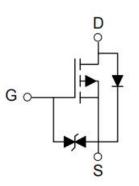


CHIPLINK P-Channel Enhancement Mode MOSFET

Description

The LX3415ES uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch applications.


Features

- $\begin{array}{ll} \bullet & V_{DS} = -20 \text{V}, \ I_D = -5.0 \text{A} \\ & R_{DS(ON)} = 28 \text{m} \Omega @V_{GS} = -4.5 \text{V} \\ & R_{DS(ON)} = 35 \text{m} \Omega @V_{GS} = -2.5 \text{V} \\ & ESD \ \text{protected} \quad 4 \text{KV} \end{array}$
- Low Gate Charge
- ESD Protection
- Termination is Lead-free and RoHS Compliant

Applications

- Battery Isolation
- Load Switch
- Electronic Cigarette

Schematic Diagram

Maximum Ratings

 $(T_A = 25^{\circ}C, unless otherwise noted)$

PARAMETER	SYMBOL	MAX	UNIT
Drain-Source Voltage	V _{DS}	-20	V
Gate-Source Voltage	V _{GS}	±8	V
Continuous Drain Current	ID	-5.0	Α
Pulsed Drain Current ^C	I _{DM}	-20	А
Maximum Power Dissipation ^B	P _D	0.9	W
Junction and Storage Temperature Range	T _J , T _{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

PARAMETER	SYMBOL	MAX	UNIT
Thermal Resistance, Junction to Ambient ^A	R _{0JA}	280	°C/W

Electrical Characteristics

(T_A = 25 °C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D =-250μA	-20			V	
Gate-Threshold Voltage	$V_{\text{th(GS)}}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.5	-0.7	-0.9	V	
Gate-body Leakage	I _{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 8V$			±10	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -20V, V _{GS} = 0V			-1	μA	
Drain Source On Besistance	D	$V_{GS} = -4.5V$, $I_D = -4.0A$		28	38	mΩ	
Drain-Source On-Resistance	R _{DS(ON)}	$V_{GS} = -2.5V, I_{D} = -3.5A$		38	48	mΩ	
Forward Transconductance	g FS	$V_{DS} = -5V, I_{D} = -4.5A$		20		s	
Dynamic Characteristics D							
Input Capacitance	Ciss	1/ 401/1/ 01/		930			
Output Capacitance	Coss	$V_{DS} = -10V, V_{GS} = 0V,$ F = 1MHz		90		pF	
Reverse Transfer Capacitance	C_{rss}	1 - 1101112		80			
Switching Capacitance							
Turn-on Delay Time	t _{d(on)}			12		ns	
Turn-on Rise Time	t _r	$V_{DS} = -10V$, $V_{GS} = -4.5V$,		11		ns	
Turn-off Delay Time	t _{d(off)}	$R_L = 2.22\Omega$, $R_G = 3\Omega$		82		ns	
Turn-off Fall Time	t _f			35		ns	
Total Gate Charge	Qg	$V_{DS} = -10V, I_{D} = -4.0A,$		10		nC	
Gate-Source Charge	Q_{gs}	V _{GS} = -4.5V		1		nC	
Gate-Drain Charge	Q_{gd}			2.5		nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage	V _{SD}	V _{GS} = 0V, I _S = -1A			-1.0	V	

Notes:

- A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA = 25°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P_D is based on $T_J(MAX) = 150^{\circ}C$, using $\leq 10s$ junction-to-ambient thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature TJ(MAX) = 150°C. Ratings are based on low frequency and duty cycles to keep initial TJ = 25°C.
- D. The static characteristics in Figures 1 to 6 are obtained using $< 300 \mu s$ pulses, duty cycle 0.5% max.

Typical Electrical and Thermal Characteristics

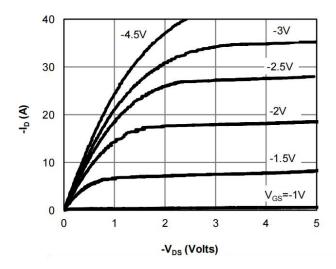


Figure 1. On-Region Characteristics

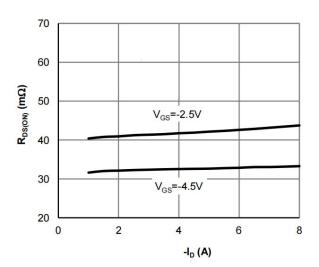


Figure 3. On-Resistance vs Drain Current

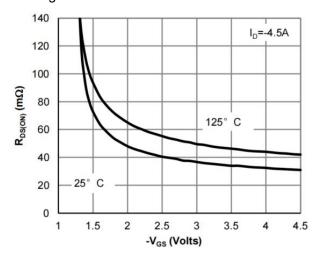


Figure 5. On-Resistance vs. Gate-Source Voltage

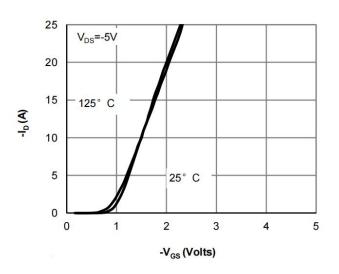


Figure 2. Transfer Characteristics

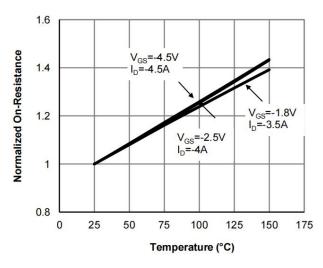


Figure 4. On-Resistance vs Junction Temperature

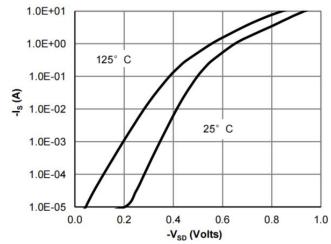
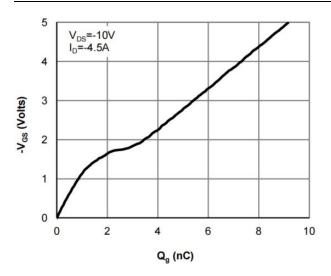



Figure 6. Body-Diode Characteristics

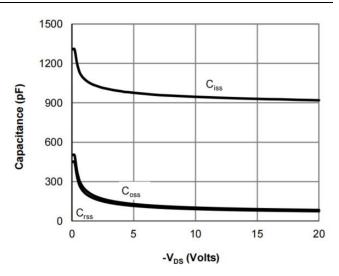


Figure 8. Capacitance Characteristics

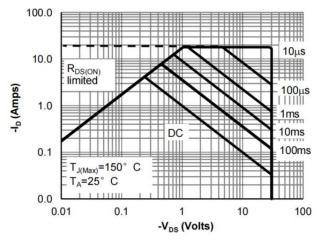


Figure 9. Maximum Forward Biased Safe
Operating Area

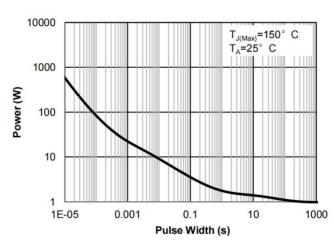


Figure 10. Single Pulse Power Rating Junction-to-Ambient

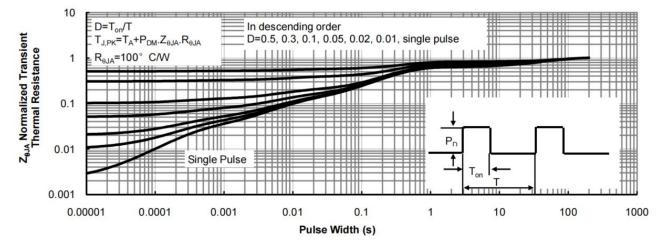


Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit and Waveform

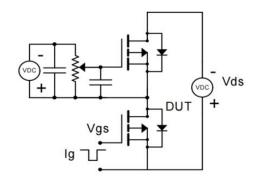


Figure 12. Gate Charge Test Circuit

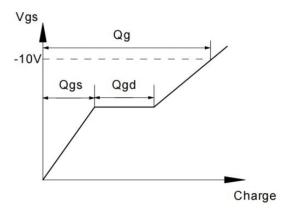


Figure 13. Gate Charge Waveform

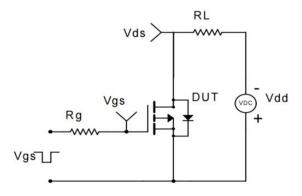


Figure 14. Resistive Switching Test Circuit

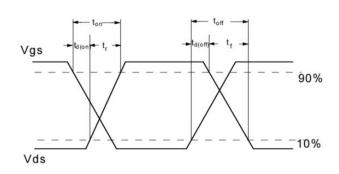


Figure 15. Resistive Switching Waveforms

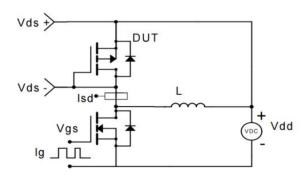


Figure 16. Diode Recovery Test Circuit

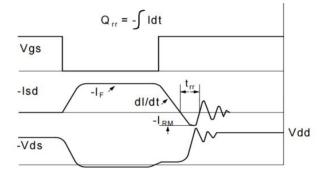
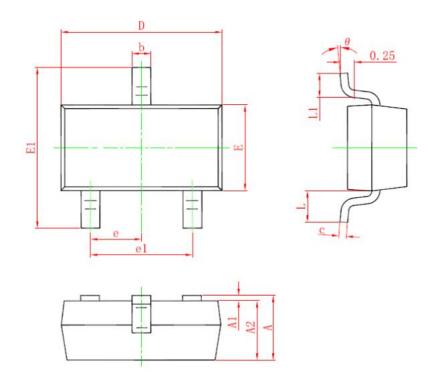



Figure 17. Diode Recovery Waveforms

SOT-23 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITIAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED.

CHIPLINK DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS.

THIS DOCUMENT SUPERSEDES AND REPLACES ALL INFORMATION PREVIOUSLY SUPPLIED. CHIPLINK RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.