

Linko Semiconductor Co., Ltd. 南京凌鸥创芯电子有限公司

LKS32MC303EM6S8C

32bit Compact MCU for Motor Control

Features

- 48MHz 32-bit Cortex-M0 core, hardware division coprocessor
- \circ low-power sleep mode, MCU sleep power consumption is 30uA
- -40-105°C industrial-grade operating temperature range
- Super antistatic and anti-group pulse capability

Storage

- Three specifications including 16kB flash/16kB flash+16kB ROM/32kB flash, with a flash anti-stealing feature
- o 4kB RAM

Timer

- Built-in 4MHz high-precision RC timer, with a full temperature range accuracy of ±1%
- o Built-in 64kHz low-speed timer for use in low-power mode
- o Internal PLL providing up to a 48MHz timer

Peripherals

- o One UART
- o One SPI
- o One IIC
- o General-purpose 16-/32-bit timer, supporting capture and edge-aligned PWM
- Dedicated PWM module for motor control, supporting 6 PWM outputs, independent dead zone control
- Dedicated interface for Hall signals, supporting speed measurement and debounce
- o 4-channel DMA
- Hardware watchdog
- o Supports up to 25 GPIOs

Analog Module

- o Integrated one 12-bit SAR ADC, 1Msps sampling and conversion rate, 11 channels in total
- $\circ\quad$ Integrated 2 OPA, settable for a differential PGA mode

- o Integrated two comparators
- o Integrated 8-bit DAC digital-to-analog converter as an internal comparator input
- Built-in 1.2V voltage reference with an accuracy of 0.5%
- Built-in 1 low-power LDO and power monitoring circuit
- o Integrated high-precision, low-temperature drift high-frequency RC timer

Key Strengths

- ♦ The internal integration of 2 high-speed operational amplifiers can meet the different requirements of single-resistor/dual-resistance current sampling topology;
- ♦ The input port of the operational amplifier integrates a voltage clamp protection circuit, and only two external current-limiting resistors are needed to achieve direct current sampling of the MOSFET internal resistance;
- ♦ ADC module variable gain technology can work with high-speed operational amplifiers to handle a wider dynamic range of current and take into account the sampling accuracy of small current and large current;
- ♦ Integrated two-way comparator;
- ♦ Strong ESD and anti-interference ability, stable and reliable;
- ♦ supply to ensure the versatility of system power supply.
- ♦ Supports IEC/UL60730 functional safety certification

Application Scenarios

Applicable to control systems such as BLDC/ Sensorless BLDC/ FOC/Sensorless FOC and stepping motors, permanent magnet synchronous motors, asynchronous motors, digital power source etc.

1 Overview

1.1 Function Description

The LKS32MC303EM6S8C is 32-bit core compact MCU intended for motor control applic ations that integrates all the modules required for common motor control systems. that integrate three pairs of P-N MOSFET driver modules and can drive 3 pairs of P-N MOSFETs directly. Some models have integrated PN-MOS.

Performance

- ➤ 48MHz 32-bit Cortex-M0 core
- Low-power sleep mode
- ➤ Integrated three-phase full-bridge bootstrapping gate drive modules
- Industrial-grade operating temperature range
- Super antistatic and anti-group pulse capability

Memory

- ➤ 32 kB Flash with encryption, a 128-bit chip unique identifier
- > 4kB RAM

Operating Range

➤ Operating temperature: -40~105°C

• Timer

- ➤ Built-in 4MHz high-precision RC timer, with an accuracy within ±1% in a range of -40~105°C
- ➤ Built-in 64kHz low-speed timer for use in low-power mode
- ➤ Internal PLL providing up to a 48MHz timer

Peripheral Module

- One UART
- One SPI for master-slave mode
- > One IIC for master-slave mode
- One general-purpose 16-bit timer, supporting capture and edge-aligned PWM functions
- ➤ One general-purpose 32-bit timer, supporting capture and edge-aligned PWM functions;
- Dedicated PWM module for motor control, supporting 8 PWM outputs, independent dead zone control
- > Dedicated interface for Hall signals, supporting speed measurement and debounce functions
- Hardware watchdog
- ➤ 25 GPIOs. Eight GPIOs can be used as wake-up sources for the system. 17 GPIOs can be used as external interrupt source inputs

Analog Module

- ➤ Integrated one 12-bit SAR ADC, 1.2Msps sampling and conversion rate, 11 channels in total
- ➤ Integrated a 2-channel operational amplifier, settable for a differential PGA mode
- ➤ Integrated two comparators
- ➤ Integrated 8-bit DAC digital-to-analog converter
- ➤ Built-in ±2°C temperature sensor
- ➤ Built-in 1.2V voltage reference with an accuracy of 0.5%
- > Built-in 1 low-power LDO and power monitoring circuit
- ➤ Integrated high-precision, low-temperature drift high-frequency RC timer

Packaging:

Model	Package Type				
LKS32MC303EM6S8C	SSOP24				

1.2 Key Strengths

- ➤ High reliability, high integration, small volume of final product, saving BOM costs.
- ➤ Internally integrated 2-channel high-speed operational amplifier and two comparators to meet the different requirements of single-resistor/dual-resistor current sampling topologies;
- ➤ Internal high-speed operational amplifier integrating high-voltage protection circuits, allowing the high-level common-mode signal to be directly input into the chip, and realizing the direct current sampling mode of MOSFET resistance with the simplest circuit topology;
- ➤ The application of patented technology enables the ADC and high-speed operational amplifier to match best, which can handle a wider current dynamic range, while taking into account the sampling accuracy of high-speed small current and low-speed large current;
- > The overall control circuit is simple and efficient, with stronger anti-interference ability, more stable and reliable;
- ➤ Integrated three-phase full-bridge bootstrapping gate drive modules;

Applicable to control systems such as inductive BLDC/non-inductive BLDC/inductive FOC/ non-inductive FOC and stepping motors, permanent magnet synchronous motors, asynchronous motors, etc.;

1.3 System Resources

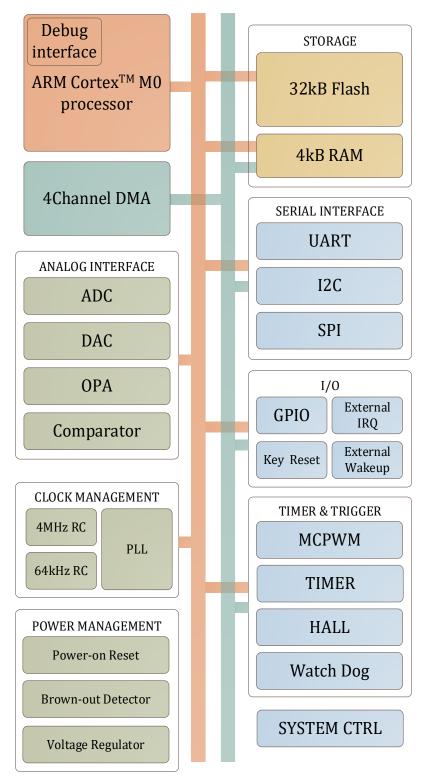


Figure 1-1 LKS32MC303EM6S8C System Block Diagram

1.4 FOC System

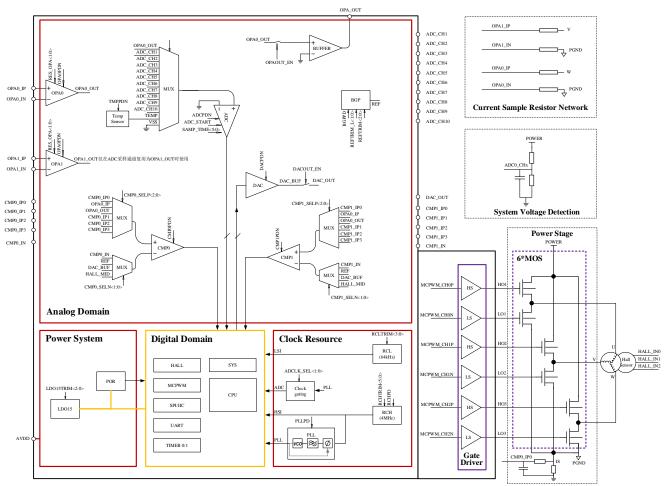


Figure 1-2 Simplified Schematic Diagram of the LKS32MC303EM6S8C Vector Sinusoidal Control System

2 Pin Assignment

2.1 Pin Assignment Diagram

2.1.1 Special Notes

PU is short for pull-up. The PU pin in the following pin diagrams is designed with an internal pull-up resistor to the AVDD.

The RSTN pin is equipped with an internal $100k\Omega$ pull-up resistor that is fixed to turn on the pull-up, which can be turned off when the RSTN function is switched to the GPIO function

The SWDIO/SWCLK comes with an internal $10k\Omega$ pull-up resistor that is fixed to turn on the pull-up, which can be turned off when the SWD function is switched to the GPIO function

The remaining PU pins have an internal $10k\Omega$ pull-up resistor that can be turned on or off by software control.

EXTI is external interrupt or GPIO interrupt input pin.

WK is short for wake-up, is external wake-up source.

UARTx_TX(RX): UART supports an interchange between the TX and RX. When the second function of GPIO is selected as UART and GPIO_PIE i.e. input is enabled, it can be used as UART_RX; When GPIO_POE is enabled, it can be used as UART_TX. Generally, the same GPIO does not enable input and output at the same time, otherwise the input PDI will receive the data sent by the PDO.

SPI_DI(DO): The DI and DO of SPI can be interchanged. When the second function of GPIO is SPI, and GPIO_PIE i.e. input is enabled, it can be used as SPI_DI; when GPIO_POE i.e. output is enabled, it can be used as SPI_DO. Generally, the same GPIO does not enable input and output at the same time, otherwise the input PDI will receive the data sent by the PDO.

2.1.2 LKS32MC303EM6S8C

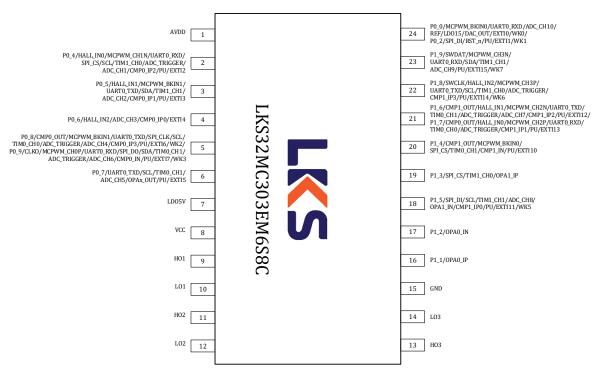


Figure 2-11 LKS32MC303EM6S8C Pin Assignment Diagram

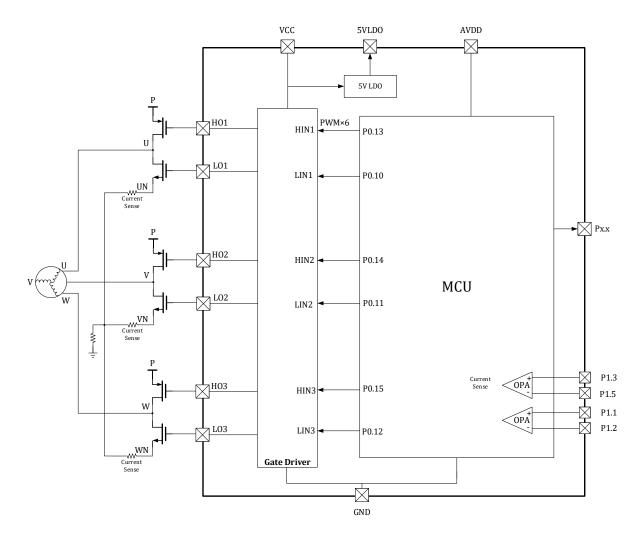


Figure 3-12 Schematic diagram of the LKS32MC303EM6S8C gate driver connection

Table 2-1 LKS32MC303EM6S8C Pin Description

		1					
		MCU low voltage power supply, should be 2.5-5.5V. In applications with good heat dissipa-					
1	AVDD	tion conditions, it can be directly connected to the 5V LDO pin of the chip. Connect this pin					
1	AVDD	to an external 5V power supply if you are considering reducing the system power con-					
		sumption using a 5V power supply generated by an external DCDC or charge pump.					
	P0_4	P0.4					
	HALL_IN0	Hall interface input 0					
	MCPWM_CH1N	PWM channel 1 low-side					
	UARTO_RXD	UART0 receive(transmit)					
	SPI_CS	SPI chip select					
2	SCL	I2C clock					
	TIM1_CH0	Timer1 channel0					
	ADC_TRIGGER	ADC trigger for debug					
	ADC_CH1	ADC channel 1					
	CMP0_IP2	Comparator0 positive input2					
	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software					
	EXTI2	External GPIO interrupt input signal 2					

P0_5 P0.5 HALL_IN1 Hall interface input 1 MCPWM_BKIN1 PWM break signal 1 UARTO_TXD UARTO transmit(receive) SDA I2C data TIM1_CH1 Timer1 channel1 ADC_CH2 ADC channel 2 CMP0_IP1 Comparator0 positive input1 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI3 External GPIO interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPIO interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UARTO_TXD UARTO transmit(receive) SPI_CLK SPI_Clock SCL I2C_clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
MCPWM_BKIN1 PWM break signal 1 UARTO_TXD UART0 transmit(receive) SDA 12C data TIM1_CH1 Timer1 channel 1 ADC_CH2 ADC channel 2 CMP0_IP1 Comparator0 positive input1 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT13 External GPIO interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXT14 External GPIO interrupt input signal 4 P0_8 P0_8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL 12C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator 0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT16 External GPIO interrupt input signal 6	
UARTO_TXD UARTO transmit(receive) SDA I2C data TIM1_CH1 Timer1 channel1 ADC_CH2 ADC channel 2 CMP0_IP1 Comparator0 positive input1 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI3 External GPI0 interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPI0 interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UARTO_TXD UARTO transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator 0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPI0 interrupt input signal 6	
SDA I2C data	
TIM1_CH1 Timer1 channel1 ADC_CH2 ADC channel 2 CMP0_IP1 Comparator0 positive input1 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI3 External GPI0 interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPI0 interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL 12C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPI0 interrupt input signal 6	
ADC_CH2 ADC channel 2 CMP0_IP1 Comparator0 positive input1 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI3 External GPI0 interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPI0 interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator 0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPI0 interrupt input signal 6	
CMP0_IP1 Comparator0 positive input1 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI3 External GPI0 interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPI0 interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPI0 interrupt input signal 6	
PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT13 External GPI0 interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXT14 External GPI0 interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT16 External GPI0 interrupt input signal 6	
EXTI3 External GPIO interrupt input signal 3 P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPIO interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI_clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator 0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
P0_6 P0.6 HALL_IN2 Hall interface input 2 4 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPI0 interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI_clock SCL I2C_clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPI0 interrupt input signal 6	
HALL_IN2 Hall interface input 2 ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXTI4 External GPIO interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI_clock SCL I2C_clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
ADC_CH3 ADC channel 3 CMP0_IP0 Comparator0 positive input0 EXT14 External GPIO interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT16 External GPIO interrupt input signal 6	
CMP0_IP0	
EXTI4 External GPIO interrupt input signal 4 P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CHO Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
P0_8 P0.8 CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI_clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT16 External GPI0 interrupt input signal 6	
CMP0_OUT Comparator 0 output MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
MCPWM_BKIN1 PWM break signal 1 UART0_TXD UART0 transmit(receive) SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXT16 External GPIO interrupt input signal 6	
UARTO_TXD UARTO transmit(receive) SPI_CLK SPI clock SCL I2C clock TIMO_CHO Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMPO_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
SPI_CLK SPI clock SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
SCL I2C clock TIM0_CH0 Timer0 channel0 ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
TIMO_CHO ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMPO_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
ADC_TRIGGER ADC trigger for debug ADC_CH4 ADC channel 4 CMPO_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
ADC_CH4 ADC channel 4 CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
CMP0_IP3 Comparator0 positive input3 PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
PU Built-in 10kΩ Pull-up resistor which could be turn-off by software EXTI6 External GPIO interrupt input signal 6	
EXTI6 External GPIO interrupt input signal 6	
WK2 External wake-up signal 2	
P0_9 P0.9	
CLKO Clock output for debug	
MCPWM_CH0P PWM channel 0 high-side	
UARTO_RXD UARTO receive(transmit)	
SPI_DO SPI data output(input)	
SDA I2C data	
TIM0_CH1 Timer0 channel1	
ADC_TRIGGER ADC trigger for debug	
ADC_CH6 ADC channel 6	
CMP0_IN Comparator0 negative input	
PU Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software	
EXTI7 External GPIO interrupt input signal 7	
WK3 External wake-up signal 3	
P0_7 P0.7	
6 UARTO_TXD UARTO transmit(receive)	

	SCL	I2C clock
	TIM0_CH1	Timer0 channel1
	ADC_CH5	ADC channel 5
	OPAx_OUT	OPA output
	PU	Built-in 10kΩ Pull-up resistor which could be turn-off by software
	EXTI5	External GPIO interrupt input signal 5
		5V LDO output. It is recommended to connect an external 1uF decoupling capacitor, as
7	LD05V	close as possible to the LDO5V pin.
		This pin is power supply. If VCC is higher than 20V, the AVDD pin is powered by the LDO5V
		output of the chip. It is recommended to add a shunt resistance of 1k-2k ohm between the
8	VCC	VCC and AVDD. Refer to Chapter 7 for specific resistance calculations.
		There must be a decoupling capacitor higher than or equal to 1uF between the VCC pin and
		the ground.
0	1101	Phase A high-side output, worked by MCU P0.13; the polarity of HO1 is the same as that of
9	H01	P0.13, i.e. when P0.13 = 1, H01 = 1. You need to set MCPWM_SWAP = 1.
10	1.01	Phase A low-side output, worked by MCU P0.10; the polarity of LO1 is the same as that of
10	L01	P0.10, i.e. when P0.10 = 1, LO1 = 1. You need to set MCPWM_SWAP = 1.
11	1102	Phase B high-side output, worked by MCU P0.14; the polarity of HO2 is the same as that of
11	H02	P0.14, i.e. when P0.14 = 1, H02 = 1. You need to set MCPWM_SWAP = 1.
12	LO2	Phase B low-side output, worked by MCU P0.11; the polarity of LO2 is the same as that of
12		P0.11, i.e. when P0.11 = 1, LO2 = 1. You need to set MCPWM_SWAP = 1.
13	НО3	Phase C high-side output, worked by MCU P0.15; the polarity of HO3 is the same as that of
13		P0.15, i.e. when P0.15 = 1, H03 = 1. You need to set MCPWM_SWAP = 1.
14	L03	Phase C low-side output, worked by MCU P0.12; the polarity of LO3 is the same as that of
17	LO3	P0.12, i.e. when P0.12 = 1, LO3 = 1. You need to set MCPWM_SWAP = 1.
15	GND	Ground
16	P1_1	P1.1
10	OPA0_IP	OPA0 positive input
17	P1_2	P1.2
17	OPA0_IN	OPA0 negative input
	P1_5	P1.5
	SPI_DI	SPI data input(output)
	SCL	I2C clock
	TIM1_CH1	Timer1 channel1
18	ADC_CH8	ADC channel 8
10	OPA1_IN	OPA1 negative input
	CMP1_IP0	Comparator1 positive input0
	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software
	EXTI11	External GPIO interrupt input signal 11
	WK5	External wake-up signal 5
	P1_3	P1.3
19	SPI_CS	SPI chip select
	TIM1_CH0	Timer1 channel0

	OPA1_IP	OPA1 positive input					
	P1_4	P1.4					
	CMP1_OUT	Comparator 1 output					
	MCPWM_BKIN0	PWM break signal 0					
	SPI_CS	SPI chip select					
20	TIMO_CH1	Timer0 channel1					
	CMP1_IN	Comparator1 negative input					
	PU	Built-in 10kΩ Pull-up resistor which could be turn-off by software					
	EXTI10	External GPIO interrupt input signal 10					
	P1_6	P1.6					
	CMP1_OUT	Comparator 1 output					
	HALL_IN1	Hall interface input 1					
	MCPWM_CH2N	PWM channel 2 low-side					
•	UART0_TXD	UART0 transmit(receive)					
•	TIM0_CH1	Timer0 channel1					
	ADC_TRIGGER	ADC trigger for debug					
	ADC_CH7	ADC channel 7					
•	CMP1_IP2	Comparator1 positive input2					
•	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software					
21	EXTI12	External GPIO interrupt input signal 12					
	P1_7	P1.7					
	CMP0_OUT	Comparator 0 output					
	HALL_IN0	Hall interface input 0					
	MCPWM_CH2P	PWM channel 2 high-side					
	UARTO_RXD	UART0 receive(transmit)					
	TIM0_CH0	Timer0 channel0					
	ADC_TRIGGER	ADC trigger for debug					
	CMP1_IP1	Comparator1 positive input1					
	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software					
	EXTI13	External GPIO interrupt input signal 13					
	P1_8	P1.8					
	SWCLK	SWD Clock					
	HALL_IN2	Hall interface input 2					
	MCPWM_CH3P	PWM channel 3 high-side					
	UARTO_TXD	UART0 transmit(receive)					
22	SCL	I2C clock					
22	TIM1_CH0	Timer1 channel0					
	ADC_TRIGGER	ADC trigger for debug					
	CMP1_IP3	Comparator1 positive input3					
	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software					
	EXTI14	External GPIO interrupt input signal 14					
	WK6	External wake-up signal 6					
23	P1_9	P1.9					

	SWDAT	SWD Data					
	MCPWM_CH3N	PWM channel 3 low-side					
	UARTO_RXD	UART0 receive(transmit)					
	SDA	I2C data					
	TIM1_CH1	Timer1 channel1					
	ADC_CH9	ADC channel 9					
	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software					
	EXTI15	External GPIO interrupt input signal 15					
	WK7	External wake-up signal 7					
	P0_0	P0.0					
	MCPWM_BKIN0	PWM break signal 0					
	UARTO_RXD	UART0 receive(transmit)					
	ADC_CH10	ADC channel 10					
	REF	Reference voltage output for debug					
	LD015	1.5V LDO output					
	DAC_OUT	DAC output					
	EXTI0	External GPIO interrupt input signal 0					
24	WK0	External wake-up signal 0					
24	P0_2	P0.2					
	SPI_DI	SPI data input(output)					
		P0.2 is used as RSTN by default. A 10nF-100nF capacitor should be connected to the					
	RST_n	ground. It is recommended a 10k-20k pull-up resistor is placed between RSTN and AVDD					
	KS1_II	on PCB. If there is an external pull-up resistor, the capacitance of RSTN should be 100nF.					
		The built-in $10 k\Omega$ pull-up resistor could be turned-off by software.					
	PU	Built-in $10k\Omega$ Pull-up resistor which could be turn-off by software					
	EXTI1	External GPIO interrupt input signal 1					
	WK1	External wake-up signal 1					

2.2 Pin Multiplexing

Table 2-5 LKS32MC303EM6S8C Pin Function Selection

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF0
P0.0			MCPWM_BKIN0	UARTO_R(T)XD						ADC_CH10/REF/LD015/DAC_OUT
P0.1					SPI_CS					OPAO_IP_B
P0.2					SPI_DI(O)					RST_n
P0.3								TIM1_CH0		OPAO_IN_B
P0.4		HALL_IN0	MCPWM_CH1N	UARTO_R(T)XD	SPI_CS	SCL		TIM1_CH0	ADC_TRIGGER	ADC_CH1/CMP0_IP2
P0.5		HALL_IN1	MCPWM_BKIN1	UARTO_T(R)XD				TIM1_CH1		ADC_CH2/CMP0_IP1
P0.6		HALL_IN2								ADC_CH3/CMP0_IP0
P0.7				UARTO_T(R)XD		SCL	TIM0_CH1			ADC_CH5/OPAx_OUT
P0.8	CMP0_OUT		MCPWM_BKIN1	UARTO_T(R)XD	SPI_CLK	SCL	TIM0_CH0		ADC_TRIGGER	ADC_CH4/CMP0_IP3
P0.9	CLKO		MCPWM_CH0P	UARTO_R(T)XD	SPI_DO(I)	SDA	TIM0_CH1		ADC_TRIGGER	ADC_CH6/CMP0_IN
P0.10	CLKO		MCPWM_CH0P				TIM0_CH0	TIM1_CH0		
P0.11			MCPWM_CH0N		SPI_CLK			TIM1_CH1		
P0.12			MCPWM_CH1P		SPI_DO(I)		TIM0_CH1			
P0.13			MCPWM_CH1N		SPI_DI(O)			TIM1_CH1		
P0.14			MCPWM_CH2P				TIM0_CH0			
P0.15			MCPWM_CH2N					TIM1_CH0		

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF0	
P1.1										OPA0_IP	
P1.2										OPA0_IN	
P1.3					SPI_CS			TIM1_CH0		OPA1_IP	
P1.4	CMP1_OUT		MCPWM_BKIN0		SPI_CS		TIM0_CH1			CMP1_IN	
P1.5					SPI_DI(O)	SCL		TIM1_CH1		ADC_CH8/OPA1_IN/CMP1_IP0	
P1.6	CMP1_OUT	HALL_IN1	MCPWM_CH2N	UARTO_T(R)XD			TIM0_CH1		ADC_TRIGGER	ADC_CH7/CMP1_IP2	
P1.7	CMP0_OUT	HALL_IN0	MCPWM_CH2P	UARTO_R(T)XD			TIM0_CH0		ADC_TRIGGER	CMP1_IP1	
P1.8	SWCLK	HALL_IN2	MCPWM_CH3P	UARTO_T(R)XD		SCL		TIM1_CH0	ADC_TRIGGER	CMP1_IP3	
P1.9	SWDAT		MCPWM_CH3N	UARTO_R(T)XD		SDA		TIM1_CH1		ADC_CH9	

3 Package Dimensions

3.1 LKS32MC303EM6S8C

SSOP24L:

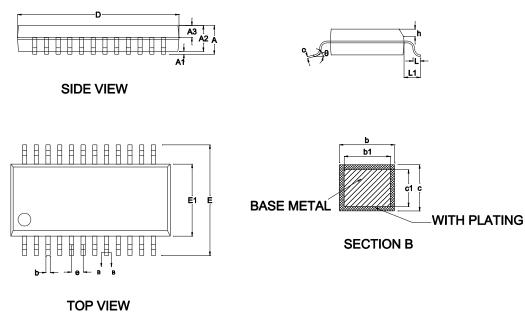


Figure 3-3 LKS32MC303EM6S8C Packaging

Table 3-3 LKS32MC303EM6S8C Package Dimensions

CVMDOI		MILLIMETER						
SYMBOL	MIN	NOM	MAX					
A	-	-	1.75					
A1	0.10	0.15	0.25					
A2	1.30	1.40	1.50					
A3	0.60	0.65	0.70					
b	0.23	-	0.31					
b1	0.22	0.25	0.28					
С	0.20	-	0.24					
c1	0.19	0.20	0.21					
D	8.55	8.65	8.75					
Е	E 5.80 6.00		6.20					
E1	3.80	3.90	4.00					
e	0.635BSC							
h	0.30	-	0.50					
L	0.50	-	0.80					
L1	1.05REF							
θ	0	-	8°					

4 Electrical Characteristics

Table 4-1 LKS32MC303EM6S8C Electrical Limit Parameter

Parameter	Min.	Max.	Unit	Description
MCU Supply Voltage (AVDD)	-0.3	+6.0	V	
Gate Driver Supply Voltage (VCC)	-0.3	+40.0	V	
5V LDO output current		40	mA	
Operating temperature	-40	+105	°C	
Storage temperature	-40	+150	°C	
Junction temperature	-	125	°C	
Pin temperature	-	260	°C	Soldering for 10 sec

Table 4-2 LKS32MC303EM6S8C Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Unit	Description
MCU Supply Voltage (AVDD)	2.5	5	5.5	V	
	2.8	5	5.5	V	REF2VDD=0, ADC uses in-
Analog Operating Voltage (AV-	2.8	5	5.5	V	ternal 2.4V reference
DD _A)	2.4	5	5.5	V	REF2VDD=1, ADC uses
	2.4	5			AVDD as reference
Gate Driver Supply Voltage(VCC)	7.5		32	V	
LDO Supply Voltage(VCCLDO)	5.7		32	V	

OPA could work under 2.5V, but the output range will be limited.

Table 4-3 LKS32MC303EM6S8C ESD parameters

Item		Min.	Max.	Unit
ECD to at (HDM)	MCU	-6000	6000	V
ESD test (HBM)	Gate driver	-2000	2000	V

According to "MIL-STD-883J Method 3015.9", under the environment of 25°C and 55% relative humidity, electrostatic discharge is applied to all IO pins of the tested chip for 3 times, with an interval of 1s each time.

Table 4-4 LKS32MC303EM6S8C Latch-up parameters

Item	Min.	Max.	Unit
Latch-up current (85°C)	-200	200	mA

According to "JEDEC STANDARD NO.78E NOVEMBER 2016", apply an overvoltage of 8V to all power IOs and inject 200mA of current on each signal IO.

Table 4-5 LKS32MC303EM6S8C IO Limit Parameter

Parameter	Description	Minimum	Maximum	Unit
V_{IN}	Input voltage range for GPIO signals	-0.3	6.0	V
I_{INJ_PAD}	Maximum injection current for single GPIOs	-11.2	11.2	mA

I _{INJ_SUM}	Maximum injection current for all GPIOs	-50	50	mA	
----------------------	---	-----	----	----	--

Table 4-6 LKS32MC303EM6S8C IO DC Parameter

Parameter	Description	AVDD	Conditions	Min.	Max.	Unit
V	High input level of digital IO	5V		3.04		V
V_{IH}	righ input level of digital to	3.3V	-	2.05		V
V_{IL}	Low input lovel of digital IO	5V			0.3*AVDD	V
VIL	Low input level of digital IO	3.3V	-		0.8	V
V_{HYS}	Schmidt hysteresis range	5V		0.1*AVDD		V
V HYS	Schilliot hysteresis range	3.3V	-	U.T AVDD		V
Ţ	Digital IO current consumption	5V			1	uA
I_{IH}	when input is high	3.3V	-		1	uA
T	Digital IO current consumption	5V		1		uA
I_{IL}	when input is low	3.3V	-	-1		uA
V _{OH}	High output level of digital IO		Current =	AVDD-0.8		V
V OH	riigii output level of digital lo		11.2mA	AVDD-0.0		V
$V_{ m OL}$	Low output level of digital IO		Current =		0.5	v
V OL	Low output level of digital fo		11.2mA		0.5	,
R_{pup}	Pull-up resistor*			8	12	kΩ
R _{io-ana}	Connection resistance between IO			100	200	Ω
- чо-апа	and internal analog circuit			100	200	32
C_{IN}	Digital IO Input-capacitance	5V	_		10	рF
GIN	Digital 10 iliput capacitalice	3.3V			10	P.

^{*} Only part of IOs have built-in pull-up resistors. Please refer to the pin description section for details

Table 4-7 LKS32MC303EM6S8C Current Consumption IDDQ

Clock	Operating mode	3.3V	5V	Unit
48MHz	CPU, flash, SRAM, MCPWM, Timer, and all analog modules are active, IOs stay idle	8.570	8.650	mA
4MHz	CPU, flash, SRAM, MCPWM, Timer, and all analog mod-	3.012	3.165	mA
64kHz	ules except PLL are active, IOs stay idle	2.445	2.618	mA
-	Deep Sleep Mode, PLL and BGP are turned off, only 64kHz LRC is running	27	30	uA
-	All analog modules	2.4	2.55	mA

Unless otherwise specified, the above tests are all measured at room temperature of 25°. Due to the deviation of the device model in the manufacturing process, the current consumption of different chips will have individual differences.

5 Analog Characteristics

Table 5-1 LKS32MC303EM6S8C Analog Characteristics

Parameter	Min.	Тур.	Max.	Unit	Description			
ADC								
	2.8	5	5.5	V	REF2VDD=0, ADC uses internal 2.4V reference			
Supply voltage	2.4	5	5.5	V	REF2VDD=1, ADC uses AVDD as reference			
Output bitrate		1.2		MHz	f _{adc} /20			
Differential input signal	-2.352		+2.352	V	REF2VDD=0, Gain=1; REF=2.4V			
Differential input signal range	-3.528		+3.528	V	REF2VDD=0, Gain=2/3; REF=3.6V			
	-0.3		+2.352	V	REF2VDD=0, Gain=1; REF=2.4V			
	-0.3		+3.528	V	REF2VDD=0, Gain=2/3; REF=3.6V			
Single-ended input signal range	-0.3		AVDD*0.9	V	REF2VDD=1, Gain=1; REF=AVDD			
	-0.3		AVDD+0.3	V	REF2VDD=1, Gain=2/3, REF=AVDD, limited by IO diode clamp			

The differential signal is usually the signal output from the OPA inside the chip to the ADC; The single-ended signal is usually the sampled signal from the external input through IO. Whether using an internal/external reference, the signal amplitude should not exceed $\pm 98\%$ of the ADC signal range. In particular, when using an external reference, it is recommended that the sampled signal not exceed 90% of the scale.

DC offset		5	10	mV	Correctable
Effective number of bits (ENOB)	10.5	11		bit	
INL		2	3	LSB	
DNL		1	2	LSB	
SNR	63	66		dB	
Input resistance	500k			Ohm	
Input capacitance		10p		F	
		Referen	ce voltage (l	REF)	
Supply voltage	2.5	5	5.5	V	
Output deviation	-9		9	mV	
Power supply rejection ratio		70		dB	
Temperature coefficient		20		ppm /°C	

Parameter	Min.	Тур.	Max.	Unit	Description
Output voltage		2.4		V	
			DAC	l.	
Supply voltage	2.5	5	5.5	V	
Load resistance	50k			Ohm	
Load capacitance			50p	F	
Output voltage range	0.05		3.0	V	
Switching speed			1M	Hz	
DNL		1	2	LSB	
INL		2	4	LSB	
OFFSET		5	10	mV	
SNR	57	60	66	dB	
	0	peration	al amplifier	(OPA)	
Supply voltage	3.1	5	5.5	V	
Bandwidth		10M	20M	Hz	
Load resistance	20k			Ohm	
Load capacitance			5p	F	
Common-mode input	0		ALVED	.,,	
range	0		AVDD	V	
Output signal range	0.1		AVDD-0.1	V	Minimum load resistance
OFFSET		10	15	mV	This OFFSET is the equivalent differential input deviation obtained when the OPA differential input is short-circuited and OPA OUT is measured from 0 level. The output deviation of OPA is the OPA magnification x OFFSET
Common Mode Voltage (Vcm)	1.65		2.15	V	Measurement condition: normal temperature. Operational amplifier swing=2 × min(AVDD-Vcm, Vcm). It is recommended that the application using OPA single output should be powered on to measure Vcm and make software subtraction correction. For more analysis, please refer to the official website application note "ANN009 - Differences between Operational Amplifier Differential and Single Operating Mode".

Parameter	Min.	Тур.	Max.	Unit	Description
Common-mode rejection ratio (CMRR)		80		dB	
Power supply rejection ratio (PSRR)		80		dB	
Load current			500	uA	
Slew rate		5		V/us	
Phase margin		60		0	
		Comp	arator (CMI	P)	
Supply voltage	2.5	5	5.5	V	
Input signal range	0		AVDD	V	
	1	-14		mV	0mV return difference, CMP
		-14			Output Low to High Inversion
	-14			0mV return difference, CMP	
OFFSET		11			Output High to Low Inversion
OTTOLI		-14			20mV return difference, CMP
					Output Low to High Inversion
		+14			20mV return difference, CMP
					Output High to Low Inversion
Transmission delay		0.15		uS	Default power consumption
Transmission delay		0.6		uS	Low power consumption
Hysteresis		20		mV	HYS='0'
nysteresis		0		mV	HYS='1'
			GPIO		
High Level Inversion Threshold	2.61		3.04	V	

Description of the analog register table:

The addresses 0x40000010-0x40000028 are the calibration registers for each module, which are provided with calibration values before being shipped from the factory. In general, you are not recommended to configure or change these values. To fine tune the analog parameters, you need to read the original calibration value.

The registers in the blank section must all be configured to 0 (reset to 0 when the chip is powered up). Other registers are configured as required by application scenarios.

6 Power Management System

The power management system consists of the LDO15 module, power detection module (PVD) and power-on/power-down reset module (POR).

6.1 Power Supply System for the AVDD Pin

For LKS32MC303EM6S8C, AVDD is the low-voltage power supply for the chip, with a power supply range of 2.5-5.5V. In applications where thermal conditions are good, it can be connected directly to the LDO5V pin of the chip. If an external DCDC or the 5V supply provided by a charge pump reduces system power consumption, this pin will be connected to an external 5V supply.

AVDD supplies power to the LD015 module that powers all internal digital circuits and PLL modules.

LDO15 is automatically enabled after power-up and requires no software configuration, but the output voltage of LDO15 needs to be fine-tuned by software.

The output voltage of LDO15 can be adjusted by setting the register LDO15TRIM<2:0>. Please refer to the description of the analog register table for specific register values. LDO15 is calibrated before the chip is shipped from the factory, and generally, you do not need to configure these additional registers. To fine tune the output voltage of LDO, you need to read the original configuration value and fill in the configuration value corresponding to the fine-tuning amount.

The POR module monitors the voltage of LDO15 and provides a reset signal to the digital circuit when the LDO15 voltage falls below 1.1V (for example, at the beginning of power-up or during power-down), to avoid the abnormal operation of the digital circuit.

6.2 Power Supply System of the VCC Pin

For model LKS32MC303EM6S8C that is integrated with a 3P3N driver module, the VCC pin powers the on-chip driver module.

6.3 Power Supply System of the VCCLDO Pin

The VCCLDO pin powers the on-chip 5V LDO module. If 5V AVDD is used for external power supply, the power supply current is limited to below 30mA.

7 Timer System

The timer system consists of an internal 64kHz RC timer, an internal 4MHz RC timer, and a PLL circuit.

The 64k RC timer is used as an MCU slow timer, a filtration module or an MCU timer in a low power state. The 4MHz RC timer is used as the MCU master timer and, when used in conjunction with the PLL, it can provide a timer up to 48MHz.

The 64k and 4M RC timers are factory calibrated, the 4M RC timer has a customized calibration register to further calibrate the accuracy to $\pm 0.5\%$. In the temperature range of -40-105°C, the accuracy of the 64k RC timer is $\pm 50\%$ and that of the 4M RC timer is $\pm 1\%$.

The 64k RC timer frequency can be set with the register RCLTRIM <3:0>, and the 4M RC timer frequency can be set with the register RCHTRIM <5:0>, which corresponds to the values described in the analog register table.

The timer is calibrated before the chip is shipped from the factory, and generally, you do not need to configure these additional registers. To fine tune the frequency, you need to read the original configuration value and fill in the configuration value corresponding to the fine-tuning amount.

The 4M RC timer is turned on by setting RCHPD = '0' (on by default, and off when set to '1'). The RC timer requires the Bandgap voltage reference module to provide reference voltage and current. Therefore, it is necessary to enable the BGP module before turning on the RC timer. The 4M RC timer is turned on and the BGP module is enabled by default in case of chip power-up. The 64k RC timer is always turned on and cannot be turned off.

The PLL multiplies the frequency of the 4M RC timer, to ensure a higher-speed timer for modules such as MCU, ADC, etc. The highest timer of the MCU and PWM modules is 48MHz, while the typical timer of the ADC module is 24MHz.

The PLL module is enabled by setting PLLPDN = '1' (off by default, and on when set to 1). The BGP (Bandgap) module needs to be enabled before the PLL module. After enabling the PLL module, it will take a stabilization time of 6us to output a stable timer. By default when the chip is powered on, the RCH timer is turned on and the BGP module is enabled; however, the PLL module is disabled, and needs to be enabled with software.

8 Reference Voltage Source

The reference voltage source provides reference voltage and current for the ADC, DAC, RC timer, PLL, temperature sensor, operational amplifier, comparator, and FLASH. The reference voltage source of BGP needs to be enabled before using any of these modules.

The BGP module is enabled by default when the chip is powered on. The reference voltage source is enabled by setting BGPPD = '0', and BGP needs about 2us to stabilize from being enabled to disabled. The output voltage of BGP is about 1.2V with an accuracy of $\pm 0.8\%$

9 ADC Module

A SAR ADC is integrated into the chip. The ADC module is disabled by default when the chip is powered on. Before the ADC is enabled, it is necessary to enable the BGP and PLL modules, turn on the 4M RC timer, and select the ADC operating frequency. The ADC operating timer is 24 M by default.

The ADC requires at least 17 ADC timer cycles to complete a conversion, of which 12 are conversion cycles and 5 are sampling ones. The sampling period can be set by configuring the SAMP_TIME register in SYS_AFE_REG2. It is required to set not less than 3 sampling periods, that is, more than 8 ADC clocks.

The recommended value is 3, which corresponds to an output data rate of 1.2MHz for the ADC.

The ADC operates in the following modes: single single-channel trigger, continuous single-channel trigger, single 1-16 channel scanning, and continuous 1-16 channel scanning. Each ADC has 16 independent sets of registers for each channel.

The ADC trigger event may come from external timer signals T0, T1, T2, T3 for a preset number of times, or may be triggered by software.

The ADC has two gain modes that are set by SYS_AFE_REGO.GA_AD, corresponding to 1 x time and 2/3 x times gains. The 1 x time gain corresponds to an input signal of ± 2.4 V, and the 2/3 x times gain corresponds to an input signal amplitude of ± 3.6 V. In measuring the output signal of an operational amplifier, the specific ADC gain is selected based on the maximum possible output signal of the operational amplifier.

23

10 Operational Amplifier

Two input and output rail-to-rail operational amplifiers, with a built-in feedback resistor R2/R1. External pins should be connected in series with a resistor R0. The value of resistance of the feedback resistors R2:R1 can be set via register RES_OPA <1:0> for different magnification. The values corresponding to the specific registers are described in the analog register table.

The final magnification is R2/(R1+R0), where R0 is the value of resistance of the external resistor.

A capacitor greater than or equal to 15pF is required to be connected across the two input pins of the op amp.

For applications of direct sampling of MOS transistor resistor, it is recommended to connect an external resistor of $>20 \mathrm{k}\Omega$ to reduce the current flowing into the chip pins when the MOS transistor is turned off.

For small resistor sampling applications, external resistors of 100Ω are recommended.

The amplifier can select the output signal in the amplifier by setting OPAOUT_EN to send it to P0.7 IO port through BUFFER for measurement and application. Because BUFFER exists, it is also possible to send one output signal of the op amp under its normal operation mode.

In the default state when the chip is powered up, the amplifier module is turned off. The amplifier can be enabled by setting OPAPDN = '1' and the BGP module should be enabled before enabling the amplifier.

The clamping diode is built into the positive and negative input terminals of the op amp, and the motor phase line is directly connected to the input terminal through a matching resistor, thus simplifying the external circuit of MOSFET current sampling.

11 Comparator

There is a built-in 2 comparators, of which the comparison speed, the hysteresis voltage, and the signal source are programmable.

The comparator has a comparison delay of 0.15us and can also be set to less than 30ns via register CMP_FT. The hysteresis voltage is set to 20mV/0mV via CMP_HYS.

The signal source for both the positive and the negative inputs of the comparator can be programmed through the registers CMP_SELP<2:0> and CMP_SELN<1:0> as described in the register simulation instructions.

The comparator module is turned off by default when the chip is powered on. The comparator can be enabled by setting CMPxPDN ='1' and the BGP module should be enabled before enabling the comparator.

12 Temperature Sensor

A temperature sensor with an accuracy of $\pm 2^{\circ}$ C is built into the chip. The chip will undergo temperature correction before delivery, and the correction value is saved in the flash info area.

The temperature sensor module is turned off by default when the chip is powered on. The BGP module should be enabled before enabling the temperature sensor.

The temperature sensor is turned on by setting TMPPDN = '1'. It takes approximately 2us to turn on until stable, so it needs to be turned on 2us before the ADC measures the sensor.

13 DAC Module

The chip has A built-in 8-bit DAC, and the output signal range of the A version is 3V, the output signal range of the B version is 3V/4.8V, and the output signal range of the C version is 1.2V/3V/4.8V.

For the C version of the chip, you need to set SYS AFE REG2.BIT15=1 to use the DAC's 1.2V range.

The 8bit DAC can be configured with register DACOUT EN=1 to send the DAC output to the IO port P0.0, which can drive a load resistance >50k Ω and a load capacitor of 50pF.

Since chips are not equipped with DAC hardware correction registers, in order to ensure DAC output accuracy, users need to read DACAMC/DACDC correction values of corresponding ranges from NVR according to different DAC ranges for software correction.

The digital quantity corresponding to the expected output value of the DAC is D_{DAC} , the gain correction is DAC_{AMC} , and the DC bias correction is DAC_{DC} . The DAC_{AMC} is a 10bit unsigned number, the $DAC_{AMC}[9]$ is an integer part, and the $DAC_{AMC}[8:0]$ is a decimal part, which can represent a fixed-point number near 1, and 0x200 corresponds to 1. The Saturation values are as follows:

 $SYS_AFE_DAC = Saturation(D_{DAC}*DAC_{AMC}-DAC_{DC})$

See the official library function for details.

The maximum output bit rate of the DAC is 1MHz.

When the chip is powered on, the DAC module is disabled by default. The DAC can be enabled by setting DACPDN =1. Before enabling the DAC module, enable the BGP module.

14 Processor

- > 32-bit Cortex-M0 +DIV/SQRT coprocessor
- > 2-wire SWD debugging pin
- > Maximum operating frequency: 48MHz

15 Storage Resources

15.1 Flash

- ➤ The built-in flash includes a main storage area of 16/32kB and an information storage area of 1kB NVR
- Repeatable erasing and write-in of not less than 20,000 times
- > Data is maintained for up to 100 years at a room temperature of 25°C
- ➤ The single-byte programming time is up to 7.5us, and the Sector erasing time is up to 5ms
- ➤ The Sector is 512 bytes, and can be erased or write-in by Sector. It supports runtime programming, and simultaneous erasing of and write-in to one Sector can be made while reading and accessing another Sector
- Flash data anti-theft (the last word must be written to any value other than 0xFFFFFFFF)

15.2 Execute-only Zone

Some 16kB flash capacity models are equipped with an execute-only zone of 16kB. After programming encryption, such models have the execution permission but do not have the read or write permission. Reprogramming with repeated erasure is supported.

15.3 **SRAM**

Built-in 4KB SRAM

16 MCPWM Dedicated to Motor Drive

- ➤ The maximum operating timer frequency of MCPWM is 48MHz
- > Supporting up to 4 channels complementary PWM outputs with adjustable phases
- > The dead zone width of each channel can be configured independently
- Edge-aligned PWM mode supported
- Software control IO mode supported
- > IO polarity control supported
- ➤ Internal short-circuit protection: avoiding short circuits caused by incorrect configuration
- External short-circuit protection: fast shutdown based on monitoring of external signals
- ADC sampling interrupt generates internally
- Use load register pre-memory timer to configure parameters
- ➤ The loading time and period of the loading register can be configured

17 Timer

- > Two general-purpose timers, one 16bit timer and one 32bit timer
- ➤ Capturing mode is supported for measuring external signal width
- ➤ Comparison mode is supported for generating edge-aligned PWM/timing interrupts

18 Hall Sensor Interface

- Built-in maximum 1024 filtering
- > Three Hall signal input
- > 24-bit counter with overflow and capture interrupts

19 General Purpose Peripherals

- > One UART works in the full-duplex operation mode, supporting 8/9 bits of data, 1/2 stop bit(s), odd/even/no parity mode, with 1 byte send cache, 1 byte receive cache, with Multi-drop Slave/Master mode, and the baud rate ranging from 300-115200
- > One SPI for master-slave mode
- One IIC for master-slave mode
- ➤ Hardware watchdog, driven by RC timer, being independent of system high speed timer, write-in protection

20 Gate Drive Module

20.1 Module Parameters

In use, the LDO should not be pulled up before VCC is powered on, otherwise the LDO cannot be started after VCC is powered on.

20.1.1 Gate Driver Module

Table 20-2 Gate Driver Module parameter

	Table 20-2 Gate Driver Module parameter									
Symbol	Parameter Condition		Mini-	Typical	Maxi-	Uni				
oy moor			mum	Typical	mum	t				
	Static Parameter									
VCC	VCC voltage		7.5		32	V				
VCC_ON	VCC undervoltage recov-		5.8	6.5	7.4	V				
VCC_ON	ery voltage		3.0	0.5	7.4	V				
VCC_UVLO	VCC undervoltage		5.4	6	6.8	v				
VCC_UVLO	threshold voltage		3.4	U	0.0	V				
VCC_HYS	Undervoltage voltage		0.3	0.5	0.8	V				
VCC_1113	backlash		0.3	0.5	0.0	v				
	HOx (x = 1-3) output									
	break-over voltage (since			VCC-10	VCC-8.5					
VHO	HO drives PMOS, low lev-		VCC-11.5			V				
	el corresponds to									
	break-over)									
V_{LO}	LOx (x=1-3) output		8.5	10	11.5	V				
V LO	break-over voltage		0.5	10	11.5	'				
$I_{\mathrm{HO}+}$	HOx (x=1-3) input sink	HOx=VCC	_	35	_	mA				
1HU+	current	110x-766		33		11171				
I _{HO-}	HOx (x=1-3) output pull	HOx=VCC-8V	_	300	_	mA				
1110-	current	HOX-VCC OV		300		11171				
I_{LO+}	LOx (x=1-3) output pull	LOx=0V	_	60	_	mA				
TLU+	current	LOX-0 V		00		11171				
I _{LO} -	LOx (x=1-3) input sink	LOx=8V	_	300	_	mA				
ILU-	current	LOX-0 V		300		11171				
T_{SD}	TSD temperature		-	150	-	°C				
$T_{ m RECOVER}$	TSD recovery tempera-		_	135	_	°C				
1 KECUVEK	ture		-	133	<u>-</u>	,				
Operating	Operating temperature of		-40		105	°C				
temperature	gate drive module		10		100					
Junction	Junction temperature of				150	°C				

temperature	gate drive module								
I_{Ldo}	Power supply capacity			40		mA			
	Dynamic Parameter (CL = 1nF)								
T_{ON}	Break-over transmission delay		-	80	-				
T_{OFF}	Turn-off transmission delay		-	30	-				
TH_{R}	HOx rise time		-	60	-	ns			
TH_{F}	HOx fall time		-	300	-				
TL_{R}	LOx rise time		-	300	-				
TH_{F}	LOx fall time		-	60	-				
DT	Built-in dead time		-	50	-				

Table 21-3 Gate Driver Module 5V LDO Module Parameter

	5V LDO									
Input power	7.5		32	V						
Output voltage	4.75	5	5.25	V	+/-5% accuracy					
Dropout voltage		2		V						
Output current		40		mA						
Ripple rejection		80		dB						
Decoupling capac-		0.33		uF	It is added to the VCCLDO pin. Please refer					
itor input		0.55		ur	to the pin description section for details					
Decoupling capac-		1		uF	It is added to the AVDD pin. Please refer to					
itor output		1		ur	the pin description section for details					
Operating temper-	-40		125	°C						
ature range	-40		143	L						

20.2 Recommended Application Diagram

The output pin signal LO1/HO1 of the driver module corresponds to the MCPWM function output of GPIO P0.10/P0.13, LO2/HO2 corresponds to the MCPWM function output of GPIO P0.11/P0.14, and LO3/HO3 corresponds to the MCPWM function output of GPIO P0.12/P0.15.

The MCPWM_SWAP register must be set for the integrated pre-drive chip, otherwise the PWM cannot be output normally. Write 0x67 to such register to write BIT[0] to 1, and write other values to write BIT[0] to 0. When the value of MCPWM_SWAP is 1, it is used to include the pre-drive chip application environment. The sequence is converted within the logic to facilitate the interconnection of the chip and the drive chip. In general applications, only three sets of MCPWM channels are required, so only three sets of sequences are converted.

20.2.1 3P3N Type Gate Drive Module

A 510hm resistor is recommended between LO1/2/3 and the NMOS gate, HO1/2/3 and the PMOS gate when phase current is larger than 2A.

In applications where VCC is higher than 20V and the chip is not required to sleep, it is recommended to add a $1k\Omega$ - $2k\Omega$ shunt resistor between VCC and AVDD, and this resistor is placed between the input and output of the internal 5V LDO to share part of the heat dissipation. The resistor must be placed at a distance from the chip.

The resistance value should be calculated according to the following formula:

Where, I is the total power dissipated on the 5V supply, including the power dissipated by the MCU and that dissipated by the 5V peripheral devices such as HALL.

With an external shunt resistor bridged, a 5.7V regulator should be placed at the AVDD pin.

At the same time, in the applications with a resistor between VCC and AVDD, it should be noted that the RC constant on RSTN should not be too large, and it is recommended to keep the RC constant at 1ms. That is, if there is no resistor outside the chip to 5V and the internal pull-up resistor is 100k, the capacitor on RSTN is selected as 10nF. If a 10k or 20k pull-up resistor is externally applied, the capacitor on RSTN is selected as 100nF.

There must be a decoupling capacitor higher than or equal to 100uF between the VCC pin and the ground.

The polarity of the gate drive module is as follows:

Table 20-4 Gate Drive Polarity Truth Table

{HIN, LIN}	НО	LO		
00	OFF	OFF	Shutdown of upper and lower tubes	
01	OFF	ON	Lower tube conduction	
10	ON	OFF	Upper tube conduction	
11	OFF	OFF	The upper and lower tubes are connected simultaneously, and the hardware is under short-circuit protection	

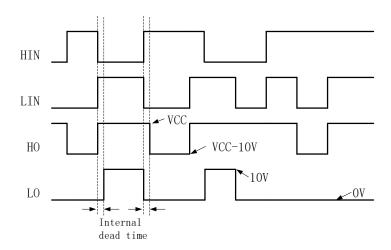


Figure 20-2 Schematic Diagram of Gate Drive Polarity

21 Special IO Multiplexing

Precautions for LKS32MC303EM6S8C special IO multiplexing

The SWD protocol consists of two signal lines: SWCLK and SWDIO. The former is a timer signal that, for the chip, is the input state and does not change the input state. The latter is a data signal that switches between an input state and an output state during data transmission for the chip, which defaults to the input state.

LKS32MC303EM6S8C can realize the function of multiplexing two IOs of SWD into other IOs. IO multiplexed by SWCLK is P1.8, and IO multiplexed by SWDIO is P1.9. The precautions are as follows:

- Multiplexing is disabled by default, and software is needed to write a 0 to SYS_IO_CFG[6] to enable the multiplexing. That is, after the hard reset of the chip is complete, the initial state is for SWD. The two IOs of the SWD have a pull-up inside the chip (the pull-up resistance of the chip is about 10K). When IO functions as SWD, the pull-up is turned on by default and cannot be turned off. When IO functions as GPIO, pull-up can be worked via GPIO1_PUE[8] and GPIO1_PUE[9]. P1.8 and P1.9 are fixed as SWD functions within 30ms of chip power-on reset, the software can write 0 to SYS_IO_CFG[6], but IO function switching takes effect after 30ms. LRC counting was used for 30ms with some deviation due to process reasons.
- ➤ When multiplexing is enabled, tools such as KEIL cannot directly access the chip, that is, Debug and erase download are unavailable. There are two options if you need to re-download the program.
- Firstly, it is recommended to use Linko dedicated offline downloader to erase. It is recommended to reserve a certain margin for the time for enabling software multiplexing, for example, approximately 100ms, to ensure that the offline downloader can be erased to prevent deadlock. The amount of margin is to ensure the success rate of offline downloader erasure. The larger the margin, the greater the probability of a successful one-time erase.
- Secondly, there is an exit mechanism inside the program. For example, the change of some other IO level (generally as input) indicates that the external needs to use SWDIO in software reconfiguration and de-multiplexing. At this point, the KEIL function can be restored.

In the packaging of SSOP24, QFN40, and SOP16L, SWDIO, SWCLK may have bonded with other IOs. At this point, it should be noted that other IO action may cause the chip to misinterpret the SWD action.

The considerations for SWCLK multiplexing are as follows:

- Multiplexing is disabled by default, and software is needed to enable the multiplexing. That is, after the hard reset of the chip, the initial state is used for SWCLK, which is pulled up inside the chip (the internal pull-up resistance of the chip is about 10K). Please pay attention if the initial level is required by the application.
- When multiplexing is enabled, tools such as KEIL cannot directly access the chip, that is, Debug and erase download are unavailable. There are two options if you need to re-download the program.

- Firstly, it is recommended to use Linko dedicated offline downloader to erase. It is recommended to reserve a certain margin for the time for enabling software multiplexing, for example, approximately 100ms, to ensure that the offline downloader can be erased to prevent deadlock. The amount of margin is to ensure the success rate of offline downloader erasure. The larger the margin, the greater the probability of a successful one-time erase.
- Second, there is an exit mechanism inside the program. For example, the change of some other
 IO level (generally as input) indicates that the external needs to use SWCLK in software reconfiguration and de-multiplexing. At this point, the KEIL function can be restored.

If only SWCLK is multiplexed and SWDIO is not multiplexed at this point, please refer to the above precautions.

RSTN signal is used for external reset pins for the LKS32MC303EM6S8C chip by default.

LKS32MC303EM6S8C can realize the functions of RSTN multiplexing into other IO. The multiplexed IO is P0.2. The precautions are as follows:

- Multiplexing is disabled by default, and software is needed to write a 1 to SYS_IO_CFG[5] to multiplex RSTN as a normal GPIO. That is, the initial state of the chip is used for RSTN, which is pulled up inside the chip (the internal pull-up resistance of the chip is about 100K). Please pay attention if the initial level is required by the application.
- ➤ The default state is RSTN. Program execution can only be started after RSTN is released normally. The application needs to ensure that RSTN has adequate protection, such as peripheral circuit pull-up. If capacitance can be added, it is better.
- When multiplexing is enabled, the RSTN function becomes invalid. If a hard reset of the chip is required, the source can only be powered down/watchdog.
- > RSTN multiplexing does not affect the use of KEIL.

22 Ordering Information

Tray Package:

Package Type	Quantity per disc/tube	Quantity in box	Quantity in case	
SOP16/ESOP16L	3000/ disc	6000PCS	48000PCS	
SSOP24	4000/ disc	8000PCS	64000PCS	
SS0P24	50/ pipe	10000PCS	4000/100000PCS	
QFN 8*8	260/ disc	2600PCS	15600PCS	
QFN 4*4/5*5/6*6	490/ disc	4900PCS	29400PCS	
QFN 3*3	5000/ disc	5000PCS	40000PCS	
LQFP48/TQFP48 0707	250/ disc	2500PCS	15000PCS	
LQFP64 1010	160/ disc	1600PCS	9600PCS	
LQFP100 1414	90/ disc	900PCS	5400PCS	
TSSOP20/28	4000/ disc	8000PCS	64000PCS	

Reel Package:

Package '	Tymo	Quantity per	Quantity per	Quantity boxes	Quantity
Package	Туре	disc/tube	box	per case	per case
Braid -13 inches	SOP/ESOP8	4000	8000	8	64000
Braid -13 inches	SOP/ESOP16	3000	6000	8	48000
Braid -13 inches	SSOP24	4000	8000	8	64000
Braid -13 inches	TSSOP20	4000	8000	8	64000
Braid -13 inches	D/QFN3*3	5000	10000	8	80000
Braid -13 inches	D/QFN4*4	5000	10000	8	80000
Braid -13 inches	D/QFN5*5	5000	10000	8	80000
Pipe	SOP16	50	10000	10	100000
Pipe	SOP14/SSOP24	50	10000	10	100000
Pipe	TSSOP24	54	6480	6	38880

Disclaimer

LKS and LKO are registered trademarks of Linko.

Linko tries its best to ensure the accuracy and reliability of this document, but reserves the right to change, correct, enhance, modify the product and/or document at any time without prior notice. Users can obtain the latest information before placing an order.

Customers should select the appropriate Linko product for their application needs and design, validate and test your application in detail to ensure that it meets the appropriate standards and any safety, security or other requirements. The customer is solely responsible for this.

Linko hereby acknowledges that no intellectual property licenses, express or implied, are granted to Linko or to third parties.

Resale of Linko products on terms other than those set forth herein shall void any warranty warranties made by Linko for such products.

Prohibited for military use or life care and maintenance systems.

For earlier versions, please refer to this document.

