

# CMS32H6241 数据手册

基于 ARM® Cortex®-M0+的超低功耗 32 位微控制器

内置 64K 字节 Flash, 24Bit ADC, 定时器及各种通讯接口

V0.1.0

#### 请注意以下有关CMS知识产权政策

\*中微半导体(深圳)股份有限公司(以下简称本公司)已申请了专利,享有绝对的合法权益。与本公司MCU或其他产品有关的专利权并未被同意授权使用,任何经由不当手段侵害本公司专利权的公司、组织或个人,本公司将采取一切可能的法律行动,遏止侵权者不当的侵权行为,并追讨本公司因侵权行为所受的损失、或侵权者所得的不法利益。

\*中微半导体(深圳)股份有限公司的名称和标识都是本公司的注册商标。

\*\*本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而本公司对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,本公司不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。本公司的产品不授权适用于救生、维生器件或系统中作为关键器件。本公司拥有不事先通知而修改产品的权利,对于最新的信息,请参考官方网站 www.mcu.com.cn。



#### 功能

#### ◆ 超低功耗工作环境

- 电源电压范围: 1.8V 到 4.5V
- 温度范围: -20℃到 70℃
- 低功耗模式:睡眠模式,深度睡眠模式
- 运行功耗: 70uA/MHz@64MHz
- 深度睡眠模式下功耗: 80uA
- 深度睡眠模式+32.768K+RTC 工作: 85uA
- 部分掉电的深度睡眠模式下功耗: 5uA

#### ◆ 内核

- ARM®32-bitCortex®-M0+ CPU
- 工作频率: 32KHz~64MHz

#### ◆ 存储器

- 64KB Flash 存储器,程序与数据存储共享
- 1KB 专用数据 Flash 存储器
- 4KB SRAM 存储器

#### ◆ 电源和复位管理

- 内置上电复位(POR)电路
- 内置电压检测(LVD)电路(门限电压可设)

#### ◆ 时钟管理

- 内置高速发振器,精度(±2%),可提供 2MHz~64MHz系统时钟及外围模块动作时钟
- 内置 15KHz 低速振荡器
- 支持 4MHz~16MHz 外部晶体振荡器
- 支持 32.768KHz 外部晶体振荡器,可用来校正 内部高速发振器

#### ◆ 高精度 12 位 ADC

- 转换速率 500Ksps
- 外部模拟通道数 20 个
- 支持单通道转换和多通道扫描转换模式
- 转换范围: 0 到正参考电压

#### ◆ GPIO

- 最多可达 22 个 GPIO,支持数字功能任意分配
- 大部分 GPIO 支持上/下拉电阻功能
- 均支持键中断功能
- 内置时钟输出/蜂鸣器输出的控制电路

#### ◆ 乘法器模块

支持 32bit 乘法运算

#### ◆ 联动控制器

- 能将事件信号链接到一起,实现外围功能联动 事件输入 15 种,事件触发 4 种

#### ◆ 丰富的定时器资源

- 16 位定时器: 8 通道, 支持 PWM 输出
- 15 位间隔定时器: 1 个
- 实时时钟(RTC): 1 个(具有万年历、闹钟功能,并且支持大范围的时钟校正)
- 看门狗定时器(WWDT): 1 个
- SvsTick 定时器

#### ◆ 丰富的灵活接口

- 2 通道串行通讯单元,每通道可自由配置成 1 通道标准 UART、2 通道 SPI 或 2 通道简易 I<sup>2</sup>C
- 标准 SPI: 1 通道(支持 8bit 和 16bit)
- 标准 I<sup>2</sup>C: 1 通道

#### ◆ 24 位 Sigma-Delta ADC:

- 24 位无失码
- PGA 可选: 1、2、4、8、16、32、64、128、 256
- PGA=128、ODR=10Hz、SET\_LDO=00 时,有 效分辨率为 20.6 位
- PGA=128、ODR=10Hz、SET\_LDO=00 时,等 效输入噪声 30nVrms
- 输出速率(ODR)可选: 2.5Hz-2.56KHz
- 内置 LDO
- 内置振荡器
- 集成温度传感器
- 带休眠功能
- 2线 SPI 接口,最快速率为 1.1MHz

#### ◆ 支持 128 位唯一 ID 号(UID)

- · 每颗芯片有独立的 ID 号
- ◆ 串行两线调试器(SWD)

#### ◆ 封装

- SOP16

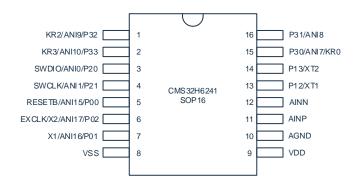


# 1 概述

# 1.1 简介

超低功耗CMS32H6241采用高性能的ARM®Cortex®-M0+的32位RISC内核,最高可工作于64MHz,采用高速的嵌入式闪存(SRAM最大4KB,程序/数据闪存最大64KB)。本产品集成I<sup>2</sup>C、SPI、UART、LIN多种标准接口。集成12bitA/D转换器、温度传感器。其中12bitA/D转换器可用于采集外部传感器信号,降低系统设计成本。芯片内集成的温度传感器则可实现对外部环境温度实时监控。集成8通道16bit定时器模块,并搭载EPWM控制电路,结合定时器可实现一个直流电机或者两个步进电机的控制。具有高精度24位无失码Sigma-Delta ADC,输出速率(ODR)可选:2.5Hz-2.56KHz,PGA增益可设置为1、2、4、8、16、32、64、128、256,PGA=128、ODR=10Hz、SET\_LDO=00时,有效分辨率为20.6位。

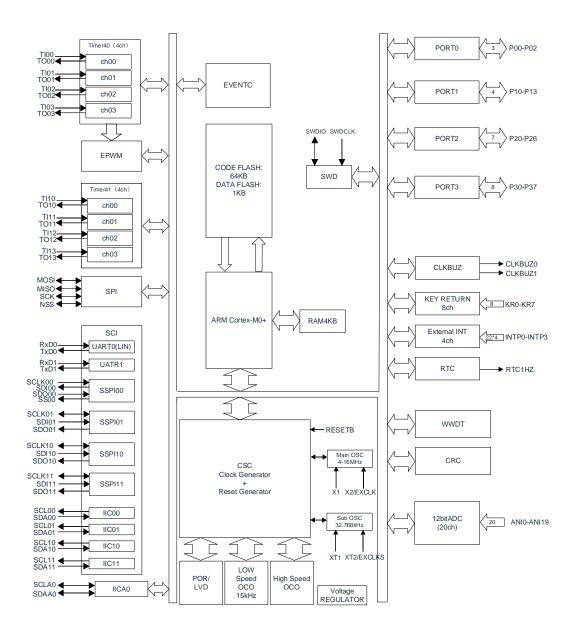
CMS32H6241还具有出色的低功耗性能,支持睡眠和深度睡眠两种低功耗模式,设计灵活。其运行功耗为70uA/MHz@64MHz,在部分掉电的深度睡眠模式下功耗仅5uA,适合采用电池供电的低功耗设备。同时,由于集成事件联动控制器,可实现硬件模块之间的直接连接,无需CPU的干预,比使用中断响应速度更快,同时降低了CPU的活动频率,延长了电池寿命。


这些特点使得 CMS32H6241 微控制器系列可广泛适用于各种应用场景, 如汽车车身控制、电机驱动控制、 家用电器以及移动设备等。

www.mcu.com.cn 3 / 50 Rev.0.1.0



# 1.2 引脚连接图(Top View)


# 1.2.1 CMS32H6241



www.mcu.com.cn 4 / 50 Rev.0.1.0



# 2 产品结构图





# 3 存储器映射

| FFFF_FFFFH  | 保留                 |
|-------------|--------------------|
| E00F_FFFFH  |                    |
| E000_0000H  | Cortex-M0+ 专用外设资源区 |
|             | 保留                 |
| 4005_FFFFH  |                    |
|             |                    |
|             | 外设资源区              |
|             |                    |
| 4000_0000H  |                    |
| .000_000    | 保留                 |
| 2000_0FFFH  | SRAM(最大4KB)        |
| 2000_0000H  | OKAW (BOATE)       |
|             | 保留                 |
| 0050_05FFH  | 数据闪存 1KB           |
| 0050_0200H  |                    |
| 0000 555511 | 保留                 |
| 0000_FFFFH  |                    |
|             | 主闪存区 (最大64KB)      |
| 0000_0000H  |                    |

www.mcu.com.cn 6 / 50 Rev.0.1.0



# 4 引脚功能

# 4.1 端口功能

表中符号说明: I/O 表示数字输入/输出, I 表示数字输入, O 表示数字输出, AI 表示模拟输入, AO 表示模拟输出。

| 管脚号 | 管脚名称   | 管脚类型 | 描述                       |
|-----|--------|------|--------------------------|
|     | P00    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 5   | ANI15  | AI   | ADC 通道 15 输入             |
|     | RESINB | I    | 外部复位                     |
|     | P01    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 7   | ANI16  | Al   | ADC 通道 16 输入             |
|     | X1     | AO   | 高速晶振输出管脚                 |
|     | P02    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 0   | ANI17  | AI   | ADC 通道 17 输入             |
| 6   | X2     | AI   | 高速晶振输入管脚                 |
|     | EXCLK  | I    | 外部高速时钟输入管脚               |
| 40  | P12    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 13  | XT1    | AO   | 低速晶振输出管脚                 |
| 4.4 | P13    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 14  | XT2    | AI   | 低速晶振输入管脚                 |
|     | P20    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 3   | ANI0   | AI   | ADC 通道 0 输入              |
|     | SWDIO  | I/O  | SWD数据口                   |
|     | P21    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 4   | ANI1   | AI   | ADC 通道 1 输入              |
|     | SWDCLK | I/O  | SWD 时钟口                  |
|     | P30    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 15  | ANI7   | AI   | ADC 通道 7 输入              |
|     | KR0    | I    | 键中断输入 0                  |
| 40  | P31    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 16  | ANI8   | AI   | ADC 通道 8 输入              |
|     | P32    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 1   | ANI9   | AI   | ADC 通道 9 输入              |
|     | KR2    | I    | 键中断输入 2                  |
|     | P33    | I/O  | GPIO 通过寄存器配置输入输出,上、下拉等功能 |
| 2   | ANI10  | Al   | ADC 通道 10 输入             |
|     | KR3    | 1    | 键中断输入3                   |



| 管脚号 | 管脚名称 | 管脚类型 | 描述                     |  |  |  |
|-----|------|------|------------------------|--|--|--|
| 12  | AINN | Al   | Sigma-Delta ADC 通道负输入  |  |  |  |
| 11  | AINP | Al   | Sigma-Delta ADC 通道正输入  |  |  |  |
| 10  | AGND | Р    | Sigma-Delta ADC 模拟电源负端 |  |  |  |
| 8   | VSS  | Р    | 接地脚                    |  |  |  |
| 9   | VDD  | Р    | 电源电压输入脚                |  |  |  |



### CMS32H6241 系列数字资源可映射到到任一 GPIO, 下表为数字功能配置一览表。

| 功能名称      | 输入/输出 | PxxCFG | 说明                                     |
|-----------|-------|--------|----------------------------------------|
| 模拟功能      | 输入/输出 | 6'h00  | 模拟通道                                   |
|           | 输入    |        | 数字输入通道                                 |
| GPIO      | 输出    | 6'h00  | 数字输出通道                                 |
|           | 开漏    |        | 开漏输出通道                                 |
| INTP0     | 输入    | 6'h02  | 外部中断请求输入 0, 可配置上升沿, 下降沿和双沿             |
| INTP1     | 输入    | 6'h03  | 外部中断请求输入 1,可配置上升沿,下降沿和双沿               |
| INTP2     | 输入    | 6'h04  | 外部中断请求输入 2, 可配置上升沿, 下降沿和双沿             |
| INTP3     | 输入    | 6'h05  | 外部中断请求输入 3, 可配置上升沿, 下降沿和双沿             |
| T100      | 输入    | 6'h06  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 0 输入通道 0 |
| TI01      | 输入    | 6'h07  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 0 输入通道 1 |
| TI02      | 输入    | 6'h08  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 0 输入通道 2 |
| TI03      | 输入    | 6'h09  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 0 输入通道 3 |
| TI10      | 输入    | 6'h0a  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 1 输入通道 0 |
| TI11      | 输入    | 6'h0b  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 1 输入通道 1 |
| TI12      | 输入    | 6'h0c  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 1 输入通道 2 |
| TI13      | 输入    | 6'h0d  | 16 位定时器 Timer4 的外部计数时钟/捕捉触发单元 1 输入通道 3 |
| TO00      | 输出    | 6'h0e  | 16 位定时器 Timer4 的定时器单元 0 输出通道 0         |
| TO01      | 输出    | 6'h0f  | 16 位定时器 Timer4 的定时器单元 0 输出通道 1         |
| TO02      | 输出    | 6'h10  | 16 位定时器 Timer4 的定时器单元 0 输出通道 2         |
| TO03      | 输出    | 6'h11  | 16 位定时器 Timer4 的定时器单元 0 输出通道 3         |
| TO10      | 输出    | 6'h12  | 16 位定时器 Timer4 的定时器单元 1 输出通道 0         |
| TO11      | 输出    | 6'h13  | 16 位定时器 Timer4 的定时器单元 1 输出通道 1         |
| TO12      | 输出    | 6'h14  | 16 位定时器 Timer4 的定时器单元 1 输出通道 2         |
| TO13      | 输出    | 6'h15  | 16 位定时器 Timer4 的定时器单元 1 输出通道 3         |
| SCLA0     | 输入/输出 | 6'h16  | 串行接口 IIC0 的时钟输入/输出                     |
| SCAA0     | 输入/输出 | 6'h17  | 串行接口 IIC0 的数据输入/输出                     |
| CLKBUZ0   | 输出    | 6'h18  | 时钟输出/蜂鸣器输出 0                           |
| CLKBUZ1   | 输出    | 6'h19  | 时钟输出/蜂鸣器输出 1                           |
| RTC1HZ    | 输出    | 6'h1a  | 实时时钟的校正时钟输出                            |
| 保留        | -     | 6'h1b  | 保留                                     |
| SPI_SSI   | 输入    | 6'h1c  | SPI 的从机选择                              |
| SPI_MOSI  | 输出/输入 | 6'h1d  | SPI 主机输出从机输入                           |
| SPI_MISO  | 输入/输出 | 6'h1e  | SPI 主机输入从机输出                           |
| SPI_CLKOI | 输出/输入 | 6'h1f  | SPI 时钟                                 |
| 保留        | -     | 6'h20  | 保留                                     |
| 保留        | -     | 6'h21  | 保留                                     |
| 保留        | -     | 6'h22  | 保留                                     |
| 保留        | -     | 6'h23  | 保留                                     |
| 保留        | -     | 6'h24  | 保留                                     |
| 保留        | -     | 6'h25  | 保留                                     |
| SAU0_SS   | 输入    | 6'h26  | 串行通信单元 SAU0 做 SPI 通信从机选择               |



|       |                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 输入/输出 | PxxCFG                                                                                                                                                                                                                                                                                                                                             | 说明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 输入    | 6'h27                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 做 SPI 通信从机选择                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 输出/输入 | 6'h28                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU0 单元 0 做 SPI 时钟输入/输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 输出/输入 | 6'h29                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU0 单元 1 做 SPI 时钟输入/输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 输出/输入 | 6'h2a                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 单元 0 做 SPI 时钟输入/输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 输出/输入 | 6'h2b                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 单元 1 做 SPI 时钟输入/输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 输入    | 6'h2c                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU0 单元 0 数据输入/串口 0 输入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 输入    | 6'h2d                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU0 单元 1 数据输入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 输入    | 6'h2e                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 单元 0 数据输入/串口 1 输入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 输入    | 6'h2f                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 单元 1 数据输入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 输出    | 6'h30                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU0 单元 0 数据输出/串口 0 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 输出    | 6'h31                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU0 单元 1 数据输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 输出    | 6'h32                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 单元 0 数据输出/串口 1 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 输出    | 6'h33                                                                                                                                                                                                                                                                                                                                              | 串行通信单元 SAU1 单元 1 数据输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -     | 6'h34                                                                                                                                                                                                                                                                                                                                              | 保留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -     | 6'h35                                                                                                                                                                                                                                                                                                                                              | 保留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -     | 6'h36                                                                                                                                                                                                                                                                                                                                              | 保留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -     | 6'h37                                                                                                                                                                                                                                                                                                                                              | 保留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 输出    | 6'h38                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 0 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h39                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 1 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h3a                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 2 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h3b                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 3 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h3c                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 4 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h3d                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 5 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h3e                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 6 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 输出    | 6'h3f                                                                                                                                                                                                                                                                                                                                              | EPWM 通道 7 输出                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | <ul><li>输制</li><li>输制</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>输输</li><li>有</li></ul> | 輸入 6'h27 输出/输入 6'h28 输出/输入 6'h29 输出/输入 6'h2a 输出/输入 6'h2b 输入 6'h2c 输入 6'h2c 输入 6'h2c 输入 6'h2f 输出 6'h30 输出 6'h31 - 6'h32 - 6'h35 - 6'h35 - 6'h36 - 6'h37 - 6'h38 |



# 5 功能概要

# 5.1 ARM® Cortex®-M0+内核

ARM 的 Cortex-M0+处理器是 ARM 处理器中针对嵌入式系统的新一代产品。它提供了一种低成本的平台旨在满足少引脚数和低功耗单片机的需求,同时提供出色的计算性能和先进的系统响应中断。

Cortex-M0+处理器的 32 位 RISC 处理器,提供卓越的代码效率,提供 ARM 内核的高性能预期,区别于同等内存大小的 8 位和 16 位器件。Cortex-M0+处理器具有 32 根地址线,存储空间多达 4G。

CMS32H6241 采用嵌入式的 ARM 内核, 因此与所有的 ARM 工具和软件兼容。

### 5.2 存储器

# 5.2.1 闪存 Flash

CMS32H6241内置可进行编程、擦除和重写的闪存。具有如下功能:

- ▶ 程序和数据共享64K存储空间
- ▶ 1KB专用数据Flash存储器
- ▶ 支持页擦除,每页大小是512byte,擦除时间2ms
- ▶ 支持byte/half-word编程,编程时间120us

#### 5.2.2 **SRAM**

CMS32H6241 内置 4K 字节的嵌入式 SRAM。

www.mcu.com.cn 11 / 50 Rev.0.1.0



## 5.3 联动控制器

联动控制器将各外围功能输出的事件与外围功能触发源之间相互链接。从而实现不使用 CPU 而直接进行外围功能之间的协作运行。

联动控制器有以下功能:

- 》 能将事件信号链接到一起,实现外围功能的联动。
- ▶ 事件输入 15 种. 事件触发 4 种。

# 5.4 时钟发生和启动

时钟发生电路是产生给CPU和外围硬件提供时钟的电路。有以下3种系统时钟和时钟振荡电路。

### 5.4.1 主系统时钟

- ➤ X1振荡电路:能通过给引脚(X1和X2)连接谐振器产生4~16MHz的时钟振荡,并且能通过执行深度 睡眠指令或者设定MSTOP使振荡停止。
- ▶ 高速内部振荡器(高速OCO): 能通过选项字节选择频率进行振荡。在解除复位后, CPU默认以此 高速内部振荡器时钟开始运行。能通过执行深度睡眠指令或者设定HIOSTOP位使振荡停止。能通过 高速内部振荡器的频率选择寄存器更改选项字节设定的频率。最高频率为64MHz, 精度±2.0%。
- ▶ 由引脚(X2)输入外部时钟: (4~16MHz),并且能通过执行深度睡眠 指令或者设定MSTOP位将外部主系统时钟的输入置为无效。

# 5.4.2 副系统时钟

- ➤ XT1振荡电路:能通过给引脚(XT1和XT2)连接32.768KHz的谐振器产生32.768KHz的时钟振荡, 并且能通过设定XTSTOP位使振荡停止。
- ▶ 由引脚(XT2)输入外部时钟: 32.768KHz, 并且能通过设定XTSTOP位将外部时钟的输入置为无效。

# 5.4.3 低速内部振荡器时钟

低速内部振荡器(低速OCO):产生15KHz(TYP)的时钟振荡。能将低速内部振荡器时钟用作CPU时钟。以下外围硬件能通过低速内部振荡器时钟运行:

- ▶ 看门狗定时器(WWDT)
- ▶ 实时时钟(RTC)
- ▶ 15 位间隔定时器

www.mcu.com.cn 12 / 50 Rev.0.1.0



# 5.5 电源管理

### 5.5.1 供电方式

VDD: 外部电源, 电压范围 1.8 至 4.5V。

### 5.5.2 上电复位

上电复位电路(POR)有以下功能。

- ➤ 在接通电源时产生内部复位信号。如果电源电压(V<sub>DD</sub>)大于检测电压(V<sub>POR</sub>),就解除复位。但 是,在达到工作电压范围前,必须通过电压检测电路或者外部复位保持复位状态。
- ➢ 将电源电压(V<sub>DD</sub>)和检测电压(V<sub>PDR</sub>)进行比较,当V<sub>DD</sub><V<sub>PDR</sub>时,产生内部复位信号。但是,在电源下降时,必须在小于工作电压范围前,转移到深度睡眠模式,或者通过电压检测电路或外部复位设定为复位状态。如果要重新开始运行,必须确认电源电压已恢复到工作电压范围内。

### 5.5.3 电压检测

电压检测电路通过选项字节设定运行模式和检测电压(VLVDH、VLVDL、VLVD)。电压检测(LVD)电路有以下功能:

- ➢ 将电源电压(V<sub>DD</sub>)和检测电压(V<sub>LVDH</sub>、V<sub>LVD</sub>、V<sub>LVD</sub>)进行比较,产生内部复位或者中断请求信号。
- ▶ 电源电压的检测电压(VLVDH、VLVDL、VLVD)能通过选项字节选择检测电平。
- 能在深度睡眠模式中运行。
- 当电源上升时,在达到工作电压范围前,必须通过电压检测电路或者外部复位保持复位状态。当电源下降时,必须在小于工作电压范围前,转移到深度睡眠模式,或者通过电压检测电路或外部复位设定为复位状态。
- ▶ 工作电压范围根据用户选项字节的设定而变。

www.mcu.com.cn 13 / 50 Rev.0.1.0



### 5.6 低功耗模式

CMS32H6241 支持两种低功耗模式以便在功耗低,启动时间短,可用的唤醒源之间实现最佳的折中:

- ▶ 睡眠模式:通过执行睡眠指令进入睡眠模式。睡眠模式是停止 CPU 运行时钟的模式。在设定睡眠模式前,如果高速系统时钟振荡电路、高速内部振荡器或者副系统时钟振荡电路正在振荡,各时钟就继续振荡。虽然此模式无法让工作电流降到深度睡眠模式的程度,但是在想要通过中断请求立即重新开始处理或者想要频繁地进行间歇运行时是一种有效的模式。
- ➢ 深度睡眠模式:通过执行深度睡眠指令进入深度睡眠模式。深度睡眠模式是停止高速系统时钟振荡电路和高速内部振荡器的振荡并且停止整个系统的模式。能大幅度地降低芯片的工作电流。因为深度睡眠模式能通过中断请求来解除,所以也能进行间歇运行。但是,在 X1 时钟的情况下,因为在解除深度睡眠模式时需要确保振荡稳定的等待时间,所以如果一定要通过中断请求立即开始处理,就必须选择睡眠模式。
- ➤ 部分掉电的深度睡眠模式:通过预先配置 PMUKEY 指令许可并执行深度睡眠指令进入部分掉电的深度睡眠模式。部分掉电的深度睡眠模式是与深度睡眠模式相比会停掉外围的供电,跟深度睡眠模式相比能进一步降低芯片的工作电流。部分掉电的深度睡眠模式能通过外部中断、键入中断、RTC 中断、15bit 间隔中断及 WDT 中断请求来解除,所以也能进行间歇运行。

除部分掉电的深度睡眠模式外的任何一种模式中,寄存器、标志和数据存储器全部保持设定为待机模式前的内容,并且还保持输入/输出端口的输出锁存器和输出缓冲器的状态。部分掉电的深度睡眠模式解除时需要重新初始化外围模块功能。

### 5.7 复位功能

以下7种方法产生复位信号。

- 1) 通过RESETB引脚输入外部复位。
- 2) 通过看门狗定时器的程序失控检测产生内部复位。
- 3) 通过上电复位(POR)电路的电源电压和检测电压的比较产生内部复位。
- 通过电压检测电路(LVD)的电源电压和检测电压的比较产生内部复位。
- 5) 因存取非法存储器而产生内部复位。
- 6) 软件复位。

内部复位和外部复位相同,在产生复位信号后,从写在地址0000H和0001H中的地址开始执行程序。

# 5.8 中断功能

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多32个中断请求(IRQ)输入,以及1个不可屏蔽中断(NMI)输入,另外,处理器还支持多个内部异常。

本产品对32个可屏蔽中断请求(IRQ)和1个不可屏蔽中断(NMI)进行了处理,详见用户使用手册对应章节。中断源的实际个数因产品而不同。



## 5.9 实时时钟(RTC)

实时时钟(RTC)有以下功能。

- ▶ 具有年、月、星期、日、小时、分钟和秒的计数器
- ▶ 固定周期中断功能(周期: 0.5秒、1秒、1分钟、1小时、1日、1个月)
- ▶ 闹钟中断功能(闹钟:星期、小时、分钟)
- ▶ 1Hz的引脚输出功能
- ▶ 支持副系统时钟或者主系统时钟的分频作为RTC的运行时钟
- > 实时时钟中断信号(INTRTC)能用作深度睡眠模式的唤醒
- ▶ 支持大范围的时钟校正功能

只有在选择副系统时钟(32.768KHz)或者主系统时钟的分频作为 RTC 的运行时钟的情况下,才能进行年、月、星期、日、小时、分钟和秒的计数。当选择低速内部振荡器时钟(15KHz)时,只能使用固定周期中断功能。

### 5.10 看门狗定时器

1 通道 WWDT, 17bit 看门狗定时器通过选项字节设定计数运行。看门狗定时器以低速内部振荡器时钟 (15KHz)运行。看门狗定时器用于检测程序失控。在检测到程序失控时,产生内部复位信号。

下述情况判断为程序失控:

- ▶ 当看门狗定时器计数器发生上溢时
- ▶ 当对看门狗定时器的允许寄存器(WDTE)执行1位操作指令时
- ▶ 当给WDTE寄存器写"ACH"以外的数据时
- ▶ 在窗口关闭期间给 WDTE 寄存器写数据时

# 5.11 SysTick 定时器

这个定时器是实时操作系统专用的,但也可以作为一个标准的递减计数器使用。

它的特点为: 24 位递减计数器自装填能力计数器达到 0 时,有可屏蔽的系统中断的产生。

www.mcu.com.cn 15 / 50 Rev.0.1.0



### 5.12 定时器 Timer4

本产品内置2个含有4通道16位定时器的定时器单元Timer4。每个定时单元,既能分别用作独立的定时器, 也能组合多个通道用作高级的定时器功能。

有关各功能的详细内容, 请参照下表。

|   | 独立通道运行功能        | 多通道联动运行功能 |           |  |
|---|-----------------|-----------|-----------|--|
| • | 间隔定时器           | •         | 单触发脉冲输出   |  |
| • | 方波输出            | •         | PWM 输出    |  |
| • | 外部事件计数器         | •         | 多重 PWM 输出 |  |
| • | 分频器             |           |           |  |
| • | 输入脉冲间隔的测量       |           |           |  |
| • | 输入信号的高/低电平宽度的测量 |           |           |  |
| • | 延迟计数器           |           |           |  |

### 5.12.1 独立通道运行功能

独立通道运行功能是能不受其他通道运行模式的影响而独立使用任意通道的功能。独立通道运行功能能用 作以下模式:

- 1) 间隔定时器:能用作以固定间隔产生中断(INTTM)的基准定时器。
- 2) 方波输出:每当产生INTTM中断时,就触发翻转,从定时器输出引脚(TO)输出50%占空比的方波。
- 3) 外部事件计数器:对定时器输入引脚(TI)的输入信号的有效边沿进行计数,如果达到规定次数,就 能用作产生中断的事件计数器。
- 4) 分频器功能(只限于单元0的通道0):对定时器输入引脚(TI00)的输入时钟进行分频,然后从输出引脚(TO00)输出。
- 5) 输入脉冲间隔的测量:在定时器输入引脚(TI)的输入脉冲信号的有效边沿开始计数并且在下一个脉冲的有效边沿捕捉计数值,从而测量输入脉冲的间隔。
- 6) 输入信号的高/低电平宽度的测量:在定时器输入引脚(TI)的输入信号的一个边沿开始计数并且在另一个边沿捕捉计数值,从而测量输入信号的高电平或者低电平的宽度。
- 7) 延迟计数器:在定时器输入引脚(TI)的输入信号的有效边沿开始计数并且在经过任意延迟期间后产生中断。

# 5.12.2 多通道联动运行功能

多通道联动运行功能可将主控通道(主要控制周期的基准定时器)和从属通道(遵从主控通道运行的定时器)组合实现的功能。多通道联动运行功能能用作以下模式:

- 1) 单触发脉冲输出:将2个通道成对使用,生成能任意设定输出时序和脉宽的单触发脉冲。
- 2) PWM(Pulse Width Modulation)输出:将2个通道成对使用,生成能任意设定周期和占空比的脉冲。
- 3) 多重PWM(Pulse Width Modulation)输出:能通过扩展PWM功能并且使用1个主控通道和多个从属通道,以固定周期生成最多7种任意占空比的PWM信号。

www.mcu.com.cn 16 / 50 Rev.0.1.0



## 5.12.3 8 位定时器运行功能

8位定时器运行功能可将16位定时器通道用作2个8位定时器通道的功能。(只能使用通道1和通道3)

# 5.12.4 LIN-bus 支持功能

Timer4 单元可用于检查 LIN-bus 通信中的接收信号是否适合 LIN-bus 通信格式。

- 1) 唤醒信号的检测:在UART串行数据输入引脚(RxD)的输入信号的下降沿开始计数并且在上升沿捕捉计数值,从而测量低电平宽度。如果该低电平宽度大于等于某固定值,就认为是唤醒信号。
- 2) 间隔场的检测:在检测到唤醒信号后,从UART串行数据输入引脚(RxD)的输入信号的下降沿开始 计数并且在上升沿捕捉计数值,从而测量低电平宽度。如果该低电平宽度大于等于某固定值,就认为 是间隔场。
- 3) 同步场脉宽的测量:在检测到间隔场后,测量UART串行数据输入引脚(RxD)的输入信号的低电平 宽度和高电平宽度。根据以此方式测量的同步场的位间隔,计算波特率。

### 5.13 EPWM 输出控制电路

使用Timer4的PWM输出功能实现。该EPWM带死区控制输出,能实现一个直流电机或者两个步进电机的控制。

# 5.14 15 位间隔定时器

本产品内置一个15位间隔定时器,可按事先设定的任意时间间隔产生中断(INTIT),可用于从深度睡眠模式中唤醒。

### 5.15 时钟输出/蜂鸣器输出控制电路

时钟输出控制器用于给外围IC提供时钟,蜂鸣器输出控制器用于输出蜂鸣器频率的方波。由专门的引脚实现时钟输出或者蜂鸣器输出。

# 5.16 通用串行通讯单元

本产品内置2个通用串行通讯单元,每个单元最多有2个串行通讯通道。能实现标准SPI、简易SPI、UART和简易I<sup>2</sup>C的通信功能。

www.mcu.com.cn 17 / 50 Rev.0.1.0



### 5.16.1 3线串行接口(简易 SPI)

与主控设备输出的串行时钟(SCK)同步进行数据的发送和接收。

这是使用1条串行时钟(SCK)、1条发送串行数据(SO)和1条接收串行数据(SI)共3条通信线进行通信的时钟同步通信接口。

#### [数据的发送和接收]

- ▶ 7位或者8位的数据长度
- 发送和接收数据的相位控制
- ➤ MSB/LSB优先的选择

#### [时钟控制]

- ▶ 主控或者从属的选择
- ▶ 输入/输出时钟的相位控制
- 由预分频器和通道内部计数器产生的传送周期
- ▶ 最大传送速率

主控通信: 最大值 Fclk/2 从属通信: 最大值 FMCK/6

#### [中断功能]

▶ 传送结束中断、缓冲器空中断

#### [错误检测标志]

▶ 溢出错误

# 5.16.2 带从属片选功能的简易 SPI

支持从属片选输入功能的SPI串行通信接口。这是使用一个从属片选输入(SSI)、1条串行时钟(SCK)、1条发送串行数据(SO)和1条接收串行数据(SI)共4条通信线进行通信的时钟同步通信接口。 [数据的发送和接收]

- ▶ 7位或者8位的数据长度
- 发送和接收数据的相位控制
- ➤ MSB/LSB优先的选择
- > 发送和接收数据的电平设定

#### [时钟控制]

- ▶ 输入/输出时钟的相位控制
- ▶ 由预分频器和通道内部计数器产生的传送周期
- 最大传送速率

从属通信: 最大值 FMCK/6

#### [中断功能]

▶ 传送结束中断、缓冲器空中断

#### [错误检测标志]

▶ 溢出错误



#### 5.16.3 **UART**

通过串行数据发送(TxD)和串行数据接收(RxD)共2条线进行异步通信的功能。使用这2条通信线,按数据帧(由起始位、数据、奇偶校验位和停止位构成)与其他通信方进行异步(使用内部波特率)的数据发送和接收。能通过使用发送专用(偶数通道)和接收专用(奇数通道)共2个通道来实现全双工UART通信,而且还能通过组合Timer4单元和外部中断(INTPO)来支持LIN-bus。

#### [数据的发送和接收]

- ▶ 7位、8位或者9位的数据长度
- ➤ MSB/LSB优先的选择
- ▶ 发送和接收数据的电平设定、反相的选择
- ▶ 奇偶校验位的附加、奇偶校验功能
- ▶ 停止位的附加、停止位的检测

#### [中断功能]

- ▶ 传送结束中断、缓冲器空中断
- ▶ 帧错误、奇偶校验错误或者溢出错误引起的错误中断

#### [错误检测标志]

▶ 帧错误、奇偶校验错误、溢出错误

#### [LIN-bus功能]

- ▶ 唤醒信号的检测
- ▶ 间隔场(BF)的检测
- ▶ 同步场的测量、波特率的计算

### 5.16.4 简易 I<sup>2</sup>C

通过串行时钟(SCL)和串行数据(SDA)共2条线与多个设备进行时钟同步通信的功能。因为此简易I<sup>2</sup>C 是为了与闪存、A/D转换器等设备进行单通信而设计的,所以只能用作主控设备。开始条件和停止条件与操作 控制寄存器一样,必须遵守AC特性,通过软件进行处理。

#### [数据的发送和接收]

- ▶ 主控发送、主控接收(只限于单主控的主控功能)
- ➤ ACK输出功能、ACK检测功能
- ▶ 8位数据长度(在发送地址时,用高7位指定地址,用最低位进行R/W控制)
- ▶ 通过软件产生开始条件和停止条件

#### [中断功能]

▶ 传送结束中断

#### [错误检测标志]

➤ ACK错误、溢出错误

#### [简易I2C不支持的功能]

- ▶ 从属发送、从属接收
- ▶ 多主控功能(仲裁失败检测功能)
- ▶ 等待检测功能



### 5.17 标准串行接口 SPI

串行接口 SPI 有以下 2 种模式:

- 运行停止模式:这是用于不进行串行传送时的模式,能降低功耗
- ▶ 3-wire 串行 I/O 模式:此模式通过串行时钟(SCK)和串行数据总线(MISO 和 MOSI)的 3 条线,与 多个设备进行 8 位或 16 位数据传送。

### 5.18 标准串行接口 IICA

串行接口 IICA 有以下 3 种模式:

- ▶ 运行停止模式:这是用于不进行串行传送时的模式,能降低功耗。
- ▶ I²C总线模式(支持多主控): 此模式通过串行时钟(SCLA)和串行数据总线(SDAA)的2条线,与多个设备进行8位数据传送。符合I²C总线格式,主控设备能在串行数据总线上给从属设备生成"开始条件"、"地址"、"传送方向的指示"、"数据"和"停止条件"。从属设备通过硬件自动检测接收到的状态和数据。能通过此功能简化应用程序的I²C总线控制部分。因为串行接口IICA的SCLA引脚和SDAA引脚用作漏极开路输出,所以串行时钟线和串行数据总线需要上拉电阻。
- ▶ 唤醒模式:在深度睡眠模式中,当接收到来自主控设备的扩展码或者本地站地址时,能通过产生中断请求信号(INTIICA)解除深度睡眠模式。通过IICA控制寄存器进行设定。

www.mcu.com.cn 20 / 50 Rev.0.1.0



# 5.19 模数转换器 (ADC)

本产品内置12位分辨率的模数转换器SARADC,可将模拟输入转换为数字值,支持9个通道的ADC模拟输入(ANI0~ANI17)。该ADC含有以下的功能:

- ▶ 12位分辨率、转换速率500Ksps
- ▶ 触发方式:支持软件触发,硬件触发和待机状态下的硬件触发
- ▶ 诵道选择:支持单诵道选择和多诵道扫描两种模式
- ▶ 转换模式:支持单次转换和连续转换
- ➤ 工作电压: 支持1.8V < VDD < 4.5V的工作电压范围
- ▶ 可检测内置基准电压(1.45V)和温度传感器

ADC 能通过下述的模式组合设定各种A/D 转换模式。

| 7 130 22 22 1 | THE BLACK CHAINS WALL SCHOOL CONTRACT |                                                                                     |  |  |  |  |  |
|---------------|---------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| 触发模式          | 软件触发                                  | 通过软件操作来开始转换。                                                                        |  |  |  |  |  |
|               | 硬件触发无等待模式                             | 通过检测硬件触发来开始转换。                                                                      |  |  |  |  |  |
|               | 硬件触发等待模式                              | 在切断电源的转换待机状态下,通过检测硬件触发来接通电源,在经过<br>A/D 电源稳定等待时间后自动开始转换。                             |  |  |  |  |  |
|               | 选择模式                                  | 选择1 个通道的模拟输入,进行A/D 转换。                                                              |  |  |  |  |  |
| 通道选择模式        | 扫描模式                                  | 按顺序对4个通道的模拟输入进行A/D转换。能选择ANIO~ANI15中连续的4个通道作为模拟输入。                                   |  |  |  |  |  |
| 转换模式          | 单次转换模式                                | 对所选通道进行1 次A/D 转换。                                                                   |  |  |  |  |  |
| <b>粒探偿式</b>   | 连续转换模式                                | 对所选通道进行连续的A/D 转换,直到被软件停止为止。                                                         |  |  |  |  |  |
| 采样时间/转换时间     | 采样时钟数/转换时钟数                           | 采样时间可由寄存器设定,采样时钟数可设置为 4 个 clk(默认值)或者 8 个 clk。当采样时钟数为 4 个 clk 时,采样+转换总时钟数为 16 个 clk。 |  |  |  |  |  |

# 5.20 两线串行调试端口(SW-DP)

ARM 的 SW-DP 接口允许通过串行线调试工具连接到单片机。

www.mcu.com.cn 21 / 50 Rev.0.1.0



### 5.21 安全功能

# 5.21.1 闪存 CRC 运算功能(高速 CRC、通用 CRC)

通过CRC运算检测闪存的数据错误。

能根据不同的用途和使用条件,分别使用以下2个CRC。

- ▶ 高速 CRC: 在初始化程序中, 能停止 CPU 的运行并且高速检查整个代码闪存区。
- ▶ 通用 CRC: 在 CPU 运行中,不限于代码闪存区而能用于多用途的检查。

### 5.21.2 SFR 保护功能

防止因 CPU 失控而改写重要的 SFR (Special Function Register)。

### 5.21.3 非法存储器存取检测功能

检测对非法存储器区域(没有存储器的区域或者存取受限的区域)的非法存取。

# 5.21.4 频率检测功能

能使用 Timer4 单元自检测 CPU 或外围硬件时钟频率。

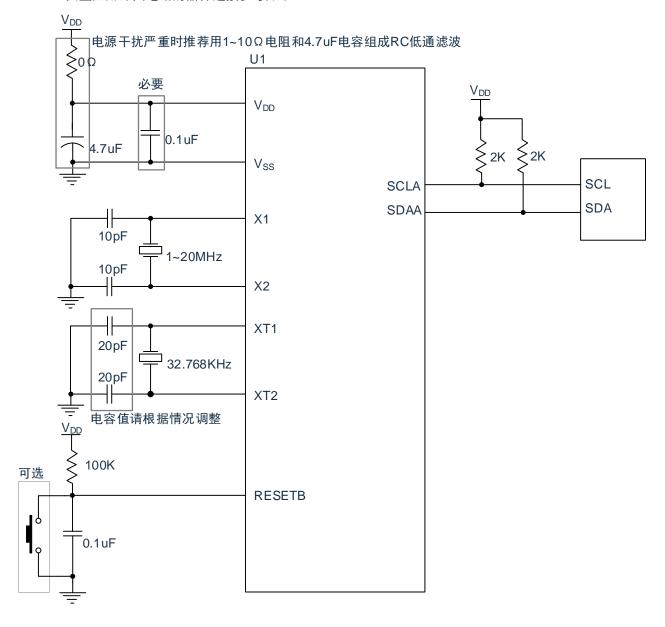
# 5.21.5 A/D 测试功能

通过对 A/D 模拟输入通道(ANI)、温度传感器输出电压以及内部基准电压进行 A/D 转换来对 A/D 转换器 进行自检测。

# 5.21.6 输入/输出端口的数字输出信号电平检测功能

在输入/输出端口为输出模式时,能读引脚的输出电平。

# 5.22 按键功能


能通过按键中断输入引脚(KR2、KR3)输入下降沿,产生键中断(INTKR)。



# 6 电气特性

# 6.1 典型应用外围电路

MCU 典型应用外围电路的器件连接参考如下:





# 6.2 绝对最大电压额定值

 $(T_A = -20 \sim 70^{\circ}C)$ 

| 项目     | 符号       | 条件                                       | 额定值                                     | 单位 |
|--------|----------|------------------------------------------|-----------------------------------------|----|
| 电源电压   | $V_{DD}$ | -                                        | -0.5~6.5                                | ٧  |
| 输入电压   | Vı       | P00~P02、P12~P13、P20~P21、P30~P33<br>EXCLK | -0.3~V <sub>DD</sub> +0.3 <sup>注1</sup> | <  |
| 输出电压   | Vo       | P00~P02、P12~P13、P20~P21、P30~P32          | -0.3~V <sub>DD</sub> +0.3 <sup>注1</sup> | V  |
| 模拟输入电压 | Val      | ANI0~ANI17                               | -0.3~V <sub>DD</sub> +0.3               | V  |

注 1: 不超过 6.5V。

注意:即使是各项目中的 1 个项目瞬间超过绝对最大额定值,也可能降低产品的质量。绝对最大额定值是可能给产品带来物理性损伤的额定值,必须在不超过额定值的状态下使用产品。

#### 备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 将 Vss 作为基准电压。
- 3. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 24 / 50 Rev.0.1.0



# 6.3 绝对最大电流额定值

 $(T_A = -20 \sim 70^{\circ}C)$ 

| 项目      | 符号               |       | 条件                              |         |    |
|---------|------------------|-------|---------------------------------|---------|----|
|         |                  | 每个引脚  | P00~P02、P20~P21、P30~P33         | -10     | mA |
|         | I <sub>OH1</sub> | 己即人辻  | P30~P33                         | -50     | mA |
| 高电平输出电流 |                  | 引脚合计  | P00~P02、P20~P21                 | -70     | mA |
|         | Laure            | 每个引脚  | D42 D42                         | -3      | mA |
|         | Іон2             | 引脚合计  | P12~P13                         | -6      | mA |
|         | I <sub>OL1</sub> | 每个引脚  | P00~P02、P12~P13、P20~P21、P30~P33 | 20      | mA |
|         |                  | 리빠스ㅗ  | P30~P33                         | 60      | mA |
| 低电平输出电流 |                  | 引脚合计  | P00~P02、P20~P21                 | 70      | mA |
|         | l <sub>OL2</sub> | 每个引脚  | D42 D42                         | 10      | mA |
|         |                  | 引脚合计  |                                 |         | mA |
| 工作环境温度  | TA               | 通常运行时 |                                 | -20~70  | °C |
| 工作环境温度  | IA               | 闪存编程时 |                                 | -20~70  |    |
| 保存温度    | T <sub>stg</sub> |       | -                               | -65~150 | °C |

注意:即使是各项目中的 1 个项目瞬间超过绝对最大额定值,也可能降低产品的质量。绝对最大额定值是可能给产品带来物理性损伤的额定值,必须在不超过额定值的状态下使用产品。

#### 备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 25 / 50 Rev.0.1.0



# 6.4 振荡电路特性

# 6.4.1 X1, XT1 特性

 $(T_A = -20 \sim 70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS} = 0V)$ 

| 项目              | 谐振器         | 条件                         | 最小值 | 典型值    | 最大值  | 单位  |
|-----------------|-------------|----------------------------|-----|--------|------|-----|
| X1 时钟振荡频率(Fx)   | 陶瓷谐振器/晶体谐振器 | 1.8V≪V <sub>DD</sub> ≪4.5V | 4.0 | -      | 16.0 | MHz |
| XT1 时钟振荡频率(FxT) | 晶体谐振器       | 1.8V≤V <sub>DD</sub> ≤4.5V | 32  | 32.768 | 35   | KHz |

#### 备注:

- 1. 只表示振荡电路的频率容许范围,指令执行时间请参照 AC 特性。
- 2. 请委托谐振器厂商给予安装电路后的评估,并且在确认振荡特性后使用。
- 3. 低温规格值由设计保证,量产不测低温条件。

# 6.4.2 内部振荡器特性

 $(T_{A}=-20\sim70^{\circ}C$ ,  $1.8V \le V_{DD} \le 4.5V$ ,  $V_{SS}=0V$ )

| 谐振器                                | 条件                        | 最小值               | 典型值 | 最大值              | 单位  |
|------------------------------------|---------------------------|-------------------|-----|------------------|-----|
| 高速内部振荡器的时钟频率(FIII) <sup>注1,2</sup> | -                         | 1.0               | -   | 64.0             | MHz |
| 高速内部振荡器的时钟频率精度                     | T <sub>A</sub> = -20~70°C | -2 <sup>注 3</sup> | -   | +2 <sup>±3</sup> | %   |
| 低速内部振荡器的时钟频率(F止)                   | -                         | 13.5              | 15  | 16.5             | KHz |

注 1: 通过选项字节选择高速内部振荡器的频率。

注 2: 只表示振荡电路的特性,指令执行时间请参照 AC 特性。

备注: 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 26 / 50 Rev.0.1.0



# 6.5 DC 特性

# 6.5.1 引脚特性

 $(T_A = -20 \sim 70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS} = 0V)$ 

| 项目                 | 符号               | 条件                            |                            | 最小值 | 典型值 | 最大值                 | 单位   |
|--------------------|------------------|-------------------------------|----------------------------|-----|-----|---------------------|------|
|                    |                  | P00~P02、P20~P21、P30~P33       | 1.8V≤V <sub>DD</sub> ≤4.5V | _   |     | -8.0 <sup>注 2</sup> | mA   |
|                    |                  | 单独1个引脚                        | -20~70°C                   | _   | _   | -0.0                | ША   |
|                    |                  |                               | 4.0V≤V <sub>DD</sub> ≤4.5V |     |     | -40.0               | mA   |
|                    |                  | P30~P33                       | -20~70°C                   | -   | -   | -40.0               | IIIA |
|                    |                  | 引脚合计(占空比≤70%时 <sup>注3</sup> ) | 2.4V≤V <sub>DD</sub> <4.0V | -   | -   | -8.0                | mA   |
|                    | Laure            |                               | 1.8V≤V <sub>DD</sub> <2.4V | -   |     | -4.0                | mA   |
| <b>宣出</b> 亚        | <b>І</b> он1     |                               | 4.0V≤V <sub>DD</sub> ≤4.5V |     |     | -60.0               | mA   |
| 高电平                |                  | P00~P02、P20~P21               | -20~70°C                   | -   |     | -60.0               | IIIA |
| 输出电流 <sup>注1</sup> |                  | 引脚合计(占空比≤70%时 <sup>注3</sup> ) | 2.4V≤V <sub>DD</sub> <4.0V | -   | -   | -10.0               | mA   |
|                    |                  |                               | 1.8V≤V <sub>DD</sub> <2.4V | -   |     | -5.0                | mA   |
|                    |                  | 引脚合计(占空比≤70%时 <sup>注3</sup> ) | 1.8V≤V <sub>DD</sub> ≤4.5V |     |     | 100                 | т Л  |
|                    |                  | 分脚音灯(百垒比《70%的 °)              | -20~70°C                   |     |     | -100                | mA   |
|                    | Louis            | P12~P13 单独 1 个引脚              | 1.8V≤V <sub>DD</sub> ≤4.5V | -   | -   | -2.0 <sup>注 2</sup> | mA   |
|                    | I <sub>OH2</sub> | 引脚合计(占空比≤70%时 <sup>±3</sup> ) | 1.8V≤V <sub>DD</sub> ≤4.5V | -   | -   | -4                  | mA   |

- 注 1: 这是即使电流从 VDD 引脚流到输出引脚也保证器件工作的电流值。
- 注 2: 不能超过合计的电流值。
- 注 3: 这是"占空比≤70%条件"的输出电流值。改为占空比>70%的输出电流值能用以下的计算式进行计算(将占空比改为 n%的情况)。
  - 引脚合计的输出电流=(I<sub>OH</sub>×0.7)/(n×0.01)
  - <计算例子>I<sub>OH</sub>= -10.0mA、n=80%
  - 引脚合计的输出电流= (-10.0×0.7)/(80×0.01) ≈ -8.7mA
  - 各引脚的电流不会因占空比而变,而且不会流过绝对最大额定值以上的电流。

#### 备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

www.mcu.com.cn 27 / 50 Rev.0.1.0



 $(T_{A}=-20\sim70^{\circ}C, 1.8V\leq V_{DD}\leq4.5V, V_{SS}=0V)$ 

| 项目                        | 符号               | 条件                                      |                                        | 最小值 | 典型值 | 最大值               | 单位 |
|---------------------------|------------------|-----------------------------------------|----------------------------------------|-----|-----|-------------------|----|
|                           |                  | P00~P02、P20~P21、<br>P30~P33<br>单独 1 个引脚 | 1.8V≤V <sub>DD</sub> ≤4.5V<br>-20~70°C | -   | -   | 18 <sup>注</sup> 2 | mA |
|                           |                  | P30~P33                                 | 4.0V≤V <sub>DD</sub> ≤4.5V<br>-20~70°C | -   | -   | 50                | mA |
|                           | I <sub>OL1</sub> | 引脚合计(占空比≤70%时 <sup>注3</sup> )           | 2.4V≤V <sub>DD</sub> <4.0V             | -   | -   | 15                | mA |
|                           |                  |                                         | 1.8V≤V <sub>DD</sub> <2.4V             | -   | -   | 8                 | mA |
| 低电平输出<br>电流 <sup>注1</sup> |                  | P00~P02、P20~P21                         | 4.0V≤V <sub>DD</sub> ≤4.5V<br>-20~70°C | -   | -   | 60                | mA |
|                           |                  | 引脚合计(占空比≤70%时 <sup>注3</sup> )           | 2.4V≤V <sub>DD</sub> <4.0V             | -   | -   | 20                | mA |
|                           |                  |                                         | 1.8V≤V <sub>DD</sub> <2.4V             | -   | -   | 10                | mA |
|                           |                  | 引脚合计<br>(占空比≤70%时 <sup>注3</sup> )       | 1.8V≤V <sub>DD</sub> ≤4.5V<br>-20~70°C | -   | -   | 80                | mA |
|                           | lol2             | P12~P13 单独 1 个引脚                        | 1.8V≤V <sub>DD</sub> ≤4.5V             |     |     | 10 <sup>注 2</sup> | mA |
|                           |                  | 引脚合计<br>(占空比≤70%时 <sup>注3</sup> )       | 1.8V≤V <sub>DD</sub> ≤4.5V             |     |     | 16                | mA |

- 注 1: 这是即使电流从输出引脚流到 Vss 引脚也保证器件工作的电流值。
- 注 2: 不能超过合计的电流值。
- 注 3: 这是"占空比≤70%条件"的输出电流值。改为占空比>70%的输出电流值能用以下的计算式进行计算(将占空比改为 n%的情况)。

引脚合计的输出电流= $(I_{OL} \times 0.7)/(n \times 0.01)$ 

<计算例子>IoL=10.0mA、n=80%

引脚合计的输出电流=(10.0×0.7)/(80×0.01) ≈ 8.7mA

各引脚的电流不会因占空比而变,而且不会流过绝对最大额定值以上的电流。

#### 备注:

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \le V_{DD} \le 4.5V, V_{SS}=0V)$ 

| 71A 20 10 0, 110 1 10 0 0 0 0 0 0 0 0 0 0 0 0 |                  |                                    |       |             |     |                    |    |  |  |  |
|-----------------------------------------------|------------------|------------------------------------|-------|-------------|-----|--------------------|----|--|--|--|
| 项目                                            | 符号               | 条件                                 |       | 最小值         | 典型值 | 最大值                | 单位 |  |  |  |
| 高电平输入电压                                       | V <sub>IH1</sub> | P00~P02、P12~P13<br>P20~P21、P30~P33 | 施密特输入 | $0.8V_{DD}$ | -   | $V_{DD}$           | ٧  |  |  |  |
| 低电平输入电压                                       | V <sub>IL1</sub> | P00~P02、P12~P13<br>P20~P21、P30~P33 | 施密特输入 | 0           | -   | 0.2V <sub>DD</sub> | ٧  |  |  |  |

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。



#### $(T_{A}=-20\sim70^{\circ}C, 1.8V \le V_{DD} \le 4.5V, V_{SS}=0V)$

| 项目      | 符号               | 条件                          | <del>*</del>                                          | 最小值                  | 典型值 | 最大值 | 单位 |
|---------|------------------|-----------------------------|-------------------------------------------------------|----------------------|-----|-----|----|
|         |                  |                             | 4.0V≤V <sub>DD</sub> ≤4.5V、                           | V <sub>DD</sub> -1.5 | _   | -   | V  |
|         |                  |                             | I <sub>OH1</sub> = -8.0mA                             | V DD 1.0             |     |     | •  |
|         |                  |                             | 4.0V≤V <sub>DD</sub> ≤4.5V、                           | V <sub>DD</sub> -0.7 | _   | _   | V  |
|         | V <sub>OH1</sub> | P00~P02、P20~P21、            | I <sub>OH1</sub> = -4.0mA                             | V DD 0.1             |     |     | •  |
|         | VOITI            | P30~P33                     | 2.4V≤V <sub>DD</sub> ≤4.5V、                           | V <sub>DD</sub> -0.6 | _   | _   | V  |
|         |                  |                             | I <sub>OH1</sub> = -2.0mA                             | 100 0.0              |     |     |    |
|         |                  |                             | 1.8V≤V <sub>DD</sub> ≤4.5V、                           | V <sub>DD</sub> -0.5 | _   | _   | V  |
| 高电平     |                  |                             | I <sub>OH1</sub> = -1mA                               | 100 000              |     |     |    |
| 输出电压    |                  |                             | 4.0V≤V <sub>DD</sub> ≤4.5V、                           | V <sub>DD</sub> -1.5 | _   | -   | V  |
|         |                  |                             | I <sub>OH2</sub> = -2mA                               |                      |     |     |    |
|         |                  |                             | 4.0V≤V <sub>DD</sub> ≤4.5V                            | V <sub>DD</sub> -0.7 | _   | -   | V  |
|         | V <sub>OH2</sub> | P12~P13                     | I <sub>OH2</sub> = -1mA                               |                      |     |     |    |
|         |                  |                             | 2.4V≤V <sub>DD</sub> ≤4.5V                            | V <sub>DD</sub> -0.6 | -   | -   | V  |
|         |                  |                             | I <sub>OH2</sub> = -0.4mA                             |                      |     |     |    |
|         |                  |                             | 1.8V≤V <sub>DD</sub> ≤4.5V                            | V <sub>DD</sub> -0.5 | -   | -   | V  |
|         |                  |                             | I <sub>OH2</sub> = -0.2mA                             |                      |     |     |    |
|         |                  | P00~P02、P20~P21、<br>P30~P33 | 4.0V≤V <sub>DD</sub> ≤4.5V                            | -                    | -   | 1.2 | V  |
|         |                  |                             | I <sub>OL1</sub> =18.0mA                              | -                    |     |     |    |
|         |                  |                             | 4.0V≤V <sub>DD</sub> ≤4.5V                            |                      | -   | 0.6 | V  |
|         | V <sub>OL1</sub> |                             | I <sub>OL1</sub> =9.0mA                               |                      |     |     |    |
|         |                  |                             | 2.4V≪V <sub>DD</sub> ≪4.5V                            | -                    | -   | 0.5 | V  |
|         |                  |                             | I <sub>OL1</sub> =5.0mA                               |                      |     |     |    |
| /IT 由 亚 |                  |                             | 1.8V≪V <sub>DD</sub> ≪4.5V                            | -                    | -   | 0.4 | V  |
| 低电平     |                  |                             | I <sub>OL1</sub> =2.0mA<br>4.0V≤V <sub>DD</sub> ≤4.5V |                      |     |     |    |
| 输出电压    |                  |                             | I <sub>OL2</sub> =8.0mA                               | -                    | -   | 1.2 | V  |
|         |                  |                             | 4.0V≤V <sub>DD</sub> ≤4.5V                            |                      |     |     |    |
|         |                  |                             | I <sub>OL2</sub> =4.0mA                               | -                    | -   | 0.7 | V  |
|         | V <sub>OL2</sub> | P12~P13                     | 2.4V≤V <sub>DD</sub> ≤4.5V                            |                      |     |     |    |
|         |                  |                             | I <sub>OL2</sub> =2mA                                 | -                    | -   | 0.4 | V  |
|         |                  |                             | 1.8V≤V <sub>DD</sub> ≤4.5V                            |                      |     | 0.4 |    |
|         |                  |                             | I <sub>OL2</sub> =1mA                                 | -                    | -   |     | V  |

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。



#### $(T_{A}=-20\sim70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$

| 项目           | 符号                | \$                         | 条件                                                | 最小值 | 典型值 | 最大值 | 单位 |
|--------------|-------------------|----------------------------|---------------------------------------------------|-----|-----|-----|----|
| ***          | Ішн1              | P00、P20~P21、<br>P30~P33    | V <sub>I</sub> =V <sub>DD</sub>                   | -   |     | 1   | μΑ |
| 高电平 输入漏电流    | I <sub>LIH2</sub> | P01~P02、P12~P13            | V <sub>I</sub> =V <sub>DD</sub> ,输入端口和外<br>部时钟输入时 | -   | 1   | 1   | μΑ |
|              |                   |                            | V <sub>I</sub> =V <sub>DD</sub> ,连接谐振器时           | -   | -   | 10  | μΑ |
| lu en Tr     | ILIL1             | P00、P20~P21、<br>P30~P33    | V <sub>I</sub> =V <sub>SS</sub>                   | -   | -   | -1  | μΑ |
| 低电平<br>输入漏电流 | I <sub>LIL2</sub> | P01~P02、P12~P13            | V <sub>I</sub> =V <sub>SS</sub> ,输入端口和外<br>部时钟输入时 | -   | -   | -1  | μΑ |
|              |                   |                            | V⊫V <sub>SS</sub> ,连接谐振器时                         | -   | -   | -10 | μΑ |
| 内部上拉电阻       | Ru                | P00~P02<br>P20~P21、P30~P33 | V <sub>I</sub> =V <sub>SS</sub> ,输入端口时            | 10  | 30  | 50  | ΚΩ |
| 内部下拉电阻       | R₀                | P00~P02<br>P20~P21、P30~P33 | V <sub>I=</sub> V <sub>DD</sub> ,输入端口时            | 10  | 30  | 50  | ΚΩ |

- 1. 在没有特别指定的情况下,复用引脚的特性和端口引脚的特性相同。
- 2. 低温规格值由设计保证,量产不测低温条件。



## 6.5.2 电源电流特性

 $(T_A = -20 \sim 70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS} = 0V)$ 

| 项目     | 符号                             |                     |                             | 条件                                         |                                         | 最小值     | 典型值                                   | 最大值  | 单位         |     |     |   |
|--------|--------------------------------|---------------------|-----------------------------|--------------------------------------------|-----------------------------------------|---------|---------------------------------------|------|------------|-----|-----|---|
|        |                                |                     | 高速内部振荡器                     | FHOCO=64MHz, FIH=                          | Fhoco=64MHz $\sim$ FiH=64MHz $^{\pm}$ 3 |         | 3.9                                   | 4.7  | <b>∞</b> Λ |     |     |   |
|        |                                |                     | 同述內部派汤品                     | F <sub>HOCO</sub> =64MHz、F <sub>IH</sub> = | =32MHz <sup>∄</sup> 3                   | -       | 3.1                                   | 3.6  | mA         |     |     |   |
|        |                                | 运行 模式               | \- \cdot -                  | \= <b>\</b> -                              | ·- ·- ÷ ·=                              | 高速主系统时钟 | F <sub>M</sub> x=16MHz <sup>注</sup> 2 | 输入方波 | -          | 4.0 | 4.4 | A |
|        | I <sub>DD1</sub>               |                     | 同胚土系统的拼                     | FMX=TOIVITIZ                               | 连接晶振                                    | -       | 4.0                                   | 4.4  | mA         |     |     |   |
|        |                                | 17,20               | 可系统时钟许尔                     | E 00 700KL #4                              | 输入方波                                    | -       | 150                                   | 300  | ^          |     |     |   |
|        |                                |                     | <b>副</b> 水乳的 环色门            | F <sub>SUB</sub> =32.768KHz <sup>注 4</sup> | 连接晶振                                    | -       | 150                                   | 300  | uA         |     |     |   |
|        |                                |                     | 低速内部振荡器                     | F <sub>IL</sub> =15KHz <sup>注8</sup>       |                                         | -       | 150                                   | 300  | uA         |     |     |   |
|        | I <sub>DD2</sub>               | l <sub>DD2</sub> 模式 | 高速内部振荡器                     | FHOCO=64MHz、FIH=                           | =64MHz <sup>注 3</sup>                   | -       | 1.4                                   | 2.2  | mA         |     |     |   |
|        |                                |                     |                             | F <sub>HOCO</sub> =32MHz、F <sub>IH</sub> = | =32MHz <sup>∄</sup> 3                   | -       | 1.1                                   | 1.6  |            |     |     |   |
| 电源电流注1 |                                |                     | 高速主系统时钟                     | F 1GMLI¬ 注2                                | 输入方波                                    | -       | 0.8                                   | 1.2  | Λ          |     |     |   |
|        |                                |                     |                             | FMX=10IVIFIZ                               | 连接晶振                                    | -       | 8.0                                   | 1.2  | mA         |     |     |   |
|        |                                |                     | 교조상마나나 드                    |                                            | 输入方波                                    | -       | 80                                    | 220  | ^          |     |     |   |
|        |                                |                     | 副尔尔时 押巡门                    | F <sub>SUB</sub> =32.768KHz <sup>±</sup> 5 | 连接晶振                                    | -       | 80                                    | 220  | uA         |     |     |   |
|        |                                |                     | 低速内部振荡器                     | F <sub>IL</sub> =15KHz <sup>注8</sup>       |                                         | -       | 80                                    | 240  | uA         |     |     |   |
|        | I <sub>DD3</sub> <sup>注6</sup> | 悮八 ′                | T <sub>A</sub> = -20°C~70°C | A= -20°C~70°C VDD=3.0V                     |                                         | -       | 78                                    | 240  | uA         |     |     |   |
|        |                                |                     | T <sub>A</sub> = -20°C~70°C | V <sub>DD</sub> =3.0V                      | -                                       | 4.5     | 75                                    | uA   |            |     |     |   |

- 注 1: 这是流过 Vpp 的电流,包含输入引脚固定为 Vpp 或者 Vss 状态的输入漏电流。典型值: CPU 处于乘 法运算指令执行(Ipp1),且不包含外围工作电流。最大值: CPU 处于乘法运算指令执行(Ipp1),且包含 外围工作电流,但不包含流到 A/D 转换器、LVD 电路、I/O 端口以及内部上拉或者下拉电阻的电流,也不包含改写数据闪存时的电流。
- 注 2: 这是高速内部振荡器和副系统时钟停止振荡的情况。
- 注 3: 这是高速主系统时钟和副系统时钟停止振荡的情况。
- 注 4: 这是高速内部振荡器和高速主系统时钟停止振荡的情况。
- 注 5: 这是高速内部振荡器和高速主系统时钟停止振荡的情况。包含流到 RTC 的电流, 但是不包含流到 15 位间隔定时器和看门狗定时器的电流。
- 注 6: 不包含流到 RTC、15 位间隔定时器和看门狗定时器的电流。
- 注 7: 有关深度睡眠模式中副系统时钟运行时的电流值,请参照睡眠模式中副系统时钟运行时的电流值。
- 注 8: 这是高速内部振荡器,高速主系统时钟和副系统时钟停止振荡的情况。

- 1. FHOCO: 高速内部振荡器的时钟频率, FIH: 高速内部振荡器提供的系统时钟频率。
- 2. F<sub>SUB</sub>:外部副系统时钟频率(XT1/XT2时钟振荡频率)。
- 3. FMX: 外部主系统时钟频率(X1/X2时钟振荡频率)。
- 4. F<sub>L</sub>: 低速内部振荡器的时钟频率。
- 5. 典型值的温度条件是T<sub>A</sub>=25℃。
- 6. 低温规格值由设计保证,量产不测低温条件。



 $(T_A = -20 \sim 70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS} = 0V)$ 

| 参数            | 符号                                  | 条件                     | 最小值 | 典型值  | 最大值 | 单位 |
|---------------|-------------------------------------|------------------------|-----|------|-----|----|
| 低速内部振荡器工作电流   | IFIL <sup>注1</sup>                  | -                      | -   | 0.2  | -   | uA |
| RTC 工作电流      | I <sub>RTC</sub> <sup>注 1,2,3</sup> | -                      | -   | 0.04 | -   | uA |
| 15 位间隔定时器工作电流 | I <sub>IT</sub> <sup>注 1,2,4</sup>  | -                      | -   | 0.02 | -   | uA |
| 看门狗定时器工作电流    | lwdT <sup>注 1,2,5</sup>             | F <sub>IL</sub> =15KHz | -   | 0.22 | -   | uA |
| A/D 转换器工作电流   | I <sub>ADC</sub> <sup>注 1,6</sup>   | ADC @8MHz              | -   | 1.0  | -   | mA |
| LVD 工作电流      | ILVD <sup>注 1,7</sup>               | -                      | -   | 0.08 | -   | uA |

- 注1: 这是流过VDD的电流。
- 注2: 这是高速内部振荡器和高速系统时钟停止振荡的情况。
- 注3: 这是只流到实时时钟(RTC)的电流(不包含低速内部振荡器和XT1 振荡电路的工作电流)。在运行模式或者睡眠模式中实时时钟运行的情况下,微控制器的电流值为loda或者loda加上letc的值。另外,当选择低速内部振荡器时,必须加上letc。副系统时钟运行时的loda包含实时时钟的工作电流。
- 注4: 这是只流到15位间隔定时器的电流(不包含低速内部振荡器和XT1振荡电路的工作电流)。在运行模式或者睡眠模式中15位间隔定时器运行的情况下,微控制器的电流值为lop1或者lop2加上lπ的值。另外,当选择低速内部振荡器时,必须加上lFIL。
- 注5: 这是只流到看门狗定时器的电流(包含低速内部振荡器的工作电流)。在看门狗定时器运行的情况下,微控制器的电流值为lop3或者lop2或者lop3加上lwor的值。
- 注6: 这是只流到A/D转换器的电流。在运行模式或者睡眠模式中A/D转换器运行的情况下,微控制器的电流值为I<sub>DD1</sub>或者I<sub>DD2</sub>加上I<sub>ADC</sub>的值。
- 注7: 这是只流到LVD电路的电流。在LVD电路运行的情况下,微控制器的电流值为lob1或者lob2或者lob3加上lov的值。

- 1. F : 低速内部振荡器的时钟频率。
- 2. 典型值的温度条件是T<sub>A</sub>=25℃。
- 3. 低温规格值由设计保证,量产不测低温条件。



# 6.6 AC 特性

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

| 项目                                        | 符号                                     | 条件                          |                            | 最小值      | 典型值  | 最大值  | 单位  |
|-------------------------------------------|----------------------------------------|-----------------------------|----------------------------|----------|------|------|-----|
| 指令周期(最短指                                  | +                                      | 主系统时钟(F <sub>MAIN</sub> )运行 | 1.8V≤V <sub>DD</sub> ≤4.5V | 0.015625 | -    | 0.5  | us  |
| 令执行时间)                                    | Tcy                                    | 副系统时钟(F <sub>SUB</sub> )运行  | 1.8V≤V <sub>DD</sub> ≤4.5V | 28.5     | 30.5 | 31.3 | us  |
| 外部系统时钟频率                                  | F <sub>EX</sub>                        | 1.8V≤V <sub>DD</sub> ≤4.5V  | 1.8V≤V <sub>DD</sub> ≤4.5V |          |      | 16.0 | MHz |
| <b>外部</b> 分纸的 押                           | FEXS                                   | 1.8V≤V <sub>DD</sub> ≤4.5V  | 32.0                       | -        | 35.0 | KHz  |     |
| 外部系统时钟输入                                  | T <sub>EXH</sub>                       | 1.8V≤V <sub>DD</sub> ≤4.5V  | 1.8V≤V <sub>DD</sub> ≤4.5V |          |      | -    | ns  |
| 的高低电平宽度                                   | T <sub>EXHS</sub>                      | 1.8V≤V <sub>DD</sub> ≤4.5V  | 13.7                       | -        | -    | us   |     |
| TI00 ~TI03<br>TI10 ~TI13<br>输入的高低电平宽<br>度 | T <sub>TIH</sub><br>T <sub>TIL</sub>   | 1.8V≤V <sub>DD</sub> ≤4.5V  | 1/F <sub>MCK</sub> +10     | -        | -    | ns   |     |
| TO00 ~ TO03                               |                                        | 4.0V≤V <sub>DD</sub> ≤4.5V  |                            | -        | -    | 16   | MHz |
| TO10 ~ TO13                               | $F_{TO}$                               | 2.4V≤V <sub>DD</sub> <4.0V  |                            | -        | -    | 8    | MHz |
| 的输出频率                                     |                                        | 1.8V≤V <sub>DD</sub> <2.4V  |                            | -        | -    | 4    | MHz |
| CLKBUZ0                                   |                                        | 4.0V≤V <sub>DD</sub> ≤4.5V  |                            | -        | -    | 16   | MHz |
| CLKBUZ1 的输出                               | F <sub>PCL</sub>                       | 2.4V≤V <sub>DD</sub> <4.0V  | 2.4V≤V <sub>DD</sub> <4.0V |          | -    | 8    | MHz |
| 频率                                        |                                        | 1.8V≤V <sub>DD</sub> <2.4V  | 1.8V≤V <sub>DD</sub> <2.4V |          | -    | 4    | MHz |
| 中断输入的高低电<br>平宽度                           | T <sub>INTH</sub><br>T <sub>INTL</sub> | INTP0 ~ INTP3               | 1.8V≤V <sub>DD</sub> ≤4.5V | 1        | -    | -    | us  |
| 键中断输入的高低<br>电平宽度                          | $T_{KR}$                               | KR0 ~ KR7                   | 1.8V≤V <sub>DD</sub> ≤4.5V | 250      | -    | -    | ns  |
| RESETB 的低电平<br>宽度                         | T <sub>RSL</sub>                       | -                           |                            | 10       | -    | -    | us  |

- 1. FMCK: Timer4 单元的运行时钟频率。
- 2. 低温规格值由设计保证,量产不测低温条件。



# 6.7 外围功能特性

# 6.7.1 通用接口单元

#### (1) UART 模式

 $(T_{A}=-20~70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

|  | 话日   |                                        |                      | 规村  | 单位                  |      |
|--|------|----------------------------------------|----------------------|-----|---------------------|------|
|  | 项目   |                                        | <del>发</del> 什       | 最小值 | 最大值                 | 中亚   |
|  | 传送速率 | 1 0\/ < \/ < 1 E\/                     | -                    | -   | F <sub>MCK</sub> /6 | bps  |
|  |      | $1.8V \leqslant V_{DD} \leqslant 4.5V$ | 最大传送速率的理论值 Fмск=Fськ | -   | 10.6                | Mbps |

#### (2) 三线SPI模式(主控模式,内部时钟输出)

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

| (1A= -20~70 C, 1.8V \ VDD \ 4.5V, VSS=UV) |                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 符号                                        |                                                               | 条件                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 单位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           |                                                               | $4.0V \leqslant V_{DD} \leqslant 4.5V$                                                                                                                                                                                                                                                                                                                                        | 31.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | T <sub>KCY1</sub> ≥ 2/F <sub>CLK</sub>                        | 2.7V ≤ V <sub>DD</sub> ≤ 4.5V                                                                                                                                                                                                                                                                                                                                                 | 41.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| I KCY1                                    |                                                               | $2.4 \text{V} \leqslant \text{V}_{DD} \leqslant 4.5 \text{V}$                                                                                                                                                                                                                                                                                                                 | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           |                                                               | $1.8V \leqslant V_{DD} \leqslant 4.5V$                                                                                                                                                                                                                                                                                                                                        | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| TKH1<br>TKL1                              | 4.0V ≤ V <sub>DD</sub> ≤ 4.5V                                 |                                                                                                                                                                                                                                                                                                                                                                               | T <sub>KCY1</sub> /2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | $2.7 \text{V} \leqslant \text{V}_{DD} \leqslant 4.5 \text{V}$ |                                                                                                                                                                                                                                                                                                                                                                               | Тксү1/2-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | $2.4V \leqslant V_{DD} \leqslant 4.5V$                        |                                                                                                                                                                                                                                                                                                                                                                               | T <sub>KCY1</sub> /2-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | $1.8V \leqslant V_{DD} \leqslant 4.5V$                        |                                                                                                                                                                                                                                                                                                                                                                               | T <sub>KCY1</sub> /2-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| T <sub>SIK1</sub>                         | $4.0V \leqslant V_{DD} \leqslant 4.5V$                        |                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | $2.7V \leqslant V_{DD} \leqslant 4.5V$                        |                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | $2.4V \leqslant V_{DD} \leqslant 4.5V$                        |                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | 1.8V ≤ V <sub>DD</sub> ≤ 4.5V                                 |                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| T <sub>KSI1</sub>                         | $1.8V \leqslant V_{DD} \leqslant 4$                           | 4.5V                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| T <sub>KSO1</sub>                         | 1.8V ≤ V <sub>DD</sub> ≤ 4<br>C=20pF <sup>注</sup> 1           | I.5V                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                           | TKCY1  TKH1  TKL1  TSIK1                                      | TKCY1 $T_{KCY1} \ge 2/F_{CLK}$ 4.0V ≤ V <sub>DD</sub> ≤ 4  2.7V ≤ V <sub>DD</sub> ≤ 4  1.8V ≤ V <sub>DD</sub> ≤ 4  4.0V ≤ V <sub>DD</sub> ≤ 4  1.8V ≤ V <sub>DD</sub> ≤ 4  2.7V ≤ V <sub>DD</sub> ≤ 4  2.7V ≤ V <sub>DD</sub> ≤ 4  1.8V ≤ V <sub>DD</sub> ≤ 4 | $T_{KCY1} = \frac{4.0V \le V_{DD} \le 4.5V}{2.7V \le V_{DD} \le 4.5V}$ $\frac{2.7V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V}$ $T_{KH1} = \frac{4.0V \le V_{DD} \le 4.5V}{2.4V \le V_{DD} \le 4.5V}$ $T_{KL1} = \frac{2.4V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V}$ $T_{SIK1} = \frac{4.0V \le V_{DD} \le 4.5V}{2.4V \le V_{DD} \le 4.5V}$ $\frac{4.0V \le V_{DD} \le 4.5V}{2.7V \le V_{DD} \le 4.5V}$ $\frac{2.7V \le V_{DD} \le 4.5V}{2.4V \le V_{DD} \le 4.5V}$ $\frac{2.4V \le V_{DD} \le 4.5V}{2.4V \le V_{DD} \le 4.5V}$ $\frac{1.8V \le V_{DD} \le 4.5V}{4.5V}$ | 符号 条件 最小値 $T_{KCY1} = \frac{4.0V \le V_{DD} \le 4.5V}{2.7V \le V_{DD} \le 4.5V} = \frac{4.0V \le V_{DD} \le 4.5V}{2.4V \le V_{DD} \le 4.5V} = \frac{4.0V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{4.0V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{4.0V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{4.0V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = \frac{1.8V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V} = 1.$ | TKCY1 $T_{KCY1} \ge 2/F_{CLK}$ $\frac{4.0V \le V_{DD} \le 4.5V}{2.7V \le V_{DD} \le 4.5V}$ $\frac{31.25}{41.67}$ $\frac{2.4V \le V_{DD} \le 4.5V}{2.4V \le V_{DD} \le 4.5V}$ $\frac{41.67}{65}$ $\frac{2.4V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V}$ $\frac{41.67}{1.8V \le V_{DD} \le 4.5V}$ $\frac{4.0V \le V_{DD} \le 4.5V}{1.8V \le V_{DD} \le 4.5V}$ $\frac{125}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{17}$ $\frac{1}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{17}$ $\frac{1}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{17}$ $\frac{1}{1.8V \le V_{DD} \le 4.5V}$ $\frac{1}{18V \le V_{DD} \le 4.5V}$ $\frac{1}$ |  |  |

注1: C是SCLKp、SDOp输出线的负载电容。

注意:通过端口输入模式寄存器和端口输出模式寄存器,将SDIp引脚选择为通常的输入缓冲器并且将SDOp引脚和SCLKp引脚选择为通常的输出模式。

备注:由设计保证,量产不测试。

www.mcu.com.cn 34 / 50 Rev.0.1.0



#### (3) 三线SPI模式(从属模式,外部时钟输入)

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \le V_{DD} \le 4.5V, V_{SS}=0V)$ 

| 话日                          | 符号                | 夕 (4                                                | -                        | -20~7                    | ′0°C                    | <b>公</b> / 六 |
|-----------------------------|-------------------|-----------------------------------------------------|--------------------------|--------------------------|-------------------------|--------------|
| 项目                          | 付亏                | 条件                                                  | -                        | 最小值                      | 最大值                     | 单位           |
|                             |                   | 4.0V≤V <sub>DD</sub> ≤4.5V                          | 16MHz <f<sub>MCK</f<sub> | 8/F <sub>MCK</sub>       | -                       | ns           |
|                             |                   | 4.0V ≥ VDD ≥ 4.5V                                   | F <sub>MCK</sub> ≤16MHz  | 6/F <sub>MCK</sub>       | -                       | ns           |
| SCLKp 周期                    | _                 | 271/21/ < 451/                                      | 16MHz <f<sub>MCK</f<sub> | 8/F <sub>MCK</sub>       | -                       | ns           |
| 时间                          | T <sub>KCY2</sub> | 2.7V≤V <sub>DD</sub> ≤4.5V                          | F <sub>MCK</sub> ≤16MHz  | 6/F <sub>MCK</sub>       | -                       | ns           |
|                             |                   | 2.4V≤V <sub>DD</sub> ≤4.5V                          |                          | 6/F <sub>MCK</sub> 且≥500 | -                       | ns           |
|                             |                   | 1.8V≤V <sub>DD</sub> ≤4.5V                          |                          | 6/F <sub>MCK</sub> 且≥750 | -                       | ns           |
| SCLKp 高/低 Tкн2              | _                 | 4.0V≤V <sub>DD</sub> ≤4.5V                          |                          | T <sub>KCY1</sub> /2-7   | -                       | ns           |
| 电平宽度                        | T <sub>KL2</sub>  | 2.7V≤V <sub>DD</sub> ≤4.5V                          |                          | T <sub>KCY1</sub> /2-8   | -                       | ns           |
| 电干兑及                        | I KL2             | 1.8V≤V <sub>DD</sub> ≤4.5V                          |                          | T <sub>KCY1</sub> /2-18  | -                       | ns           |
| SDIp 准备时                    |                   | 2.7V≤V <sub>DD</sub> ≤4.5V                          |                          | 1/F <sub>MCK</sub> +20   | -                       | ns           |
| 间<br>(对 SCLKp↑)             | T <sub>SIK2</sub> | 1.8V≤V <sub>DD</sub> ≤4.5V                          | V≤V <sub>DD</sub> ≤4.5V  |                          | -                       | ns           |
| SDIp 保持时<br>间 (对<br>SCLKp†) | T <sub>KSI2</sub> | 1.8V≤V <sub>DD</sub> ≤4.5V                          |                          | 1/F <sub>MCK</sub> +31   | -                       | ns           |
| SCLKp↓→S                    |                   | 2.7V≤V <sub>DD</sub> ≤4.5V<br>C=30pF <sup>注</sup> 1 |                          | -                        | 2/Fмск+44               | ns           |
| DOp                         | T <sub>KSO2</sub> | 2.4V≤V <sub>DD</sub> ≤4.5V<br>C=30pF <sup>±1</sup>  |                          | -                        | 2/Fмск+75               | ns           |
| 间                           |                   | 1.8V≤V <sub>DD</sub> ≤4.5V<br>C=30pF <sup>±1</sup>  |                          | -                        | 2/F <sub>MCK</sub> +100 | ns           |

注1: C是SCLKp、SDOp输出线的负载电容。

注意:通过端口输入模式寄存器和端口输出模式寄存器,将SDIp引脚和SCLKp引脚选择为通常的输入缓冲器并且将SDOp引脚选择为通常的输出模式。

备注:由设计保证,量产不测试。

www.mcu.com.cn 35 / 50 Rev.0.1.0



#### (4) 四线SPI模式(从属模式,外部时钟输入)

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

| 15.0     | 符号     |                         | 条件                         | -20~7                   | ′0°C | 单位 |  |
|----------|--------|-------------------------|----------------------------|-------------------------|------|----|--|
| 项目       | 1寸 写   | <del>家</del> 厅          |                            | 最小值                     | 最大值  | 中加 |  |
| SSI00 建立 | Tssik  | DAPmn=0 DAPmn=1         | 2.7V≤V <sub>DD</sub> ≤4.5V | 120                     | -    | ns |  |
|          |        |                         | 1.8V≤V <sub>DD</sub> ≤4.5V | 200                     | -    | ns |  |
| 时间       |        |                         | 2.7V≤V <sub>DD</sub> ≤4.5V | 1/F <sub>MCK</sub> +120 | -    | ns |  |
|          |        |                         | 1.8V≤V <sub>DD</sub> ≤4.5V | 1/F <sub>MCK</sub> +200 | -    | ns |  |
|          |        | DADmn 0                 | 2.7V≤V <sub>DD</sub> ≤4.5V | 1/F <sub>MCK</sub> +120 | -    | ns |  |
| SSI00 保持 | Tuesi  | DAPmn=0  Tkssi  DAPmn=1 | 1.8V≤V <sub>DD</sub> ≤4.5V | 1/F <sub>MCK</sub> +200 | -    | ns |  |
| 时间       | I KSSI |                         | 2.7V≤V <sub>DD</sub> ≤4.5V | 120                     | -    | ns |  |
|          |        |                         | 1.8V≤V <sub>DD</sub> ≤4.5V | 200                     | -    | ns |  |

注意:通过端口输入模式寄存器和端口输出模式寄存器,将SDIp引脚和SCLKp引脚选择为通常的输入缓冲器并且将SDOp引脚选择为通常的输出模式。

备注:由设计保证,量产不测试。

www.mcu.com.cn 36 / 50 Rev.0.1.0



#### (5) 简易IIC模式

 $(T_{A}=-20\sim70^{\circ}C$ ,  $1.8V \leq V_{DD} \leq 4.5V$ ,  $V_{SS}=0V)$ 

| -T                 | <i>frfr</i> □        | <b>夕</b> //                                                   | -20-                                   | ~70°C               | 24.12            |
|--------------------|----------------------|---------------------------------------------------------------|----------------------------------------|---------------------|------------------|
| 项目                 | 符号                   | 条件                                                            | 最小值                                    | 最大值                 | 单位               |
|                    |                      | $2.7 \text{V} \leqslant \text{V}_{DD} \leqslant 4.5 \text{V}$ |                                        | 1000 <sup>注 1</sup> | I/U <sub>7</sub> |
|                    |                      | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$              | -                                      | 1000                | KHz              |
| SCLr 时钟频率          | E                    | $1.8V \leqslant V_{DD} \leqslant 4.5V$                        | -                                      | 400 <sup>注 1</sup>  | KH-              |
| SOLI 的钾频率          | F <sub>SCL</sub>     | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$               |                                        | 400                 | KHz              |
|                    |                      | $1.8V \leqslant V_{DD} \leqslant 2.7V$                        |                                        | 300 <sup>注 1</sup>  | KHz              |
|                    |                      | $C_b=100~pF,~R_b=5~k\Omega$                                   | -                                      | 300                 | KHZ              |
|                    |                      | $2.7 \text{V} \leqslant \text{V}_{DD} \leqslant 4.5 \text{V}$ | 475                                    | _                   | ns               |
| 当 SCLr 为低<br>时保持时间 |                      | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$              | 475                                    | -                   | 115              |
|                    | T <sub>LOW</sub>     | $1.8V \leqslant V_{DD} \leqslant 4.5V$                        | 1150                                   | _                   | ns               |
|                    | ILOW                 | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$               | 1130                                   | _                   | 113              |
|                    |                      | $1.8V \leqslant V_{DD} \leqslant 2.7V$                        | 1550                                   | -                   | ns               |
|                    |                      | $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$               | 1000                                   | _                   | 113              |
|                    | Тнідн                | $2.7 \text{V} \leqslant \text{V}_{DD} \leqslant 4.5 \text{V}$ | 475                                    | _                   | ns               |
|                    |                      | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$              |                                        |                     | 110              |
| 当 SCLr 为高          |                      | $1.8V \leqslant V_{DD} \leqslant 4.5V$                        | 1150                                   | _                   | ns               |
| 时保持时间              | THIGH                | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$               |                                        |                     | 110              |
|                    |                      | $1.8V \leqslant V_{DD} \leqslant 2.7V$                        | 1550                                   | -                   | ns               |
|                    |                      | $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$               | 1000                                   |                     | 110              |
|                    |                      | $2.7V \leqslant V_{DD} \leqslant 4.5V$                        | 1/F <sub>MCK</sub> +85 <sup>注2</sup>   | -                   | ns               |
|                    |                      | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$              | THE WORLD                              |                     |                  |
| 数据建立时间             | T <sub>SU: DAT</sub> | $1.8V \leqslant V_{DD} \leqslant 4.5V$                        | 1/F <sub>MCK</sub> +145 <sup>注2</sup>  | -                   | ns               |
| (接收)               | - 00. B/(I           | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$               | WORK 112                               |                     |                  |
|                    |                      | $1.8V \leqslant V_{DD} \leqslant 2.7V$                        | 1/F <sub>MCK</sub> +230 <sup>注 2</sup> | _                   | ns               |
|                    |                      | $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$               | .,                                     |                     |                  |
|                    |                      | $2.7V \leqslant V_{DD} \leqslant 4.5V$                        | -                                      | 305                 | ns               |
|                    |                      | $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$              |                                        |                     |                  |
| 数据保持时间             | T <sub>HD: DAT</sub> | $1.8V \leqslant V_{DD} \leqslant 4.5V$                        | _                                      | 355                 | ns               |
| (发送)               | - NO: DAI            | $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$               |                                        |                     |                  |
|                    |                      | $1.8V \leqslant V_{DD} \leqslant 2.7V$                        | -                                      | 405                 | ns               |
|                    |                      | $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$               |                                        | - 30                |                  |

注1:必须至少设定为FMCK/4。

注2: F<sub>MCK</sub>的设定值不能超过SCLr="L"和SCLr="H"的保持时间。

备注:由设计保证,量产不测试。

www.mcu.com.cn 37 / 50 Rev.0.1.0



#### 6.7.2 串行接口 IICA

#### (1) I2C 标准模式

 $(T_{A}=-20~70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

| (IX 20 10 0; IIOT (IBB (IIOT; 100 0)) |                      |                              |     |      |     |  |  |  |  |
|---------------------------------------|----------------------|------------------------------|-----|------|-----|--|--|--|--|
| 项目                                    | 符号                   | 条件                           | 规村  | 单位   |     |  |  |  |  |
|                                       | 10 <del>5</del>      | <b>余</b> 什                   | 最小值 | 最大值  | 中世  |  |  |  |  |
| SCLA0 时钟频率                            | F <sub>SCL</sub>     | 标准模式: F <sub>CLK</sub> ≥1MHz | -   | 100  | KHz |  |  |  |  |
| 启动条件的建立时间                             | T <sub>SU: STA</sub> | -                            | 4.7 | -    | us  |  |  |  |  |
| 启动条件的保持时间 <sup>注1</sup>               | T <sub>HD:</sub> STA | -                            | 4.0 | -    | us  |  |  |  |  |
| 当 SCLA0 为低时保持时间                       | T <sub>LOW</sub>     | -                            | 4.7 | -    | us  |  |  |  |  |
| 当 SCLA0 为高时保持时间                       | T <sub>HIGH</sub>    | -                            | 4.0 | -    | us  |  |  |  |  |
| 数据建立时间(接收)                            | T <sub>SU: DAT</sub> | -                            | 250 | -    | ns  |  |  |  |  |
| 数据保持时间(发送) <sup>注2</sup>              | T <sub>HD: DAT</sub> | -                            | 0   | 3.45 | us  |  |  |  |  |
| 停止条件的建立时间                             | T <sub>SU:</sub> sto | -                            | 4.0 | -    | us  |  |  |  |  |
| 总线空闲时间                                | T <sub>BUF</sub>     | -                            | 4.7 | -    | us  |  |  |  |  |

注1: 在产生开始条件或重新开始条件后生成第一个时钟脉冲。

注2: 在正常传送期间需要保证THD: DAT的最大值,在进行应答(ACK)时需要等待。

注意: 各模式的 $C_b$ (通信线电容)的最大值和此时的 $R_b$ (通信线的上拉电阻值)的值如下: 标准模式:  $C_b$ =400pF、 $R_b$ =2.7k $\Omega$ 

备注:由设计保证,量产不测试。

#### (2) I2C快速模式

 $(T_A = -20 \sim 70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS} = 0V)$ 

| 话日                       | 符号                   | 条件                | 规村  | 单位  |     |
|--------------------------|----------------------|-------------------|-----|-----|-----|
| 项目                       | 何亏                   | 余件                | 最小值 | 最大值 | 半世  |
| SCLA0 时钟频率               | FscL                 | 快速模式: Fclk≥3.5MHz | -   | 400 | KHz |
| 启动条件的建立时间                | T <sub>SU:</sub> STA | -                 | 0.6 | -   | us  |
| 启动条件的保持时间 <sup>注1</sup>  | T <sub>HD:</sub> STA | -                 | 0.6 | -   | us  |
| 当 SCLA0 为低时 保持时间         | T <sub>LOW</sub>     | -                 | 1.3 | -   | us  |
| 当 SCLA0 为高时 保持时间         | T <sub>HIGH</sub>    | -                 | 0.6 | -   | us  |
| 数据建立时间(接收)               | T <sub>SU: DAT</sub> | -                 | 100 | -   | ns  |
| 数据保持时间(发送) <sup>注2</sup> | T <sub>HD: DAT</sub> | -                 | 0   | 0.9 | us  |
| 停止条件的建立时间                | T <sub>SU:</sub> sto | -                 | 0.6 | -   | us  |
| 总线空闲时间                   | T <sub>BUF</sub>     | -                 | 1.3 | -   | us  |

注1: 在产生开始条件或重新开始条件后生成第一个时钟脉冲。

注2:在正常传送期间需要保证THD: DAT的最大值,在进行应答(ACK)时需要等待。

注意: 各模式的C。(通信线电容)的最大值和此时的R。(通信线的上拉电阻值)的值如下:

快速模式: C<sub>b</sub>=320pF、R<sub>b</sub>=1.1KΩ

备注:由设计保证,量产不测试。



#### (3) I2C 增强型快速模式

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \le V_{DD} \le 4.5V, V_{SS}=0V)$ 

| 项目                       | 符号                   | 条件                  | 规村   | 单位   |     |
|--------------------------|----------------------|---------------------|------|------|-----|
| <b>坝</b> 日               | 10.2                 | 余什                  | 最小值  | 最大值  | 中心  |
| SCLA0 时钟频率               | F <sub>SCL</sub>     | 增强型快速模式: FCLK≥10MHz | 1    | 1000 | KHz |
| 启动条件的建立时间                | T <sub>SU: STA</sub> | -                   | 0.26 | -    | us  |
| 启动条件的保持时间 <sup>注1</sup>  | T <sub>HD: STA</sub> | -                   | 0.26 | -    | us  |
| 当 SCLA0 为低时 保持时间         | $T_{LOW}$            | -                   | 0.5  | -    | us  |
| 当 SCLA0 为高时 保持时间         | T <sub>HIGH</sub>    | -                   | 0.26 | -    | us  |
| 数据建立时间(接收)               | T <sub>SU: DAT</sub> | -                   | 50   | -    | ns  |
| 数据保持时间(发送) <sup>注2</sup> | T <sub>HD: DAT</sub> | -                   | 0    | 0.45 | us  |
| 停止条件的建立时间                | T <sub>SU:</sub> STO | -                   | 0.26 | -    | us  |
| 总线空闲时间                   | T <sub>BUF</sub>     | -                   | 0.5  | -    | us  |

注1: 在产生开始条件或重新开始条件后生成第一个时钟脉冲。

注2:在正常传送期间需要保证THD: DAT的最大值,在进行应答(ACK)时需要等待。

注意: 各模式的Co(通信线电容)的最大值和此时的Ro(通信线的上拉电阻值)的值如下:

增强型快速模式: C<sub>b</sub>=120pF、R<sub>b</sub>=1.1KΩ

备注:由设计保证,量产不测试。

www.mcu.com.cn 39 / 50 Rev.0.1.0



### 6.8 模拟特性

# 6.8.1 Sigma-Delta ADC 最大极限值

| 名称       | 符号       | 最小值  | 最大值                  | 单位 |
|----------|----------|------|----------------------|----|
| 电源电压     | $V_{DD}$ | -0.3 | 4.4                  | V  |
| 数字管脚输入电压 | -        | -0.3 | V <sub>DD</sub> +0.3 | V  |
| 工作温度     | -        | -40  | 85                   | °C |

# 6.8.2 Sigma-Delta ADC 数字逻辑特性

| 参数              | 条件 | 最小值                  | 典型值 | 最大值                  | 单位  |
|-----------------|----|----------------------|-----|----------------------|-----|
| V <sub>IH</sub> | -  | $0.7xV_{DD}$         | -   | V <sub>DD</sub> +0.1 | V   |
| V <sub>IL</sub> | -  | GND                  | -   | $0.3xV_{DD}$         | V   |
| V <sub>OH</sub> | -  | V <sub>DD</sub> -0.4 | -   | $V_{DD}$             | V   |
| Vol             | -  | GND                  | -   | $0.2xV_{DD}$         | V   |
| 串口时钟 SCLK 工作频率  | -  | 0.1                  | -   | 1.1                  | MHz |

www.mcu.com.cn 40 / 50 Rev.0.1.0



# 6.8.3 Sigma-Delta ADC 电气特性

| 参数                                                 | 条件                    | 最小值        | 典型值    | 最大值                | 单位     |
|----------------------------------------------------|-----------------------|------------|--------|--------------------|--------|
|                                                    | 模拟输                   | ì入         |        |                    |        |
| 满幅差分输入电压                                           | -                     | -REFIN/PGA | -      | REFIN/PGA          | V      |
| 共模输入电压                                             | -                     | GND+0.75   | -      | V <sub>DD</sub> -1 | V      |
| 差分输入阻抗                                             | -                     | -          | 250    | -                  | Mohm   |
|                                                    | 系统性                   | 能          |        |                    |        |
| 分辨率                                                | 无失码数据                 | -          | 24     | -                  | bits   |
| 输出速率                                               | -                     | 2.5        | 5      | 2.56K              | Hz     |
| 建立时间                                               | 全建立                   | -          | ı      | 3                  | 转换周期   |
| 等效输入噪声                                             | PGA=128, 10Hz, LDO=3V | -          | 30     | -                  | nVrms  |
| 有效分辨率                                              | PGA=128, 10Hz, LDO=3V | -          | 20.6   | -                  | bits   |
| 失调误差                                               | PGA=64,128            | -          | 2.5    | 10                 | uV     |
| 失调误差漂移                                             | PGA=64,128            | -          | 30     | -                  | nV/°C  |
| 增益误差                                               | PGA=64,128            | -          | ±1.5   | -                  | %      |
| 增益误差漂移                                             | PGA=64,128            | -          | 16     | -                  | ppm/°C |
| 参考电压输入                                             | -                     | 0.5        | LDOOUT | LDOOUT             | V      |
| 温感                                                 | -                     | -          | ±3     | -                  | °C     |
| 带隙基准电压                                             | V <sub>DD</sub> =3.3V | -          | 1.24   | -                  | V      |
|                                                    | LDO 电 <sup>左</sup>    | [特性        |        |                    |        |
| 输出电压                                               | SET_LDO[1:0]=00       | -          | 3.07   | -                  | V      |
| 制 山 电 压                                            | SET_LDO[1:0]=10       | -          | 2.66   | -                  | V      |
| 带载能力                                               | V <sub>DD</sub> =3.3V | -          | 20     | -                  | mA     |
|                                                    | 电源电气                  | 特性         |        |                    |        |
| 电源电压                                               | -                     | 2.5        | 3.3    | 4.4                | V      |
| 正常工作电流                                             | PGA=128               | -          | 1.68   | -                  | mA     |
| <b>业市工</b> 11.11.11.11.11.11.11.11.11.11.11.11.11. | PGA=2                 | -          | 0.83   | -                  | mA     |
| 休眠模式电流                                             | -                     | -          | 50     | -                  | nA     |

www.mcu.com.cn 41 / 50 Rev.0.1.0



### 6.8.4 A/D 转换器特性

#### A/D 转换器特性的区分

| 基准电压              | 基准电压(+)=V <sub>DD</sub> |
|-------------------|-------------------------|
| 输入通道              | 基准电压(-)=Vss             |
| ANI0~ANI17        | 参照下表                    |
| 内部基准电压,温度传感器的输出电压 | <b>参照下</b> 农            |

#### (1) 选择基准电压(+)=VDD、基准电压(-)=Vss的情况

(T<sub>A</sub>= -20~ 70°C、3.0V≤V<sub>DD</sub>≤4.5V、V<sub>SS</sub>=0V、基准电压(+)=V<sub>DD</sub>、基准电压(-)=V<sub>SS</sub>)

| 项目                   | 符号                | 条件                                     | . ,                        | 最小值 | 典型值.                              | 最大值      | 单位       |
|----------------------|-------------------|----------------------------------------|----------------------------|-----|-----------------------------------|----------|----------|
| 分辨率                  | RES               |                                        |                            | -   | 12                                | -        | bit      |
| 综合误差 <sup>注1</sup>   | AINL              | 12 位分辨率                                | 3.0V≤V <sub>DD</sub> ≤4.5V | -   | 6                                 | -        | LSB      |
| 转换时间 <sup>注3</sup>   | T <sub>CONV</sub> | 12 位分辨率<br>转换对象: ANIO~ANI19            | 3.0V≤V <sub>DD</sub> ≤4.5V | 16  | 1                                 | -        | Tmclk    |
| 零刻度误差 <sup>注1</sup>  | Ezs               | 12 位分辨率                                | 3.0V≤V <sub>DD</sub> ≤4.5V | -   | 0                                 | -        | LSB      |
| 满刻度误差 <sup>注1</sup>  | E <sub>FS</sub>   | 12 位分辨率                                | 3.0V≤V <sub>DD</sub> ≤4.5V | -   | 0                                 | -        | LSB      |
| 积分线性误差 <sup>注1</sup> | ILE               | 12 位分辨率                                | 3.0V≤V <sub>DD</sub> ≤4.5V | -   | 1                                 | ±2       | LSB      |
| 微分线性误差 <sup>注1</sup> | DLE               | 12 位分辨率                                | 3.0V≤V <sub>DD</sub> ≤4.5V | -   | -                                 | ±3       | LSB      |
|                      |                   | ANI0~ANI19                             |                            | 0   | -                                 | $V_{DD}$ | V        |
| 模拟输入电压               | $V_{AIN}$         | 内部基准电压 (3.0V≤V <sub>DD</sub> ≤4.5V)    |                            |     | V <sub>BGR</sub> <sup>注2</sup>    |          | V        |
|                      |                   | 温度传感器的输出电压(3.0V≤V <sub>DD</sub> ≤4.5V) |                            |     | V <sub>TMPS25</sub> <sup>注2</sup> |          | <b>V</b> |

注1: 不包含量化误差(±1/2 LSB)。

注2: 请参照 "6.8.5 温度传感器/内部基准电压的特性"。

注3: TMCLK为AD的动作时钟周期,最大动作频率为8MHz。

备注:由设计保证,量产不测试。

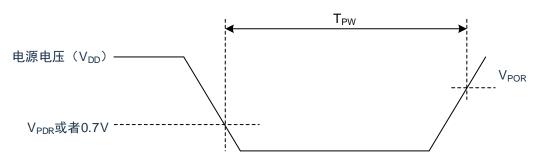
www.mcu.com.cn 42 / 50 Rev.0.1.0



### 6.8.5 温度传感器/内部基准电压的特性

 $(T_{A}=-20\sim70^{\circ}C, 3.0V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

|   | 项目        | 符号                  | 条件                              | 最小值  | 典型值  | 最大值 | 单位    |
|---|-----------|---------------------|---------------------------------|------|------|-----|-------|
| 温 | 度传感器的输出电压 | V <sub>TMPS25</sub> | ADS 寄存器=80H、T <sub>A</sub> =25℃ | -    | 1.09 | -   | V     |
|   | 内部基准电压    | V <sub>BGR</sub>    | ADS 寄存器=81H                     | 1.38 | 1.45 | 1.5 | V     |
|   | 温度系数      | F <sub>VTMPS</sub>  | -                               | -    | -3.5 | -   | mV/°C |
|   | 运行稳定等待时间  | T <sub>AMP</sub>    | -                               | 5    | -    | -   | us    |


备注: 低温规格值由设计保证, 量产不测低温条件。

#### 6.8.6 POR 电路特性

 $(T_{A}=-20\sim70^{\circ}C, V_{SS}=0V)$ 

| 项目     | 符号              | 条件      | 最小值  | 典型值  | 最大值  | 单位 |
|--------|-----------------|---------|------|------|------|----|
| 检测电压   | $V_{POR}$       | 电源电压上升时 | -    | 1.50 | 1.75 | V  |
|        | $V_{PDR}$       | 电源电压下降时 | 1.37 | 1.45 | -    | V  |
| 最小脉宽注1 | T <sub>PW</sub> | -       | 300  | -    | -    | us |

注1: 这是在V<sub>DD</sub>低于V<sub>PDR</sub>时POR 复位所需的时间。另外,在深度睡眠模式中通过设定时钟运行状态控制寄存器(CSC)的bit0(HIOSTOP)和bit7(MSTOP)停止主系统时钟(F<sub>MAIN</sub>)的振荡时,是从V<sub>DD</sub>低于0.7V到回升超过V<sub>POR</sub>为止的POR复位所需的时间。



备注:由设计保证,量产不测试。

www.mcu.com.cn 43 / 50 Rev.0.1.0



### 6.8.7 LVD 电路特性

#### 1. 复位模式、中断模式

 $(T_{A}=-20\sim70^{\circ}C$ ,  $V_{PDR} \leq V_{DD} \leq 4.5V$ ,  $V_{SS}=0V$ )

| 项目   | 符号                  | 条件      | 最小值  | 典型值  | 最大值  | 单位 |
|------|---------------------|---------|------|------|------|----|
|      |                     | 电源电压上升时 | -    | 4.06 | 4.14 | V  |
|      | V <sub>LVD0</sub>   | 电源电压下降时 | 3.90 | 3.98 | -    | V  |
|      | \ /                 | 电源电压上升时 | -    | 3.75 | -    | V  |
|      | V <sub>LVD1</sub>   | 电源电压下降时 | -    | 3.67 | -    | V  |
|      | \ /                 | 电源电压上升时 | -    | 3.13 | -    | V  |
|      | V <sub>LVD2</sub>   | 电源电压下降时 | -    | 3.06 | -    | V  |
|      | M                   | 电源电压上升时 | -    | 3.02 | -    | V  |
|      | V <sub>LVD3</sub>   | 电源电压下降时 | -    | 2.96 | -    | V  |
|      | M                   | 电源电压上升时 | -    | 2.92 | -    | V  |
|      | V <sub>LVD4</sub>   | 电源电压下降时 | -    | 2.86 | -    | V  |
|      | \ /                 | 电源电压上升时 | -    | 2.81 | -    | V  |
| 松测点压 | V <sub>LVD5</sub>   | 电源电压下降时 | -    | 2.75 | -    | V  |
| 检测电压 | V                   | 电源电压上升时 | -    | 2.71 | -    | V  |
|      | $V_{LVD6}$          | 电源电压下降时 | -    | 2.65 | -    | V  |
|      | V <sub>LVD7</sub>   | 电源电压上升时 | -    | 2.61 | -    | V  |
|      | V LVD7              | 电源电压下降时 | -    | 2.55 | -    | V  |
|      | V                   | 电源电压上升时 | -    | 2.50 | -    | V  |
|      | $V_{LVD8}$          | 电源电压下降时 | -    | 2.45 | -    | V  |
|      | M                   | 电源电压上升时 | -    | 2.09 | -    | V  |
|      | V <sub>LVD9</sub>   | 电源电压下降时 | -    | 2.04 | -    | V  |
|      | \/                  | 电源电压上升时 | -    | 1.98 | -    | V  |
|      | V <sub>LVD10</sub>  | 电源电压下降时 | -    | 1.94 | -    | V  |
|      | \/.                 | 电源电压上升时 | -    | 1.88 | 1.91 | V  |
|      | V <sub>L</sub> VD11 | 电源电压下降时 | 1.80 | 1.84 | -    | V  |
| 最小脉宽 | T <sub>LW</sub>     | -       | 300  | -    | -    | us |
| 检测延迟 | -                   | -       | -    | -    | 300  | us |

备注:由设计保证,量产不测试。

www.mcu.com.cn 44 / 50 Rev.0.1.0



#### 2. 中断&复位模式

 $(T_{A}=-20\sim70^{\circ}C$ ,  $V_{PDR} \leq V_{DD} \leq 4.5V$ ,  $V_{SS}=0V$ )

| 项目      | 符号                        | 条件                   |                          |          | 最小值  | 典型值  | 最大值  | 单位       |
|---------|---------------------------|----------------------|--------------------------|----------|------|------|------|----------|
|         | V <sub>LVDA0</sub>        |                      | 下降复位电压                   |          | 1.60 | 1.63 | -    | <b>V</b> |
|         | V <sub>LVDA1</sub>        |                      | LVIS1=1                  | 上升复位解除电压 | -    | 1.77 | 1.81 | V        |
|         | V LVDA1                   | V <sub>POC2</sub> =0 | LVIS0=0                  | 下降中断电压   | 1.70 | 1.73 | -    | V        |
|         | V <sub>LVDA2</sub>        | V <sub>POC1</sub> =0 | LVIS1=0                  | 上升复位解除电压 | -    | 1.88 | -    | V        |
|         | V LVDAZ                   | V <sub>POC0</sub> =0 | LVIS0=1                  | 下降中断电压   | -    | 1.84 | -    | V        |
|         | V <sub>L</sub> VDA3       |                      | LVIS1=0                  | 上升复位解除电压 | -    | 2.92 | -    | V        |
|         | V LVDA3                   |                      | LVIS0=0                  | 下降中断电压   | -    | 2.86 | -    | V        |
|         | V <sub>L</sub> VDB0       |                      | 下降复位电压                   |          |      | 1.84 | -    | V        |
|         | V <sub>LVDB1</sub>        |                      | LVIS1=1                  | 上升复位解除电压 | -    | 1.98 | -    | V        |
|         | V LVDB1                   | V <sub>POC2</sub> =0 | LVIS0=0                  | 下降中断电压   | -    | 1.94 | -    | V        |
|         | V <sub>LVDB2</sub>        |                      | LVIS1=0                  | 上升复位解除电压 | -    | 2.09 | -    | V        |
|         | V EVBB2                   |                      | LVIS0=1                  | 下降中断电压   | -    | 2.04 | -    | V        |
|         | V <sub>LVDB3</sub>        | 3                    | LVIS1=0<br>LVIS0=0       | 上升复位解除电压 | -    | 3.13 | -    | V        |
| 中断&复位模式 |                           |                      |                          | 下降中断电压   | -    | 3.06 | -    | V        |
|         | V <sub>LVDC0</sub> 下降复位电压 |                      |                          |          | 2.45 | -    | V    |          |
|         | V <sub>LVDC1</sub>        |                      | LVIS1=1                  | 上升复位解除电压 | -    | 2.61 | -    | V        |
|         | VEVDOT                    | V <sub>POC2</sub> =0 | <sub>C2</sub> =0 LVIS0=0 | 下降中断电压   | -    | 2.55 | -    | V        |
|         | V <sub>LVDC2</sub>        | V <sub>POC1</sub> =1 |                          | 上升复位解除电压 | -    | 2.71 | -    | V        |
|         | V LVDC2                   | V <sub>POC0</sub> =0 | LVIS0=1                  | 下降中断电压   | -    | 2.65 | -    | V        |
|         | VLVDC3                    |                      | LVIS1=0                  | 上升复位解除电压 | -    | 3.75 | -    | V        |
|         | 121200                    |                      | LVIS0=0                  | 下降中断电压   | -    | 3.67 | -    | V        |
|         | V <sub>L</sub> VDD0       | Vivopi               | 下降复位电压                   |          | -    | 2.75 | -    | V        |
|         | VLVDD1                    |                      | LVIS1=1                  | 上升复位解除电压 | -    | 2.92 | -    | V        |
|         | V <sub>POC2</sub> =0      |                      | <sub>2</sub> =0 LVIS0=0  | 下降中断电压   | -    | 2.86 | -    | V        |
|         | V <sub>LVDD2</sub>        | V <sub>POC1</sub> =1 | 17/100 4                 | 上升复位解除电压 | -    | 3.02 | -    | V        |
|         | V <sub>POC0</sub> =1      | V <sub>POC0</sub> =1 |                          | 下降中断电压   | -    | 2.96 | -    | V        |
|         | V <sub>LVDD3</sub>        | VILVEDO              | LVIS1=0                  | 上升复位解除电压 | -    | 4.06 | 4.14 | V        |
|         | * LVDD3                   |                      | LVIS0=0                  | 下降中断电压   | 3.90 | 3.98 | -    | V        |

备注:由设计保证,量产不测试。

www.mcu.com.cn 45 / 50 Rev.0.1.0



# 6.8.8 电源电压的上升斜率特性

 $(T_{A}=-20\sim70^{\circ}C, V_{SS}=0V)$ 

| 项目        | 符号               | 条件 | 最小值 | 典型值 | 最大值 | 单位   |
|-----------|------------------|----|-----|-----|-----|------|
| 电源电压的上升斜率 | S <sub>VDD</sub> | -  | ı   | 1   | 54  | V/ms |

备注:由设计保证,量产不测试。

www.mcu.com.cn 46 / 50 Rev.0.1.0



### 6.9 存储特性

### 6.9.1 Flash 存储器

 $(T_{A}=-20\sim70^{\circ}C, 1.8V \leq V_{DD} \leq 4.5V, V_{SS}=0V)$ 

| 符号                 | 参数           | 测试条件                                          | 最小值 | 最大值 | 单位 |
|--------------------|--------------|-----------------------------------------------|-----|-----|----|
| T <sub>PROG</sub>  | 字写入时间(32bit) | T <sub>A</sub> = -20~70°C                     | •   | 120 | us |
| Т                  | 扇区擦除时间(512B) | T <sub>A</sub> = -20~70°C                     | 2   | 3   | ms |
| T <sub>ERASE</sub> | 片擦除时间        | T <sub>A</sub> = -20~70°C                     | 30  | 40  | ms |
| Nend               | 可擦写次数        | T <sub>A</sub> = -20~70°C                     | 100 | -   | 千次 |
| T <sub>RET</sub>   | 数据保存期限       | 100 千次 <sup>注1</sup> at T <sub>A</sub> =125°C | 20  | -   | 年  |

注1: 循环测试在整个温度范围内进行。

备注:由设计保证,量产不测试。

### 6.9.2 RAM 存储器

 $(T_{A}=-20\sim70^{\circ}C$ ,  $1.8V\leqslant V_{DD}\leqslant4.5V$ ,  $V_{SS}=0V)$ 

| 符号       | 参数       | 测试条件                      | 最小值 | 最大值 | 单位 |
|----------|----------|---------------------------|-----|-----|----|
| VRAMHOLD | RAM 保持电压 | T <sub>A</sub> = -20~70°C | 0.8 | -   | V  |

备注:由设计保证,量产不测试。

www.mcu.com.cn 47 / 50 Rev.0.1.0



## 6.10 EMS 特性

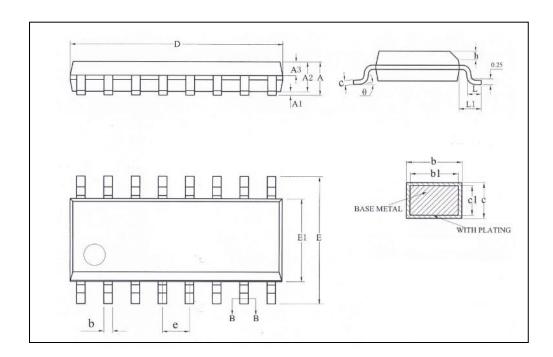
### 6.10.1 ESD 电气特性

| 符号                    | 参数                   | 测试条件                                     | 等级 |
|-----------------------|----------------------|------------------------------------------|----|
| V <sub>ESD(HBM)</sub> | 静电放电<br>(人体放电模式 HBM) | $T_A = 25$ °C, conforming to JESD22-A114 | 3A |

备注:由设计保证,量产不测试。

# 6.10.2 Latch-up 电气特性

| 符号 | 参数                    | 测试条件                                      | 等级       |
|----|-----------------------|-------------------------------------------|----------|
| LU | Static latch-up class | $T_A = 25^{\circ}C$ conforming to JESD78E | I levelA |


备注:由设计保证,量产不测试。

www.mcu.com.cn 48 / 50 Rev.0.1.0



# 7 封装信息

### 7.1 SOP16



| Cumbal |      | Millimeter |       |
|--------|------|------------|-------|
| Symbol | Min  | Nom        | Max   |
| А      | -    | -          | 1.75  |
| A1     | 0.10 | -          | 0.225 |
| A2     | 1.30 | 1.40       | 1.50  |
| A3     | 0.60 | 0.65       | 0.70  |
| b      | 0.39 | -          | 0.47  |
| b1     | 0.38 | 0.41       | 0.44  |
| С      | 0.20 | -          | 0.24  |
| c1     | 0.19 | 0.20       | 0.21  |
| D      | 9.80 | 9.90       | 10.00 |
| Е      | 5.80 | 6.00       | 6.20  |
| E1     | 3.80 | 3.90       | 4.00  |
| е      |      | 1.27BSC    |       |
| h      | 0.25 | -          | 0.50  |
| L      | 0.50 | -          | 0.80  |
| L1     |      | 1.05REF    |       |
| θ      | 0    | -          | 8°    |



# 8 版本历史

| 版本     | 日期       | 修订内容 |
|--------|----------|------|
| V0.1.0 | 2023年03月 | 初始版本 |

www.mcu.com.cn 50 / 50 Rev.0.1.0