MSKSEMI 美森科

ESD

Т

TSS

MOV

GDT

PLED

SN74LVC1G125DBVR-MS/SN74LVC1G125DCKR-MS

Product specification

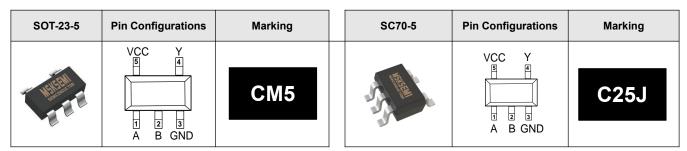
General Description

The operating voltage range of the bus buffer gate is 1.65-V to 5.5-V.

The SN74LVC1G125DBVR-MS/SN74LVC1G125DCKR-MS device is a single line driver with a 3-state output.

The output is disabled when the output-enable (OE) input is high.

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.


Features

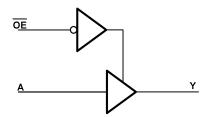
- 3-State output
- Wide supply voltage range from 1.65 to 5.5V
- Inputs accept voltages to 5.5 V
- Max tpd of 4.7 ns at 3.3 V
- ±24-mA output drive at 3.3 V
- loff ssupports partial-power-down mode

Applications

- Cable modem termination system
- Video communications system
- High-speed data acquisition and generation
- Military: radar and sonar
- Motor control: high- voltage
- Power line communication modem
- SSD: Internal or external
- Video broadcasting and infrastructure
- Video broadcasting
- WiMAX and wireless infrastructure equipment

Pinning and Marking

Pin Functions


F	Pin	I/O Description		
Name	SOT23-5/SC70-5	I/O	Description	
OE OE	1	I	Enable Input	
Α	2	I	Input	
GND	3	_	Ground	
Y	4	0	Output	
Vcc	5	_	Positive Supply	

Order information

Orderable Device	Package	Packing Option
SN74LVC1G125DBVR-MS	SOT23-5	3000PCS
SN74LVC1G125DCKR-MS	SC70-5	3000PCS

CircuitDiagram

Absolute Maximum Ratings

	Parameter	rs	Min	Max.	Unit
Vcc	Supply volt	age range	-0.5	6.5	V
VI	Input volta	ge range	-0.5	6.5	V
Vo	Voltage range applied to any output in the	ne high-impedance or power-off state(2)	-0.5	6.5	V
Vo	Voltage range applied to any o	-0.5	Vcc+0.5	V	
Iıĸ	Input clamp current	V < 0		-50	mA
lok	Output clamp current	V ₀ <0		-50	mA
lo	Continuous o	utput current		±50	mA
	Continuous current throu	igh V _{CC} or GND		±100	mA
TJ	Junction tempera		150	°C	
T _{stg}	Storage tempor	erature range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

	E	Value	Unit	
\//E6D\	Clastrostatia dia sharas	Human-Body Model (HBM) ⁽¹⁾	8 K	٧
V(ESD)	Electrostatic discharge	Charge-Device Model (CDM)(2)	2 K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	Ө ЈА	Ө эс	Unit
SOT23-5	250	81	°C/W
SC70-5	400	150	°C/W

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Specifications

All typical values are at V_{CC} = 3.3V, T_A = +25°C

	a	.,	-4	0°C to 85	s°C	-40	0°C to 12	5°C	Unit	
Parameter	Test Conditions	Vcc	Min	Тур	Max	Min	Тур	Max	Uni	
	Ι _{ΟΗ} =– 100 μΑ	1.65 V to 5.5 V	Vcc-0.1			V _{CC} -0.1				
	I _{OH} =-4 mA	1.65 V	1.2			1.2				
.,	I _{ОН} =-8 mA	2.3 V	1.9			1.9			,,	
V _{OH}	I _{OH} =— 16 mA	0)/	2.4			2.4			V	
	I _{OH} =–24 mA	3 V	2.3			2.3				
	I _{он} =–32 mA	4.5 V	3.8			3.8				
	Ι _{ΟL} =100 μΑ	1.65 V to 5.5 V			0.1			0.1		
	I _{OL} =4 mA	1.65 V			0.45			0.45		
.,	I _{OL} =8 mA	2.3 V			0.3			0.3		
V_{OL}	I _{OL} =16 mA	0.17			0.4			0.4	V	
	I _{OL} =24 mA	3 V			0.55			0.55		
	I _{OL} =32 mA	4.5 V			0.55			0.55	1	
I _I V _I =5.5 V or GND Input	. V₁=5.5 V or GND	0 to 5.5 V			_ ±5			±5	μΑ	
l _{off}	V ₁ or V ₀ =5.5 V	0			±10			±10	μΑ	
l _{OZ}	VO=0 to 5.5 V	3.6 V			10			10	μΑ	
Icc	V₁=5.5 V or GND, I₀=0	1.65 V to 5.5 V			10			10	μΑ	
ΔI_{CC}	One Input at V _{CC} – 0.6 V, Other Inputs at V _{CC} or GND	3 V to 5.5 V			500			500	μÆ	
Ci	V _I =V _{CC} or GND	3.3 V		5			5		рF	

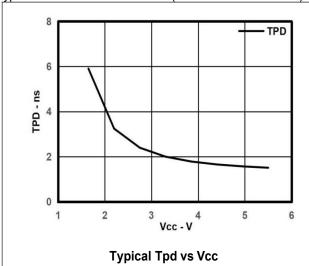
⁽¹⁾ All unused digital inputs of the device must be held at Vcc or GND to ensure proper device operation.

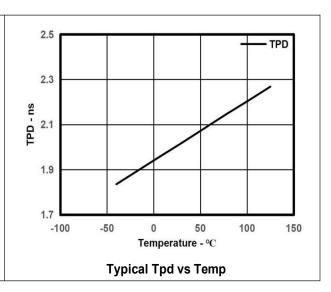
Switching Characteristics

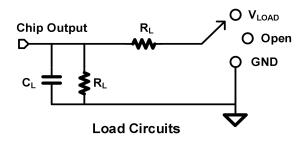
Typical Values at T_A=+25°C and nominal voltages 1.8V, 2.5V, 3.3V, and 5.0V.

				-40°C to 125°C							
Parameter	From (Input)	To (Output)		1.8 V 15 V		2.5 V .15 V		3.3 V 15 V		=5 V 15 V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{pd}	A	Y	2.8	9.5	1.2	5.8	1	4.7	1	3.2	
t _{en}	ŌĒ	Y	3.3	10.8	1.5	6.9	1	5.6	1	5.2	ns
t _{dis}	ŌĒ	Y	1.3	11.8	1	5.2	1	5.2	1	4.4	ns

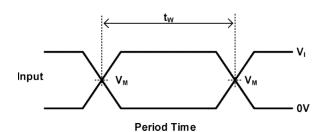
Operating Characteristics

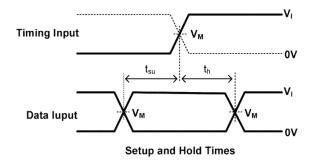

T_A=25°C

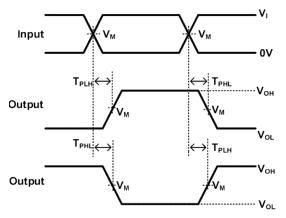

Danamatan		Devenuetes	Took Conditions	V _{cc} =1.8 V V _{cc} =2.5 V		V _{cc} =3.3 V V _{cc} =5 V		l lmit
		Parameter	Test Conditions	Тур	Тур Тур		Тур	Unit
	C _{pd}	Power Dissipation Capacitance	f=10 MHz	17	18	25	30	pF


Typical Characteristics

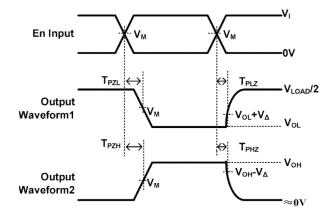
Parameter Measurement Information




TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V _{LOAD}
T _{PHZ} /T _{PZH}	GND


V _{CC}	Inputs		V _M	V_{LOAD}	CL	R_L	V_{Δ}	
VCC	Vı	T_r/T_f	VIVI	V LOAD	OL	IVL	VΔ	
1.8V±0.15V	V _{CC}	≤2ns	V _{CC} /2	2×V _{CC}	30pF	1kΩ	0.15V	
2.5V±0.15V	V _{CC}	≤2ns	V _{CC} /2	2×V _{CC}	30pF	500Ω	0.15V	
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V	
5V±0.15V	Vcc	≤2.5ns	V _{CC} /2	2×V _{CC}	50pF	500Ω	0.3V	

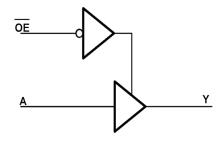
Parameter Measurement Information(Continued)



Propagation Delay for Output and Inverted Output

Notes:A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. E. Waveform 2 is for an output with internal conditions such that the F. output is high, except when disabled by the output control. G. All input pulses are supplied by generators having the
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50.


Enable and Disable Times Low-And High-Level Enabling

- The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

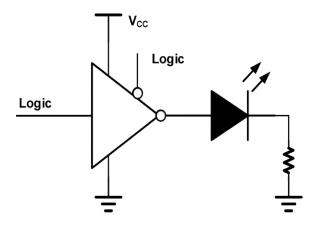
Detailed Description

The SN74LVC1G125DBVR-MS/SN74LVC1G125DCKR-MS device contains one buffer gate device with output enable control and performs the Boolean function Y = A. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disablesthe outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Functional Block Diagram

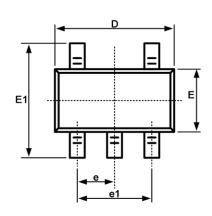
Feature Description

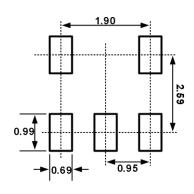
The SN74LVC1G125DBVR-MS/SN74LVC1G125DCKR-MS have wide operating voltage range from 1.65 V to 5.5 V , It Allows down voltage translation and I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

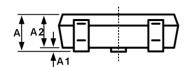

Device Functional Modes

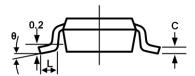
Inp	Output	
ŌĒ	Α	Υ
L	Н	Н
L	L	L
Н	X	Z

Application Information

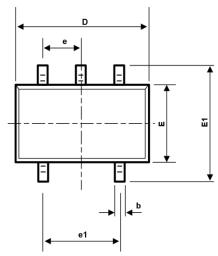

The SN74LVC1G125DBVR-MS/SN74LVC1G125DCKR-MS device is a high drive CMOS device that can be used a s an output enabled buffer with a highoutput drive, such as an LED application. It can produce 24 mA of drive curr ent at 3.3 V making it Ideal for driving multiple outputs and good for high-speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to Vcc.

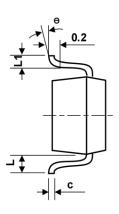

Typical Power Button Circuit

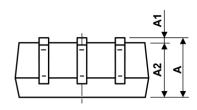



Package Outline SOT23-5

Recommended Land Pattern (Unit: mm)






Cumhal	Dimensions	In Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	DBSC	0.037	BSC
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.60	OREF	0.024	REF
θ	0°	8°	0°	8°

Package Outline SC70-5

symbol	Dimension In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650TYP		0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.