

EVL28167-N-Q-00A

2.8V to 22V, 3A, 4-Switch, Integrated Buck-Boost Converter with PG Indication Evaluation Board

DESCRIPTION

The EVL28167-N-Q-00A is an evaluation board designed to demonstrate the capabilities of the MP28167-N, a high-efficiency, synchronous buck-boost converter with four integrated power switches and an I²C interface. The device can regulate output voltages across a wide 2.8V to 22V input voltage (V_{IN}) supply range.

The MP28167-N's integrated output voltage (V_{OUT}) scaling and configurable output current (I_{OUT}) limiting functions are ideal for USB power delivery (PD) applications.

In buck mode, the MP28167-N uses constant on-time (COT) control. In boost mode, it uses

constant-off-time control. This provides fast load transient response and a smooth buck-boost mode transient. The MP28167-N features automatic pulse-frequency modulation (PFM) and pulse-width modulation (PWM) modes, forced PWM mode, as well as configurable constant current (CC) limiting and soft start (SS). These features provide flexible design options for different applications.

The MP28167-N requires a minimal number of readily available, standard external components, and is available in a QFN-16 (3mmx3mm) package.

PERFORMANCE SUMMARY (1)

Specifications are at $T_A = 25$ °C, unless otherwise noted.

Parameters	Conditions	Value
Operating input voltage (V _{IN})		2.8V to 22V
Switching frequency (f _{SW})	Configured by register 04h, bits[3:2]	500kHz, 750kHz, 1MHz, or 1.25MHz
Output voltage (V _{OUT})	Determined by R1, R2, R _T , and register 00h, bits[2:0] + register 01h, bits[7:0] $^{(1)}$	1V to 20.47V
Output current (Ιουτ)		3A continuous current or 4A input current

Note:

1) Refer to the MP28167-N datasheet for more details.

Optimized Performance with MPS Inductor MPL5030 Series

EVL28167-N-Q-00A EVALUATION BOARD

LxW (6.35cmx6.35cm)

Board Number	MPS IC Number	
EVL28167-N-Q-00A	MP28167GQ-N	

2

QUICK START GUIDE

- 1. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
- 2. Preset the power supply output to 12V, then turn off the power supply.
- 3. Connect the power supply output terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 4. After making the connections, turn on the power supply. The board should automatically start up with its default settings. The related parameters can be changed via the I2C. (2)

Refer to the MP28167-N datasheet for more details.

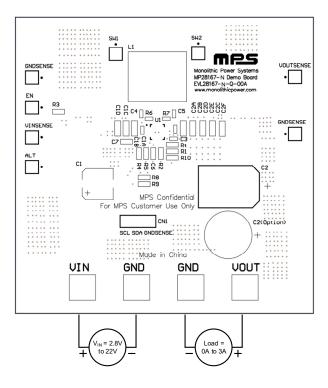


Figure 1: Measurement Equipment Set-Up

3

EVALUATION BOARD SCHEMATIC

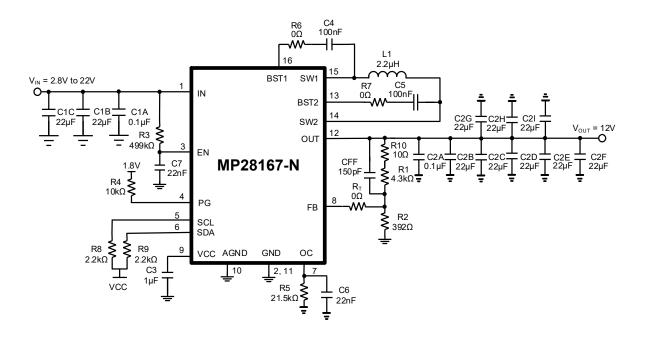
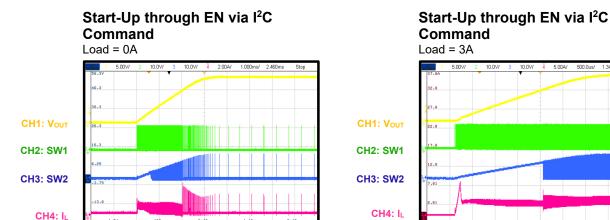


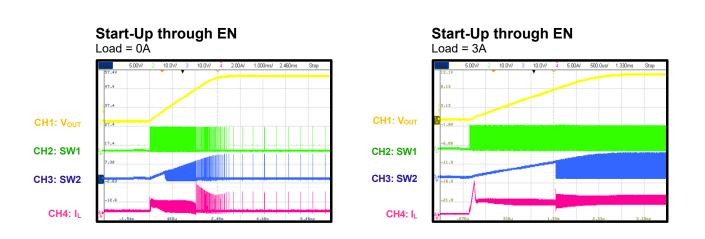
Figure 2: Evaluation Board Schematic

EV28167-N-Q-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
10	C2A, C1B, C2B, C1C, C2C, C2D, C2E, C2F, C2G, C2H	22µF	Ceramic capacitor, 25V, X5R	0805	TDK	C2012X5R1E226M
1	C3	1µF	Ceramic capacitor, 16V, X6S	0402	Murata	GRM155C81C105KE11D
4	C1A, C2A, C4, C5	100nF	Ceramic capacitor, 50V, X7R	0402	Samsung	CL05B104KB5NNNC
2	C6, C7	22nF	Ceramic capacitor, 50V, X5R	0603	Murata	GRM188R71H223KA01D
1	CFF	150pF	Ceramic capacitor, 50V, X5R	0603	Murata	GRM1885C1H151JA01D
1	R3	499kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-07499KL
1	R5	21.5kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0721K5RL
1	R4	10kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0710KL
1	R1	4.3kΩ	Film resistor, 1%	603	Yageo	RC0603FR-07430KL
2	R8, R9	2.2kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-072K2L
1	R2	392Ω	Film resistor, 1%	0603	Yageo	RC0603FR-07107KL
1	R10	10Ω	Film resistor, 1%	0603	Yageo	RC0603FR-0710RL
2	R6, R7	0Ω	Film resistor, 1%	0402	Yageo	RC0402FR-070RL
1	R⊤	0Ω	Film resistor, 1%	0603	Yageo	RC0603FR-07806KL
1	CN1	2.54mm	Test pin, 1x3-pin	DIP	Wurth	61300311121
1	L1' (3)	2.2µH	Inductor, $R_{DC} = 12m\Omega$, $I_{SAT} = 14A$	SMD	Wurth	74437349022
1	L1	2.2µH	Inductor, R_{DC} = 12.3m Ω , I_{SAT} = 11A	SMD	MPS	MPL-AL5030-2R2
1	U1	MP28167-N	22V, 3A, 4-switch, integrated buck-boost converter with PG indication	QFN-16 (3mmx 3mm)	MPS	MP28167GQ-N

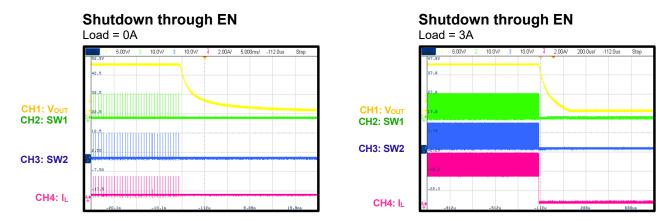

Note:

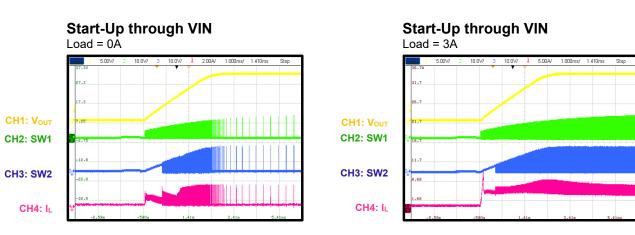
³⁾ L1' indicates the backup inductor for L1. L1 is recommended for most applications.

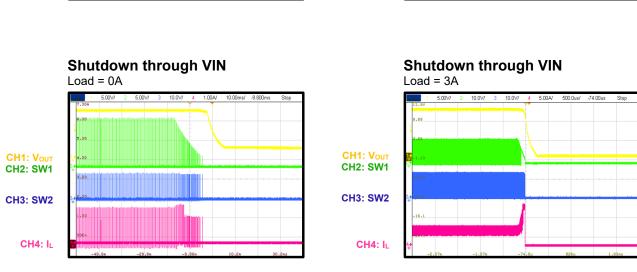


EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 12V$, $V_{OUT} = 12V$, L = 2.2μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

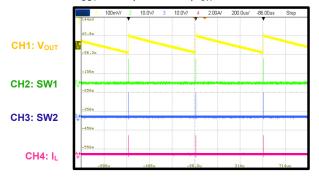

Shutdown through EN via I2C Shutdown through EN via I²C Command Command Load = 0A Load = 3A CH1: Vout CH1: Vout CH2: SW1 CH2: SW1 **CH3: SW2 CH3: SW2** CH4: IL CH4: IL





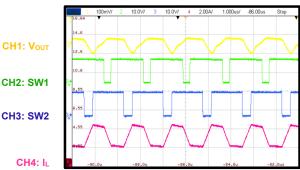
EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 12V, L = 2.2 μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

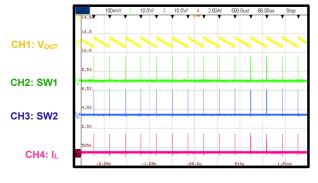


EVB TEST RESULTS (continued)

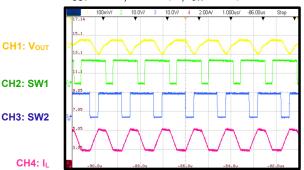
Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 12V$, $V_{OUT} = 12V$, L = 2.2μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.


Steady State (Automatic PFM/PWM Mode)

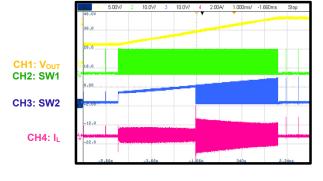
 $V_{OUT} = 12V$, load = 0A, $f_{SW} = 1MHz$


Steady State (Automatic PFM/PWM Mode

 $V_{OUT} = 12V$, load = 3A, $f_{SW} = 1MHz$


Steady State (Automatic PFM/PWM Mode)

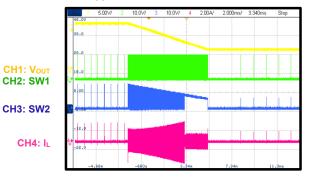
 $V_{OUT} = 12V$, load = 0A, $f_{SW} = 1.25MHz$


Steady State (Automatic PFM/PWM Mode)

 $V_{OUT} = 12V$, load = 3A, $f_{SW} = 1.25MHz$

I²C VID

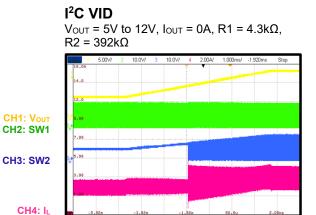
 $V_{OUT} = 5V$ to 12V, $I_{OUT} = 0A$, $R1 = 4.3k\Omega$, $R2 = 392k\Omega$

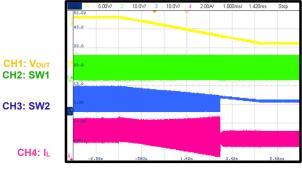

I²C VID

CH4: IL

CH1: Vout CH2: SW1

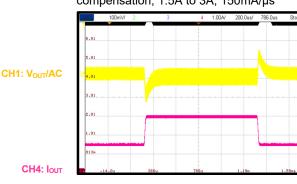
CH4: IL

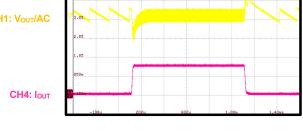

 V_{OUT} = 12V to 5V, I_{OUT} = 3A, R1 = 4.3k Ω , $R2 = 392k\Omega$

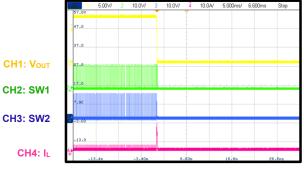


EVB TEST RESULTS (continued)

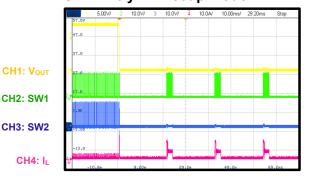
Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 12V$, $V_{OUT} = 12V$, L = 2.2μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.




I²C VID V_{OUT} = 12V to 5V, I_{OUT} = 3A, R1 = 4.3k Ω , $R2 = 392k\Omega$


Load Transient V_{IN} = 12V, V_{OUT} = 12V, no line drop compensation, 0A to 1.5A, 150mA/µs CH1: Vout/AC

Load Transient V_{IN} = 12V, V_{OUT} = 12V, no line drop compensation, 1.5A to 3A, 150mA/µs



SCP Entry in Hiccup Mode

CH2: SW1

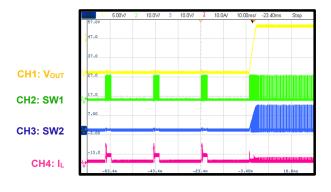
CH4: IL

CH2: SW1 CH1: Vout

CH3: SW2

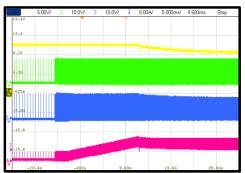
CH4: IL

CH2: SW1

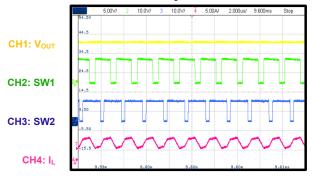

CH3: SW2

CH4: IL

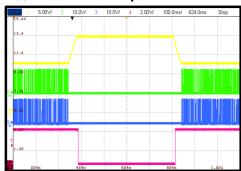
EVB TEST RESULTS (continued)


Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 12V, L = 2.2 μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

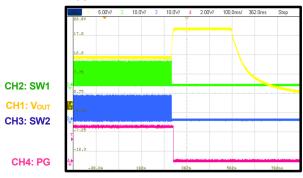
SCP Recovery in Hiccup Mode



CC Limit Entry


Tested in constant voltage (CV) mode on an electronic load

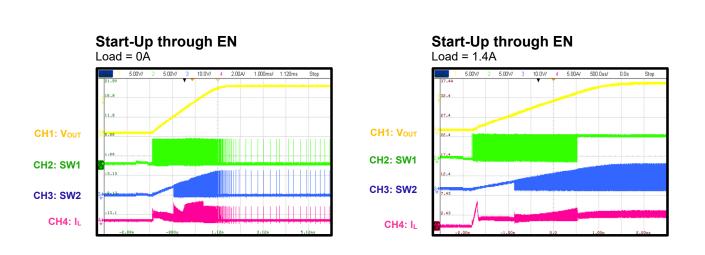
CC Limit Steady State



VOUT OVP in Hiccup Mode

10

VOUT OVP in Latch-Off Mode

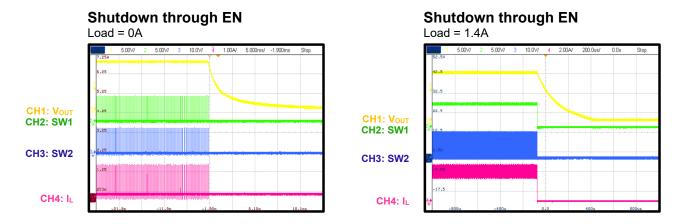


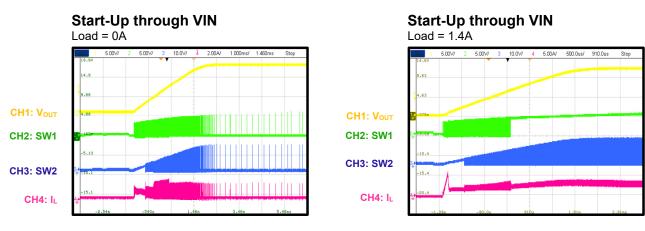
EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 6V, V_{OUT} = 12V, L = 2.2 μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

Start-Up through EN via I²C Command Load = 0A CH1: Vout CH2: SW1 CH3: SW2 CH4: IL CH4: IL Start-Up through EN via I²C Command Command Command CH1: Vout CH3: SW2

Shutdown through EN via I²C Command Load = 0A CH1: Vout CH2: SW1 CH3: SW2 CH4: IL CH4: IL Shutdown through EN via I²C Command Command




11

EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 6V, V_{OUT} = 12V, L = 2.2 μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

CH1: V_{OUT}

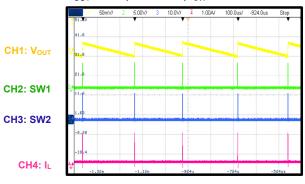
CH2: SW1 **CH3: SW2**

CH4: IL

CH1: Vout/AC

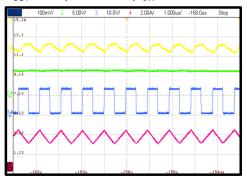
CH2: SW1

CH3: SW2

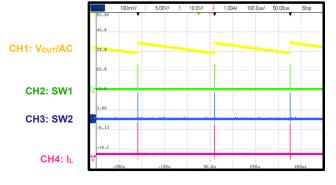

CH4: IL

EVB TEST RESULTS (continued)

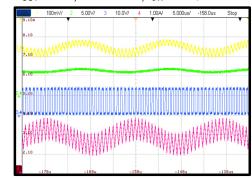
Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 6V$, $V_{OUT} = 12V$, L = 2.2μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.


Steady State (Automatic PFM/PWM Mode)

 $V_{OUT} = 12V$, load = 0A, $f_{SW} = 1MHz$

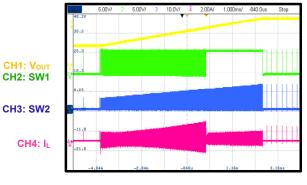

Steady State (Automatic PFM/PWM Mode)

 $V_{OUT} = 12V$, load = 1.4A, $f_{SW} = 1MHz$


Steady State (Automatic PFM/PWM Mode)

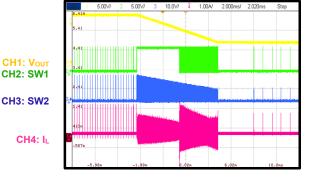
Vout = 12V. load = 0A. fsw = 1.25MHz

Steady State (Automatic PFM/PWM Mode)


Vout = 12V. load = 1.4A. fsw = 1.25MHz

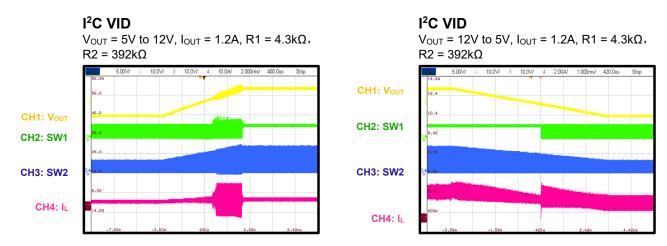
I²C VID

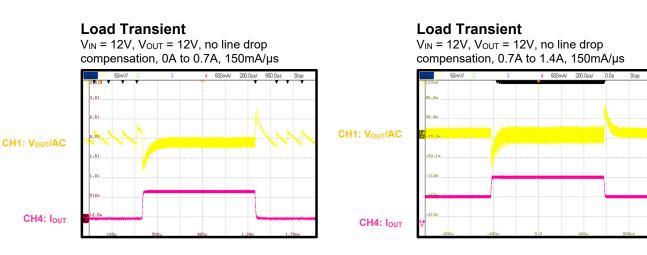
 $V_{OUT} = 5V$ to 12V, $I_{OUT} = 0A$, $R1 = 4.3k\Omega$,

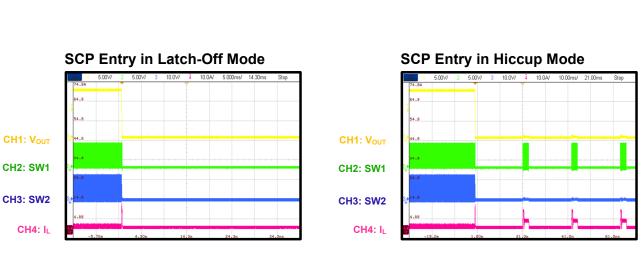


I²C VID

 V_{OUT} = 12V to 5V, I_{OUT} = 0A, R1 = 4.3k Ω , $R2 = 392k\Omega$







EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 6V, V_{OUT} = 12V, L = 2.2 μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

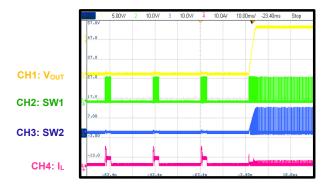
CH2: SW1

CH3: SW2

CH1: Vout

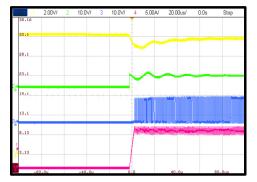
CH2: SW1

CH1: V_{OUT} CH3: SW2

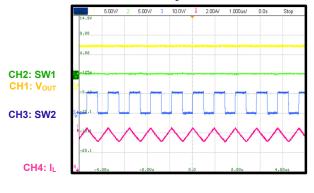

CH4: IL

CH4: IL

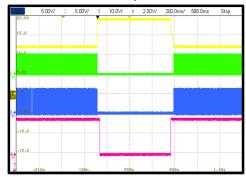
EVB TEST RESULTS (continued)

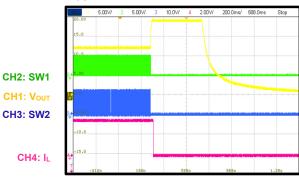

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 6V, V_{OUT} = 12V, L = 2.2 μ H, f_{SW} = 1MHz, T_A = 25°C, unless otherwise noted.

SCP Recovery in Hiccup Mode



CC Limit Entry


Tested in constant resistance (CR) mode on an electronic load


CC Limit Steady State

VOUT OVP in Hiccup Mode

VOUT OVP in Latch-Off Mode

PCB LAYOUT

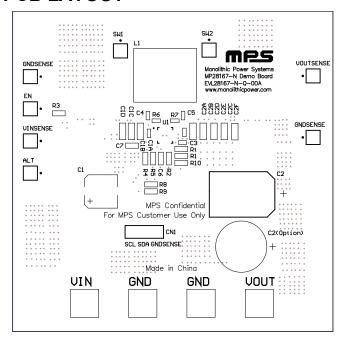


Figure 3: Top Silk

Figure 4: Top Layer

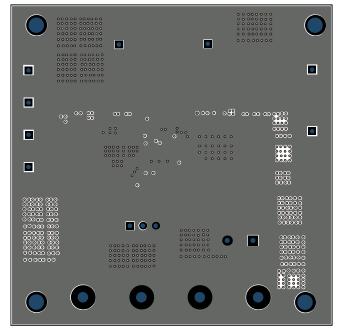


Figure 5: Mid-Layer 1

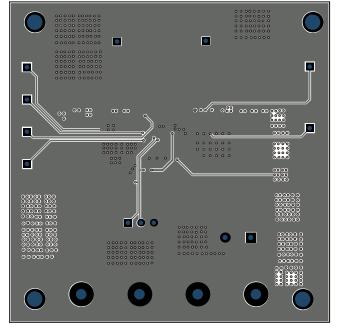


Figure 6: Mid-Layer 2

PCB LAYOUT (continued)

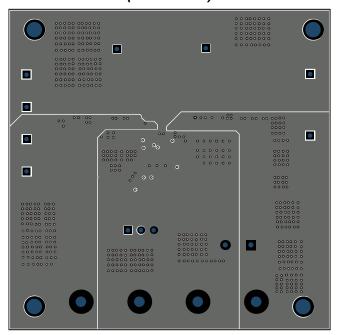


Figure 7: Bottom Layer

MPS Confidential - For MPS Customer Use Only

EVL28167-N-Q-00A - 4-SWITCH, BUCK-BOOST CONVERTER EVAL BOARD

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	5/8/2023	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.