

Low-Power Rail-to-Rail Input Single-supply Comparator

Features

- Ultra-Fast, 6ns Propagation Delay
- 1.3mA (Typ) Low Power Consumption
- Single-Supply Operation from +2.7V ~ +5.5V
- Low Offset Voltage: 5mV (Max)
- Rail-to-Rail Input and Output
- CMOS/TTL-Compatible Output
- Internal Hysteresis for Clean Switching
- No Phase Reversal for Overdriven Inputs
- Operating Temperature: -40°C ~ +85°C

Applications

- High-speed Line or Digital Line Receivers
- High Speed Sampling Circuits
- Peak and Zero-crossing Detectors
- Logic Level Shifting or Translation

- Clock and Data Signal Restoration
- Window Comparators
- IR Receivers
- Portable Systems

Pin Configuration

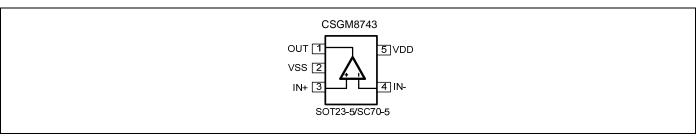
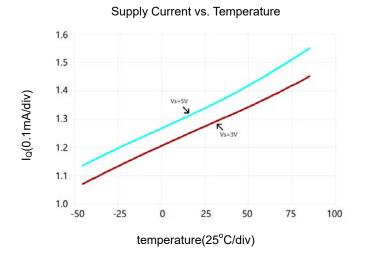


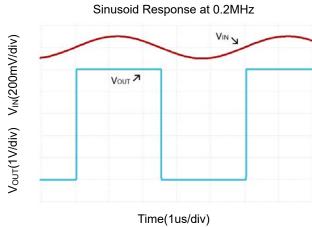
Figure 1. Pin Assignment Diagram

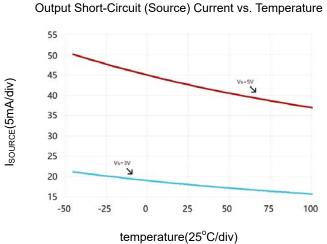
Absolute Maximum Ratings

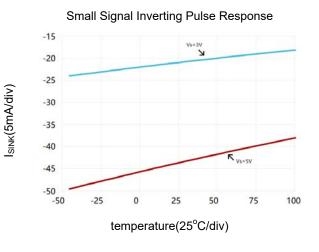
Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+85°C		
Junction Temperature	+160°C			
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+260°C			
Package Thermal Resistance (T _A =+25℃)				
SOT23-5, θ _{JA}	190°C/W			
SOT23-6, θ _{JA}	190°C/W			
SC70-5, θ _{JA}	333°C/W			
ESD Susceptibility				
НВМ	4KV			
ММ	300V			

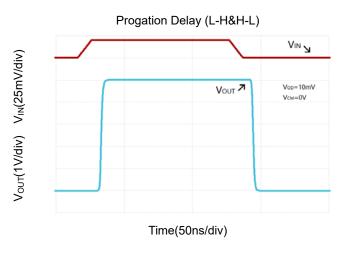
Electrical Characteristics

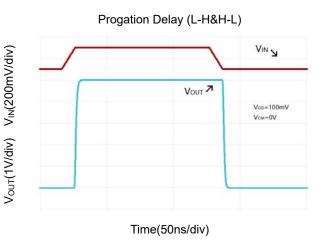

(At $V_S = +5V$, $V_{CM} = 0V$, $C_L = 15pF$, and $T_A = +25^{\circ}C$, unless otherwise noted.)


DADAMETED	SYMBOL	CONDITIONS		_		
PARAMETER	STWBUL	CONDITIONS	TYP	MIN	MAX	UNITS
INPUT CHARACTERISTICS						
Input Offset Voltage	Vos	V _{CM} = 0V	0.4		5	mV
Input Bias Current	I _B		6			pА
Input Offset Current	I _{OS}		4			pА
Input Hysteresis	V _{hys}		3			mV
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +5.6			V
Common-Mode Rejection Ratio	CMRR	$V_{S} = 5V, V_{CM} = 0V \text{ to } 5V$	77	60		dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing from Bail	V _{OH}	V 5V 1 4 4	Vs - 0.166		Vs - 0.25	V
Output Voltage Swing from Rail	V _{OL}	Vs=5V, I _O = 4mA	132		211	mV
Output Short-Circuit Current	I _{SOURCE}	V 5V 0:44- V 10	42.6	30		mA
	I _{SINK}	$V_S = 5V$, Out to $V_S/2$	43.7	31		
POWER SUPPLY						
Operating Voltage Range			2.7			V
			5.5			V
Power Supply Rejection Ratio	PSRR	$V_S = +2.7V \text{ to } +5.5V, V_{CM} = 0V$	74	58		dB
Quiescent Current / Comparator	ΙQ		1.3			mA
DYNAMIC PERFORMANCE (CL	= 15pF)					
Dramagation Daloy (Lays to High)	T_{dLH}	V _S = 3V, Overdrive = 10mV	11			ns
Propagation Delay (Low to High)		V _S = 3V, Overdrive = 100mV	6			ns
Propagation Delay (High to Low)	T _{dHL}	V _S = 3V, Overdrive = 10mV	11			ns
		V _S = 3V, Overdrive = 100mV	6			ns
Rise Time	T _r	V _S = 3V, Overdrive = 10mV	3.6			ns
		V _S = 3V, Overdrive = 100mV	3.5			ns
E # E	T _f	V _S = 3V, Overdrive = 10mV	3.1			ns
Fall Time		V _S = 3V, Overdrive = 100mV	3			ns




Typical Performance characteristics


At T_A =+25°C, V_S =+5V, and C_L =15pF, unless otherwise noted.



Non-Inverting Comparator with Hysteresis

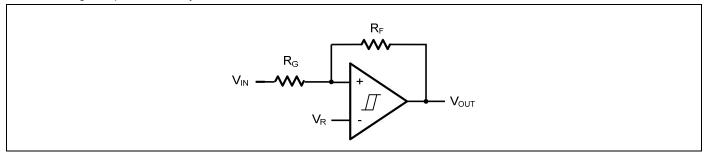


Figure 3. Non-Inverting Comparator with Hysteresis

A non-inverting comparator with hysteresis requires a two-resistor network, as shown in Figure 3 and a voltage reference (V_R) at the inverting input.

$$\begin{split} \mathbf{V}_{\mathrm{TH}} &= \frac{R_{\mathrm{G}} + R_{\mathrm{F}}}{R_{\mathrm{F}}} \times \mathbf{V}_{\mathrm{R}} \\ \mathbf{V}_{\mathrm{TL}} &= \frac{R_{\mathrm{G}} + R_{\mathrm{F}}}{R_{\mathrm{F}}} \times \mathbf{V}_{\mathrm{R}} - \frac{R_{\mathrm{G}}}{R_{\mathrm{F}}} \times \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V}_{\mathrm{HYS}} &= \frac{R_{\mathrm{G}}}{R_{\mathrm{F}}} \times \mathbf{V}_{\mathrm{DD}} \end{split}$$

Inverting Comparator with Hysteresis

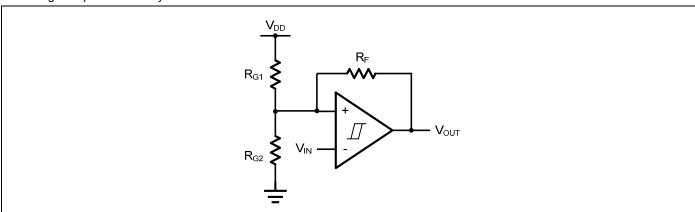


Figure 4. Inverting Comparator with Hysteresis

The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage (V_{DD}) , as shown in Figure 4.

$$\begin{split} \mathbf{V}_{\text{TH}} &= \frac{R_{\text{G2}}}{R_{\text{G1}} \parallel R_{\text{F}} + R_{\text{G2}}} \times \mathbf{V}_{\text{DD}} \\ \mathbf{V}_{\text{TL}} &= \frac{R_{\text{G2}} \parallel R_{\text{F}}}{R_{\text{G2}} \parallel R_{\text{F}} + R_{\text{G1}}} \times \mathbf{V}_{\text{DD}} \\ \mathbf{V}_{\text{HYS}} &= \frac{R_{\text{G1}} \parallel R_{\text{G2}}}{R_{\text{G1}} \parallel R_{\text{G2}} + R_{\text{F}}} \times \mathbf{V}_{\text{DD}} \end{split}$$

Typical Application Circuits

Line Receiver

A Line Receiver using GM8743 is shown in Figure 5. Resistors R_{G1} and R_{G2} set the bias point at the comparator's inverting input. R_{IN} should be same as $R_{G1}||R_{G2}$ to get a better match. GM8743 detects the voltage of the Coax Line, and outputs logic high or logic low quickly with no glitch.

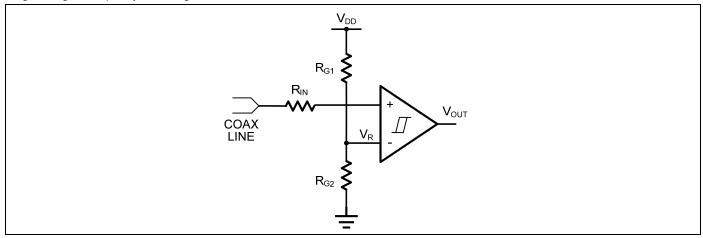


Figure 5. Line Receiver

IR Receiver

GM8743 is an ideal candidate to be used as an infrared receiver shown in Figure 6. The infrared photo diode creates a current relative to the amount of infrared light present. The current creates a voltage across R_{IN} . When this voltage level cross the voltage applied by the voltage divider to the inverting input, the output transitions. Optional R_{F} provides additional hysteresis for noise immunity.

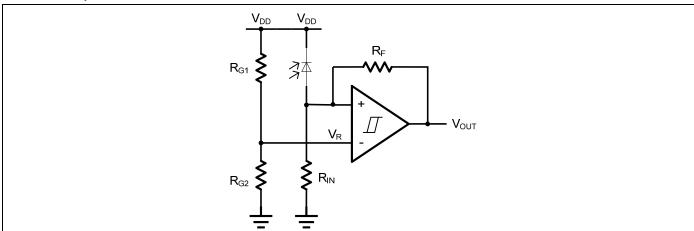


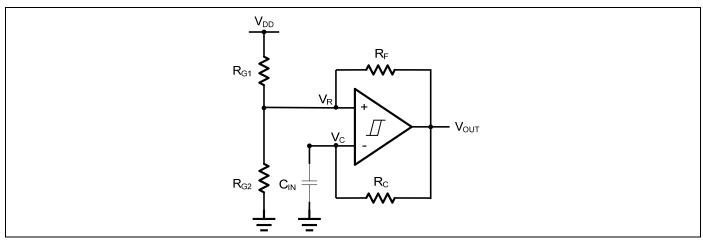
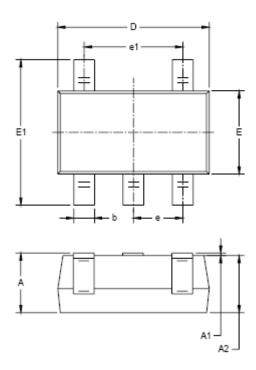
Figure 6. IR Receiver

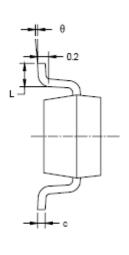
Oscillator

A oscillator using GM8743 is shown in Figure 7. Resistors R_{G1} and R_{G2} set the bias point at the comparator's inverting input. The period of oscillator is set by the time constant of R_{C} and C_{IN} . The maximum frequency is limited by the large signal propagation delay of the comparator. GM8743 is low propagation delay guarantees the high frequency oscillation.

If $R_{\text{G1}}\text{=}R_{\text{G2}}\text{=}~R_{\text{F}},$ then the frequency of the oscillator is:

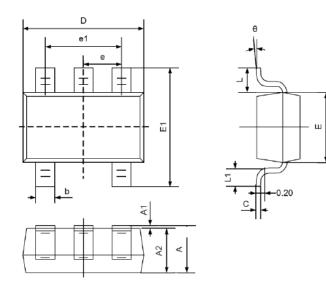
$$\mathbf{f}_{\text{OSC}} = \frac{1}{2 \times \ln 2 \times R_{\text{C}} \times C_{\text{IN}}}$$


Figure 7. Oscillator

Package Information

SOT23-5



Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950 BSC		0.037 BSC	
e1	1.900 BSC		0.075 BSC	
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SC70-5

	Dimensions		Dimensions		
Symbol	In Millimeters		In Inches		
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650TYP		0.026TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	