⁽³⁾

I_{DD(SRAM4)}

I_{DD(ICRAM)}

IDD(DC1RAM)

I_{DD(PRAM)}

1. Evaluated by characterization. Not tested in production.

2. SRAM1 total consumption is $3 \times I_{DD(SRAM1_{64KB})}$.

3. SRAM2 total consumption is $I_{DD(SRAM2_8KB)} + I_{DD(SRAM2_56KB)}$.

Table 66. Current consumption during wake-up from Stop 3 mode on	SMPS
--	------

Table 65. SRAM static power consumption in Stop 3 when supplied by SMPS

25°C

0.2

0.1

0.2

0.0

0.0

0.0

0.0

55°C

0.6

0.2

0.7

0.1

0.1

0.0

0.0

Тур

85°C

2.1

0.8

2.6

0.5

0.4

0.2

0.1

105°C

5.1

1.8

6.1

1.3

0.9

0.5

0.3

125°C

11.5

4.0

13.6

2.9

1.9

1.0

0.6

25°C

0.5

0.2

0.6

0.1

0.1

0.1

0.0

55°C

1.7

0.7

2.1

0.4

0.3

0.2

0.1

	Symbol	Parameter	Conditions	Typ ⁽¹⁾	Unit	
	Symbol	Falameter	-	V _{DD} (V)	25°C	Onit
			Wake-up clock is MSI 24 MHz		160	nAs
		Electrical charge consumed during wake-up from Stop 3 mode	Wake-up clock is HSI 16 MHz	3.0	150	
			Wake-up clock is MSI 1 MHz		250	

1. Evaluated by characterization in worse case condition (V_{DD11} = 0.7 V before wake-up).

RAM **T**

SRAM4 static consumption

SRAM1 64-Kbyte page x static consumption

(SRAM1PDSx = 1 versus SRAM1PDSx = 0) SRAM2 8-Kbyte page 1 static consumption

(SRAM2PDS1 = 1 versus SRAM2PDS1 = 0)

SRAM2 56-Kbyte page 2 static consumption

(SRAM2PDS2 = 1 versus SRAM2PDS2 = 0)

(SRAM4PDS = 1 versus SRAM4PDS = 0)

(ICRAMPDS = 1 versus ICRAMPDS = 0)

(DC1RAMPDS = 1 versus DC1RAMPDS = 0)

FMAC, FDCAN and USB SRAM static consumption

ICACHE SRAM static consumption

DCACHE1 SRAM static consumption

(PRAMPDS = 1 versus PRAMPDS = 0)

Max⁽¹⁾

85°C

6.3

2.4

7.8

1.5

1.2

0.6

0.3

105°C 125°C

35.0

12.0

41.0

8.8

5.8

3.0

1.9

μA

16.0

5.4

19.0

3.9

2.8

1.5

0.9

STM32U535xx

Electrical characteristics

			Table 6	7. Curren	t consu	mption	in Sta	n <mark>dby</mark> m	ode						
Ĭ	Cumb al	Dovomotov	Conditio	ns			Тур					Max ⁽¹⁾			11
	Symbol	Parameter	-	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				1.8	0.20	0.66	3.07	8.19	21.80	0.34	1.50	6.70	18.00	47.00	
				2.4	0.22	0.71	3.24	8.55	22.80	0.41	1.60	7.10	19.00	49.00	
			No IWDG ULPMEN = 1	3.0	0.31	0.92	3.75	9.54	24.70	0.61	2.10	8.40	21.00	54.00	
				3.3	0.52	1.33	4.59	10.90	27.20	1.20	3.10	11.00	25.00	60.00	
				3.6	1.10	2.29	6.32	13.60	31.40	2.60	5.50	15.00	32.00	70.00	
		Supply current in Standby mode (backup registers retained), RTC disabled	No IWDG	1.8	0.27	0.71	3.01	7.94	21.30	0.42	1.50	6.70	18.00	46.00	
D				2.4	0.30	0.76	3.17	8.27	22.00	0.49	1.70	7.00	19.00	48.00	
				3.0	0.38	0.97	3.66	9.19	23.80	0.69	2.20	8.30	21.00	53.00	
				3.3	0.59	1.37	4.49	10.50	26.20	1.20	3.20	11.00	24.00	59.00	
DS14217 Rev 4				3.6	1.16	2.32	6.21	13.20	30.50	2.70	5.50	15.00	31.00	69.00	μA
17 R	IDD(Standby)		with IWDG	1.8	0.50	0.94	3.29	8.28	21.60	0.56	1.60	6.50	15.00	46.00	
lev 4				2.4	0.60	1.07	3.52	8.69	22.40	0.71	1.80	7.00	16.00	49.00	
-			clocked by	3.0	0.76	1.36	4.09	9.68	24.30	0.98	2.40	8.20	18.00	53.00	
			LSI 32 kHz	3.3	1.01	1.80	4.95	11.10	26.70	1.60	3.40	11.00	21.00	59.00	
				3.6	1.62	2.79	6.70	13.70	31.00	3.00	5.80	15.00	28.00	69.00	
				1.8	0.37	0.83	3.21	8.39	24.20	0.53	1.70	7.10	21.00	46.00	
			with IWDG	2.4	0.41	0.89	3.37	8.73	25.00	0.61	1.90	7.50	22.00	49.00	
			clocked by	3.0	0.50	1.11	3.89	9.71	27.00	0.83	2.40	8.80	25.00	53.00	
			LSI 250 Hz	3.3	0.72	1.53	4.73	11.10	29.60	1.40	3.40	11.00	28.00	59.00	1
				3.6	1.31	2.49	6.47	13.80	34.10	2.80	5.80	16.00	35.00	69.00	

Electrical characteristics

STM32U535xx

	B	Conditio	ns			Тур					Max ⁽¹⁾)		
Symbol	Parameter	-	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	_
			1.8	0.52	0.98	3.36	8.54	24.30	0.58	1.70	6.80	18.00	46.00	
		RTC ⁽²⁾ clocked	2.4	0.62	1.10	3.58	8.93	25.20	0.73	1.90	7.30	19.00	49.00	
		by LSI 32 kHz,	3.0	0.78	1.39	4.16	9.98	27.30	1.00	2.50	8.60	21.00	53.00	
		no IWDG ⁽³⁾	3.3	1.03	1.84	5.04	11.40	29.90	1.60	3.50	11.00	25.00	59.00	
			3.6	1.66	2.84	6.82	14.10	34.40	3.10	5.90	15.00	31.00	69.00	
			1.8	0.37	0.83	3.20	8.40	24.20	0.54	1.70	7.20	21.00	46.00	
		RTC ⁽²⁾ clocked	2.4	0.41	0.90	3.37	8.72	25.00	0.61	1.90	7.50	22.00	49.00	
		by LSI 250 Hz,	3.0	0.50	1.11	3.89	9.70	27.00	0.83	2.40	8.80	25.00	53.00	
	Supply current in	no IWDG ⁽³⁾	3.3	0.73	1.53	4.73	11.10	29.60	1.40	3.40	11.00	28.00	59.00	
IDD(Standby with	Standby mode (backup		3.6	1.31	2.50	6.48	13.80	34.10	2.80	5.80	16.00	35.00	69.00	
RTC)	registers retained),		1.8	0.51	0.98	3.38	8.59	24.50	0.70	1.90	7.30	21.00	47.00	
	RTC enabled	RTC ⁽²⁾ clocked	2.4	0.58	1.08	3.58	8.97	25.30	0.85	2.10	7.80	22.00	49.00	
		by LSE bypassed at	3.0	0.73	1.36	4.17	10.00	27.40	1.20	2.70	9.10	25.00	53.00	
		32768 Hz	3.3	0.99	1.82	5.05	11.50	30.10	1.70	3.80	12.00	29.00	59.00	
			3.6	1.64	2.85	6.87	14.20	34.70	3.20	6.20	16.00	35.00	70.00	
			1.8	0.62	1.11	3.52	8.60	22.10	-	-	-	-	-	
		RTC ⁽²⁾ clocked	2.4	0.66	1.18	3.70	8.97	22.90	-	-	-	-	-	
		by LSE quartz in low-drive	3.0	0.76	1.40	4.23	9.92	24.80	-	-	-	-	-	
		mode	3.3	0.99	1.83	5.07	11.30	27.20	-	-	-	-	-	
			3.6	1.59	2.81	6.82	14.00	31.50	-	_	-	-	-	-

168/301

DS14217 Rev 4

STM32U535xx

Symphol	Deremeter	Conditio	ns			Тур					Max ⁽¹⁾)		Unit
Symbol	Parameter	-	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
			1.8	0.15	0.28	0.63	1.25	2.40	0.47	0.84	1.90	3.80	7.20	
	Supply current to be		2.4	0.15	0.24	0.63	1.26	2.50	0.45	0.71	1.90	3.80	7.50	
I _{DD(BKPSRAM)}	added in Standby mode when backup SRAM is	-	3.0	0.15	0.24	0.64	1.31	2.60	0.47	0.74	2.00	4.00	7.80	
	retained		3.3	0.14	0.26	0.64	1.30	2.50	0.44	0.78	2.00	3.90	7.50	
			3.6	0.14	0.29	0.65	1.30	2.50	0.42	0.87	2.00	3.90	7.50	
			1.8	1.67	4.59	12.79	27.06	55.90	5.10	14.00	39.00	82.00	170.00	
	Supply current to be		2.4	1.68	4.45	12.83	27.23	56.20	5.10	14.00	39.00	82.00	170.00	
I _{DD(SRAM2)}	added in Standby mode when full SRAM2 and		3.0	1.52	3.82	12.84	27.21	56.10	4.60	12.00	39.00	82.00	170.00	μA
	BKPSRAM are retained		3.3	1.51	3.85	12.81	27.30	56.30	4.60	12.00	39.00	82.00	170.00	
		LDO	3.6	1.87	4.29	12.79	27.10	56.00	5.70	13.00	39.00	82.00	170.00	
		LDO	1.8	0.57	1.34	4.02	8.36	17.10	1.80	4.10	13.00	26.00	52.00	
	Supply current to be added in Standby mode		2.4	0.64	1.35	4.04	8.33	17.20	2.00	4.10	13.00	25.00	52.00	
I _{DD(SRAM2_8K)}	when SRAM2 8-Kbyte		3.0	0.64	1.40	4.04	8.41	17.10	2.00	4.30	13.00	26.00	52.00	
	page 1 and BKPSRAM are retained		3.3	0.66	1.39	3.98	8.40	17.20	2.00	4.20	12.00	26.00	52.00	
			3.6	0.75	1.41	3.89	8.20	16.70	2.30	4.30	12.00	25.00	51.00	

 Table 67. Current consumption in Standby mode (continued)

5

		Table 67. Cur	rent cons	umptio	n in Sta	ndby r	node (o	ontinu	ed)					
Cumph of	Deveneter	Conditio	ons			Тур					Max ⁽¹⁾)		Un
Symbol	Parameter	-	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Un
			1.8	0.85	2.12	6.70	14.46	29.30	2.60	6.40	21.00	44.00	88.00	
	Supply current to be		2.4	0.77	1.89	5.80	12.53	26.00	2.40	5.70	18.00	38.00	78.00	1
I _{DD(SRAM2)}	added in Standby mode when full SRAM2 and		3.0	0.65	1.58	4.89	10.51	21.90	2.00	4.80	15.00	32.00	66.00	1
	BKPSRAM are retained		3.3	0.62	1.45	4.48	9.70	20.20	1.90	4.40	14.00	30.00	61.00	1
		<u>emde</u>	3.6	0.57	1.31	3.99	8.90	18.70	1.80	4.00	12.00	27.00	57.00	1
		SMPS	1.8	0.29	0.63	1.82	3.86	7.80	0.86	1.90	5.50	12.00	24.00	μA
	Supply current to be added in Standby mode		2.4	0.29	0.63	1.78	3.73	7.80	0.87	1.90	5.40	12.00	24.00	1
I _{DD(SRAM2_8K)}	when SRAM2 8-Kbyte		3.0	0.25	0.51	1.47	3.11	6.50	0.76	1.60	4.50	9.40	20.00	1
	page 1 and BKPSRAM are retained		3.3	0.24	0.44	1.28	2.80	5.80	0.72	1.40	3.90	8.40	18.00	1
			3.6	0.22	0.36	0.99	2.30	5.00	0.66	1.10	3.00	6.90	15.00	1

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

3. Current consumption with IWDG enabled is similar.

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Unit
Symbol	Farameter	-	V _{DD} (V)	25°C	Onit
0	Electrical charge consumed during wake-up from	Wake-up clock is MSI 4 MHz	3.0	3.2	μAs
Q _{DD} (wakeup from Standby)	Standby mode	Wake-up clock is MSI 1 MHz	5.0	5.2	μΑδ

Table 68. Current consumption during wake-up from Standby mode

1. Evaluated by characterization in worse case condition (V_{DD11} = 0.7 V before wake-up).

170/301

DS14217 Rev 4

Electrical characteristics

		Γ	Table 69. Cu	rrent con	sumpt	ion in	Shutd	own m	ode						
	Symbol	Parameter	Condition	S			Тур					Max ⁽¹⁾			Unit
	Symbol	Farameter	-	V _{DD} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				1.8	0.09	0.49	2.35	6.25	16.00	0.22	1.30	5.90	16.00	40.00	
		Supply current in		2.4	0.12	0.55	2.50	6.60	17.00	0.29	1.40	6.30	17.00	43.00	
	I _{DD(Shutdown)}	Shutdown mode (backup registers retained),	-	3.0	0.20	0.75	3.00	7.50	18.50	0.49	1.90	7.50	19.00	47.00	
		RTC disabled		3.3	0.40	1.15	3.80	8.85	21.00	0.99	2.90	9.50	23.00	53.00	
				3.6	0.97	2.10	5.50	11.50	25.00	2.50	5.30	14.00	29.00	63.00	
				1.8	0.32	0.75	2.70	6.90	18.50	0.48	1.60	6.30	17.00	43.00	
			RTC ⁽²⁾ clocked by	2.4	0.40	0.86	2.90	7.25	19.00	0.61	1.80	6.70	18.00	45.00	
			LSE bypassed at	3.0	0.56	1.15	3.50	8.25	21.50	0.89	2.40	8.10	20.00	50.00	μA
D		Supply current in	32768 Hz	3.3	0.80	1.60	4.35	9.65	24.00	1.50	3.40	11.00	24.00	56.00	
DS14217	I _{DD(Shutdown}	Shutdown mode (backup		3.6	1.45	2.60	6.20	12.50	28.50	3.00	5.80	15.00	30.00	67.00	
	with RTC)	registers retained), RTC enabled		1.8	0.44	0.88	2.85	6.85	17.00	-	-	-	-	-	
Rev 4		RTC enabled	RTC ⁽²⁾ clocked by	2.4	0.49	0.97	3.00	7.25	17.50	-	-	-	-	-	
4			LSE quartz in low-	3.0	0.59	1.20	3.55	8.20	19.50	-	-	-	-	-	
			drive mode	3.3	0.80	1.60	4.35	9.55	22.00	-	-	-	-	-	
				3.6	1.40	2.55	6.15	12.00	26.00	-	-	-	-	-	

1. Evaluated by characterization. Not tested in production.

171/301

2. RTC with default configuration but RTC_CALR.LPCAL = 1.

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Unit
Symbol	Farameter	-	V _{DD} (V)	25°C	onit
Q _{DD} (wakeup from Shutdown)	Electrical charge consumed during wake-up from Shutdown mode	Wake-up clock is MSI 4 MHz	3.0	3.4	μAs

1. Evaluated by characterization in worse case condition (V_{DD11} = 0.7 V before wake-up).

Electrical characteristics

STM32U535xx

	1	Table 71	Current	consun	nption	in v _{BAT}	mode							
Symbol	Parameter	Conditions				Тур					Max ⁽¹⁾			
Symbol	Farameter	-	V _{BAT} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	
			1.8	0.05	0.22	1.10	2.95	8.00	0.12	0.55	2.80	7.40	20.00	
	Supply current in		2.4	0.06	0.24	1.15	3.05	8.20	0.15	0.60	2.90	7.70	21.00	
I _{DD(VBAT)}	V _{BAT} mode (backup registers retained),	-	3.0	0.08	0.29	1.30	3.30	8.65	0.20	0.73	3.30	8.30	22.00	
	RTC disabled		3.3	0.15	0.40	1.50	3.60	9.15	0.37	1.00	3.80	9.00	23.00	
			3.6	0.31	0.66	1.90	4.25	10.00	0.77	1.70	4.80	11.00	25.00	
			1.8	0.28	0.47	1.50	3.40	8.60	0.37	0.83	3.20	7.90	21.00	
		RTC ⁽²⁾ clocked by LSE	2.4	0.30	0.50	1.65	3.60	8.90	0.41	0.89	3.50	8.30	22.00	
		bypassed at 32768 Hz	3.0	0.33	0.56	1.85	3.95	9.40	0.47	1.10	3.90	7.40 7.70 8.30 9.00 11.00 7.90	23.00	
			3.3	0.40	0.68	2.10	4.30	10.00	0.65	1.40	4.50		24.00	
			3.6	0.58	0.96	2.65	5.00	11.00	1.10	2.00	5.60	12.00	27.00	
			1.8	0.28	0.47	1.40	3.35	8.50	0.62	1.10	3.60	8.40	22.00	
	Supply current in V _{BAT} mode (backup	RTC ⁽²⁾ clocked by LSE	2.4	0.30	0.50	1.50	3.45	8.75	0.67	1.20	3.90	8.70	22.00	
DD(VBAT with RTC)	registers retained),	bypassed at 32768 Hz, RT C CALR.LPCAL = 1	3.0	0.32	0.56	1.70	3.75	9.25	0.74	1.40	4.30	9.50	24.00	
	RTC enabled	RTC_CALR.LPCAL = T	3.3	0.40	0.68	1.95	4.10	9.80	0.93	1.70	5.00	11.00	25.00	
			3.6	0.58	0.96	2.40	4.80	11.00	1.40	2.40	6.20	13.00	28.00	
			1.8	0.45	0.65	1.60	3.50	8.75	-	-	-	-	-	
		DTO(2) also also allow LOF	2.4	0.51	0.73	1.70	3.65	9.00	-	-	-	-	-	
		RTC ⁽²⁾ clocked by LSE quartz in low-drive	3.0	0.59	0.83	1.85	3.95	9.45	-	-	-	-	-	
			3.3	0.69	0.98	2.10	4.30	10.00	-	-	-	-	-	
			3.6	0.89	1.30	2.60	5.00	11.00	-	-	-	-	-	I

172/301

DS14217 Rev 4

I _{DD(VBAT with} V _E RTC)	Deveneter	Conditions				Тур					Max ⁽¹⁾			11
бутвої	Parameter	-	V _{BAT} (V)	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Un
			1.8	0.36	0.57	1.50	3.45	8.65	-	-	-	-	-	
	Supply current in	RTC ⁽²⁾ clocked by LSE	2.4	0.39	0.60	1.55	3.55	8.85	-	-	-	-	-	
,	V _{BAT} mode (backup registers retained),	quartz in low-drive mode,	3.0	0.43	0.67	1.70	3.80	9.30	-	-	-	-	-	
RIC)	RTC enabled	RT C_CALR.LPCAL = 1	3.3	0.51	0.80	1.95	4.15	9.85	-	-	-	-	-	
			3.6	0.70	1.10	2.40	4.80	11.00	-	-	-	-	-	
			1.8	0.14	0.24	0.55	1.05	2.00	0.26	0.53	1.50	3.00	5.90	μ
	Supply current to be		2.4	0.15	0.24	0.55	1.05	2.30	0.27	0.54	1.50	3.00	6.80	
I _{DD} (BKPSRAM)	added in V _{BAT} mode when backup SRAM	-	3.0	0.15	0.23	0.50	1.05	2.35	0.27	0.51	1.40	3.00	6.90	
(DRPSRAIN)	is retained		3.3	0.15	0.23	0.50	1.05	2.35	0.29	0.51	1.40	3.00	6.90	
			3.6	0.16	0.24	0.55	1.05	2.50	0.31	0.56	1.50	3.00	7.40	

Table 71. Current consumption in V_{BAT} mode (continued)

1. Evaluated by characterization. Not tested in production.

2. RTC with default configuration except otherwise specified

DS14217 Rev 4

<u>IN</u>

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up or pull-down generate current consumption when the pin is externally held to the opposite level. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Section 5.3.15: I/O port characteristics*.

For the output pins, any internal or external pull-up or pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of the ADC input pins, that must be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the on-chip peripheral current consumption (see *Table 72* for peripheral current consumption in Run mode), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal and external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where:

- I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load.
- V_{DDIOx} is the I/O supply voltage.
- f_{SW} is the I/O switching frequency.
- C is the total capacitance seen by the I/O pin: C = C_{INT}+ C_{EXT} + C_S.
- C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the table below. The MCU is placed under the following conditions:

- All I/O pins are in analog mode.
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- The ambient operating temperature and supply voltage conditions are summarized in *Table 32*.
- The power consumption of the digital part of the on-chip peripherals is given in the table below. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

				LDO					SMPS			
Bus	Peripheral	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Unit
	AHB1	1.50	1.37	1.23	1.12	-	0.81	0.68	0.58	0.42	-	
	BKPSRAM	1.09	1.01	0.92	0.83	-	0.60	0.51	0.43	0.31	-	
	CORDIC	0.89	0.82	0.75	0.67	-	0.49	0.41	0.35	0.25	-	
	CRC	0.54	0.50	0.46	0.41	-	0.30	0.25	0.21	0.16	-	
	DCACHE1	0.65	0.60	0.55	0.49	-	0.36	0.30	0.25	0.19	-	
	FLASH	2.33	2.13	1.94	1.74	-	1.26	1.07	0.89	0.65	-	
_	FMAC	2.18	1.99	1.82	1.64	-	1.18	1.00	0.84	0.61	-	
AHB1	GPDMA1	3.19	2.91	2.64	2.39	-	1.72	1.46	1.23	0.89	-	
4	GTZC1	0.13	0.13	0.12	0.11	-	0.08	0.06	0.05	0.04	-	
	ICACHE	0.46	0.43	0.39	0.35	-	0.26	0.21	0.18	0.13	-	
	MDF1	2.85	2.60	2.37	2.13	-	1.54	1.30	1.10	0.80	-	μΑ/ MHz
	MDF1 indep ⁽¹⁾	0.57	0.52	0.47	0.43	-	0.31	0.26	0.22	0.16	-	
	RAMCFG	1.30	1.20	1.09	0.98	-	0.71	0.60	0.50	0.37	-	
	SRAM1	0.97	0.89	0.81	0.73	-	0.53	0.45	0.38	0.28	-	
	TSC	0.90	0.83	0.76	0.68	-	0.49	0.42	0.34	0.26	-	
	ADC1	2.32	2.13	1.93	1.74	-	1.25	1.06	0.91	0.65	-	
	ADC1 indep ⁽¹⁾	0.96	0.87	0.79	0.71	-	0.52	0.44	0.37	0.27	-	
AHB2	AES	2.34	2.13	1.93	1.74	-	1.26	1.06	0.90	0.66	-	
AH	AHB2	1.36	1.26	1.13	1.02	-	0.74	0.63	0.53	0.39	-	
	DCMI	4.79	4.38	3.98	3.59	-	2.59	2.19	1.86	1.35	-	
	GPIOA	0.11	0.10	0.09	0.08	-	0.06	0.05	0.04	0.03	-	

Table 72. Typical dynamic current consumption of peripherals

				LDO					SMPS			
Bus	Peripheral	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Unit
	GPIOB	0.04	0.04	0.03	0.03	-	0.03	0.02	0.01	0.01	-	
	GPIOC	0.15	0.14	0.13	0.11	-	0.09	0.07	0.06	0.04	-	
	GPIOD	0.05	0.05	0.05	0.04	-	0.03	0.02	0.02	0.01	-	
	GPIOE	0.06	0.05	0.05	0.04	-	0.03	0.03	0.02	0.02	-	
	GPIOG	0.22	0.20	0.18	0.16	-	0.12	0.10	0.08	0.06	-	
	GPIOH	0.09	0.08	0.07	0.07	-	0.05	0.04	0.03	0.02	-	
	HASH1	1.37	1.25	1.13	1.03	-	0.74	0.62	0.53	0.38	-	
	OCTOSPI1	1.02	0.93	0.84	0.76	-	0.55	0.46	0.39	0.29	-	
AHB2	OCTOSPI1 indep ⁽¹⁾	1.08	0.97	0.88	0.79	-	0.58	0.49	0.41	0.30	-	
∢	OTFDEC1	2.01	1.83	1.66	1.49	-	1.09	0.91	0.77	0.56	-	
	PKA	7.09	6.48	5.89	5.31	-	3.82	3.24	2.74	2.00	-	
	RNG	0.96	0.88	0.80	0.72	-	0.52	0.44	0.37	0.27	-	
	RNG indep ⁽¹⁾	0.08	0.06	0.06	0.05	-	0.04	0.04	0.03	0.03	-	
	SAES	3.34	3.05	2.77	2.50	-	1.80	1.52	1.29	0.94	-	
	SDMMC1	11.98	10.95	9.95	9.05	-	6.46	5.45	4.63	3.37	-	µA/ MHz
	SDMMC1 indep ⁽¹⁾	1.37	1.26	1.13	0.01	-	0.76	0.63	0.53	0.01	-	
	SRAM2	1.23	1.12	1.01	0.91	-	0.66	0.56	0.48	0.34	-	
	ADC4	1.52	1.39	1.26	1.13	1.37	0.82	0.69	0.59	0.43	0.52	
	ADC4 indep ⁽¹⁾	2.07	1.90	1.71	1.55	1.56	1.12	0.95	0.81	0.58	0.59	
	ADF1	1.16	1.06	0.96	0.87	1.11	0.63	0.53	0.45	0.33	0.42	
	ADF1 indep ⁽¹⁾	0.44	0.40	0.36	0.33	0.28	0.24	0.20	0.17	0.12	0.10	
	AHB3	0.29	0.28	0.26	0.23	-	0.17	0.15	0.12	0.09	-	
AHB3	DAC1	1.75	1.60	1.45	1.31	1.55	0.95	0.80	0.68	0.49	0.59	
AH	DAC1 indep ⁽¹⁾	0.99	0.89	0.81	0.73	0.74	0.53	0.45	0.38	0.27	0.28	
	GTZC2	0.16	0.16	0.14	0.13	-	0.09	0.08	0.07	0.05	-	
	LPDMA1	0.35	0.32	0.29	0.26	0.49	0.19	0.16	0.14	0.10	0.19	
	LPGPI01	0.06	0.05	0.05	0.04	0.27	0.03	0.03	0.02	0.02	0.11	
	PWR	0.24	0.22	0.19	0.18	-	0.13	0.11	0.09	0.07	-	
	SRAM4	0.46	0.43	0.39	0.35	0.23	0.25	0.21	0.18	0.13	0.09	

 Table 72. Typical dynamic current consumption of peripherals (continued)

				LDO					SMPS			
Bus	Peripheral	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Unit
	APB1	1.18	1.10	0.99	0.90	-	0.64	0.55	0.46	0.34	-	
	CRS	0.37	0.34	0.31	0.28	-	0.20	0.17	0.14	0.10	-	
	FDCAN1	5.29	4.84	4.41	4.04	-	2.84	2.41	2.04	1.49	-	
	FDCAN1 indep ⁽¹⁾	2.89	2.67	2.43	2.17	-	1.56	1.32	1.12	0.82	-	
	I2C1	0.90	0.82	0.75	0.68	-	0.49	0.41	0.34	0.25	-	
	I2C1 indep ⁽¹⁾	2.18	1.99	1.81	1.63	-	1.19	1.00	0.84	0.61	-	
	12C2	3.08	2.80	2.56	2.30	-	1.66	1.40	1.18	0.86	-	
	I2C2 indep ⁽¹⁾	2.24	2.05	1.86	1.68	-	1.21	1.02	0.86	0.63	-	
	I2C4	0.94	0.87	0.79	0.71	-	0.52	0.44	0.37	0.27	-	
	I2C4 indep ⁽¹⁾	2.28	2.09	1.89	1.71	-	1.24	1.04	0.88	0.64	-	
	LPTIM2	1.66	1.51	1.39	1.25	-	0.89	0.76	0.64	0.47	-	
	LPTIM2 indep ⁽¹⁾	4.15	3.79	3.45	3.11	-	2.24	1.90	1.61	1.17	-	
	SPI2	1.82	1.66	1.51	1.36	-	0.97	0.83	0.71	0.51	-	
APB1	SPI2 indep ⁽¹⁾	0.63	0.57	0.51	0.47	-	0.33	0.28	0.24	0.18	-	μA/
AF	TIM2	4.27	3.91	3.57	3.21	-	2.29	1.95	1.65	1.20	-	MHz
	TIM3	4.03	3.69	3.37	3.03	-	2.16	1.84	1.56	1.14	-	
	TIM4	4.09	3.74	3.41	3.06	-	2.18	1.86	1.58	1.15	-	
	TIM5	3.92	3.59	3.27	2.94	-	2.10	1.79	1.52	1.11	-	
	TIM6	0.93	0.85	0.78	0.69	-	0.50	0.42	0.36	0.26	-	
	TIM7	0.91	0.83	0.76	0.68	-	0.49	0.42	0.35	0.26	-	
	UART4	2.03	1.85	1.68	1.51	-	1.08	0.93	0.78	0.57	-	
	UART4 indep ⁽¹⁾	3.54	3.23	2.93	2.64	-	1.91	1.62	1.36	0.99	-	
	UART5	2.11	1.92	1.75	1.57	-	1.13	0.97	0.81	0.59	-	
	UART5 indep ⁽¹⁾	3.54	3.23	2.94	2.64	-	1.91	1.62	1.37	0.99	-	
	USART3	2.35	2.14	1.95	1.75	-	1.26	1.07	0.90	0.66	-	
	USART3 indep ⁽¹⁾	4.36	3.97	3.62	3.25	-	2.33	1.98	1.68	1.22	-	
	WWDG	0.37	0.34	0.31	0.28	-	0.20	0.17	0.14	0.11	-	

 Table 72. Typical dynamic current consumption of peripherals (continued)

Bus	Peripheral	LDO				SMPS						
		Range 1	Range 2	Range 3	Range 4	Stop 1/2	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Unit
32	APB2	0.94	0.87	0.79	0.72	-	0.51	0.44	0.37	0.27	-	μA/ MHz
	SAI1	1.96	1.79	1.63	1.47	-	1.05	0.89	0.76	0.55	-	
	SAI1 indep ⁽¹⁾	1.45	1.32	1.20	0.01	-	0.80	0.66	0.56	0.01	-	
	USBFS	3.71	3.40	3.09	2.85	-	1.99	1.70	1.43	1.05	-	
	USBFS indep ⁽¹⁾	1.48	1.34	1.23	0.01	-	0.78	0.68	0.57	0.01	-	
	SPI1	2.00	1.83	1.66	1.50	-	1.06	0.91	0.77	0.56	-	
	SPI1 indep ⁽¹⁾	0.89	0.81	0.74	0.66	-	0.49	0.41	0.34	0.25	-	
APB2	TIM1	6.26	5.72	5.21	4.70	-	3.36	2.86	2.43	1.77	-	
	TIM15	3.49	3.20	2.91	2.62	-	1.87	1.60	1.35	0.98	-	
	TIM16	2.53	2.33	2.11	1.90	-	1.35	1.15	0.98	0.71	-	
	TIM17	2.83	2.59	2.35	2.19	-	1.52	1.29	1.09	0.80	-	
	TIM8	6.51	5.95	5.41	4.96	-	3.51	2.96	2.52	1.83	-	
	USART1	2.28	2.09	1.89	1.70	-	1.22	1.04	0.88	0.64	-	
	USART1 indep ⁽¹⁾	4.73	4.32	3.93	3.53	-	2.53	2.16	1.82	1.33	-	

Table 72. Typical dynamic current consumption of peripherals (continued)	Table 72. Typical d	vnamic current cons	umption of peri	pherals (continued)
--	---------------------	---------------------	-----------------	---------------------

	Peripheral	LDO				SMPS						
Bus		Range 1	Range 2	Range 3	Range 4	Stop 1/2	Range 1	Range 2	Range 3	Range 4	Stop 1/2	Unit
APB3	APB3	0.40	0.39	0.35	0.32	-	0.23	0.19	0.16	0.12	-	μA/ MHz
	COMP	0.22	0.20	0.19	0.16	0.01	0.12	0.10	0.08	0.06	0.01	
	I2C3	0.70	0.64	0.58	0.53	0.53	0.38	0.32	0.27	0.20	0.20	
	I2C3 indep ⁽¹⁾	1.70	1.55	1.40	1.27	1.27	0.91	0.78	0.65	0.48	0.48	
	LPTIM1	1.09	0.99	0.90	0.81	0.82	0.59	0.49	0.42	0.31	0.31	
	LPTIM1 indep ⁽¹⁾	2.88	2.62	2.41	2.15	2.19	1.58	1.32	1.12	0.82	0.83	
	LPTIM3	1.03	0.94	0.85	0.76	0.77	0.56	0.46	0.40	0.29	0.29	
	LPTIM3 indep ⁽¹⁾	2.99	2.75	2.46	2.22	2.24	1.70	1.36	1.13	0.84	0.85	
	LPTIM4	0.64	0.59	0.53	0.48	0.48	0.35	0.29	0.25	0.18	0.18	
	LPTIM4 indep ⁽¹⁾	1.74	1.60	1.42	1.29	1.32	0.90	0.82	0.68	0.49	0.50	
	LPUART1	1.39	1.26	1.15	1.03	1.03	0.75	0.62	0.53	0.39	0.39	
	LPUART1 indep ⁽¹⁾	2.06	1.87	1.70	1.52	1.53	1.12	0.93	0.79	0.57	0.58	
	OPAMP	0.21	0.20	0.18	0.16	0.16	0.11	0.09	0.08	0.06	0.06	
	RTC	2.96	2.69	2.44	2.21	2.22	1.59	1.34	1.14	0.83	0.84	
	SPI3	1.55	1.41	1.28	1.15	1.15	0.84	0.70	0.60	0.43	0.44	
	SPI3 indep ⁽¹⁾	0.57	0.51	0.46	0.42	0.42	0.30	0.26	0.22	0.16	0.16	
	SYSCFG	0.38	0.35	0.32	0.29	-	0.20	0.18	0.14	0.11	-	
	VREFBUF	0.12	0.11	0.10	0.09	0.09	0.07	0.05	0.04	0.04	0.04	

 Table 72. Typical dynamic current consumption of peripherals (continued)

1. indep stands for independent clock domain.

5.3.7 Wake-up time from low-power modes and voltage scaling transition times

The wake-up times given in the table below are the latency between the event and the execution of the first user instruction (FSTEN = 1 in PWR_CR3 if not mentioned).

The device goes in low-power mode after the WFE (wait for event) instruction.

Mode	Parameter Conditions			Тур (3 V, 30 °С)	Max (3 V)	Unit
t _{wu(Sleep)}	Wake-up time from Sleep to Run mode	SLEEP_PD = 0	14	17	Nb of CPU cycles	
		SLEEP_PD = 1 with MSI =	8.1	8.8		
t _{wu(Stop 0)}		Wake-up in FLASH, range 4, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2	MSI 24 MHz	2.35	2.5	
	Wake-up time from Stop 0 to Run mode All SRAMs retained	Wake-up in FLASH,	MSI 24 MHz	11.0	12.0	-
		range 4, FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	11.0	12.0	
		PWR_CR2	MSI 1 MHz	37.0	39.0	
		Wake-up in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in	MSI 24 MHz	4.75	5.00	
			HSI 16 MHz	6.75	7.4	
		PWR_CR2	MSI 1 MHz	34.0	36.0	μs
		Wake-up in FLASH, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2	MSI 24 MHz	13.0	15.0	
	Wake-up time from Stop 1 to Run mode All SRAMs retained	Wake-up in FLASH,	MSI 24 MHz	22.0	24.0	
t _{wu(Stop 1)}		FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	21.5	24.0	
		PWR_CR2	MSI 1 MHz	48.0	51.0	
		Wake-up in SRAM2,	MSI 24 MHz	15.5	18.0	
		range 4, FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	17.5	20.0	
		PWR_CR2	MSI 1 MHz	45.0	48.0	

Table 73. Low-power mode wake-up timings on LDO⁽¹⁾

Table 73. Low-power mode wake-up timings on LDO(*) (continued)									
Mode	Parameter	Conditions	Тур (3 V, 30 °C)	Max (3 V)	Unit				
		Wake-up in FLASH, SRAM4FWU = 1 in PWR_CR2	MSI 24 MHz	20.0	23.0				
		Wake-up in FLASH,	MSI 24 MHz	23.0	25.0				
turiotar o	Wake-up time from Stop 2 to Run mode	SRAM4FWU = 0 in	HSI 16 MHz	22.5	25.0				
t _{wu(Stop 2)}	All SRAMs retained	PWR_CR2	MSI 1 MHz	57.0	60.0				
		Wake-up in SRAM2,	MSI 24 MHz	16.5	19.0				
		range 4, SRAM4FWU = 0	HSI 16 MHz	18.5	21.0				
		in PWR_CR2	MSI 1 MHz	54.0	57.0				
	Wake-up time from Stop 3 to Run mode All SRAMs retained	Wake-up in FLASH, FSTEN = 0 in PWR_CR3	MSI 24 MHz	68.0	130				
		Wake-up in FLASH, FSTEN = 1 in PWR_CR3	MSI 24 MHz	28.5	37.0				
			HSI 16 MHz	28.0	36.0	μs			
t _{wu(Stop 3)}			MSI 1 MHz	68.5	91.0				
		Wake-up in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in	MSI 24 MHz	22.5	31.0				
			HSI 16 MHz	24.0	32.0				
		PWR_CR2	MSI 1 MHz	64.5	85.0				
t _{wu(Standby}	Wake-up time from	Wake-up in FLASH, FSTEN = 0 in PWR_CR3	MSI 4 MHz	64.5	110				
with SRAM2)	Standby with SRAM2 to Run mode	Wake-up in FLASH,	MSI 4 MHz	64.5	83.0				
		FSTEN = 1 in PWR_CR3	MSI 1 MHz	155	240				
	Wake-up time from	Wake-up in FLASH, FSTEN = 0 in PWR_CR3	MSI 4 MHz	340	420				
t _{wu(Standby)}	Standby to Run mode	Wake-up in FLASH,	MSI 4 MHz	100	130				
		FSTEN = 1 in PWR_CR3	MSI 1 MHz	210	290				
t _{wu(Shutdown)}	Wake-up time from Shutdown to Run mode	-	MSI 4 MHz	610	710				

1. Evaluated by characterization and not tested in production, unless otherwise specified.

Mode	Parameter	Conditions		Тур (3 V, 30 °С)	Max (3 V)	Unit
t _{wu(Sleep)}	t _{wu(Sleep)} Wake-up time from Sleep SLEEP_PD = 0 to Run mode			14	17	Nb of CPU cycles
		SLEEP_PD = 1 with MSI = 24 MHz		8.1	8.8	
t _{wu(Stop 0)}		Wake-up in FLASH, range 4, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2	MSI 24 MHz	2.35	2.5	
	Wake-up time from	Wake-up in FLASH, range 4,	MSI 24 MHz	11.0	12.0	
	Stop 0 to Run mode	FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	11.0	12.0	
	All SRAMs retained	PWR_CR2	MSI 1 MHz	37.0	39.0	
		Wake-up in SRAM2, range 4,	MSI 24 MHz	4.75	5.0	
		FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	6.75	7.4	
		PWR_CR2	MSI 1 MHz	34.0	36.0	
	Wake-up time from Stop 1 to Run mode All SRAMs retained	Wake-up in FLASH, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2	MSI 24 MHz	7.65	8.3	
		Wake-up in FLASH	MSI 24 MHz	16.5	18.0	μs
t _{wu(Stop 1)}		FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	16.0	18.0	
		PWR_CR2	MSI 1 MHz	42.5	45.0	
		Wake-up in SRAM2, range 4,	MSI 24 MHz	10.0	11.0	
		FLASHFWU = 0 and SRAM4FWU = 0 in	HSI 16 MHz	12.0	13.0	
		PWR_CR2	MSI 1 MHz	39.5	42.0	
		Wake-up in FLASH SRAM4FWU = 1 in PWR_CR2	MSI 24 MHz	17.5	19.0	
		Wake-up in FLASH	MSI 24 MHz	20.5	22.0	
t _{wu(Stop 2)}	Wake-up time from Stop 2 to Run mode	SRAM4FWU = 0 in	HSI 16 MHz	20.0	22.0	
wu(Stop 2)	All SRAMs retained	PWR_CR2	MSI 1 MHz	54.0	70.0	1
		Wake-up in SRAM2, range 4,	MSI 24 MHz	14.0	16.0	
		SRAM4FWU = 0 in	HSI 16 MHz	16.0	18.0	1
		PWR_CR2	MSI 1 MHz	51.5	74.0	

Table 74. Low-	nower mode	wake-up	timinas	on SMPS ⁽¹⁾
		wake-up	unnings	

Mode	Parameter	Conditions	Тур (3 V, 30 °С)	Max (3 V)	Unit			
		Wake-up in FLASH, FSTEN = 0 in PWR_CR3	MSI 24 MHz	130	130 160			
			MSI 24 MHz	32.5	37.0			
	Wake-up time from	Wake-up in FLASH, FSTEN = 1 in PWR CR3	HSI 16 MHz	32.0	36.0			
t _{wu(Stop 3)}	Stop 3 to Run mode		MSI 1 MHz	72.5	94.0			
			MSI 24 MHz	26.5	31.0	-		
		Wake-up in SRAM2, range 4	HSI 16 MHz	28.0	32.0			
			MSI 1 MHz	68.5	89.0			
t _{wu(Standby}	Wake-up time from Standby with SRAM2 to Run mode	Wake-up in FLASH, FSTEN = 0 in PWR_CR3	MSI 4 MHz	61.5	80.0	μs		
with SRAM2)		Wake-up in FLASH,	MSI 4 MHz	61.5	80.0			
		FSTEN = 1 in PWR_CR3	MSI 1 MHz	150	240			
	Wake-up time from	Wake-up in FLASH, FSTEN = 0 in PWR_CR3	MSI 4 MHz	340	420			
t _{wu(Standby)}	Standby to Run mode	Wake-up in FLASH,	MSI 4 MHz	100	130			
		FSTEN = 1 in PWR_CR3	MSI 1 MHz	210	290			
t _{wu(Shutdown)}	Wake-up time from Shutdown to Run mode	-	MSI 4 MHz	610	710			

	Table 74. Low-	power mode wake-	up timings on S	SMPS ⁽¹⁾ (continued)
--	----------------	------------------	-----------------	---------------------------------

1. Evaluated by characterization. Not tested in production.

Symbol	Parameter	Conditions	Typ (3 V, 30 °C)	Max (3 V)	Unit
		Range 4	16.0	20.0	
t _{LDO} ⁽²⁾	SMPS to LDO transition time	Range 3	15.0	17.0	
LDO`	SMPS to LDO transition time	Range 2	14.0	18.0	
		Range 1	14.0	16.0	
		Range 4	14.0	16.0	μs
t _{SMPS} ⁽²⁾	LDO to SMPS transition time	Range 3	17.0	20.0	
'SMPS` '		Range 2	16.0	19.0	
		Range 1	16.0	19.0	

Table 75. Regulator mode transition times⁽¹⁾

Symbol	Parameter	Conditions	Typ (3 V, 30 °C)	Max (3 V)	Unit				
	Banga 4 to range 2	LDO	19.0	21.0					
	Range 4 to range 3	SMPS	25.0	38.0					
LDO	LDO	13.0	15.0						
t _{vost} ⁽³⁾	Range 3 to range 2	SMPS	13.0	23.0					
VOST /	Banga 2 to range 1	LDO	12.0	14.0	μs				
	Range 2 to range 1 SMP	SMPS	12.0	17.0					
	Bango 4 to rango 1	LDO	42.0	47.0					
	Range 4 to range 1	SMPS	48.0	76.0]				

Table 75.	Regulator mod	e transition	times ⁽¹⁾	(continued))

1. Evaluated by characterization and not tested in production, unless otherwise specified.

2. Time to REGS change in PWR_SVMSR.

3. Time to VOSRDY = 1 in PWR_VOSR.

Table 76. Wake-up time using USART/LPUART⁽¹⁾

Sy	/mbol	Parameter	Тур	Max	Unit
1	JUSART	Wake-up time needed to calculate the maximum USART/LPUART baudrate that is needed to wake up from Stop mode when the USART/LPUART kernel clock source is HSI16/MSI.	-	(2)	μs

1. Specified by design. Not tested in production.

2. This wake-up time is the HSI16 (see Table 81) or the MSI (see Table 82) oscillator maximum startup time.

5.3.8 External clock timing characteristics

High-speed external user clock generated from an external source

In bypass mode, the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 5.3.15: I/O port characteristics. However, the recommended clock input waveform is shown in the figure below.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		Digital mode (HSEBYP = 1, HSEEXT = 1)	Voltage scaling	-	-	55	
f _{HSE_ext}	User external clock source frequency	hal clock Analog mode range 1, 2, 3	range 1, 2, 3	4 ⁽²⁾	-	50	MHz
		-	Voltage scaling range 4	4 ⁽²⁾	_	25	

 Table 77. High-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Cond	ditions	Min	Тур	Max	Unit			
V _{HSEH}	OSC_IN input pin high-level voltage		-	0.7 × V _{DD}	-	V _{DD}	V			
V _{HSEL}	OSC_IN input pin low level voltage	Digital mode	-	V _{SS}	-	0.3 × V _{DD}	v			
t _{w(HSEH)}	OSC_IN high or low	(HSEBYP = 1, HSEEXT = 1)	Voltage scaling range 1, 2, 3	7	-	-	20			
t _{w(HSEL)}	time			Voltage scaling range 4	18	-	-	ns		
DuCy _{HSE}	OSC_IN duty cycle		-	45	-	55	%			
V _{HSE_ext_} PP	OSC_IN peak-to-peak amplitude	Analog mode	-	0.2	-	2/3 V _{DD}	V			
V _{HSE_ext}	OSC_IN input range	(HSEBYP = 1,	-	0	-	V _{DD}				
t _{r(HSE),} tf(HSE)	OSC_IN rise and fall time	HSEEXT = 0)	-	0.05 / f _{HSE_ext}	-	0.3 / f _{HSE_ext}	ns			

	Table 77. High-speed external user clock characteristics ⁽¹⁾ ((continued)	
--	---	-------------	--

1. Specified by design. Not tested in production.

2. Only for Analog mode. No minimum value in digital mode.

Figure 28. AC timing diagram for high-speed external clock source (analog mode)

Low-speed external user clock generated from an external source

In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 5.3.15: I/O port characteristics. However, the recommended clock input waveform is shown in Figure 29 and Figure 30.

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	5	32.768	40	kHz
V _{LSE_ext_PP}	OSC32_IN peak-to-peak amplitude	0.3	-	V _{SW}	V
V _{LSE_ext}	OSC32_IN input range	0	-	V _{SW}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time for square signal input	10	-	-	μs

Table 78. Low-speed external user clock characteristics⁽¹⁾

1. Specified by design. Not tested in production.

VLSEL

 $t_{LSE} = 1/f_{LSE ext}$

 $t_{\mathsf{w}(\mathsf{LSEL})}$

Figure 29. AC timing diagram for low-speed external square clock source

MSv67851V3

Figure 30. AC timing diagram for low-speed external sinusoidal clock source

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in the table below.

In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins, in order to minimize the output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	50	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8	mA
		V_{DD} = 3 V, Rm = 30 Ω, C _L = 10 pF @ 4 MHz	-	790	-	
		V _{DD} = 3 V, Rm = 30 Ω, C _L = 10 pF @ 8 MHz	-	910	-	
I _{DD(HSE)}	HSE current consumption	V_{DD} = 3 V, Rm = 45 Ω , C _L = 10 pF @ 8 MHz	-	930	-	μA
		V _{DD} = 3 V, Rm = 30 Ω, C _L = 5 pF @ 48 MHz	-	1430	-	μΑ
		V_{DD} = 3 V, Rm = 30 Ω , C _L = 10 pF @ 48 MHz	-	1960	-	
		V _{DD} = 3 V, Rm = 30 Ω, C _L = 20 pF @ 48 MHz	-	3000	-	
Gm _{critmax}	Maximum critical crystal transconductance G _m	Startup	-	-	1.5	mA/V
t _{su(HSE)} (4)	Startup time	V _{DD} stabilized	-	2	-	ms

Table 79	. HSE	oscillator	characteristics ⁽¹⁾
----------	-------	------------	--------------------------------

1. Specified by design. Not tested in production.

- 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note 'Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs' (AN2867).

Figure 31. Typical application with a 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾		Тур	Max	Unit
		LSEDRV[1:0] = 00, low-drive capability	-	410	-	
	LSE current	LSEDRV[1:0] = 01, medium low-drive capability	-	450	-	nA
	consumption	LSEDRV[1:0] = 10, medium high-drive capability	-	590	-	ΠA
		LSEDRV[1:0] = 11, high-drive capability	-	700	-	
		LSEDRV[1:0] = 00, low-drive capability	-	-	0.5	
	Maximum critical crystal Gm	LSEDRV[1:0] = 01, medium low-drive capability	-	-	0.75	
		LSEDRV[1:0] = 10, medium high-drive capability	-	-	1.7	µA/V
		LSEDRV[1:0] = 11, high-drive capability	-	-	2.7	

Table 80. LSE oscillator characteristics	; (f _{LSF} = 32.768 kHz) ⁽¹⁾
--	--

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit		
C _{S_PARA}	Internal stray parasitic capacitance ⁽³⁾	-	-	3	-	pF		
$t_{SU(LSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	S		

Table 80. LSE oscillator characteristics ($f_{I,SE}$ = 32.768 kHz)⁽¹⁾ (continued)

1. Specified by design. Not tested in production.

2. Refer to the note below this table.

C_{S_PARA} is the equivalent capacitance seen by the crystal due to OSC32_IN and OSC32_OUT internal parasitic capacitances.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note 'Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs' (AN2867).

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

5.3.9 Internal clock timing characteristics

The parameters given in the table below are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 32*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}		V _{DD} = 3.0 V, T _J = 30 °C	15.92	16	16.08	
f(1)	HSI16 frequency after factory calibration	$T_J = -10 \text{ °C to } 100 \text{ °C},$ 1.58 ≤ $V_{DD} \le 3.6 \text{ V}$	15.84	-	16.16	MHz
f _{HSI16} ⁽¹⁾		$T_J = -40 \text{ °C to } 130 \text{ °C},$ 1.58 ≤ $V_{DD} \le 3.6 \text{ V}$	15.65	-	16.25	
TRIM ⁽²⁾	HSI16 user trimming step	-	18	29	40	kHz

Table 81. HSI16 oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit			
DuCy(HSI16) ⁽²⁾	Duty cycle	-	45	-	55	%			
t _{su(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-	-	2.5	3.6				
t _{stab(HSI16)} ⁽²⁾	HSI16 oscillator stabilization time	At 1% of target frequency	-	4	6	μs			
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	150	210	μA			

Table 81. HSI16 oscillator characteristics (continued)

1. Evaluated by characterization. Not tested in production. It does not take into account package and soldering effects.

2. Specified by design. Not tested in production.

Multi-speed internal (MSI) RC oscillator

Symbol	Parameter		Conditio	ons	Min	Тур	Max	Unit									
				MSI range 0 (MSIRC0)	47.74	48	48.70										
													MSI range 1	23.87	24	24.35	
										MSI range 2	15.91	16	16.23				
																MSI range 3	11.93
				MSI range 4 (MSIRC1)	3.98	4	4.06										
				MSI range 5	1.99	2	2.03	MHz									
				MSI range 6	1.33	1.33	1.35										
			MSI mode	MSI range 7	0.99	1	1.01										
			MSI Mode	MSI range 8 (MSIRC2)	3.05	3.08	3.12										
				MSI range 9	1.53	1.54	1.56										
f _{MSI}		^{cy} V _{DD} = 3 V T _J = 30 °C	/ _{DD} = 3 V 「J = 30 °C	MSI range 10	1.02	1.03	1.04	kHz									
	MSI frequency after factory calibration			MSI range 11	0.76	0.77	0.78										
				MSI range 12 (MSIRC3)	397.68	400	405.71										
				MSI range 13	198.84	200	202.86										
				MSI range 14	132.56	133	135.24										
				MSI range 15	99.42	100	101.43										
				MSI range 0 (MSIRC0)	-	48.005	-										
				MSI range 1	-	24.003	-										
							MSI range 2	-	16.002	-							
				MSI range 3	-	12.001	-										
			PLL	MSI range 4 (MSIRC1)	-	3.998	-										
			mode ⁽²⁾	MSI range 5	-	1.999	-	MHz									
			XTAL = 32.768 kHz	MSI range 6	-	1.333	-										
				MSI range 7	-	0.999	-										
				MSI range 8 (MSIRC2)	-	3.08	-										
				MSI range 9	-	1.54	-										
				MSI range 10	-	1.027	-	-									
				MSI range 11	-	0.77	-										

Table 82. MSI oscillator characteristics⁽¹⁾

Table 82. MSI oscillator characteristics ⁽¹⁾ (co Symbol Parameter Conditions						Тур	Max	Unit		
				MSI range 12 (MSIRC3)	Min -	393	-			
fuer	MSI frequency after factory	$V_{DD} = 3 V$ T = 20 °C XTAL =	MSI range 13	-	196.6	-	kHz			
f _{MSI (cont'd)}	calibration	T _J = 30 °C	32.768 kHz	MSI range 14	-	131	-			
				MSI range 15	-	98.3	-			
		MSI range 0	, 4, 8, or 12		38	-	62			
DuCy(MSI) ⁽³⁾	Duty cycle	MSI range 2	, 6, 10, or 14		31	-	69			
		Other MSI ra	anges		48	-	52			
TRIM	User trimming step		-		-	0.4	-			
Δ _{TEMP(MSI)} ⁽⁴⁾	MSI oscillator frequency drift over temperature (reference is 30 °C)	MSI mode	$T_{\rm J} = -40 \text{ to } ^{-2}$	130 °C	-4	-	2			
		1	MSI range	$1.58 \leq V_{\text{DD}} \leq 3.6 \text{ V}$	-4	-	1			
					0 to 3	$2.4 \le V_{DD} \le 3.6 \text{ V}$	-1	-	1	- %
				$1.58 \leq V_{\rm DD} \leq 3.6 \ {\rm V}$	-3	-	1			
Δ _{VDD(MSI)} ⁽⁴⁾	MSI oscillator frequency drift	MCI modo	4 to 7	$2.4 \le V_{DD} \le 3.6 \text{ V}$	-1	-	1			
Δ _{VDD} (MSI) ^(*)	over V _{DD} (reference is 3V)	MSI mode	MSI range	$1.58 \leq V_{\rm DD} \leq 3.6 \ V$	-3	-	1			
	(Telefence is 5V)		8 to 11	$2.4 \le V_{DD} \le 3.6 V$	-1	-	1			
			MSI range	$1.58 \leq V_{\text{DD}} \leq 3.6 \text{ V}$	-3	-	1			
			12 to 15 $2.4 \le V_{DD} \le 3.6 \text{ V}$		-1	-	1			
Δ _{FSAMPLING} (MSI)	MSI frequency variation in sampling mode (MSIBIAS = 1)	MSI mode	T _J = –40 to 130 °C		-	-	0.2			
			MSI range 0		-	60	-			
CC	RMS cycle-to-cycle	PLL mode	MSI range 4		-	160	-			
jitter(MSI) ⁽³⁾	jitter	FLLIIIUUE	MSI range 8		-	200	-			
			MSI range 12		-	1100	-	ne		
			MSI range 0		-	40	-	ps		
P iitter(MQI)(3)		PLL mode	MSI range 4		-	130	-			
P jitter(MSI) ⁽³⁾ RMS period jitter		MSI range 8		-	170	-				
			MSI range 1	2	-	800	-			

Table 82. MSI oscillator	r characteristics ⁽¹⁾	(continued)
--------------------------	----------------------------------	-------------

Symbol	Parameter		Conditio	ons	Min	Тур	Max	Unit		
		MSI range 0	to 3		-	-	13 MSIRC0 cycles + 11 MSI cycles			
	MSI oscillator	MSI range 4	to 7		-	-	4 MSIRC1 cycles + 11 MSI cycles			
	startup time ⁽⁵⁾	MSI range 8	to 11		-	-	4 MSIRC2 cycles + 11 MSI cycles	cycles		
		MSI range 1	2 to 15		-	-	4 MSIRC3 cycles + 11 MSI cycles			
t _{switch(MSI)} ⁽³⁾	MSI oscillator transition time ⁽⁶⁾		_			-	3 destina- tion MSI cycles			
		Normal	Continuous mode ⁽⁷⁾		-	-	10			
		mode	Sampling mode ⁽⁸⁾	Final frequency	-	-	200	μs		
t _{stab(MSI)} ⁽³⁾	MSI oscillator stabilization time	PLL mode, MSIPLL FAST = 0	All MSI ranges	1% of final frequency	-	-	0.8	ms		
			MS	PLL mode, MSIPLL FAST = 1	All MSI rang	es		2		cycles
				MSI range 0 to 3	-	6.6	-			
	MSI PLL-mode		LDO	MSI range 4 to 7	-	1.6	-			
	oscillator power	MSIPLL		MSI range 8 to 11	-	1.4	-			
I _{DD(MSI_OFF} _PLLFAST) ⁽³⁾	consumption when MSI is	EN = 1 and MSIPLL		MSI range 12 to 15	-	0.8	-	μA		
_PLLFAST) ^{``'}	disabled with PLL accuracy	FAST = 1		MSI range 0 to 3	-	4.7	-			
	retention		SMPS	MSI range 4 to 7	-	1.4	-			
				MSI range 8 to 11	-	1.3	-			
				MSI range 12 to 15	-	0.8	-			

Table 82. MSI oscillator characteristics⁽¹⁾ (continued)

Symbol	Parameter		Conditio	ons	Min	Тур	Max	Unit
			LDO	MSI range 0 to 3	-	21 + 2.5 µA/MHz	-	
		Continuous		MSI range 4 to 15	-	19 + 2.5 µA/MHz	-	
		mode ⁽⁷⁾	SMPS ⁽⁹⁾	MSI range 0 to 3	-	21 + 1,3 µA/MHz	-	
I _{DD(MSI)} ⁽³⁾	MSI oscillator		SIVIE S.	MSI range 4 to 15	-	19 + 1,3 µA/MHz	-	
	power consumption	Sampling		Range 0 to 3	-	3 + 2.5 µA/MHz	-	μA
			LDO	Range 4 to 15	-	1 + 2.5µA/ MHz	-	
		mode ⁽⁸⁾	empe	Range 0 to 3	-	3 + 1 µA/MHz	-	
		SMPS Range 4 to 15	-	1 + 1 μΑ/MHz	-			

Table 82. MSI oscillator characteristics⁽¹⁾ (continued)

1. Evaluated by characterization and not tested in production, unless otherwise specified.

2. In PLL mode, the MSI accuracy is the LSE crystal accuracy.

3. Specified by design. Not tested in production.

4. This is a deviation for an individual part once the initial frequency has been measured.

5. The MSI startup time is the time when the four MSIRCs are in power down.

6. This delay is the time to switch from one MSIRC to another one. In case the destination MSIRC is in power down, the total delay is $t_{su(MSI)} + t_{switch(MSI)}$.

7. The MSI is in continuous mode when the internal regulator is in voltage range 1, 2 or 3.

8. The MSI is in sampling mode when MSIBIAS = 1 in RCC_ICSCR1, and the regulator is in voltage range 4, or when the device is in Stop 1 or Stop 2 mode.

9. SMPS efficiency in range 1, based on $V_{\mbox{CORE}}$ typical current.

High-speed internal 48 MHz (HSI48) RC oscillator

Table 83. HSI48 oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 frequency after factory calibration	V_{DD} = 3.0 V, T _J = 30 °C	47.5	48	48.5	MHz

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
TRIM ⁽¹⁾	User trimming step	-	-	0.12	0.18	
USER TRIM COVERAGE ⁽²⁾	User trimming coverage	±63 steps	±4.5	±7.56	-	
DuCy(HSI48) ⁽¹⁾	Duty cycle	-	45	-	55	
ACC _{HSI48_REL}	Accuracy of the HSI48 oscillator over temperature (factory calibrated) Reference is 3 V and 30 $^{\circ}C^{(3)}$	1.58 V ≤ V _{DD} ≤ 3.6 V, T _J = -40 to 125 °C	-3	-	2	%
A (1)	HSI48 frequency drift with V _{DD} ⁽⁴⁾	$3.0 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	0.025	0.05	
$\Delta_{\text{VDD}(\text{HSI48})}^{(1)}$		1.58 V ≤ V _{DD} ≤ 3.6 V	-	0.05	0.1	
N _T jitter ⁽¹⁾	Next transition jitter Accumulated jitter on 28 cycles ⁽⁵⁾	-	-	±0.15	-	
P _T jitter ⁽¹⁾	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁵⁾	-	-	±0.25	-	ns
t _{su(HSI48)} ⁽¹⁾	HSI48 oscillator startup time	-	-	2.5	6	μs
I _{DD(HSI48)} ⁽¹⁾	HSI48 oscillator power consumption	-	-	350	400	μA

Table 83. HSI48 oscillator characteristics (continued)

1. Specified by design. Not tested in production.

2. Evaluated by characterization. Not tested in production.

3. $\Delta f_{HSI} = ACC_{HSI48_REL} + \Delta V_{DD}$.

 These values are obtained with one of the following formula: (Freq(3.6 V) - Freq(3.0 V)) / Freq(3.0 V) or (Freq(3.6 V) - Freq(1.58 V)) / Freq(1.58 V).

5. Jitter measurements are performed without clock source activated in parallel.

Figure 33. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		V_{DD} = 3.0 V, T _J = 30 °C, LSIPREDIV = 0	31.4	-	32.6		
f _{LSI}	LSI frequency	V _{DD} = 3.0 V, T _J = 30 °C, LSIPREDIV = 1	0.245	-	0.255	kHz	
		$1.58 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ T}_{\text{J}} = -40 \text{ to } 125 ^{\circ}\text{C}$	30.4 ⁽¹⁾	-	33.6 ⁽¹⁾		
DuCy(LSI)	LSI duty cycle	LSIPREDIV = 1	-	50	-	%	
t _{SU(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	230	260		
t _{STAB(LSI)} ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	230	260	μs	
(2)	LSI oscillator power	LSIPREDIV = 0	-	140	255	nA	
I _{DD(LSI)} ⁽²⁾	consumption	LSIPREDIV = 1	-	130	240		

1. Evaluated by characterization. Not tested in production.

2. Specified by design. Not tested in production.

5.3.10 PLL characteristics

The parameters given in the table below are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 32*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	PLL input clock	-	4	-	16	MHz
f _{PLL_IN}	PLL input clock duty cycle	-	10	-	90	%
		Voltage scaling range 1	1	-	160 ⁽²⁾	
f _{PLL_OUT}	PLL P, Q, R output clock	Voltage scaling range 2	1	-	110	
		Voltage scaling range 3	1	-	55	MHz
		Voltage scaling range 1, 2	128	-	544	
f _{VCO_OUT}	PLL VCO output	Voltage scaling range 3	128	-	330	
		Duty cycle with division 1	40	-	60	%
t _{LOCK} ⁽³⁾⁽⁴⁾	PLL lock time	Integer mode	-	25	50	
LOCK	FLL IOCK UITIE	Fractional mode	-	40	65	μs
	RMS cycle-to-	Integer mode, VCO = 544 MHz	-	20	-	
	cycle jitter	Fractional mode, VCO = 544 MHz	-	70	-	
	DMS pariod iittar	Integer mode, VCO = 544 MHz	-	35	-	
Jitter	RMS period jitter	Fractional mode, VCO = 544 MHz	-	45	-	±ps
	Long-term	Integer mode, VCO = 544 MHz	-	160	-	
	jitter ⁽⁵⁾ , f _{PLL_IN} = 8 MHz	Fractional mode, VCO = 544 MHz	-	170	-	

Table 85. F	PLL ch	naracteris	stics ⁽¹⁾
-------------	--------	------------	----------------------

Symbol	Parameter	c	conditions	Min	Тур	Max	Unit
		VCO freq = 160 MHz, 1 clock output	Range 1	-	370	-	
		VCO freq = 160 MHz, 3 clock outputs	Range 1	-	390	-	
	PLL power		Range 1	-	460	-	
I _{DD(PLL)}	consumption on V _{DD}	VCO freq = 200 MHz, 1 clock output	Range 2	-	435	-	
	with LDO		Range 3	-	410	-	
		VCO freq = 336 MHz, 1 clock output	Range 1	-	710	-	
		VCO freq = 544 MHz, 1 clock output	Range 1	-	1100	-	
		VCO freq = 160 MHz, 1 clock output	Range 1, I _{VCORE} ⁽⁶⁾ = 19.4 mA	-	260	-	μA
		VCO freq = 160 MHz, 3 clock outputs	Range 1, I _{VCORE} ⁽⁶⁾ = 19.4 mA	-	270	-	
	PLL power		Range 1, $I_{VCORE}^{(6)}$ = 19.4 mA	-	320	-	
I _{DD(PLL)}	consumption on V _{DD}	VCO freq = 200 MHz, 1 clock output	Range 2, I _{VCORE} ⁽⁶⁾ = 11.7 mA	-	300	-	
	with SMPS		Range 3, I _{VCORE} ⁽⁶⁾ = 5.74 mA	-	290	-	
		VCO freq = 336 MHz, 1 clock output	Range 1, I _{VCORE} ⁽⁶⁾ = 19.4 mA	-	470	-	
		VCO freq = 544 MHz, 1 clock output	Range 1, I _{VCORE} ⁽⁶⁾ = 19.4 mA	-	730	-	

 Table 85. PLL characteristics⁽¹⁾ (continued)

1. Specified by design and not tested in production, unless otherwise specified.

2. PLL1 output Q and PLL2 output Q can be up to 200 MHz only when selected as OCTOSPI clock.

3. Evaluated by characterization. Not tested in production.

4. Lock time is the duration until PLLxRDY flag (2% of final frequency).

5. Measured on 5000 cycles.

6. SMPS efficiency based on CoreMark RUN current on V_{CORE} at max frequency of each voltage range.

5.3.11 Flash memory characteristics

Table 86. Flash memory characteristics⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max ⁽²⁾	Unit
t _{prog} 128-bit programming time	Normal mode	118	118		
	Burst mode	48	48	μs	

Symbol	Parameter	Conditions	Тур	Max ⁽²⁾	Unit
+	One 8-Kbyte page programming time	f _{AHB} = 160 MHz, normal mode	60.2	-	
^t prog_page		f _{AHB} = 160 MHz, burst mode	24.5	-	
	f _{AHB} = 160 MHz, normal mode	7710	-		
t _{prog_bank}	NumberNumber f_{AHB} = 160 MHz, burst mode	3140	-		
t _{ERASE}	One 8-Kbyte page erase time	10 k endurance cycles	1.5	2.4	ms
	One o-Royle page erase line	100 k endurance cycles	1.7	3.4	
+	Mass erase time (one bank)	10 k ondurance ovelee	49	77	
t _{ME}	Mass erase time (two banks)	10 k endurance cycles	98	154	
	Average consumption from V	Write mode	2.1	-	
I _{DD} ⁽³⁾	Average consumption from V _{DD}	Erase mode	1.3	-	
'DD'''	Maximum aurrant (nack)	Write mode	2.6	-	mA
	Maximum current (peak)	Erase mode	3.0	-	

Table 86. Flash memory	y characteristics ⁽¹⁾ ((continued)	
------------------------	------------------------------------	-------------	--

1. Specified by design. Not tested in production.

2. Evaluated by characterization after cycling. Not tested in production.

3. Evaluated by characterization. Not tested in production.

Tab	ole 87. Flash	memory end	durance and	data retent	ion

Symbol	Parameter	Con	ditions	Min ⁽¹⁾	Unit
N _{END}	Endurance		T _A =40 to 125 °C	100	kcycles
			T _A = 85 °C after 1 kcycle ⁽²⁾	30	
			T _A = 105 °C after 1 kcycle ⁽²⁾	15	
			T _A = 125 °C after 1 kcycle ⁽²⁾	10	
		Whole bank	T _A = 55 °C after 10 kcycles ⁽²⁾	30	
t _{RET}	Data retention		T _A = 85 °C after 10 kcycles ⁽²⁾	15	Years
			T _A = 105 °C after 10 kcycles ⁽²⁾	10	
			T _A = 55 °C after 100 kcycles ⁽²⁾	30	
			T _A = 85 °C after 100 kcycles ⁽²⁾	15	
			T _A = 105 °C after 100 kcycles ⁽²⁾	10	

1. Evaluated by characterization. Not tested in production.

2. Cycling performed over the whole temperature range.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling two LEDs through the I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs as follows:

- Electrostatic discharge (ESD) (positive and negative): applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB (fast transient voltage burst) (positive and negative): applied to VDD and VSS pins through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in the table below. They are based on the EMS levels and classes defined in application note *EMC design guide for STM8, STM32 and Legacy MCUs* (AN1709).

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, T _A = +25 °C, f _{HCLK} = 160 MHz, LQFP100 conforming to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f_{HCLK} = 160 MHz, LQFP100 conforming to IEC 61000-4-4	5A

Table 88. EMS characteristics

Designing hardened software to avoid noise problems

The EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. Note that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened

to prevent unrecoverable errors occurring. See application note *Software techniques for improving microcontrollers EMC performance* (AN1015) for more details.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling two LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard that specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Value	Unit
			0.1 MHz to 30 MHz	19	
	Peak ⁽¹⁾	V _{DD} = 3.6 V, T _{A =} 25 °C,	30 MHz to 130 MHz	14	
S _{EMI}	Peak	LQFP100 package compliant	130 MHz to 1 GHz	18	dBµV
		with IEC 61967-2	1 GHz to 2 GHz	14	
	Level ⁽²⁾		0.1 MHz to 2 GHz	3.5	

1. Refer to the EMI radiated test section of the application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709).

2. Refer to the EMI level classification section of the application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709).

5.3.13 Electrical sensitivity characteristics

Based on three different tests (ESD, latch-up) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Sym bol	Ratings	Conditions	Packages	PINs	Class	Max value	Unit
V _{ESD} (HBM)	Electrostatic discharge voltage (human body model)	T _A = 25 °C, conforming to ANSI/ESDA/JEDEC JS-001	All	All	2	2000	
V _{ESD}	Electrostatic discharge voltage (charge device	T _A = 25 °C, conforming to ANSI/ESDA/JEDEC JS-002	All	All except PC15	C2a	500	V
(CDM)	model)			PC15	C1	250	

Table 90	. ESD	absolute	maximum	ratings ⁽¹⁾
----------	-------	----------	---------	------------------------

1. Evaluated by characterization. Not tested in production.

Static latch-up

The following complementary static tests are required on three parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78E IC latch-up standard.

Table 91	Floctrical	sensitivities ⁽¹⁾
		2611211111162.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	TA = +130 °C conforming to JESD78	Class II level A

1. Evaluated by characterization. Not tested in production.

5.3.14 I/O current injection characteristics

As a general rule, the current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) must be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller if abnormal injection accidentally happens, some susceptibility tests are performed on a sample basis during the device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating-input mode. While this current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out-of-range parameter, such as an ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in the table below. The negative induced leakage current is caused by the negative injection. The positive induced leakage current is caused by the positive injection.

Symphol	Description	Functional	Unit	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on PA4 and PA5 pins	0	0	
I _{INJ}	Injected current on other PA1, PA6, PA7, PB0, and PB1 pins	0	N/A	mA
	Injected current on all other pins	5	N/A	

Table 92. I/O current injection susceptibility⁽¹⁾⁽²⁾

1. Evaluated by characterization. Not tested in production.

 The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O.

5.3.15 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the conditions summarized in *Table 32*. All I/Os are designed as CMOS- and TTL-compliant.

Note: For information on GPIO configuration, refer to the application note 'STM32 GPIO configuration for hardware settings and low-power consumption' (AN4899).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	I/O input	$1.08 \text{ V} \le \text{V}_{\text{DDIOx}} \le 3.6 \text{ V}$	-	-	0.3 V _{DDIOx}	
$V_{\text{IL}}{}^{(2)}$	low-level	All I/Os except FT_c	-	-	0.38 V _{DDIOx} ⁽³⁾	
	voltage	FT_c I/Os	-	-	0.3 V _{DDIOx}	
		$1.08 \text{ V} \le \text{V}_{\text{DDIOx}} \le 3.6 \text{ V}$	$0.7 V_{DDIOx}$	-	-	V
V _{IH} (2)	I/O input high-level voltage	All I/Os except FT_c	$0.5 V_{DDIOx} + 0.2^{(3)}$	-	-	
	5 - 5 -	FT_c I/Os	0.7 V _{DDIOx}	-	-	
V _{hys} (3)	Input hysteresis	TT_xx, FT_xx I/Os	-	250	-	mV

Table 93. I/O static characteristics

Table 95. I/O static characteristics (continued)							
Symbol	Parameter	с	onditions	Min	Тур	Мах	Unit
			$V_{IN} \le Max (V_{DDXXX})^{(5)}$	-	-	150	
		all I/Os except FT_c, FT_d, FT_o, FT_t,	$\begin{array}{l} {\rm Max}\;({\rm V}_{\rm DDXXX}) < {\rm V}_{\rm IN} \\ \leq {\rm Max}\;({\rm V}_{\rm DDXXX}) + 1\;{\rm V}^{(6)} \end{array}$	-	-	2000	
		FT_u,TT_xx	Max (V _{DDXXX}) + 1 V < V _{IN} ≤ 5.5 V ⁽⁶⁾	-	-	500	
		ET al/Oa	$V_{IN} \le Max (V_{DDXXX})^{(5)}$	-	-	1500	
		FT_c I/Os	Max (V_{DDXXX}) < $V_{IN} \le 5 V^{(6)}$	-	-	2000	
		FT_d I/Os	$V_{IN} \le Max (V_{DDXXX})^{(5)}$	-	-	1500	
			Max (V_{DDXXX}) < $V_{IN} \le 5.5 V^{(6)}$	-	-	5000	
			$V_{IN} \le Max (V_{DDXXX})^{(5)}$	-	-	50	
I _{lkg} (3)(4)	Input leakage	FT_o I/Os	$\begin{array}{l} {\rm Max}\;({\rm V}_{\rm DDXXX}) < {\rm V}_{\rm IN} \\ \leq {\rm Max}\;({\rm V}_{\rm DDXXX}) + 1\;{\rm V}^{(6)} \end{array}$	-	-	500	
(0)(1)	current		$\begin{array}{l} {\rm Max}\;({\rm V}_{\rm DDXXX}) + 1\;{\rm V} < {\rm V}_{\rm IN} \\ \leq 5.5\;{\rm V}^{(6)} \end{array}$	-	-	200	
			V _{IN} ≤ Max (V _{DDXXX}) ⁽⁵⁾	-	-	200	– nA
		FT_u I/Os	$\begin{array}{l} {\rm Max} \; ({\rm V}_{\rm DDXXX}) < {\rm V}_{\rm IN} \\ \leq {\rm Max} \; ({\rm V}_{\rm DDXXX}) + 1 \; {\rm V}^{(6)} \end{array}$	-	-	2500	
			Max (V _{DDXXX}) + 1 V < V _{IN} ≤ 5.5 V ⁽⁶⁾	-	-	500	
			V _{IN} ≤ Max (V _{DDXXX}) ⁽⁵⁾	-	-	300	
		FT_t I/Os	$ \begin{array}{l} {\rm Max} \; ({\rm V}_{\rm DDXXX}) < {\rm V}_{\rm IN} \\ \leq {\rm Max} \; ({\rm V}_{\rm DDXXX}) + 1 \; {\rm V}^{(6)} \end{array} $	-	-	3000	
			Max (V _{DDXXX}) + 1 V < V _{IN} ≤ 5.5 V ⁽⁶⁾	-	-	600	
I _{lkg}	Input leakage	TT_xx I/Os except OPAMPx_VINM (x = 1, 2)	V _{IN} ≤ Max (V _{DDXXX}) ⁽⁵⁾	-	-	500	
(0)(1)	current	OPAMPx_VINM (x = 1 current	, 2) dedicated input leakage	-	-	(7)	
R _{PU}	Weak pull-up equivalent		-	30	40	50	
R _{PD}	Weak pull-down equivalent resistor ⁽⁸⁾		-	30	40	50	kΩ
C _{IO}	I/O pin capacitance		-	-	5	-	pF

Table 93. I/O static characteristics⁽¹⁾ (continued)

1. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O.

Electrical characteristics

- 2. Refer to Figure 34: I/O input characteristics (all I/Os except BOOT0 and FT_c).
- 3. Specified by design. Not tested in production.
- This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following formula: I_{Total_Ileak_max} = 10 μA + [number of I/Os where VIN is applied on the pad] x I_{Ikg} max.
- Max (V_{DDXXX}) is the maximum value of all the I/O supplies. The I/O supplies depend on the I/O structure options, as described in *Table 25: Legend/abbreviations used in the pinout table*.
- 6. To sustain a voltage higher than Min (V_{DD} , V_{DDA} , V_{DDUSB} , V_{DDIO2}) +0.3 V, the internal pull-up and pull-down resistors must be disabled.
- 7. Refer to I_{bias} in the OPAMP characteristics table for the values of the OPAMP dedicated input leakage current.
- The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in the figure below.

Figure 34. I/O input characteristics (all I/Os except BOOT0 and FT_c)

Output driving current

The GPIOs (except PC13, PC14, PC15) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}). PC13, PC14, PC15 are limited in source capability: +3 mA shared between the three I/Os. These GPIOs have the same sink capability than other GPIOs.

In the user application, the number of I/O pins tat can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2: Absolute maximum ratings*:

The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 30: Current characteristics*).

DS14217 Rev 4

 The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 30: Current characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 32*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low-level voltage	CMOS port ⁽⁴⁾ , $ I_{IO} = 8 \text{ mA}$,	-	0.4	
V _{OH}	Output high-level voltage	$2.7 \text{ V} \le \text{V}_{\text{DDIOx}} \le 3.6 \text{ V}$	V _{DDIOx} - 0.4	-	
V _{OL} ⁽⁵⁾	Output low-level voltage	TTL port ⁽⁴⁾ , $ I_{IO} = 8 \text{ mA}$,	-	0.4	
V _{OH} ⁽⁵⁾	Output high-level voltage	$2.7 \text{ V} \le \text{V}_{\text{DDIOx}} \le 3.6 \text{ V}$	2.4	-	
V _{OL} ⁽⁵⁾	Output low-level voltage	All I/Os, I _{IO} = 20 mA,	-	1.3	
V _{OH} ⁽⁵⁾	Output high-level voltage	$2.7 \text{ V} \le \text{V}_{\text{DDIOx}} \le 3.6 \text{ V}$	V _{DDIOx} - 1.3	-	
V _{OL} ⁽⁵⁾	Output low-level voltage	I _{IO} = 4 mA,	-	0.4	
V _{OH} ⁽⁵⁾	Output high-level voltage	1.58 V ≤ V _{DDIOx} ≤ 3.6 V	V _{DDIOx} - 0.4	-	V
V _{OL} ⁽⁵⁾	Output low-level voltage	I _{IO} = 1 mA,	-	0.4	
V _{OH} ⁽⁵⁾	Output high-level voltage	1.08 V ≤ V _{DDIOx} <3.6 V	V _{DDIOx} - 0.4	-	
		$ I_{\rm IO} = 20 \text{ mA},$ 2.7 V \leq V _{DDIOX} \leq 3.6 V	-	0.4	
V _{OLFM+} ⁽⁵⁾	Output low-level voltage for a FT_f I/O pin in FM+ mode	I _{IO} = 10 mA, 1.58 V ≤ V _{DDIOx} ≤ 3.6 V	-	0.4	
		$ I_{IO} = 2 \text{ mA},$ 1.08 V \leq V _{DDIOx} < 3.6 V	-	0.4	

Table 94. Output voltage characteristics (all I/Os except FT_c, FT_t in V_{BAT} mode, and FT_o I/Os^{(1)})^{(2)(3)}

1. FT_t I/O characteristics are degraded only in V_{BAT} mode (refer to Table 95).

2. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O.

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 30: Current characteristics*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣI_{IO}.

4. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

5. Specified by design. Not tested in production.

Table 95. Output voltage characteristics for FT_t I/Os in V_{BAT} mode, and for FT_o I/Os⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low-level voltage	I _{IO} = 0.5 mA, 2.7 V ≤ V _{SW} ≤ 3.6 V	-	0.4	
V _{OH}	Output high-level voltage	$ 1 _{O} = 0.5 \text{ mA}, 2.7 \text{ V} = \text{V}_{SW} = 3.0 \text{ V}$	V _{SW} - 0.4	-	V
V _{OL}	Output low-level voltage	I _{IO} = 0.25 mA, 1.58 V ≤ V _{SW} ≤ 3.6 V	-	0.4	v
V _{OH}	Output high-level voltage	$ 1_{O} = 0.25 \text{ mA}, 1.56 \text{ V} \le \text{V}_{SW} \le 3.6 \text{ V}$	V _{SW} - 0.4	-	

1. Specified by design. Not tested in production.

Output AC characteristics

The definition and values of output AC characteristics are given in *Figure 35: Output AC characteristics definition* and in the table below respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 32*.

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit			
			C_L = 50 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	12.5				
		Maximum frequency	$C_{L} = 50 \text{ pF}, 1.58 \text{ V} \le \text{V}_{\text{DDIOx}} < 2.7 \text{ V}$	-	5				
	Emoy		C_L = 50 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	1	MHz			
	Fmax	all I/Os	C_L = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	12.5				
			C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	5				
00			C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	1				
00			C_L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	17				
			C_L = 50 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	33				
	+ /t_	0utput rise and fall time all I/Os	C_L = 50 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	85	ns			
	۲ [,] ч		C_L = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	12.5				
			C_L = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	25				
			C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	50				
		/ Maximum frequency	C_L = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	55	- - - MHz			
			C_{L} = 30 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	12.5				
	Fmax		C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	2.5				
	TINAX	all I/Os	C_L = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	55				
			C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	12.5				
01			C_L = 10 pF, 1.08 V ≤ V_{DDIOx} ≤<1.58 V	-	2.5				
01			C_L = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	5.8				
			C_{L} = 30 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	10	1			
	+ /+	Output rise and fall time	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	18				
	t _r /t _f	all I/Os	C_{L} = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	4.2	- ns -			
			C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	7.5				
			C_{L} = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	12				

Table 96. Output AC characteristics, HSLV OFF (all I/Os except FT_c, FT_t in V_{BAT} mode, and FT_o I/Os^{(1)})^{(2)(3)(4)}

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit	
			C_{L} = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	100 ⁽⁵⁾		
			C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	33 ⁽⁵⁾		
	Empy	Maximum frequency all I/Os	C _L = 30 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	5		
	Fmax		C_{L} = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	133 ⁽⁵⁾	MHz	
			C _L = 10 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	40 ⁽⁵⁾		
10			C _L = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	5		
10			C_{L} = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	3.3 ⁽⁵⁾		
			C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	6.0 ⁽⁵⁾		
	1.4	Output rise and fall time	C _L = 30 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	13.3		
	t _r /t _f	all I/Os	C_{L} = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	2 ⁽⁵⁾	ns	
			C _L = 10 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	4.1 ⁽⁵⁾		
			C _L = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	9.2		
			C_{L} = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	100 ⁽⁵⁾		
		Maximum frequency All I/Os except FT_c, FT_v, and TT_v	C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	33 ⁽⁵⁾	- - - MHz	
			C _L = 30 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	5		
			C_{L} = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	133 ⁽⁵⁾		
			C _L = 10 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	40 ⁽⁵⁾		
	Emay		C _L = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	5		
	Fmax		C_{L} = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	140 ⁽⁵⁾		
			C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	40 ⁽⁵⁾		
44		Maximum frequency	C _L = 30 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	5		
11		FT_v and TT_v I/Os	C_{L} = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	166 ⁽⁵⁾		
			C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	50 ⁽⁵⁾		
			C _L = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	5		
			C_{L} = 30 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V	-	3.3 ⁽⁵⁾		
			C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	6.0 ⁽⁵⁾		
	+ /+	Output rise and fall time	C _L = 30 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	13.3		
	t _r /t _f	All I/Os except FT_c, FT_v, and TT_v	C_{L} = 10 pF, 2.7 V ≤ V_{DDIOx} ≤ 3.6 V		2.0 ⁽⁵⁾	ns	
			C _L = 10 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V		4.1 ⁽⁵⁾		
			C _L = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V		9.2		

Table 96. Output AC characteristics, HSLV OFF (all I/Os except FT_c, FT_t in V_{BAT} mode, and FT_o I/Os⁽¹⁾)⁽²⁾⁽³⁾⁽⁴⁾ (continued)

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit
			C _L = 30 pF, 2.7 V ≤ V _{DDIOx} ≤ 3.6 V	-	2.5 ⁽⁵⁾	
			C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	5.0 ⁽⁵⁾	
11	+ /+	Output rise and fall time	C_{L} = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	11	
(cont'd)	t _r /t _f	FT_v and TT_v I/Os	C_{L} = 10 pF, 2.7 V ≤ V_{DDIOX} ≤ 3.6 V	-	1.66 ⁽⁵⁾	ns
			C_{L} = 10 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	3.1 ⁽⁵⁾	
			C_{L} = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	- 7	7	
	Fmax	Maximum frequency	C _L = 550 pF, 1.08 V ≤ V _{DDIOx} < 3.6 V	-	1	MHz
			C _L = 100 pF, 1.58 V ≤ V _{DDIOx} < 3.6 V	-	50	
Fm+	+	Output fall time ⁽⁶⁾	C _L = 100 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	80	
	Чf	t _f Output fall time ^(b)	C _L = 550 pF, 1.58 V ≤ V _{DDIOx} < 3.6 V	-	100	ns
			C _L = 550 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	220	

Table 96. Output AC characteristics, HSLV OFF (all I/Os except FT_c, FT_t in V_{BAT} mode, and FT_o I/Os⁽¹⁾)⁽²⁾⁽³⁾⁽⁴⁾ (continued)

1. FT_t I/O characteristics are degraded only in V_{BAT} mode (refer to *Table 99*).

2. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O.

3. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the product reference manual for a description of GPIO port configuration register.

4. Specified by design. Not tested in production.

5. Compensation system enabled.

6. The fall time is defined between 70% and 30% of the output waveform accordingly to I^2C specification.

Speed	Symbol	Parameter	Conditions Min Max U					
			C _L = 50 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	10			
	Fmax	Maximum frequency	C_{L} = 50 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	4	MHz		
	FIIIdX	t_r/t_f Output rise and fall time	C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	15			
00			C_{L} = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	- 4				
00			C_L = 50 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	18	- ns		
	+ /+		C_{L} = 50 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	32			
	۲/ ۱f		C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	12			
			C _L = 10 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	21			

Table 97. Output AC characteristics, HSLV ON (all I/Os except FT_c)⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
			C _L = 30 pF, 1.58 V ≤ V _{DDIOx} < 2.7 V	-	50		
	Emay	Maximum fraguenav	C _L = 30 pF, 1.08 V ≤ V _{DDIOx} < 1.58 V	-	10		
	Fmax	Maximum frequency	C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	67	MHz	
01			C_{L} = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	10		
01			C_{L} = 30 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	5.3		
	+ /+	Output rise and fall time	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	10.6		
	t _r /t _f	Output rise and fall time	C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	3.1	ns	
			C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	5.6		
			C_L = 30 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	75 ⁽⁵⁾		
	Fmax	Maximum frequency	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	15	MHz	
	THIAN		C_L = 10 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	100 ⁽⁵⁾	1011 12	
10	10		C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	15		
10			C_L = 30 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	4.4 ⁽⁵⁾		
	t /t_	Output rise and fall time	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	9.6		
	t _r /t _f		C_L = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	2.2 ⁽⁵⁾	ns	
			C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	4.7		
			C_{L} = 30 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	75 ⁽⁵⁾		
		Maximum frequency	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	15	MHz	
		All I/Os except FT_c, FT_v, and TT_v	C_L = 10 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	100 ⁽⁵⁾		
11	Fmax		C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	15		
11	гпах		C_{L} = 30 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	110 ⁽⁵⁾		
		Maximum frequency	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	25		
		FT_v and TT_v I/Os	C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	150 ⁽⁵⁾		
			C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	25		
			C_L = 30 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	4.4 ⁽⁵⁾		
		Output rise and fall time All I/Os except FT_c, FT_v,	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	9.6		
		and TT_v	C_L = 10 pF, 1.58 V $\leq V_{DDIOx} <$ 2.7 V		2.2 ⁽⁵⁾	1	
11	t /t.		C_L = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V		4.7	ne	
	t _r /t _f		C_{L} = 30 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V	-	3.0 ⁽⁵⁾	- ns	
		Output rise and fall time	C_L = 30 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	6.6		
		FT_v and TT_v I/Os	C_{L} = 10 pF, 1.58 V ≤ V_{DDIOx} < 2.7 V		1.6 ⁽⁵⁾		
			C_{L} = 10 pF, 1.08 V ≤ V_{DDIOx} < 1.58 V	-	3.4		

Table 97. Output AC characteristics, HSLV ON (all I/Os except FT_c)⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ (continued)

1. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O.

 The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the product reference manual for a description of GPIO port configuration register.

- 3. Specified by design. Not tested in production.
- 4. FT_t I/O characteristics are degraded in V_{BAT} mode (refer to *Table 99*).
- 5. Compensation system enabled.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
	Fmax	max Maximum fraguaray	All I/Os, C _L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	10	MHz
00	Filldx	Maximum frequency	All I/Os, C _L = 50 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	5	
00	+ /+	Output rise and fall time	All I/Os, C _L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	33	20
	t _r /t _f	Output rise and fall time	All I/Os, C _L = 50 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	66	ns
	Fmax Maximum frequency	All I/Os, C _L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	25	MHz	
01	Filldx	Maximum requercy	All I/Os, C _L = 50 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	10	
01	t _r /t _f	Output rise and fall time	All I/Os, C _L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	13	ns
	۲/۲/۲		All I/Os, C _L = 50 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	33	115
	Fmax	Maximum frequency	All I/Os, C _L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	40	MHz
1x	Filldx	Maximum nequency	All I/Os, C _L = 50 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	20	
IX	+ /+	Output rise and fall time	All I/Os, C _L = 50 pF, 2.7 V \leq V _{DDIOx} \leq 3.6 V	-	8	20
	t _r /t _f	Output rise and fall time	All I/Os, C _L = 50 pF, 1.58 V \leq V _{DDIOx} $<$ 2.7 V	-	17	ns

Table 98. Output AC characteristics for FT_c I/Os⁽¹⁾⁽²⁾

1. Specified by design. Not tested in production.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the product reference manual for a description of GPIO port configuration register.

Table 99. Output AC chara	acteristics for FT_t I/Os in V _{BAT} mode,	and for FT_o I/Os ⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
Fmax	Maximum frequency	C_{L} = 50 pF, 2.7 V ≤ V_{SW} ≤ 3.6 V	-	0.5	MHz
Fillax		C_{L} = 50 pF, 1.58 V ≤ V_{SW} < 2.7 V	-	0.25	
+ /+.	Output rise and fall time	$C_{L} = 50 \text{ pF}, 2.7 \text{ V} \le \text{V}_{SW} \le 3.6 \text{ V}$	-	400	200
t _r /t _f		C_{L} = 50 pF, 1.58 V ≤ V_{SW} < 2.7 V	-	900	ns

1. Specified by design. Not tested in production.

Figure 35. Output AC characteristics definition

5.3.16 **NRST** pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, R_{PU}.

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 32.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
					-	
V _{IL(NRST)}	NRST input low-level voltage	-	-	-	$0.3 ext{ x V}_{ ext{DDIOx}}$	v
V _{IH(NRST)}	NRST input high-level voltage	-	$0.7 \ x \ V_{\text{DDIOx}}$	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
t _{F(NRST)}	NRST input filtered pulse	-	-	-	50	
t	NRST input not-filtered pulse	$1.71~\mathrm{V} \leq \mathrm{V_{DD}} \leq 3.6~\mathrm{V}$	330	-	-	ns
^t NF(NRST)		$1.58~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	1000	-	-	

Table 100. NRST pin characteristics⁽¹⁾

1. Specified by design. Not tested in production.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series 2. resistance is minimal (~10% order).

Figure 36. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in the above table. Otherwise the reset is not taken into account by the device.

3. The external capacitor on NRST must be placed as close as possible to the device.

5.3.17 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 101. EXTI input characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

1. Specified by design. Not tested in production.

5.3.18 Analog switches booster

Table 102. Analog switches booster characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit
V _{DD}	Supply voltage	1.6	1.8	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	50	μs
I _{DD(BOOST)}	Booster consumption	-	-	125	μA

1. Specified by design. Not tested in production.

5.3.19 14-bit analog-to-digital converter (ADC1) characteristics

Unless otherwise specified, the parameters given in the table below are values derived from tests performed under ambient temperature, f_{HCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 32*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog power supply for ADC ON	-	1.62	-	3.6		
V	Positive reference	V _{DDA} ≥ 2 V	2	-	V _{DDA}	v	
V_{REF} +	voltage	V _{DDA} < 2 V		V_{DDA}			
V _{REF-}	Negative reference voltage	-		V_{SSA}		1	
f	ADC clock frequency	$1.62 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	5 ⁽³⁾	-	55	MHz	
f _{ADC}	ADC clock ratio	-	45	-	55	%	
		Resolution = 14 bits	0.23	-	2.5		
f	Resolutio	Resolution = 12 bits	0.25	-	2.75	Msps	
f _s	Sampling rate	Resolution = 10 bits	0.28	-	3.05		
		Resolution = 8 bits	0.31	-	3.44		
t _{TRIG}	External trigger period	Resolution = 14 bits	26	-	-	1/f _{ADC}	
V _{AIN} ⁽⁴⁾	Conversion voltage range	-	0	-	V _{REF+}	v	
V _{CIMV}	Common mode input voltage	-	V _{REF+} /2 - 10%	V _{REF+} /2	V _{REF+} /2 + 10%	V	
		Resolution = 14 bits T _j = 130 °C	-	-	1000		
D (5)	External input	Resolution = 12 bits T _j = 130 °C	-	-	1000		
R _{AIN} ⁽⁵⁾	impedance	Resolution = 10 bits T _j = 130 °C	-	-	4700	Ω	
		Resolution = 8 bits T _j = 130 °C	-	-	22000		
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF	
t _{ADCVREG} _ STUP	ADC LDO startup time	-	-	-	17	μs	
t _{STAB}	ADC power-up time	LDO already started	(3 × 1/f _A	_{DC}) + 1 co	nversion	Cycle	
t _{CAL}	Offset and linearity calibration time	-	31849			1/f _{ADC}	
t _{OFF_CAL}	Offset calibration time	-	885				

 Table 103. 14-bit ADC1 characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	4-bit ADC1 character Conditions	Min	Тур	Max	Unit
	Trigger conversion	PRESC = 0		3		
t _{LATR}	latency for regular and injected channels,	PRESC = 1		7		
LAIR	without aborting the conversion	PRESC = 2		13		
	Trigger conversion	PRESC = 0		4		
t _{LATRINJ}	latency Injected channels aborting a	PRESC = 1		9		1/f _{ADC}
	regular conversion	PRESC = 2		17		
t _s	Sampling time	-	5	-	814	
t _{CONV}	Total conversion time (including sampling time)	Resolution = N bits		t _s + N + 3		
	ADC consumption on V _{DDA} Differential mode	f _s = 2.5 Msps, resolution = 14 bits	-	970	-	
		f _s = 1 Msps, resolution = 14 bits	-	550	-	
		f _s = 10 ksps, resolution = 14 bits	-	130	-	
IDDA_D(ADC)		f _s = 2.5 Msps, resolution = 12 bits	-	940	-	
		f _s = 2.5 Msps, resolution = 10 bits	-	840	-	
		f _s = 2.5 Msps, resolution = 8bits	-	730	-	
		f _s = 2.5 Msps, resolution = 14 bits	-	140	-	— μΑ
	ADC consumption on	f _s = 1 Msps, resolution = 14 bits	-	80	-	
I _{DDV_D(ADC)}		f _s = 10 ksps, resolution = 14 bits	-	13	-	
	V _{REF+} Differential mode	f _s = 2.5 Msps, resolution = 12 bits	-	140	-	
		f _s = 2.5 Msps, resolution = 10 bits	-	140	-	
		f _s = 2.5 Msps, resolution = 8bits	-	120	-	

Table 103. 14-bit ADC1 characteristics⁽¹⁾⁽²⁾ (continued)

Symbol Parameter Conditions Min Typ Max						
Symbol	Parameter	Conditions	wiin	Тур	Iviax	Unit
		f _s = 2.5 Msps, resolution = 14 bits	-	980	-	
		f _s = 1 Msps, resolution = 14 bits	-	550	-	
	ADC consumption on	f _s = 10 ksps, resolution = 14 bits	-	130	-	
IDDA_s(ADC)	V _{DDA} Singe-ended mode	f _s = 2.5 Msps, resolution = 12 bits	-	900	-	
		f _s = 2.5 Msps, resolution = 10 bits	-	840	-	
		f _s = 2.5 Msps, resolution = 8bits	-	770	-	μA
	ADC consumption on V _{REF+} Single-ended mode	f _s = 2.5 Msps, resolution = 14 bits	-	160	-	μΑ
		f _s = 1 Msps, resolution = 14 bits	-	90	-	
		f _s = 10 ksps, resolution = 14 bits	-	15	-	
I _{DDV_s(ADC)}		f _s = 2.5 Msps, resolution = 12 bits	-	150	-	
		f _s = 2.5 Msps, resolution = 10 bits	-	150	-	
		f _s = 2.5 Msps, resolution = 8bits	-	150	-	

Table 103. 14-bit ADC1	characteristics ⁽¹⁾⁽²⁾	(continued)	
------------------------	-----------------------------------	-------------	--

1. Specified by design. Not tested in production.

2. The voltage booster on the ADC switches must be used when V_{DDA} < 2.4 V (embedded I/O switches).

3. Degraded differential linearity error below 10 MHz.

4. Depending on the package, V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} .

 The maximum value of R_{ain} is specified to keep leakage induced offset within the specified tolerance. The tolerance is 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and 8-bit resolutions.

The maximum value of R_{AIN} can be found in the table below.

Table 104	. Maximum	R _{AIN} for	[·] 14-bit ADC1 ⁽	1)(2) (3)
-----------	-----------	----------------------	---------------------------------------	-----------

Resolution ⁽⁴⁾	R _{AIN} max (Ω) ⁽⁵⁾	Sampling time [ns]	Sampling cycle at 5 MHz	Sampling cycle at 55 MHz
	47	142		
14 bits	68	145	5	12
	100	170		

Decel: (4)			4-bit ADC1 ⁽¹⁾⁽²⁾ (³⁾ (cont	
Resolution ⁽⁴⁾	R _{AIN} max (Ω) ⁽⁵⁾	Sampling time [ns]	Sampling cycle at 5 MHz	Sampling cycle at 55 MHz
-	47	135		
-	68	135		
-	100	140		
12 bits	150	145		
	220	150		
	330	155		
	470	180		
	47	128		12
	68	130		12
	100	132		
	150	134		
	220	140		
10 bits	330	146		
	470	160		
	680	176		
	1000	200		
-	1500	240	5	00
-	2200	320		20
	47	123		
-	68	124		
-	100	125		
-	150	128		
-	220	130		10
-	330	137		12
-	470	140		
8 bits	680	157		
	1000	178		
	1500	204		
	2200	250		00
	3300	313		20
	4700	400		
	6800	546		36
	10000	830		68

Table 104. Maximum R_{AIN} for 14-bit ADC1^{(1)(2) (3)} (continued)

1. Specified by design. Not tested in production.

2. BOOSTEN and ANASWVDD configured properly according to V_{DD} and V_{DDA} values.

3. Values without external capacitor.

- 4. The tolerance is 2 LSBs for 14 bits and 1 LSB for other resolutions.
- 5. The maximum value of R_{AIN} is obtained in a worst-case scenario: channel conversion in scan mode with channel i connected to V_{REF+} and channel i + 1 connected to V_{REF-} .

Symbol	Parameter	Conditions ⁽⁴⁾		Min	Тур	Мах	Unit
гт	Total upodiusted error	Single ended		-	± 6	± 12	
ET	Total unadjusted error	Differential		-	±3	±6	
EO	Offset error	Single ended		-	±6	±12 ⁽⁵⁾	
EO	Oliset error	Differential		-	±2	±6 ⁽⁵⁾	
EG	Gain error	Single ended		-	±5	±10	
EG	Gainento	Differential		-	±2.5	±5	LSB
		Single ended	f > 10 MHz	-	-0.9/+1.5	0.0/1.2.5	LOD
ED	Differential linearity error	Differential	f _{ADC} ≥ 10 MHz	-	-0.9/+1.5	-0.9/+2.5	
	Differential intearity error	Single ended	f (10 MU)	-	-0.9/+1.5	-1/+3	
		Differential f _{ADC} < 10 MHz		-	-0.3/11.0	-1/+3	
EL	Integral linearity error	Single ended		-	±3	±7	
	integral linearity error	Differential		-	±2	±5	
ENOB	Effective number of bits	Single ended		11	12	-	bits
ENOB		Differential		11.8	12.8	-	DIIS
SINAD	Signal-to-noise and	Single ended		68	74	-	
SINAD	distortion ratio	Differential		73	78	-	
	Signal to poise ratio	Single ended		68	74	-	٩D
SNR	Signal-to-noise ratio	Differential		73	78	-	dB
тир	Total barmania diatartian	Single ended		-	-84	-80	
THD	Total harmonic distortion	Differential		-	-95	-89	

Table 105. 14-bit ADC1 accuracy⁽¹⁾⁽²⁾⁽³⁾

1. Evaluated by characterization for BGA packages. Not tested in production. The values for LQFP packages may differ.

2. ADC DC accuracy values are measured after the internal calibration.

3. Extended calibration mode activated.

4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in SYSCFG_CFGR1 when V_{DDA} < 2.4 V). The booster is disabled when V_{DDA} \geq 2.4 V. Resolution = 14 bits, no oversampling.

5. This parameter may degrade in case of digital activity on adjacent I/Os.

Figure 37. ADC accuracy characteristics

Refer to the ADCx characteristic table for the values of $\mathsf{R}_{\mathsf{AIN}}$ and $\mathsf{C}_{\mathsf{ADC}}.$ 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 93: I/O static characteristics* for the value of the pad capacitance). A high $C_{parasitic}$ value downgrades the conversion accuracy. To remedy this, f_{ADC} must be reduced. 2.

3. Refer to Table 93: I/O static characteristics for the values of IIka.

4. Refer to Section 5.1.6: Power supply scheme.

General PCB design guidelines

The power-supply decoupling must be performed as shown in the corresponding power-supply scheme. The 100 nF capacitor must be ceramic (good quality) and must be placed as close as possible to the chip.

5.3.20 12-bit analog-to-digital converter (ADC4) characteristics

Unless otherwise specified, the parameters given in the table below are values derived from tests performed under ambient temperature, f_{HCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 32*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog power supply for ADC ON	-	1.62	-	3.6		
V _{REF+}	Positive reference voltage	-	1	-	V _{DDA}	V _{DDA} V	
V _{REF-}	Negative reference voltage	-	V _{SSA}				
£	ADC clock frequency	1.62 V ≤ V _{DDA} ≤ 3.6 V	0.14	-	55	MHz	
f _{ADC}	ADC clock duty cycle	-	45	-	55	%	
		Resolution = 12 bits	0.01	-	2.75		
£	Compling rate	Resolution = 10 bits	0.012	-	3.05	Mana	
f _s	Sampling rate	Resolution = 8 bits	0.014	-	3.43	- Msps	
		Resolution = 6 bits	0.0175	-	3.92	\neg	
t _{TRIG}	External trigger period	Resolution = 12 bits	16	-	-	1/f _{ADC}	
V _{AIN} ⁽³⁾	Conversion voltage range	-	0	-	V _{REF+}	V	
	External input impedance	Resolution = 12 bits	-	-	2.2	-	
D (4)		Resolution = 10 bits	-	-	6.8		
R _{AIN} ⁽⁴⁾	T _j = 130 °C	Resolution = 8 bits	-	-	33.0	kΩ	
		Resolution = 6 bits	-	-	47.0		
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF	
t _{ADCVREG_} STUP	ADC LDO startup ready flag time	-	-	-	25	μs	
t _{STAB}	ADC power-up time	LDO already started	(3 × 1/f _{ADC}) + 1 conversion			Cycle	
t _{OFF_CAL}	Offset calibration time	-	-	123	-		
		WAIT = 0, AUTOFF = 0, DPD = 0, f _{ADC} = HCLK		4			
t _{LATR}	Trigger conversion latency	WAIT = 0, AUTOFF = 0, DPD = 0, f _{ADC} = HCLK/2	4		1/f _{ADC}		
		WAIT = 0, AUTOFF = 0, DPD = 0, f _{ADC} = HCLK/4		3.75			
t _s	Sampling time	-	1.5	-	814.5		

Table 106. 1	2-bit ADC4 characteri	stics ⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Resolution = N bits, VREFPROTEN = 0	ts	, + N + 0	.5	
t _{CONV}	Total conversion time (including sampling time)	Resolution = N bits, VREFPROTEN = 1 VREFSECSMP = 0	t _s + N + 0.5	-	t _s + N + 1.5	1/f _{ADC}
		Resolution = N bits, VREFPROTEN = 1 VREFSECSMP = 1	t _s + N + 0.5	-	t _s + N + 2.5	
		f _s = 2.5 Msps	-	360	-	
	ADC consumption on V _{DDA}	f _s = 1 Msps	-	180	-	
		f _s = 10 ksps	-	10	-	
I _{DDA(ADC)}		AUTOFF = 1, DPD = 0, no conversion	-	9	-	
		AUTOFF = 1, DPD = 1, no conversion	-	0.1	-	
		f _s = 2.5 Msps	-	18	-	μA
		f _s = 1 Msps	-	10.2	-	
I _{DDV(ADC)}		f _s = 10 ksps	-	0.12	-	
	ADC consumption on V _{REF+}	AUTOFF = 1, DPD = 0, no conversion	-	0.01	-	
		AUTOFF = 1, DPD = 1, no conversion	-	0.01	-	

Table 106. 12-bit ADC4 characteristics ⁽¹⁾⁽²⁾	(continued)
--	-------------

1. Specified by design. Not tested in production.

2. The voltage booster on the ADC switches must be used when V_{DDA} < 2.4 V (embedded I/O switches).

3. Depending on the package, V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} .

4. The maximum value of R_{ain} is specified to keep leakage induced offset within the specified tolerance. The tolerance is 2 LSBs.

Resolution ⁽⁴⁾	$R_{AIN} \max (\Omega)^{(5)}$	Sampling time [ns]	Sampling cycle at 35 MHz	Sampling cycle at 55 MHz
	47	276		
	68	288	40 F	40.5
	100	306	12.5	19.5
	150	336		
	220	377		
	330	442	19.5	20 F
	470	526		39.5
	680	650		
12 bits	1000	840	39.5	79.5
12 Dits	1500	1134		79.5
	2200	1643	79.5	
	3300	3300 2395		
	4700	3342		
	6800	4754		814.5
	10000	6840	814.5	
	15000	9967		
	22000	14068		
	33000	19933		N/A
	47	86		
	68	90	3.5	
	100	95		7.5
	150	108		7.5
	220	116		
	330	136	7.5	
10 hita	470	161		10.5
10 bits	680	212		12.5
	1000	276	12.5	19.5
	1500	376	19.5	39.5
	2200	516	19.5	
	3300	735	20 5	79.5
	4700	1012	39.5	
	6800	1423	79.5	814.5

The maximum value of $\mathsf{R}_{\mathsf{AIN}}$ can be found in the table below.

Table 107. Maximum R_{AIN} for 12-bit ADC4⁽¹⁾⁽²⁾⁽³⁾

Resolution ⁽⁴⁾	$R_{AIN} \max{(\Omega)}^{(5)}$	Sampling time [ns]	Sampling cycle at 35 MHz	Sampling cycle at 55 MHz
	10000	2040		
10 bits (cont'd)	15000	2978		
	22000	4356	814.5	814.5
(001110)	33000	6443		
	47000	8925	Ť	
	47	45		
	68	46	Ť	
	100	48	Ť	3.5
	150	53	3.5	
	220	59	Ť	
	330	69		
	470	81		7.5
	680 101	1.5		
	1000	130	7.5	
8 bits	1500	177		12.5
	2200	242	40.5	19.5
	3300	345	12.5	19.5
	4700	475	19.5	39.5
	6800	670	39.5	59.5
	10000	963		79.5
	15000	1417	79.5	79.5
	22000	2040	19.5	
	33000	2995	814.5	814.5
	47000	4158	014.5	
	47	32		
	68	32		
0 6 1	100	33	1.5	3.5
6 bits	150	35	G.1	3.0
	220	37		
	330	41		

Table 107. Maximum R_{AIN} for 12-bit ADC4⁽¹⁾⁽²⁾⁽³⁾ (continued)

Resolution ⁽⁴⁾	$R_{AIN} \max (\Omega)^{(5)}$	Sampling time [ns]	Sampling cycle at 35 MHz	Sampling cycle at 55 MHz
	470	49		2.5
	680	61	3.5	3.5
	1000	79		7.5
	1500	106		7.5
	2200	146	7.5	12.5
6 bits (cont'd)	3300	207		12.5
	4700	286	12.5	19.5
	6800	404	19.5	39.5
	10000	584	39.5	
	22000	1250	79.5	79.5
	33000	1853	79.5	814.5
	47000	2607	814.5	014.5

Table 107. Maximum RAIN for 12-bit ADC4⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. Specified by design. Not tested in production.

2. BOOSTEN and ANASWVDD configured properly according to V_{DD} and V_{DDA} values.

3. Values without external capacitor.

4. The tolerance is 2 LSBs for 14 bits and 1 LSB for other resolutions.

5. The maximum value of R_{AIN} is obtained in a worst-case scenario: channel conversion in scan mode with channel i connected to V_{REF+} and channel i + 1 connected to V_{REF-} .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
ET	Total unadjusted error	-	-	±3	±7.5		
EO	Offset error	-	-	±2	±5.5		
EG	Gain error	-	-	±2	±6.5	LSB	
ED	Differential linearity error	-	-	-0.9/+1	-0.9/+1.5		
EL	Integral linearity error	-	-	±2	±3.5		
ENOB	Effective number of bits	-	9.9	10.9	-	bits	
SINAD	Signal-to-noise and distortion ratio	-	61.4	67.4	-		
SNR	Signal-to-noise ratio	-	61.6	67.5	-	dB	
THD	Total harmonic distortion	-	-	-74	-70		

Table 108	12-bit ADC4	accuracy ^{(1)(2) (3)}
-----------	-------------	--------------------------------

1. Evaluated by characterization for BGA packages. Not tested in production. The values for LQFP packages may differ.

2. ADC DC accuracy values are measured after the internal calibration.

3. The I/O analog switch voltage booster is enabled when $V_{DDA} < 2.4 \text{ V}$ (BOOSTEN = 1 in SYSCFG_CFGR1 when $V_{DDA} < 2.4 \text{ V}$). This switch is disabled when $V_{DDA} \ge 2.4 \text{ V}$. Resolution = 12 bits, no oversampling.

See Figure 37: ADC accuracy characteristics, Figure 38: Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function and General PCB design guidelines.

DS14217 Rev 4

5.3.21 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit	
$T_L^{(1)}$	V _{SENSE} linearity with temperature	-	-	1.3	°C	
Avg_Slope ⁽¹⁾	Average slope	2	2.5	3.0	mV/°C	
V ₃₀ ⁽²⁾	Voltage at 30°C (±1 °C)	700	752	800		
$\Delta(V_{continuous} - V_{sampling})^{(3)}$	Difference of voltage between continuous and sampling modes ⁽⁴⁾	-	-	-10/+4	mV	
t _{START} (TS_BUF) ⁽³⁾	Sensor buffer startup time	-	1	10	μs	
t _{S_temp} ⁽³⁾	ADC sampling time when reading the temperature	13	-	-	P	
I _{DD(TS)} ⁽³⁾	Temperature sensor consumption from V_{DD} , when selected by ADC	-	14	20	μA	

Table 109. Temperature sensor char	acteristics
------------------------------------	-------------

1. Evaluated by characterization. Not tested in production.

 Measured at V_{REF+} = V_{DDA} = 3.0 V ±10 mV. The V₃₀ A/D conversion result is stored in the TS_CAL1 byte. Refer to Table 16: Temperature sensor calibration values.

3. Specified by design. Not tested in production.

4. The temperature sensor is in continuous mode when the regulator is in range 1, 2 or 3. The temperature sensor is in sampling mode when the regulator is in range 4, or when the device is in Stop 1 or Stop 2 mode.

5.3.22 V_{CORE} monitoring characteristics

Table 110. V_{CORE} monitoring characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit
ts_vcore	ADC sampling time when reading the V _{CORE} voltage	1	-	-	μs

1. Specified by design. Not tested in production.

5.3.23 V_{BAT} monitoring characteristics

Table 111. V_{BAT} monitoring characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}		4 × 25.6	-	kΩ
Q	Ratio on V _{BAT} measurement	-	4	-	-
Er ⁽²⁾	Error on Q	-5	-	5	%
t _{S_VBAT} ⁽²⁾	ADC sampling time when reading the VBAT	5	-	-	μs

1. $1.58 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}$

2. Specified by design. Not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
P	Battery charging resistor	VBRS = 0	-	5	-	kΩ		
R _{BC}	Dattery charging resistor	VBRS = 1	-	1.5	-	K32		

Table 112. V_{BAT} charging characteristics

5.3.24 Digital-to-analog converter characteristics

Symbol	Parameter	Co	nditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage for DAC ON		-	1.6	-	3.6	
V _{REF+}	Positive reference voltage		-	1.6	-	V _{DDA}	V
V _{REF-}	Negative reference voltage		-	-	V_{SSA}	-	
		DAC output	connected to V_{SSA}	5	-	-	
RL	Resistive load	buffer ON	connected to V_{DDA}	25	-	-	
R _O	Output impedance	DAC output bu	DAC output buffer OFF		13	16	
	Output impedance sample	V_{DDA} = 2.7 V		-	-	1.5	kΩ
R _{BON}	and hold mode, output buffer ON	V _{DDA} = 2.0 V		-	-	2.5	
	Output impedance sample	V _{DDA} = 2.7 V		-	-	16.5	
R _{BOFF}	and hold mode, output buffer OFF	V _{DDA} = 2.0 V		-	-	17.5	
CL	Canacitiva load	DAC output buffer OFF		-	-	50	pF
C _{SH}	Capacitive load	Sample and h	old mode	-	0.1	1	μF
	Voltage on DAC_OUT	DAC output bu	uffer ON	0.2	-	V _{DDA} - 0.2	V
V _{DAC_OUT}	output	DAC output bu	uffer OFF	0	-	V _{REF+}	v
	Settling time (full scale: for		±0.5 LSB	-	2.05	3.05	
	a 12-bit code transition	Normal mode DAC output	±1 LSB	-	1.90	3	
	between the lowest and the highest input codes when	buffer ON	±2 LSB	-	1.85	2.85	
t _{SETTLING}	DAC_OUT reaches the	C _L ≤ 50 pF, R _I ≥ 5 kΩ	±4 LSB	-	1.80	2.8	
	final value of ±0.5 LSB,	-	±8 LSB	-	1.75	2.65	
	±1 LSB, ±2 LSB, ±4 LSB, or ±8 LSB)	Normal mode buffer OFF, ±1	DAC output LSB, C _L = 10 pF	-	1.7	3	μs
t _{WAKEUP}		Normal mode ON C _L ≤ 50 pF, R _L	DAC output buffer _ = 5 kΩ	-	4.2	7.5	
(-)	DAC control register) until the final value ±1 LSB	Normal mode buffer OFF, C _L		-	2	5	

Table 113. DAC characteristics⁽¹⁾

Symbol	Parameter	Co	nditions	Min	Тур	Мах	Unit
PSRR	DC V _{DDA} supply rejection ratio	Normal mode ON C _L ≤ 50 pF, R	-	-80	-28	dB	
		DAC_OUT	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	1.9	
	Sampling time in sample and hold mode, $C_{SH} = 100 \text{ nF}$ (code transition between	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	15	ms
t _{SAMP}	the lowest input code and the highest input code when DACOUT reaches the final value ±1 LSB)	DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	8	μs
I _{leak}	Output leakage current		-	-	(3)	nA	
Cl _{int}	Internal sample and hold capacitor		-	7	9.2	11	pF
t _{TRIM}	Middle code offset trim time	DAC output b	uffer ON	50	-	-	μs
V	Middle code offset for	V _{REF+} = 3.6 V		-	1520	-	μV
V _{offset}	1 trim code step	V _{REF+} = 1.6 V	,	-	680	-	μv
		DAC output	No load, middle code (0x800)	-	330	510	
		buffer ON	No load, worst code (0xF1C)	-	470	680	
I _{DDA(DAC)}	DAC consumption from V _{DDA}	DAC output buffer OFF	No load, middle/worst code (0x800)	-	-	0.3	μA
		Sample and h C _{SH} = 100 nF	old mode,	-	$330 \times T_{ON}$ /(T _{ON} + T _{OFF})	$680 \times T_{ON}$ /(T _{ON} + T _{OFF}) (4)	

Table 113.	DAC characteristics ⁽¹	⁾ (continued)

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
		DAC output	No load, middle code (0x800)	-	170	240	
		buffer ON No load, worst code (0x0E4) - 300	300	400			
	DAC consumption	DAC output buffer OFF	No load, middle/worst code (0x800)	-	145	180	
	rom V_{REF+}	Sample and hold mode, buffer ON, C _{SH} = 100 nF (worst code)		-	170 × T _{ON} /(T _{ON} + T _{OFF}) (4)	$\begin{array}{c} 400 \times \mathrm{T_{ON}} \\ /(\mathrm{T_{ON}} + \\ \mathrm{T_{OFF}}) \\ (4) \end{array}$	μΑ
			old mode, buffer 00 nF (worst code)	-	145 × T _{ON} /(T _{ON} + T _{OFF}) (4)	180 × T _{ON} /(T _{ON} + T _{OFF}) (4)	

Table 113. DAC characteristics⁽¹⁾ (continued)

1. Specified by design. Not tested in production.

2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).

3. Refer to Table 93: I/O static characteristics.

4. T_{ON} is the refresh phase duration. T_{OFF} is the hold phase duration (see the product reference manual for more details).

Figure 39. 12-bit buffered/non-buffered DAC

Table 114. DAC accuracy⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Differential	DAC output buffer ON	-	-	±2	LSB
DNL non-linearity ⁽²⁾		DAC output buffer OFF	-	-	±2	LOD
-	Monotonicity	10 bits	guaranteed		-	
INI	Integral	DAC output buffer ON, $C_L \le 50 \text{ pF}$, $R_L \ge 5 \text{ k}\Omega$	-	-	±4	LSB
INL non-linearity ⁽³⁾		DAC output buffer OFF, $C_L \le 50$ pF, no R_L	-	-	±4	LOD

Symbol	Parameter	Condition	Min	Тур	Мах	Unit	
Offset	Offset error at code 0x800 ⁽³⁾	DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L			-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF, $C_L \leq 5$	DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L			±5	LSB
0.110.1	Offset error at code 0x800 ⁽³⁾	DAC output buffer ON,	V _{REF+} = 3.6 V	-	-	±5	
OffsetCal	after calibration	C _L ≤ 50 pF, R _L ≥ 5 kΩ	V _{REF+} = 1.6 V	-	-	±5	
Gain	Gain error ⁽⁵⁾	DAC output buffer ON, $C_{L} \le 50$) pF, R _L ≥ 5 kΩ	-	-	±0.5	%
Gain	Gain enor	DAC output buffer OFF, $C_{L} \leq 5$	50 pF, no R _L	-	-	±0.5	70
		DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L		-	-	±10	
TUE	Tue Total unadjusted error DAC output buffer ON, $C_L \le 50 \text{ pF}$, $R_L \ge 5 \text{ k}\Omega$, after calibration		-	-	±14	LSB	
	Signal-to-noise	DAC output buffer ON, C _L ≤ 50 1 kHz, BW = 500 kHz) pF, R _L ≥ 5 kΩ,	-	70.6	-	
SNR	ratio ⁽⁶⁾	DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L , 1 kHz, BW = 500 kHz		-	72	-	
TUD	Total harmonic	DAC output buffer ON, $C_{L} \leq 50$) pF, R _L ≥ 5 kΩ, 1 kHz	-	-79	-	dB
THD	distortion ⁽⁶⁾	DAC output buffer OFF, $C_L \le 5$	50 pF, no R _L , 1 kHz	-	-81	-	
SINAD	Signal-to-noise and	DAC output buffer ON, $C_{L} \leq 50$	DAC output buffer ON, $C_L \le 50 \text{ pF}$, $R_L \ge 5 \text{ k}\Omega$, 1 kHz			-	
SINAD	distortion ratio ⁽⁶⁾	DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L , 1 kHz			71.5	-	
	Effective number	DAC output buffer ON, $C_{L} \le 50$) pF, R _L ≥ 5 kΩ, 1 kHz	-	11.3	-	hita
ENOB	of bits	DAC output buffer OFF, $C_L \le 5$	50 pF, no R _L , 1 kHz	-	11.6	-	bits

Table 114	. DAC accuracy ⁽¹	⁾ (continued)
-----------	------------------------------	--------------------------

1. Specified by design. Not tested in production.

2. Difference between two consecutive codes minus 1 LSB.

3. Difference between the value measured at code i and the value measured at code i on a line drawn between code 0 and last code 4095.

- 4. Difference between the value measured at code (0x001) and the ideal value.
- 5. Difference between the ideal transfer-function slope and the measured slope computed from code 0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (VREF+ 0.2 V) when the buffer is ON.

6. Signal is -0.5 dBFS with Fsampling = 1 MHz.

5.3.25 Voltage reference buffer characteristics

		Table 115. VR			1			
Symbol	Parameter	Condi	tions	Min	Тур	Max	Unit	
			VRS = 000	1.8	-			
		Normal mode	VRS = 001	2.1	-	3.6		
		Normal mode	VRS = 010	2.4	-	0.0		
V _{DDA}	Analog supply		VRS = 011	2.8	-			
♥ DDA	Degrade		VRS = 000		-	1.8		
		Degraded	VRS = 001	1.62	-	2.1		
		mode ⁽²⁾	VRS = 010	1.02	-	2.4		
			VRS = 011		-	2.8		
		Normal mode at	VRS = 000	1.496	1.5	1.504		
		V _{DDA} = 3 V,	VRS = 001	1.795	1.8	1.805	V	
	Voltage reference buffer output	-	T _J = 30 °C, I _{load} = 10 μA	VRS = 010	2.042	2.048	2.054	
				VRS = 011	2.493	2.5	2.507	
			VRS = 000	Min (V _{DDA} - 0.15 ;1.496)	-	1.504		
		Degraded	VRS = 001	Min (V _{DDA} - 0.15 ;1.795)	-	1.805		
		mode	mode ⁽²⁾	VRS = 010	Min (V _{DDA} - 0.15 ;2.042)	-	2.054	
			VRS = 011	Min (V _{DDA} - 0.15 ;2.493)	-	2.507		
TRIM	Trim step	-	1	0.1	0.175	0.25	%	
CL	Load capacitor ⁽⁴⁾	-		0.5	1.10	1.50	μF	
esr	C _L equivalent serial resistor	-		-	-	2	Ω	
I _{load}	Static load current	-		-	-	4	mA	
R _{PD}	Pull-down resistance	-		-	-	400	Ω	
I _{line_reg}	Line regulation	V _{DDAmin} ≤ V _{DDA} ≤ Normal mode, 500 µA ≤ I _{load} ≤ 4		±0.016	±0.033	±0.053	%	
I _{load_reg}	Load regulation ⁽⁵⁾	Normal mode, 500 µA ≤ I _{load} ≤ 4	mA	-	50	400	ppm/ mA	
T _{Coeff}	Temperature coefficient	–40 °C < T _J < +1	30 °C	-	-	T _{coeff_vrefint} + 50	ppm/ °C	
	Power supply	DC		-	65	-	an	
PSRR	rejection	100 kHz		-	30	-	dB	

Table 115. VREFBUF characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		C _L = 0.5 μF	-	110	200	
t _{START}	Startup time	C _L = 1.1 μF	-	240	350	μs
		C _L = 1.5 μF	-	320	500	1
I _{INRUSH}	Control of DC current drive on V _{REFBUF} _ _{OUT} during startup phase ⁽⁶⁾	-	-	8	11	mA
I _{DDA}	VREFBUF	I _{load} = 0 μA	-	14	18	
DDA	consumption from	I _{load} = 500 μA	-	16	20	μA
)	V _{DDA}	I _{load} = 4 mA	-	42	50	

Table 115. VREFBUF characteristics ⁽¹⁾	(continued)
---	-------------

1. Specified by design and not tested in production, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not accurately maintain the output voltage (V_{DDA} - drop voltage).

3. Evaluated by characterization. Not tested in production.

4. The capacitive load must include a 100 nF capacitor in order to cut off the high-frequency noise.

The load regulation value only takes into account the die and package resistance. The parasitic resistance on PCB 5. degrades this value.

To correctly control the VREFBUF inrush current during startup phase and scaling change, the V_{DDA} voltage must be in the range of [1.8 V-3.6 V], [2.1 V-3.6 V], [2.4 V-3.6 V] and [2.8 V-3.6 V] for VRS = 000, 001, 010 and 011 respectively. 6.

57

DS14217 Rev 4

5.3.26 Comparator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for COMP ON	-	1.58	-	3.6	
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	V
V _{REFINT} ⁽³⁾	Scaler input voltage	-		(3)		
V _{SC}	Scaler offset voltage	-	-	±5	±10	mV
1	Scaler static consumption	Scaler bridge disabled ⁽⁴⁾	-	0.20	0.25	
IDDA(SCALER)	from V _{DDA}	Scaler bridge enabled ⁽⁵⁾	-	0.7	1	μA
t _{START_SCALER}	Scaler startup time	-	-	130	220	
	Comparator startup time to	High-speed mode	-	-	5	
t _{START}	reach propagation delay	Medium mode	-	-	25	μs
	specification	Ultra-low-power mode	-	-	80	1
	Propagation delay for	High-speed mode	-	40	100	ns
t _D ⁽⁶⁾	t _D ⁽⁶⁾ 200 mV step with 100 mV overdrive	Medium mode	-	0.5	1	
		Ultra-low-power mode	-	2	7	μs
V _{offset}	Comparator offset error	Full common mode range	-	±5	±20	
		No hysteresis	-	0	-	
	O	Low hysteresis	-	15	-	mV
V _{hys}	Comparator hysteresis	Medium hysteresis	-	30	-	
		High hysteresis	-	45	-	
I _{bias}	Comparator input bias current	-		(7)	I	nA
		High-speed mode, static	-	48	90	
		High-speed mode, with 50 kHz, ±100 mV overdrive square signal	-	50	-	
	Compositor composition	Medium mode, static	-	3	6	
I _{DDA(COMP)}	Comparator consumption from V _{DDA}	Medium mode, with 50 kHz, ±100 mV overdrive square signal	-	3.75	-	μA
		Ultra-low-power mode, static	-	0.3	1	
		Ultra-low-power mode, with 50 kHz, ±100 mV overdrive square signal	-	0.65		

Table	116.	COMP	characteristics ⁽¹⁾⁽²⁾
-------	------	------	-----------------------------------

1. Specified by design and not tested in production, unless otherwise specified.

2. The input capacitance is negligible compared to the I/O capacitance.

3. Refer to Table 36: Embedded internal voltage reference.

4. No V_{REFINT} division, includes only buffer consumption.

5. V_{REFINT} division, includes resistor bridge and buffer consumption.

- 6. Evaluated by characterization. Not tested in production.
- 7. Mostly I/O leakage when used in analog mode. Refer to IIkg parameter in Table 93: I/O static characteristics.

5.3.27 Operational amplifiers characteristics

Table 1 ⁴	17.	OPAMP	characteristics ⁽¹⁾⁽²⁾
----------------------	-----	-------	-----------------------------------

Symbol	Parameter	C	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage range for OPAMP ON		-	1.60	-	3.6	v
CMIR	Common mode input range		-	0	-	V _{DDA}	
		T _J = 30 °C, Normal mod	no load on output, de	-	-	±3	
N/I	land offer the set	T _J = 30 °C, r Low-power	no load on output, mode	-	_	±3	
VI _{OFFSET}	Input offset voltage	All voltages Normal mod	and temperature, de	-	-	±7	mV
		All voltages Low-power	and temperature, mode	-	-	±11.5	
A) //	Input offset voltage drift	Normal mod	de	-	±7	-	
ΔVI _{OFFSET}	over temperature	Low-power	mode	-	±15	-	µV/°C
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 × V _{DDA})	-		-	1.05	1.25	
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 × V _{DDA})		-	-	1.05	1.25	mV
		Normal mod	le	-	_	500	
ILOAD	Drive current	Low-power	mode	-	-	100	
		Normal mod	le	-	-	450	μA
ILOAD_PGA	Drive current in PGA mode	Low-power	mode	-	_	50	
6	Resistive load (connected	Normal mod	le	3.9	-	-	
R _{LOAD}	to VSSA or VDDA)	Low-power	mode	20	-	-	kΩ
C _{LOAD}	Capacitive load		-	-	-	50	pF
	Common mode rejection	Normal mod	le	-	79	-	
CMRR	ratio	Low-power	mode	-	69	-	
DSDD	Power supply rejection	Normal mode	C_{LOAD} ≤ 50 pF, R_{LOAD} ≥ 3.9 kΩ ⁽³⁾ , DC	35	75	-	dB
PSRR	ratio	Low-power mode	C_{LOAD} ≤ 50 pF, R_{LOAD} ≥ 20 kΩ ⁽³⁾ , DC	32	69	-	

Symbol	Parameter	С	onditions	Min	Тур	Мах	Unit
	Cain handwidth and ust	Normal mod	de	0.4	2	3.1	N411-
GBW	Gain bandwidth product	Low-power	mode	0.23	0.5	0.76	MHz
		Normal mode	Standard speed	0.5	1	3.2	
SR ⁽³⁾	Slew rate (from 10% and	Low-power mode		0.14	0.25	0.75	
SR	90% of output voltage)	Normal mode	High speed mode	1.4	3.2	5.6	V/µs
		Low-power mode	(OPAHSM = 1)	0.38	0.82	1.5	
40	Onen leen sein	Normal mod	de	72	105	-	٩D
AO	Open loop gain	Low-power	mode	77	106	-	dB
		Normal mod	de	54	67	-	0
φm	Phase margin	Low-power	mode	54	65	-	
014	O sin manin	Normal mod	de	-	9	-	
GM	Gain margin	Low-power mode -	-	17	-	dB	
) (3)		Normal mode	I _{LOAD} max or	V _{DDA} - 100	-	-	
V _{OHSAT} ⁽³⁾	High saturation voltage	Low-power mode		V _{DDA} - 50	-	-	
V _{OLSAT} ⁽³⁾	Low saturation voltage	Normal mode	I _{LOAD} max or	-	-	100	· mV
VOLSAT ^(*)	Low saturation voltage	Low-power mode	wer Input at 0 V	-	-	50	
	Wake-up time from	Normal mode	C_{LOAD} ≤ 50 pF, R_{LOAD} ≥ 3.9 kΩ, follower config.	-	4	10	
^t WAKEUP	OFF state	Low-power mode	$K_{I} \cap A \cap A \cap A \cap A \cap A \cap A$	-	20	40	μs
			rpose input (all xcept UFBGA)	-	_	(4)	
			T _J ≤ 75 °C	-	-	7	nA
I _{bias}	OPAMP input bias current	Dedicated input	T _J ≤ 85 °C	-	-	9	
		(UFBGA	T _J ≤ 105 °C	-	-	18	
		only)	T _J ≤ 125 °C	-	-	25	

Table 117. OPAMP characteristics⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	C	onditions	Min	Тур	Max	Unit
		PGA_GAIN	[1:0] = 00	-	2	-	
PGA gain ⁽³⁾	Non-inverting gain value	PGA_GAIN	[1:0] = 01	-	4	-	
FGA gain	Non-inverting gain value	PGA_GAIN	[1:0] = 10	-	8	-	-
		PGA_GAIN	[1:0] = 11	-	16	-	
		PGA gain =	2	-	80/80	-	
Rnetwork	R2/R1 internal resistance values in non-inverting	PGA gain =	4	-	120/40	-	kΩ/
Riletwork	PGA mode ⁽⁵⁾	PGA gain =	8	-	140/20	-	kΩ
		PGA gain =	16	-	150/10	-	
Delta R	Resistance variation (R1 or R2)		-	-18	-	18	%
PGA gain error	PGA gain error		-	-1	-	1	
		PGA gain =	2	-	GBW/2	-	
PGA BW	PGA bandwidth for different non inverting gain	PGA gain = 4		-	GBW/4	-	MHz
FGABW		PGA gain = 8		-	GBW/8	-	
		PGA gain =	16	-	GBW/16	-	
	Voltage noise density	Normal mode	At 1 kHz, output loaded with 3.9 kΩ	-	220	-	
en		Low-power mode	At 1 kHz, output loaded with 20 kΩ	-	350	-	nV /√Hz
		Normal mode	At 10 kHz, output loaded with 3.9 k Ω	-	190	-	
		Low-power mode	at 10 kHz, output loaded with 20 k Ω	-	210	-	
		Normal mode	no load, quiescent	-	130	190	
	OPAMP consumption from	Low-power mode	mode, standard speed	-	40	58	μA
I _{DDA(OPAMP)}	V _{DDA}	Normal mode	no load, quiescent mode,	-	138	205	μΑ
		Low-power mode	high-speed mode	-	42	60	

Table 117. OPAMP characteristics⁽¹⁾⁽²⁾ (continued)

1. Specified by design and not tested in production, unless otherwise specified.

2. OPA_RANGE must be set to 1 in OPAMP1_CSR.

3. Evaluated by characterization. Not tested in production.

4. Mostly I/O leakage when used in analog mode. Refer to IIkg parameter in Table 93: I/O static characteristics.

5. R2 is the internal resistance between the OPAMP output and the OPAMP inverting input. R1 is the internal resistance between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.

Figure 44. OPAMP voltage noise density, normal mode, R_{LOAD} = 3.9 k Ω

5.3.28 Temperature and backup domain supply thresholds monitoring

The temperature and backup domain supply monitoring characteristics are provided in the technical note STM32U54xxx/STM32U58xxx/STM32U5Axxx/STM32U5Gxxx MCUs for PCI products (TN1333) (NDA required).

5.3.29 ADF/MDF characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when V_{DD} ≤ 2.7 V
- Voltage scaling range 1

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{CCKI}	Input clock frequency via ADF_CCK[1:0] pin, in SLAVE SPI mode		-	-	25	
fсско	Output clock frequency in MASTER SPI mode	1.71 ≤ V _{DD} ≤ 3.6 V	-	-	25	MHz
f _{CCKOLF}	Output clock frequency in LF_MASTER SPI mode		-	-	5	
f _{SYMB}	Input symbol rate in Manchester mode		-	-	20	
t _{нсскі} t _{LCCKI}	ADF_CCK[1:0] input clock high and low time	In SLAVE SPI mode	2 × Tadf_proc_ck ⁽²⁾	-	-	
t _{нсско} t _{LCCKO}	ADF_CCK[1:0] output clock high and low time	In MASTER SPI mode	2 × Tadf_proc_ck	-	-	
t _{HCCKOLF} t _{LCCKOLF}	ADF_CCK[1:0] output clock high and low time	In LF_MASTER SPI mode	Tadf_proc_ck	-	-	
^t succкi	Data setup time with respect to ADF_CCK[1:0] input	In SLAVE SPI mode: ADF_CCK[1:0] configured in	4.5	-	-	
^t ндсскі	Data hold time with respect to ADF_CCK[1:0] input	input, measured on rising and falling edge	1.5	-	-	ns
tsuccкo	Data setup time with respect to ADF_CCK[1:0] output	In MASTER SPI mode: ADF_CCK[1:0] configured in	5.5	-	-	
t _{ндсско}	Data hold time with respect to ADF_CCK[1:0] output	output, measured on rising and falling edge	3	-	-	
t _{SUCCKOLF}	Data setup time with respect to ADF_CCK[1:0] output	In LF_MASTER SPI mode: ADF_CCK[1:0] configured in	19.5	-	-	
t _{HDCCKOLF}	Data hold time with respect to ADF_CCK[1:0] output	output, measured on rising and falling edge	0	-	-	

Table 118. ADF	characteristics ⁽¹⁾
----------------	--------------------------------

1. Evaluated by characterization. Not tested in production.

2. Tadf_proc_ck is the period of the ADF processing clock.

Figure 46. ADF timing diagram

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{CKI}	Input clock frequency via MDF_CKIx pin, in SLAVE SPI mode		-	-	25	
f _{CCKI}	Input clock frequency via MDF_CCK[1:0] pin, in SLAVE SPI mode		-	-	25	
f _{сско}	Output clock frequency in MASTER SPI mode	1.71 ≤ V _{DD} ≤ 3.6 V	-	-	25	MHz
f _{CCKOLF}	Output clock frequency in LF_MASTER SPI mode		-	-	5	
f _{SYMB}	Input symbol rate in Manchester mode		-	-	20	
t _{HCKI} t _{LCKI}	MDF_CKIx input clock high and low time	In SLAVE SPI mode	2 × Tmdf_proc_ck ⁽²⁾	-	-	
t _{нсскі} t _{LCCKI}	MDF_CCK[1:0] input clock high and low time	In SLAVE SPI mode	2 × Tmdf_proc_ck	-	-	ns
t _{нсско} t _{LCCKO}	MDF_CCK[1:0] output clock high and low time	In MASTER SPI mode	2 × Tmdf_proc_ck	-	-	115
^t HCCKOLF ^t LCCKOLF	MDF_CCK[1:0] output clock high and low time	In LF_MASTER SPI mode	Tmdf_proc_ck	-	-	

Table 119. MDF characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{sucкi}	Data setup time with respect to MDF_CKIx input	In SLAVE SPI mode, measured	1.5	-	-	
t _{HDCKI}	Data hold time with respect to MDF_CKIx input	on rising and falling edge	2.5	-	-	
tsuccкi	Data setup time with respect to MDF_CCK[1:0] input	In SLAVE SPI mode: MDF_CCK[1:0] configured in	1.5	-	-	
t _{носскі}	Data hold time with respect to MDF_CCK[1:0] input	input, measured on rising and falling edge	2.5	-	-	ns
t _{succko}	Data setup time with respect to MDF_CCK[1:0] output	In MASTER SPI mode: MDF_CCK[1:0] configured in	3.5	-	-	115
^t ндсско	Data hold time with respect to MDF_CCK[1:0] output	output, measured on rising and falling edge	3	-	-	
t _{SUCCKOLF}	Data setup time with respect to MDF_CCK[1:0] output	In LF_MASTER SPI mode, MDF_CCK[1:0] configured in	19.5	-	-	
t _{HDCCKOLF}	Data hold time with respect to MDF_CCK[1:0] output	output, measured on rising and falling edge	0	-	-	

Table 119. MDF characteristics⁽¹⁾ (continued)

1. Evaluated by characterization. Not tested in production.

2. Tmdf_proc_ck is the period of the MDF processing clock.

Figure 47. MDF timing diagram

5.3.30 DCMI characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C_L = 30 pF
- Measurement points done at $0.5 \times V_{DD}$ level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \leq 2.7 V$
- Voltage scaling range 1

Table 120. DCMI characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	-
DCMI_PIXCLK	Pixel clock input	-	64	MHz
D _{PIXEL}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	2.5	-	
t _{h(DATA)}	Data hold time	1.5	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC and DCMI_VSYNC input setup times	2	-	ns
t _{h(HSYNC)} t _{h(VSYNC)}	DCMI_HSYNC and DCMI_VSYNC input hold times	1	-	

1. Evaluated by characterization. Not tested in production.

Figure 48. DCMI timing diagram

DS14217 Rev 4

5.3.31 **PSSI** characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 32*, with the following configuration:

• Output speed set to OSPEEDRy[1:0] = 10

- PSSI_PDCK polarity: falling
- PSSI_RDY and PSSI_DE polarity: low
- Bus width: 16 lines
- Data width: 32 bits
- Capacitive load C_L = 30 pF
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- Voltage scaling range 1

Table 121. PSSI transmit characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit
-	Frequency ratio DCMI_PDCK/f _{HCLK}	-	-	0.4	-
PSSI PDCK	PSSI clock input	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	64 ⁽²⁾	MHz
F331_FDCK		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	48.5 ⁽²⁾	
D _{PIXEL}	PSSI clock input duty cycle	-	30	70	%
+	Data output valid time	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	14	
t _{ov(data)}	Data output valid time	$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	21	
t _{OH(DATA)}	Data output hold time		7	-	
t _{OV(DE)}	DE output valid time	1.71 V ≤ V _{DD} ≤ 3.6 V	-	13.5	ns
t _{OH(DE)}	DE output hold time		6	-	
t _{SU(RDY)}	RDY input setup time	– 1.71 V ≤ V _{DD} ≤ 3.6 V	0	-	1
t _{H(RDY)}	RDY input hold time	$-1.71 \vee 2 \vee_{\text{DD}} \simeq 3.0 \vee$	0	-	

1. Evaluated by characterization. Not tested in production.

2. This maximal frequency does not consider receiver setup and hold timings.

Figure 49. PSSI transmit timing diagram

Table 122. PSSI receive characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
-	Frequency ratio DCMI_PDCK/f _{HCLK}	-	-	0.4	-
PSSI_PDCK	PSSI clock input	$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	64	MHz
D _{PIXEL}	PSSI clock input duty cycle -		30	70	%
t _{SU(DATA)}	Data input setup time		2	-	
t _{H(DATA)}	Data input hold time		2.5	-	
t _{SU(DE)}	DE input setup time	1.71 V ≤ V _{DD} ≤ 3.6 V	1	-	ns
t _{H(DE)}	DE input hold time	1.71 V S V _{DD} S 3.0 V	2.5	-	115
t _{OV(RDY)}	RDY output valid time		-	13	1
t _{OH(RDY)}	RDY output hold time		6	-	

DS14217 Rev 4

1. Evaluated by characterization. Not tested in production.

L7/

Figure 50. PSSI receive timing diagram

5.3.32 Timer characteristics

The parameters given in the following tables are specified by design, not tested in production.

Refer to *Section 5.3.15: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 160 MHz	6.25	-	ns
f	Timer external clock frequency on	-	0	f _{TIMxCLK} /2	MHz
f _{EXT}	CH1 to CH4 f _{TIMxCLK} = 160 MHz	f _{TIMxCLK} = 160 MHz	0	80	1011 12
Pee	Timer resolution	TIMx (except TIM2/3/4/5)	-	16	bit
Res _{TIM}		TIM2/3/4/5	-	32	DIL
4	16 bit counter clock period	-	1	65536	t _{TIMxCLK}
^t COUNTER	16-bit counter clock period	f _{TIMxCLK} = 160 MHz	0.007	409.6	μs
+	Maximum possible count with	-	-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT	32-bit counter	f _{TIMxCLK} = 160 MHz	-	26.843	s

Table 123. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

	100 al 32 km2 (L31). 7	wbb mm/max timeout per	Table 124.	
Unit	Max timeout RL[11:0] = 0xFFF	Min timeout RL[11:0] = 0x000	PR[2:0] bits	Prescaler divider
	512	0.125	0	/4
	1024	0.250	1	/8
	2048	0.500	2	/16
ms	4096	1.0	3	/32
	8192	2.0	4	/64
	16384	4.0	5	/128
	32768	8.0	6 or 7	/256

Table 124. IWDG min/max timeout period at 32 kHz (LSI)⁽¹⁾

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock, so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.025	1.638	
2	1	0.051	3.276	
4	2	0.102	6.553	
8	3	0.204	13.107	ma
16	4	0.409	26.214	– ms
32	5	0.819	52.428	
46	6	1.177	75.366	
128	7	3.276	209.715	

Table 125. WWDG min/max timeout value at 160 MHz (PCLK)

5.3.33 OCTOSPI characteristics

Unless otherwise specified, the parameters given in *Table 126* to *Table 128* are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- Delay block enabled for DTR (with DQS)/HyperBus
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- Voltage scaling range 1 unless otherwise specified

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 1.9 \text{ V}$ Voltage range 1 C _L = 15 pF	-	-	93	
f _(CLK)	OCTOSPI clock frequency	2.7 V \leq V _{DD} \leq 3.6 V Voltage range1 C _L = 15 pF	-	-	100	MHz
		1.71 V \leq V _{DD} \leq 3.6 V Voltage range 4 C _L = 15 pF	-	-	25	
t _{w(CLKH)}	OCTOSPI clock high and low time	PRESCALER[7:0] = n	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5	
t _{w(CLKL)}	(even division)	(n = 0, 1, 3, 5,255)	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5	
t _{w(CLKH)}	OCTOSPI clock high and low time	PRESCALER[7:0] = n	(n/2) × t _(CLK) /(n+1) - 0.5	-	(n/2) × t _(CLK) /(n+1) + 0.5	
t _{w(CLKL)}	(odd division)	(n = 2, 4, 6,254)	((n/2)+1) × t _(CLK) /(n+1) - 0.5	-	((n/2)+1) × t _(CLK) /(n+1) + 0.5	
t an	Data input setup time	Voltage range 1	2.5	-	-	
t _{s(IN)}		Voltage range 4	6	I	-	ns
+	Data input hold time	Voltage range 1	0.5	-	-	
t _{h(IN)}		Voltage range 4	1	-	-	
t		Voltage range 1	-	0.5	1	
t _{v(OUT)}	Data output valid time	Voltage range 4	-	1.5	2.5	
ti courre	Data output hold time	Voltage range 1	0.5	-	-	
t _{h(OUT)}		Voltage range 4	-0.25	-	-	

Table 126. OCTOSPI characteristics in SDR mode⁽¹⁾⁽²⁾⁽³⁾

1. Evaluated by characterization. Not tested in production.

2. Measured values in this table apply to Octo- and Quad-SPI data modes.

3. Delay block bypassed.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		1.71 V \leq V _{DD} \leq 1.9 V Voltage range 1, C _L = 15 pF	-	-	93 ⁽⁴⁾	
f _(CLK)	OCTOSPI clock frequency	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$ Voltage range1, C _L = 15 pF	-	-	100 ⁽⁴⁾	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$ Voltage range 4, C _L = 15 pF	-	-	25 ⁽⁴⁾	
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5	
t _{w(CLKL)}	high and low time (even division)	(n = 0, 1, 3, 5,255)	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5	
t _{w(CLKH)}	OCTOSPI clock high and low time	PRESCALER[7:0] = n	(n/2) × t _(CLK) /(n+1) - 0.5	-	(n/2) × t _(CLK) /(n+1) + 0.5	
t _{w(CLKL)}	(odd division)	(n = 2, 4, 6,254)	((n/2)+1) × t _(CLK) /(n+1) - 0.5	-	$((n/2)+1) \times t_{(CLK)}$ /(n+1) + 0.5	
t _{sr(IN)}	Data input setup	Voltage range 1	3.25	-	-	
t _{sf(IN)}	time	Voltage range 4	3.75	-	-	
t _{hr(IN)}	Data input hold	Voltage range 1	1	-	-	ns
t _{hf(IN)}	time	Voltage range 4	1.5	-	-	
	Data output valid	Voltage range 1	-	6	9.25	
t _{vr(OUT)}	time, DHQC = 0	Voltage range 4	-	13.25	19.75	
t _{vf(OUT)}	Data output valid time, DHQC = 1	Voltage range 1 All prescaler values (except 0)	-	t _(CLK) /4 + 0.75	t _(CLK) /4 + 1.5	
	Data output hold	Voltage range 1	4	-	-	
t _{hr(OUT)}	time DHQC = 0	Voltage range 4	8	-	-	
t _{hf(OUT)}	Data output hold time DHQC = 1	Voltage range 1 All prescaler values (except 0)	t _(CLK) /4 - 0.5	-	-	

Table 127. OCTOSPI characteristics in DTI	R mode (no DQS) ⁽¹⁾⁽²⁾⁽³⁾
---	--------------------------------------

1. Evaluated by characterization. Not tested in production.

2. Measured values in this table apply to Octo- and Quad-SPI data modes.

3. Delay block bypassed.

4. Activating DHQC is mandatory to reach this frequency.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		$1.71 V \le V_{DD} \le 1.9 V$ Voltage range 1 C _L = 15 pF	-	-	93 ⁽³⁾⁽⁴⁾		
f _(CLK)	OCTOSPI clock frequency	$2.7 V \le V_{DD} \le 3.6 V$ Voltage range1 C _L = 15 pF	-	-	100 ⁽³⁾⁽⁴⁾	MHz	
		$1.71 V \le V_{DD} \le 3.6 V$ Voltage range 4 C _L = 15 pF	-	-	25 ⁽⁴⁾		
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5		
t _{w(CLKL)}	high and low time (even division)	(n = 0, 1, 3, 5,255)	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5		
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	(n/2) × t _(CLK) /(n+1) - 0.5	-	(n/2) × t _(CLK) /(n+1) + 0.5	ns	
t _{w(CLKL)}	high and low time (odd division)	(n = 2, 4, 6,254)	((n/2)+1) × t _(CLK) /(n+1) - 0.5	-	((n/2)+1) × t _(CLK) /(n+1) + 0.5		
t _{v(CLK)}	Clock valid time	-	-	-	t _(CLK) + 2		
t _{h(CLK)}	Clock hold time	-	t _(CLK) /2 - 0.5	-	-		
V _{ODr(CLK)} (5)	CLK, NCLK crossing level on CLK rising edge	V _{DD} = 1.8 V	1005	-	1065	m)/	
V _{ODf(CLK)} (5)	CLK, NCLK crossing level on CLK falling edge	V _{DD} = 1.8 V	950	-	1050	mV	
t _{w(CS)}	Chip select high time	-	3 × t _(CLK)	-	-		
t _{v(DQ)}	Data input valid time	-	0	-	-		
t _{v(DS)}	Data strobe input valid time	-	0	-	-		
t _{h(DS)}	Data strobe input hold time	-	0	-	-	ns	
t _{v(RWDS)}	Data strobe output valid time	-	-	-	3 × t _(CLK)		
t _{sr(DQ)}	Data input setup	Voltage range 1	-0.25	-	t _(CLK) /2 - 1.25 ⁽⁶⁾]	
t _{sf(DQ)}	time	Voltage range 4	0	-	t _(CLK) /2 - 1.75 ⁽⁶⁾]	
t _{hr(DQ)}	Data input hold	Voltage range 1	1.25	-	-		
t _{hf(DQ)}	time	Voltage range 4	1.75	-	-		

Table 120, UCTOSPI characteristics in DTR mode (with DQS)/hyperbus' ^ /	Table 128. OCTOSPI characteristics in DTR mode ((with DQS)/HyperBus ⁽¹⁾⁽²⁾
---	--	---------------------------------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Data output valid	Voltage range 1	-	6	9.5	
t _{vr(OUT)}	time DHQC = 0	Voltage range 4	-	13	19.5	
t _{vf(OUT)}	Data output valid time DHQC = 1	Voltage range 1 All prescaler values (except 0)	-	t _(CLK) /4 + 0.5	t _(CLK) /4 + 1.25	ns
t _{hr(OUT)}	Data output hold	Voltage range 1	4	-	-	115
t _{hf(OUT)}	time DHQC = 0	Voltage range 4	7.75	-	-	
t _{hr(OUT)}	Data output hold time DHQC = 1	Voltage range 1 All prescaler values (except 0)	t _(CLK) /4 - 0.5	-	-	

Table 128. OCTOSPI characteristics in DTR mode	(with DQS)/HyperBus ⁽¹⁾⁽²⁾ (continued)

1. Evaluated by characterization. Not tested in production.

2. Delay block activated.

3. Maximum frequency values are given for a RWDS to DQ skew of maximum ±1.0 ns.

- 4. Activating DHQC is mandatory to reach this frequency.
- 5. Crossing results are in line with specification, using pairs PB10/PE9 or PE10/PB12. It exceeds slightly the specification on other CLK/NCLK pairs.
- 6. Data input maximum setup time does not take into account the data level switching duration.

Figure 51. OCTOSPI timing diagram - SDR mode

Figure 52. OCTOSPI timing diagram - DTR mode

DS14217 Rev 4

DS14217 Rev 4

Figure 56. OCTOSPI HyperBus write

5.3.34 SD/SDIO/e•MMC card host interfaces (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 129* and *Table 130* are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF, unless otherwise specified
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 V$
- Voltage scaling range 1

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	100 ⁽³⁾	MHz	
t _{W(CKL)}	Clock low time	f _{PP} = 52 MHz	8.5	9.5	-	ns	
t _{W(CKH)}	Clock high time	f _{PP} = 52 MHz	8.5	9.5	-		
CMD, D inputs (referenced to CK) in e•MMC legacy/SDR/DDR and SD HS/SDR ⁽⁴⁾ /DDR ⁽⁴⁾ modes							
t _{ISU}	Input setup time HS	-	3.5	-	-		
t _{IH}	Input hold time HS	-	1.5	-	-	ns	
t _{IDW} ⁽⁵⁾	Input valid window (variable window)	-	4.5	-	-	1	
CMD, D outputs (referenced to CK) in e•MMC legacy/SDR/DDR and SD HS/SDR ⁽⁴⁾ /DDR ⁽⁴⁾ modes							

Table 129. SD/e•MMC characteristics $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V})^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
t _{OV}	Output valid time HS	-	-	5.5	7	ns		
t _{OH}	Output hold time HS	-	3	-	-			
CMD, D inputs (referenced to CK) in SD default mode								
t _{ISU}	Input setup time SD	-	3.5	-	-	ns		
t _{IH}	Input hold time SD	-	1.5	-	-			
CMD, D outputs (referenced to CK) in SD default mode								
t _{OV}	Output valid default time SD	-	-	0.5	2	ne		
t _{OH}	Output hold default time SD	-	0	-	-	ns		

Table 129. SD/e•MMC characteristics $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V})^{(1)(2)}$ (continued)

1. Evaluated by characterization. Not tested in production.

2. For SDMMC2 in SD/e.MMC DDR mode, the clock OSPEEDRy[1:0] is set to 01 while data OSPEEDRy[1:0] remains at 10.

3. With capacitive load $C_L = 20 \text{ pF}$.

4. For SD 1.8 V support, an external voltage converter is needed.

5. Minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Table 130. e•MMC characteristics $(V_{DD} = 1.71 \text{ V to } 1.9 \text{ V})^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	All modes except DDR	-	-	84	MHz	
t _{W(CKL)}	Clock low time	f _{PP} = 52 MHz	8.5	9.5	-		
t _{W(СКН)}	Clock high time	f _{PP} = 52 MHz	8.5	9.5	-	ns	
CMD, D inp	outs (referenced to CK) in e•MMC mode						
t _{ISU}	Input setup time HS	-	2.5	-	-		
t _{IH}	Input hold time HS	-	2	-	-	ns	
t _{IDW} ⁽³⁾	Input valid window (variable window)	-	4	-	-	1	
CMD, D outputs (referenced to CK) in e•MMC mode							
t _{OV}	Output valid time HS	-	-	5	5.5	ns	
t _{OH}	Output hold time HS	-	3	-	-		

1. Evaluated by characterization. Not tested in production.

2. With capacitive load C_L = 20 pF.

3. Minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Figure 57. SD high-speed mode

Figure 58. SD default mode

Figure 59. SDMMC DDR mode

5.3.35 Delay block characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 32*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{init}	Initial delay	-	350	750	1550	ne
t_{Δ}	Unit delay	-	34	41	51	ps

1. Evaluated by characterization. Not tested in production.

5.3.36 I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bitrate up to 100 Kbit/s
- Fast-mode (Fm): with a bitrate up to 400 Kbit/s
- Fast-mode Plus (Fm+): with a bitrate up to 1 Mbit/s

The I2C timings requirements are specified by design, not tested in production, when the I2C peripheral is properly configured (refer to the product reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FT_f I/O pins support Fm+ low-level output-current maximum requirement. Refer to Section 5.3.15: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics.

Table 132. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	115 ⁽³⁾	ns

1. Specified by design. Not tested in production.

2. Spikes with widths below $t_{\mbox{\scriptsize AF}}$ min are filtered.

3. Spikes with width above t_{AF} max are not filtered.

5.3.37 USART (SPI mode) characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- Capacitive load C₁ = 30pF
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- Voltage scaling range 1

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART).

Symbol	Parameter	meter Conditions		Тур	Max	Unit
		SPI master mode, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	-	20	
	- USART clock	SPI slave receiver, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	-	53	
f _{CK}	frequency	SPI slave transmitter, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	-	30	MHz
		SPI slave transmitter, 2.7 V ≤ V _{DDIOX} ≤ 3.6 V	-	-	27	
t _{su(NSS)}	NSS setup time	SPI slave mode	T _{ker} ⁽²⁾ + 2	-	-	
t _{h(NSS)}	NSS hold time	SPI slave mode	2	-	-	
t _{w(CKH)} t _{w(CKL)}	CK high and low time	SPI master mode	1/f _{CK} / 2 - 1	1/f _{CK} / 2	1/f _{CK} / 2 + 1	
+	Data input	SPI master mode	15	-	-	
t _{su(RX)}	setup time	SPI slave mode	2.5	-	-	
t _{h(RX)}	Data input	SPI master mode	4	-	-	ns
t _{h(RX)}	hold time	SPI slave mode	1	-	-	
+		SPI slave mode, 2.7 V \leq V _{DD} \leq 3.6 V	-	13	16.5	
t _{v(TX)}	Data output valid time	SPI slave mode, 1.71 V \leq V _{DD} \leq 3.6 V	-	13	18.5	
t _{v(TX)}		SPI master mode	-	2.5	6.5	
t _{h(TX)}	Data output	SPI slave mode	8.5	-	-	
t _{h(TX)}	hold time	SPI master mode	0.5	-	-	

Table 133. USART (SPI mode) characteristics⁽¹⁾

1. Evaluated by characterization. Not tested in production.

2. T_{ker} is the usart_ker_ck_pres clock period.

Figure 60. USART timing diagram in SPI master mode

5.3.38 SPI characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 32*.

- Output speed set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode, 2.7 V \leq V _{DDIOX} \leq 3.6 V, voltage range 1	-	-	80	
		Master mode, 1.71 V \leq V _{DDIOX} $<$ 2.7 V voltage range 1	-	-	75 or 50 ⁽²⁾	
		Master transmitter mode, 2.7 V \leq V _{DDIOX} \leq 3.6 V, voltage range 1	-	-	80	
	SPI clock frequency	Master transmitter mode, 1.71 V \leq V _{DDIOX} \leq 2.7 V, voltage range 1	-	-	75 or 50 ⁽²⁾	
f _{SCK} 1/t _{c(SCK)}		Slave receiver mode, 1.71 V \leq V _{DDIOX} \leq 3.6 V, voltage range 1	-	-	100	MHz
		Slave mode transmitter/full duplex ⁽³⁾ , 1.71 V \leq V _{DDIOX} < 2.7 V, voltage range 1	-	-	37 or 25 ⁽⁴⁾	
		Slave mode transmitter/full duplex ⁽³⁾ , 2.7 V \leq V _{DDIOX} \leq 3.6 V, voltage range 1	-	-	35.5	
		Master or slave mode, 1.71 V \leq V _{DDIOX} \leq 3.6 V, voltage range 4	-	-	12.5	
		Master or slave mode, 1.08 V \leq V _{DDIO2} \leq 1.32 V ⁽⁵⁾	-	-	15	

Table	134.	SPI	characteristics ⁽	1)	
-------	------	-----	------------------------------	----	--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{su(NSS)}	NSS setup time	Slave mode	4	-	-	
t _{h(NSS)}	NSS hold time	Slave mode	3	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	t _{SCK} ⁽⁶⁾ /2 - 1	t _{SCK} /2	t _{SCK} /2 + 1	
t _{su(MI)}	Data input setup time	Master mode	4.5	-	-	
t _{su(SI)}		Slave mode	2.5	-	-	
t _{h(MI)}	Data input hold time	Master mode	3	-	-	
t _{h(SI)}		Slave mode	1	-	-	
t _{a(SO)}	Data output access time	Slave mode	9	12	34	
t _{dis(SO)}	Data output disable time	Slave mode	9	10	16	ns
		Slave mode, 2.7 V \leq V _{DDIOX} \leq 3.6 V, voltage range 1	-	11.5	14	
t _{v(SO)}		Slave mode, 1.71 V \leq V _{DDIOX} < 2.7 V, voltage range 1	-	11.5	13.5 or 20 ⁽⁴⁾	
	Data output valid time	Slave mode, 1.71 V \leq V _{DDIOX} \leq 3.6 V, voltage range 4	-	17	19.5 or 27 ⁽⁴⁾	
		Slave mode, $1.08 \text{ V} \le \text{V}_{\text{DDIO2}} \le 1.32 \text{ V}^{(5)}$	-	23	25	
t _{v(MO)}		Master mode	-	2.5	3 or 9.5 ⁽⁷⁾ or 12.5 ⁽⁸⁾	
+		Slave mode, 1.71 V \leq V _{DDIOX} \leq 3.6 V	7	-	-	
t _{h(SO)}	Data output hold time	Slave mode, $1.08 \text{ V} \le \text{V}_{\text{DDIO2}} \le 1.32 \text{ V}^{(5)}$	15	-	-	
t _{h(MO)}]	Master mode	0.5	-	-	

Table 134. SPI characteristics⁽¹⁾ (continued)

1. Evaluated by characterization. Not tested in production.

2. When using PA5, PA9, PC10, PB3, PB13.

3. The maximum frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ that has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%.

4. When using PA11, PB4, PB14.

5. The SPI is mapped on port G I/Os, that is supplied by V_{DDIO2} specified down to 1.08V. The SPI is tested at this value.

6. $t_{SCK} = tspi_ker_ck \times baudrate prescaler.$

7. When using PA12.

8. When using PB15.

Figure 62. SPI timing diagram - slave mode and CPHA = 0

Figure 64. SPI timing diagram - master mode

5.3.39 SAI characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- Measurement points done at 0.5 × V_{DD} level
- I/O compensation cell activated
- HSLV activated when $V_{DD} \leq 2.7 V$
- Voltage scaling range 1

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (SCK, SD, FS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	SAI main clock output	-	- 50		
		Master transmitter, 2.7 V \leq V _{DDIOX} \leq 3.6 V	-	26	
		Master transmitter, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	18]
f	SAI clock	Master receiver, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	21.5	MHz
f _{SCK}	frequency ⁽²⁾	Slave transmitter, 2.7 V \leq V _{DDIOX} \leq 3.6 V	-	27.5	
		Slave transmitter, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	18	
		Slave receiver, 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	50	
4	ES valid time	Master mode, 2.7 V \leq V _{DDIOX} \leq 3.6 V	-	16	
t _{v(FS)}	FS valid time	Master mode 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	23	
t _{h(FS)}	FS hold time	Master mode	7	-	
t _{su(FS)}	FS setup time	Slave mode	2.5	-	
t _{h(FS)}	FS hold time	Slave mode	1	-	
t _{su(SD_A_MR)}	Data input setup	Master receiver	4	-	
$t_{su(SD_B_SR)}$	time	Slave receiver	3	-	
t _{h(SD_A_MR)}	Data input hold	Master receiver	2	-	
t _{h(SD_B_SR)}	time	Slave receiver	1	-	
	Data output valid	Slave transmitter (after enable edge), 2.7 V \leq V _{DDIOX} \leq 3.6 V	-	18	ns
t _{v(SD_B_ST)}	time	Slave transmitter (after enable edge), 1.71 V \leq V _{DDIOX} \leq 3.6 V	-	27.5	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	8	-	
		Master transmitter (after enable edge), 2.7 V \leq V _{DD} \leq 3.6 V	-	19	
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge), 1.71 V \leq V _{DD} \leq 3.6 V	-	27.5	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	8	-	

Table 135. SAI characteristics⁽¹⁾

1. Evaluated by characterization. Not tested in production.

2. APB clock frequency that must be at least twice SAI clock frequency.

Figure 65. SAI master timing diagram

5.3.40 USB_FS characteristics

Table 136. USB_FS characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDUSB}	USB transceiver operating supply voltage	-	3.0 ⁽¹⁾	-	3.6	V
t _{STARTUP} ⁽²⁾	USB transceiver startup time	-	-	-	1	μs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PUI}	Embedded USB_DP pullup value during idle	-	900	-	1575	
R _{PUR}	Embedded USB_DP pullup value during reception	-	1425	-	3090	Ω
Z _{DRV}	Output driver impedance ⁽³⁾	High and low driver	28	36	44	

Table 136. USB_FS characteristics (continued)

1. USB functionality is ensured down to 2.7 V, but some USB electrical characteristics are degraded in 2.7 to 3.0 V range.

2. Guaranteed by design.

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-). The matching impedance is already included in the embedded driver.

5.3.41 JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in the tables below are derived from tests performed under the ambient temperature, f_{HCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 32*, with the following configuration:

- Output speed set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- Measurement points done at 0.5 × V_{DD} level

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
E	TCK clock frequency	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	-	-	27.5	MHz	
F _{TCK}	T CR Clock frequency	$1.71~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	-	-	20.5		
ti _{su(TMS)}	TMS input setup time	-	2	-	-		
ti _{h(TMS)}	TMS input hold time	-	3	-	-		
ti _{su(TDI)}	TDI input setup time	-	3	-	-		
ti _{h(TDI)}	TDI input hold time	-	1	-	-	ns	
+	TDO output valid time	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	-	14	18		
t _{ov(TDO)}		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	14	24		
t _{oh(TDO)}	TDO output hold time	-	10	_	-		

Table 137. JTAG characteristics⁽¹⁾

1. Evaluated by characterization. Not tested in production.

 Table 138. SWD characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{SWCLK}	SWCLK clock frequency	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	-	-	66.5	MHz
		1.71 V ≤ V _{DD} ≤ 3.6 V	-	-	43	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
ti _{su(SWDIO)}	SWDIO input setup time	-	1	-	-				
ti _{h(SWDIO)}	SWDIO input hold time	-	2.5	-	-				
+	SWDIO output valid time	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	10.5	15	ns			
t _{ov(SWDIO)}		1.71 V ≤ V _{DD} ≤ 3.6 V	-	10.5	23				
t _{oh(SWDIO)}	SWDIO output hold time	-	7.5	-	-				

Table 138. SWD characteristics⁽¹⁾ (continued)

1. Evaluated by characterization. Not tested in production.

Figure 67. JTAG timing diagram

Figure 68. SWD timing diagram

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

6.1 LQFP48 package information (5B)

This LQFP is a 48-pin, 7 x 7 mm low-profile quad flat package

Note: See list of notes in the notes section.

Figure 69. LQFP48 – Outline⁽¹⁵⁾

DS14217 Rev 4

Table 139. LQFP48 – Mechanical data

0k.s.l	millimeters			inches ⁽¹⁴⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.60	-	-	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		9.00 BSC			0.3543 BSC	
D1 ⁽²⁾⁽⁵⁾		7.00 BSC			0.2756 BSC	
E ⁽⁴⁾		9.00 BSC		0.3543 BSC		
E1 ⁽²⁾⁽⁵⁾	7.00 BSC			0.2756 BSC		
е		0.50 BSC		0.1970 BSC		
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00 REF		0.0394 REF		
N ⁽¹³⁾				48		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾⁽⁷⁾	0.20			0.0079		
bbb ⁽¹⁾⁽⁷⁾	0.20			0.0079		
ccc ⁽¹⁾⁽⁷⁾		0.08		0.0031		
ddd ⁽¹⁾⁽⁷⁾		0.08			0.0031	

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

1. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.2 UFQFPN48 package information (A0B9)

This UFQFPN is a 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.

Figure 72. UFQFPN48 - Outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN48 package. It is recommended to connect and solder this back-side pad to PCB ground.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
D ⁽²⁾	6.900	7.000	7.100	0.2717	0.2756	0.2795
D1	5.400	5.500	5.600	0.2126	0.2165	0.2205
D2 ⁽³⁾	5.500	5.600	5.700	0.2165	0.2205	0.2244
E ⁽²⁾	6.900	7.000	7.100	0.2717	0.2756	0.2795
E1	5.400	5.500	5.600	0.2126	0.2165	0.2205
E2 ⁽³⁾	5.500	5.600	5.700	0.2165	0.2205	0.2244
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

Table 140. UFQFPN48 – Mechanical data

1. Values in inches are converted from mm and rounded to four decimal digits.

2. Dimensions D and E do not include mold protrusion, not exceed 0.15 mm.

3. Dimensions D2 and E2 are not in accordance with JEDEC.

1. Dimensions are expressed in millimeters.

Device marking for UFQFPN48

The following figure gives an example of topside marking versus pin 1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.3 WLCSP56 package information (B0H4)

This WLCSP is a 56-ball, 3.38 x 3.38 mm, 0.40 mm pitch, wafer level chip scale package.

- 1. Drawing is not to scale.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
- 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 4. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.

Cumhal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
A ⁽²⁾	-	-	0.59	-	-	0.0243	
A1	-	0.18	-	-	0.0071	-	
A2	-	0.38	-	-	0.0150	-	
A3 ⁽³⁾	-	0.025	-	-	0.0010	-	
b ⁽⁴⁾	0.22	0.25	0.28	0.0087	0.0098	0.0110	
D	3.36	3.38	3.40	0.1323	0.1330	0.1338	
E	3.36	3.38	3.40	0.1323	0.1330	0.1338	
е	-	0.40	-	-	0.0157	-	
e1	-	2.60	-	-	0.1024	-	
e2	-	2.42	-	-	0.0952	-	
F ⁽⁵⁾	-	0.390	-	-	0.0153	-	
G ⁽⁵⁾	-	0.478	-	-	0.0188	-	
aaa	-	-	0.10	-	-	0.0039	
bbb	-	-	0.10	-	-	0.0039	
ccc ⁽⁶⁾	-	-	0.10	-	-	0.0039	
ddd ⁽⁷⁾	-	-	0,05	-	-	0.0020	
eee	-	-	0.05	-	-	0.0020	

Table 141. WLCSP56 - Mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2.

3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process capability.

4. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

5. Calculated dimensions are rounded to the 3rd decimal place.

6. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.

7. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone ddd perpendicular to datum Z and located on true position as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone. Each tolerance zone ddd in the array is contained entirely in the respective zone ccc above. The axis of each ball must lie simultaneously in both tolerance zones.

Table 142. WLCSP56 - Example of PCB design rules

Dimension	Values
Pitch	0.400 mm
Dpad	0,250 mm
Dsm	0.325 mm typ. (depends on soldermask registration tolerance)
Stencil opening	0.325 mm
Stencil thickness	0.100 mm

Device marking for WLCSP56

The following figure gives an example of topside marking versus ball A1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 77. WLCSP56 marking example (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.4 LQFP64 package information (5W)

This LQFP is 64-pin, 10 x 10 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Cumhal	millimeters			inches ⁽¹⁴⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.60	-	-	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0091
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		12.00 BSC			0.4724 BSC	
D1 ⁽²⁾⁽⁵⁾	10.00 BSC				0.3937 BSC	
E ⁽⁴⁾	12.00 BSC			0.4724 BSC		
E1 ⁽²⁾⁽⁵⁾	10.00 BSC			0.3937 BSC		
е		0.50 BSC		0.1970 BSC		
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00 REF		0.0394 REF		
N ⁽¹³⁾				64		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾		0.20		0.0079		
bbb ⁽¹⁾	0.20			0.0079		
ccc ⁽¹⁾	0.08			0.0031		
ddd ⁽¹⁾		0.08			0.0031	

Table 143. LQFP64 - Mechanical data

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 79. LQFP64 - Footprint example

1. Dimensions are expressed in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below.

Figure 80. LQFP64 marking example (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.5 UFBGA64 package information (A019)

This UFBGA is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array package.

Note: See list of notes in the notes section.

Symbol	millimeters ⁽¹⁾			inches ⁽¹²⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
A ⁽²⁾⁽³⁾	-	-	0.60	-	-	0.0236
A1 ⁽⁴⁾	0.05	-	-	0.0020	-	-
A2	-	0.43	-	-	0.0169	-
b ⁽⁵⁾	0.23	0.28	0.33	0.0090	0.0110	0.0130
D ⁽⁶⁾	5.00 BSC			0.1969 BSC		
D1	3.50 BSC			0.1378 BSC		
Е	5.00 BSC			0.1969 BSC		
E1	3.50 BSC			0.1378 BSC		
e ⁽⁹⁾	0.50 BSC			0.0197 BSC		
N ⁽¹¹⁾			6	64		
SD ⁽¹²⁾		0.25 BSC		0.0098 BSC		
SE ⁽¹²⁾		0.25 BSC		0.0098 BSC		
aaa		0.15		0.0059		
CCC	0.20			0.0079		
ddd	0.08			0.0031		
eee	0.15			0.0059		
fff		0.05		0.0020		

Table 144	UFBGA64 -	Mechanical data
		meenamear aata

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-2009 apart European projection.
- 2. UFBGA stands for ultra profile fine pitch ball grid array: 0.5 mm < A \leq 0.65 mm / fine pitch e < 1.00 mm.
- 3. The profile height, A, is the distance from the seating plane to the highest point on the package. It is measured perpendicular to the seating plane.
- 4. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 5. Dimension b is measured at the maximum diameter of the terminal (ball) in a plane parallel to primary datum C.
- 6. BSC stands for BASIC dimensions. It corresponds to the nominal value and has no tolerance. For tolerances refer to form and position table. On the drawing these dimensions are framed.
- 7. Primary datum C is defined by the plane established by the contact points of three or more solder balls that support the device when it is placed on top of a planar surface.
- 8. The terminal (ball) A1 corner must be identified on the top surface of the package by using a corner chamfer, ink or metalized markings, or other feature of package body or

integral heat slug. A distinguish feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

- 9. e represents the solder ball grid pitch.
- 10. N represents the total number of balls on the BGA.
- 11. Basic dimensions SD and SE are defined with respect to datums A and B. It defines the position of the centre ball(s) in the outer row or column of a fully populated matrix.
- 12. Values in inches are converted from mm and rounded to 4 decimal digits.
- 13. Drawing is not to scale.

Figure 82. UFBGA64 – Footprint example

Table 145. UFBGA64 - Example of PCB design rules (0.5 mm pitch BGA)

Dimension	Values
Pitch	0.5 mm
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Device marking for UFBGA64

The following figure gives an example of topside marking versus ball A1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 83. UFBGA64 marking example (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.6 WLCSP72 package information (B0HK)

This WLCSP is a 72-ball, 3.38 x 3.38 mm, 0.35 mm pitch, wafer level chip scale package.

Figure 84. WLCSP72 - Outline

- 1. Drawing is not to scale.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
- 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 4. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.

Queen had		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
A ⁽²⁾	-	-	0.58	-	-	0.0228	
A1	-	0.17	-	-	0.0067	-	
A2	-	0.38	-	-	0.0150	-	
A3 ⁽³⁾	-	0.025	-	-	0.0010	-	
b ⁽⁴⁾	0.20	0.23	0.25	0.0079	0.0090	0.0098	
D	3.36	3.38	3.40	0.1323	0.1330	0.1338	
E	3.36	3.38	3.40	0.1323	0.1330	0.1338	
е	-	0.35	-	-	0.0138	-	
e1	-	2.63	-	-	0.1035	-	
e2	-	2.42	-	-	0.0952	-	
F ⁽⁵⁾	-	0.378	-	-	0.0149	-	
G ⁽⁵⁾	-	0.478	-	-	0.0188	-	
Ν			7	2			
aaa	-	-	0.10	-	-	0.0039	
bbb	-	-	0.10	-	-	0.0039	
ccc ⁽⁶⁾	-	-	0.10	-	-	0.0039	
ddd ⁽⁷⁾	-	-	0,05	-	-	0.0020	
eee	-	-	0.05	-	-	0.0020	

Table 146. WLCSP72 - Mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2.

3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process capability.

4. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

5. Calculated dimensions are rounded to the 3rd decimal place.

- 6. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.
- 7. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone ddd perpendicular to datum Z and located on true position as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone. Each tolerance zone ddd in the array is contained entirely in the respective zone ccc above. The axis of each ball must lie simultaneously in both tolerance zones.

Table 147. WLCSP72 - Example of PCB design rules

Dimension	Values
Pitch	0.35 mm
Dpad	0,200 mm
Dsm	0.275 mm typ. (depends on soldermask registration tolerance)
Stencil opening	0.275 mm
Stencil thickness	0.100 mm

Device marking for WLCSP72

The following figure gives an example of topside marking versus ball A1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 86. WLCSP72 marking example (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.7 LQFP100 package information (1L)

This LQFP is 100 lead, 14 x 14 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Council - I	millimeters			inches ⁽¹⁴⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	1.50	1.60	-	0.0590	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0019	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		16.00 BSC			0.6299 BSC	1
D1 ⁽²⁾⁽⁵⁾	14.00 BSC				0.5512 BSC	
E ⁽⁴⁾	16.00 BSC			0.6299 BSC		
E1 ⁽²⁾⁽⁵⁾	14.00 BSC			0.5512 BSC		
е		0.50 BSC		0.0197 BSC		
L	0.45	0.60	0.75	0.177	0.0236	0.0295
L1 ⁽¹⁾⁽¹¹⁾		1.00		-	0.0394	-
N ⁽¹³⁾			1	100		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾		0.20			0.0079	ı
bbb ⁽¹⁾	0.20			0.0079		
ccc ⁽¹⁾		0.08		0.0031		
ddd ⁽¹⁾		0.08			0.0031	

Table 148. LQFP100 - Mechanical data

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 88. LQFP100 - Footprint example

1. Dimensions are expressed in millimeters.

Device marking for LQFP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below.

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.8 UFBGA100 package information (A0C2)

This UFBGA is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.

Note: See list of notes in the notes section.

Figure 90. UFBGA100 - Outline⁽¹³⁾

		millimeters ⁽¹⁾		inches ⁽¹²⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
A ⁽²⁾⁽³⁾	-	-	0.60	-	-	0.0236	
A1 ⁽⁴⁾	0.05	-	-	0.0020	-	-	
A2	-	0.43	-	-	0.0169	-	
b ⁽⁵⁾	0.23	0.28	0.33	0.0090	0.0110	0.0130	
D ⁽⁶⁾		7.00 BSC			0.2756 BSC		
D1	5.50 BSC				0.2165 BSC		
E	7.00 BSC			0.2756 BSC			
E1	5.50 BSC			0.2165 BSC			
e ⁽⁹⁾	0.50 BSC				0.0197 BSC		
N ⁽¹¹⁾	100						
SD ⁽¹²⁾	0.25 BSC			0.0098 BSC			
SE ⁽¹²⁾	0.25 BSC		0.0098 BSC				
ааа	0.15				0.0059		
ccc	0.20		0.0079				
ddd	0.08			0.0031			
eee	0.15			0.0059			
fff	0.05				0.0020		

Table 149. UFBGA100 - Mechanical data

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-2009 apart European projection.
- 2. UFBGA stands for ulta profile fine pitch ball grid array: 0.50 mm < A \leq 0.65 mm / fine pitch e < 1.00 mm.
- 3. The profile height, A, is the distance from the seating plane to the highest point on the package. It is measured perpendicular to the seating plane.
- 4. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 5. Dimension b is measured at the maximum diameter of the terminal (ball) in a plane parallel to primary datum C.
- 6. BSC stands for BASIC dimensions. It corresponds to the nominal value and has no tolerance. For tolerances refer to form and position table. On the drawing these dimensions are framed.
- 7. Primary datum C is defined by the plane established by the contact points of three or more solder balls that support the device when it is placed on top of a planar surface.
- 8. The terminal (ball) A1 corner must be identified on the top surface of the package by using a corner chamfer, ink or metalized markings, or other feature of package body or

integral heat slug. A distinguish feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

- 9. e represents the solder ball grid pitch.
- 10. N represents the total number of balls on the BGA.
- 11. Basic dimensions SD and SE are defined with respect to datums A and B. It defines the position of the centre ball(s) in the outer row or column of a fully populated matrix.
- 12. Values in inches are converted from mm and rounded to 4 decimal digits.
- 13. Drawing is not to scale.

Figure 91. UFBGA100 - Footprint example

Table 150. UFBGA100 - Example of PCB design rules (0.5 mm pitch BGA)

Dimension	Values
Pitch	0.50 mm
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the solder mask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Device marking for UFBGA100

The following figure gives an example of topside marking versus ball A1 position identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 92. UFBGA100 marking example (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.9 Package thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, can be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

where:

- T_A max is the maximum ambient temperature in °C.
- Θ_{JA} is the package junction-to-ambient thermal resistance in °C/W.
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O} max).
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins:

 $\mathsf{P}_{\mathsf{I/O}} \max = \sum (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \sum ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}})$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Package	Value	Unit	
		LQFP48 (7 x 7 mm)	48.5		
		UFQFPN48 (7 x 7 mm)	27.7		
		WLCSP56	51.2		
0	Thermal resistance junction-ambient	LQFP64 (10 x 10 mm)	41.8		
Θ_{JA}		UFBGA64 (5 x 5 mm)	49.6		
		WLCSP72	49.8		
		LQFP100 (14 × 14 mm)	35.9		
		UFBGA100 (7 x 7 mm)	43.8	°C/W	
		LQFP48 (7 x 7 mm)	25.8	C/W	
	Thermal resistance junction-board	UFQFPN48 (7 x 7 mm)	12.1		
		WLCSP56	27.2		
0		LQFP64 (10 x 10 mm)	24.1		
Θ_{JB}		UFBGA64 (5 x 5 mm)	33		
		WLCSP72	25.9		
		LQFP100 (14 × 14 mm)	21.9		
		UFBGA100 (7 x 7 mm)	29.8		
		LQFP48 (7 x 7 mm)	12.3		
		UFQFPN48 (7 x 7 mm)	9	- °C/W	
	Thermal resistance junction-top case	WLCSP56	2.3		
0		LQFP64 (10 x 10 mm)	10.3		
Θ_{JC}		UFBGA64 (5 x 5 mm)	12.5		
		WLCSP72	22	-	
		LQFP100 (14 × 14 mm)	8.5		
		UFBGA100 (7 x 7 mm)	11.2		

6.9.1 Reference documents

- JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions Natural Convection (Still Air) available on www.jedec.org.
- For information on thermal management, refer to application note "Guidelines for thermal management on STM32 applications" (AN5036) available on www.st.com.

7 Ordering information

Example:	STM32	U	535	V	ΕТ	6 Q TR
Device family						
STM32 = Arm based 32-bit microcontroller						
Product type						
U = ultra-low-power						
Device subfamily						
535 = STM32U535xx with USB						
Pin count						
C = 48 pins						
N = 56 pins						
R = 64 pins						
J = 72 pins						
V = 100 pins						
Flash memory size						
B = 128 Kbytes						
C = 256 Kbytes						
E = 512 Kbytes						
Package						
T = LQFP						
I = UFBGA						
U = UFQFPN						
Y = WLCSP						
Temperature range						
6 = Industrial temperature range, -40 to 85 °C (105 °C jur	nction)					
3 = Industrial temperature range, –40 to 125 °C (130 °C ju	inction)					
Dedicated pinout						
Q = Dedicated pinout including SMPS step-down converte	er					
Packing						

TR = tape and reel

xxx = programmed parts

For a list of available options (such as speed or package) or for further information on any aspect of this device, contact the nearest ST sales office.

8 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

9 Revision history

Date	Revision	Changes
17-Feb-2023	1	Initial release.
05-Jul-2023	2	 Updated: Table 2: STM32U535xx features and peripheral counts Figure 1: STM32U535xx block diagram Section 3.9.1: Power supply schemes Figure 2: STM32U535xx power supply overview (with SMPS) Figure 3: STM32U535xx power supply overview (without SMPS) Section 3.9.5: VBAT operation Section 3.10: Peripheral interconnect matrix Table 15: ADC features Section 5.1.6: Power supply scheme Figure 24: STM32U535xQ power supply scheme (without SMPS) Table 45: Current consumption in Sleep mode on SMPS, flash memory in power down Table 52: Current consumption during wake-up from Stop 1 mode on LDO Table 54: Current consumption during wake-up from Stop 2 mode on SMPS Table 60: Current consumption during wake-up from Stop 2 mode on SMPS Table 66: Current consumption during wake-up from Stop 2 mode on SMPS Table 66: Current consumption during wake-up from Stop 2 mode on SMPS Table 66: Current consumption during wake-up from Stop 3 mode on LDO Table 66: Current consumption during wake-up from Stop 3 mode on SMPS Table 66: Current consumption during wake-up from Stop 3 mode on SMPS Table 66: Current consumption during wake-up from Stop 3 mode on SMPS Table 68: Current consumption during wake-up from Stop 3 mode on SMPS Table 68: Current consumption during wake-up from Standby mode Table 69: Current consumption during wake-up from 8 μA to 8 mA in Table 79: HSE oscillator characteristics Table 90: ESD absolute maximum ratings Table 95: Output AC characteristics for FT_t I/Os in V_{BAT} mode, and for FT_o I/Os Table 99: Output AC characteristics for FT_t I/Os in V_{BAT} mode, and for FT_o I/Os

Table 152	. Document r	revision history
-----------	--------------	------------------

Table 152. Document revision history (continued)

Table 152. Document revision history (continued)		
Date	Revision	Changes
28-Nov-2023	3	 Updated: Up to 19 communication peripherals Replaced "o" by "-" for Backup domain voltage and temperature monitoring in Table 10: Functionalities depending on the working mode Moved USB_DM(boot) and USB_DP(boot) from Alternate functions to Additional functions in Table 26: STM32U535xx pin/ball definitions Typical values in Table 52: Current consumption during wake-up from Stop 1 mode on LDO Typical values in Table 54: Current consumption during wake-up from Stop 1 mode on LDO Typical values in Table 57: Current consumption during wake-up from Stop 2 mode on LDO Typical values in Table 56: Current consumption during wake-up from Stop 2 mode on LDO Typical values in Table 66: Current consumption during wake-up from Stop 2 mode on LDO Typical values in Table 66: Current consumption during wake-up from Stop 2 mode on SMPS Typical values in Table 66: Current consumption during wake-up from Stop 3 mode on LDO Typical values in Table 66: Current consumption during wake-up from Stop 3 mode on SMPS Typical values in Table 66: Current consumption during wake-up from Stop 1 mode on SMPS Typical values in Table 66: Current consumption during wake-up from Stop 1 mode on SMPS Typical values in Table 68: Current consumption during wake-up from Standby mode Typical values in Table 70: Current consumption during wake-up from Shutdown mode Table 77: High-speed external user clock characteristics Table 90: ESD absolute maximum ratings Note added in Table 104: Maximum RAIN for 14-bit ADC1 and Table 107: Maximum RAIN for 12-bit ADC4 Figure 60: USART timing diagram in SPI slave mode Added: SPI mode in Table 21: USART, UART, and LPUART features, Section 3.39.1: Universal synchronous/asynchronous receiver transmitter (USART/UART), and Section 5.3.37: USART (SPI mode) characteristics
21-Dec-2023	4	Updated: – VDDUSB corrected to VDD in Figure 15: WLCSP56_SMPS ballout – Pin number A1 moved from VDDUSB to VDD line in Table 26: STM32U535xx pin/ball definitions

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics - All rights reserved

DS14217 Rev 4