

100V N-Channel Depletion-Mode Power MOSFET

General Features

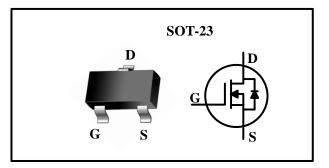
- ≻ Depletion Mode (Normally-on)
- ⊳ **Excellent Temperature Characteristics**
- ⊳ Extremely low Leakage Current
- ⊳ Fast Switching Speed
- ≻ **High Reliability**
- Small Package Size: SOT-23 ≻
- **RoHS** Compliant \triangleright
- ⊳ Halogen-free Available

Applications

- Ignition Modules ≻
- Normally-on Switches \triangleright
- ⊳ Solid State Relays
- ≻ Converters
- ⊳ Security
- Power Supplies \triangleright
- Smart Transmitter \triangleright
- \triangleright **Constant Current Source**

Ordering Information

Part Number	Part Number Package M		Remark
DMZ42C10S	SOT-23	42C10	Halogen Free


Absolute	Maximum Ratings	T _A =25°C unless otherwise specifie			
Symbol	Parameter	DMZ42C10S	Unit		
V _{DSX}	Drain-to-Source Voltage ^[1]	100	V		
ID	Continuous Drain Current	0.2	•		
I _{DM}	Pulsed Drain Current ^[2]	0.8	А		
P _D	Power Dissipation	0.5	W		
V_{GS}	Gate-to-Source Voltage	± 20	V		
T_L	Soldering Temperature Distance of 1.6mm from case for 10 seconds	300	°C		
T _J & T _{STG}	Operating and Storage Temperature Range	-55 to 150			

Warning: Stresses exceeding the "Absolute Maximum Ratings" may cause permanent damage to the device.

Thermal Characteristics

Symbol	Parameter	DMZ42C10S	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	250	°C/W

BV _{DSX}	R _{DS(ON)(Max.)}	I _{DSS(Min.)}			
100V	6Ω	90mA			

Electrical Characteristics

OFF Characteristics

OFF Characteristics					T _A =25°C unless otherwise specified		
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
BV _{DSX}	Drain-to-Source Breakdown Voltage	100			V	V _{GS} =-10V, I _D =250µA	
т	Drain-to-Source Leakage Current			0.1	μA	V_{DS} =100V, V_{GS} =-10V T _j =25°C	
I _{D(OFF)}				10		V _{DS} =100V, V _{GS} =-10V T _j =125°C	
I _{GSS}	Gate-to-Source Leakage Current			10	nA	V_{GS} =20V, V_{DS} =0V	
				-10		V_{GS} =-20V, V_{DS} =0V	

ON Characteristics

T_A=25°C unless otherwise specified

						25 ° c unicis outer wise specified
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
I _{DSS}	Saturated Drain-to-Source Current	90			mA	$V_{GS}=0V, V_{DS}=10V$
D	Static Drain-to-Source On-Resistance			6	Ω	$V_{GS}=0V$, $I_D=50mA^{[3]}$
R _{DS(ON)}			1.2	5	Ω	V_{GS} =10V, I_D =190mA ^[3]
V _{GS(OFF)}	Gate-to-Source Cut-off Voltage	-2.9		-1.8	V	V _{DS} =3V, I _D =50µA
gfs	Forward Transconductance		400		mS	V _{DS} =10V, I _D =150mA

Dynamic Characteristics

Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
C_{iss}	Input Capacitance		90.0		pF	$\begin{array}{l} V_{GS} = -10V \\ V_{DS} = 25V \\ f = 1.0 MHz \end{array}$
C _{oss}	Output Capacitance		25.6			
C _{rss}	Reverse Transfer Capacitance		4.9			
Qg	Total Gate Charge		2.43		nC	$\begin{array}{c} V_{GS} = -3V \sim 7V \\ V_{DS} = 80V \\ I_{D} = 120 \text{mA} \end{array}$
Q_{gs}	Gate-to-Source Charge		0.35			
Q_{gd}	Gate-to-Drain (Miller) Charge		0.68			

Resistive Switching Characteristics

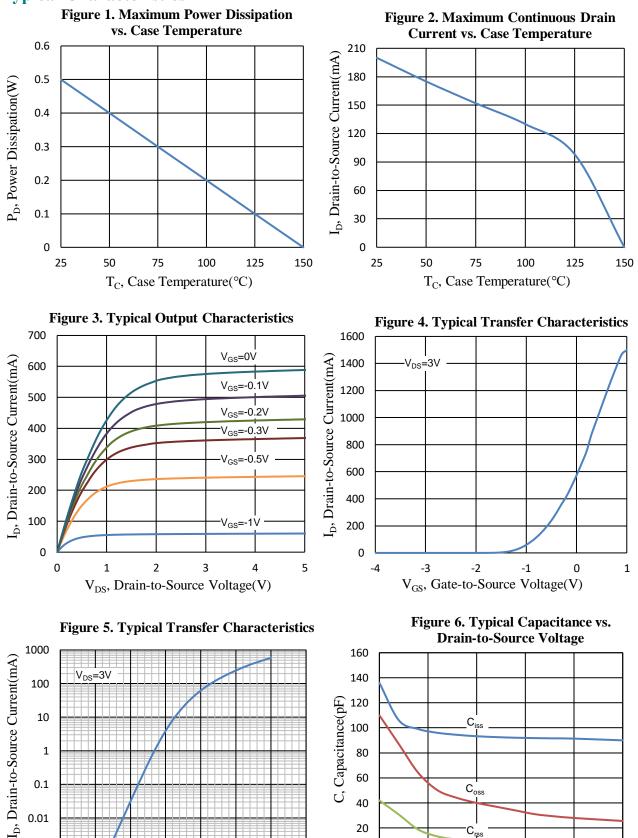
Resistive Switching Characteristics			Essentially independent of operating temperature			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
t _{d(on)}	Turn-on Delay Time		3.0		- ns	$V_{GS}=-3V\sim7V$ $V_{DD}=50V$ $I_{D}=120mA$ $R_{G}=6\Omega$
t _{rise}	Rise Time		2.8			
$t_{d(off)}$	Turn-off Delay Time		13.5			
t _{fall}	Fall Time		100			

ARK Microelectronics Co., Ltd.

DMZ42C10S Provisional Datasheet

Source-Drain Diode Characteristics T_A=25°C unless otherwise specified Max. Symbol Parameter Min. Typ. Unit **Test Conditions** 1.2 V I_{SD}=190mA, V_{GS}=-10V V_{SD} Diode Forward Voltage ----

NOTE:


[1] T_J =+25°C to +150°C.

[2] Repetitive rating, pulse width limited by maximum junction temperature.

[3] Pulse width \leq 380 µs, duty cycle \leq 2%.

Typical Characteristics

ARK Microelectronics Co., Ltd.

-2.5

-2

-1.5

V_{GS}, Gate-to-Source Voltage(V)

-1

0.01

0.001

-3

www.ark-micro.com

20

0

0

5

10

15

V_{DS}, Drain-to-Source Voltage(V)

20

25

0

-0.5

0.5

1

10

V_{DS}, Drain-to-Source Voltage(V)

100

1 ⊢ 0.1

1000

Typical Application Circuits

DMZ42C10S series products have excellent high temperature stability characteristics. Therefore, they are suitable for the applications such as over-voltage protection, over-current protection, and building simple constant current sources.

The typical over-current protection/simple constant current source circuit scheme is shown in Figure 12. The subthreshold characteristic of DMZ42C10S is used to limit the current through the resistor R1 within a set range to meet the requirements of the load circuit to achieve current limiting/constant current. The maximum current/constant current that the circuit can pass through is: $I = V_{GS(OFF)}/R_1$ ($V_{GS(OFF)}$ is related to the actual current flowing through).

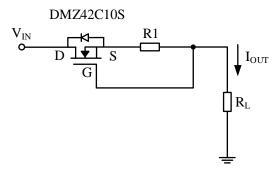


Figure 12. Overcurrent protection

The typical circuit of DMZ42C10S for over-voltage protection/regulated power supply is shown in Figure 13. When the input voltage is lower than the set output clamp threshold, V_{OUT} is approximately equal to V_{IN} ; when the input voltage is higher than the set output clamping threshold, the output voltage is clamped, i.e. $V_{OUT} = |V_{GS(OFF)}| + V_Z$.

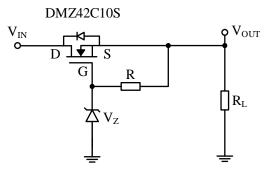


Figure 13: Voltage regulator/Overvoltage protection

DMZ42C10S Provisional Datasheet

The typical circuit of DMZ42C10S combined with LDO is shown in Figure 14. In this circuit, DMZ42C10S can effectively suppress circuit surge, provide overvoltage protection for LDO, effectively broaden the allowable input voltage range of LDO, and balance the LDO's power consumption, and use low-voltage LDOs for high-voltage circuits directly.

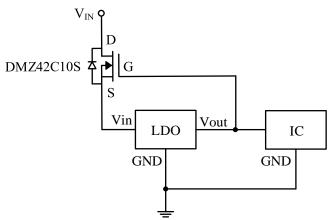


Figure 14. Collocation with LDO

DMZ42C10S series products have extremely low leakage current and excellent high-temperature stability, which are very suitable for power supply protection of DAC chips. Typical application circuits are shown in Figure 15 below, they can effectively suppress current surges and provide reliable over-voltage and over-current protection for sensors and transmitters in complex electromagnetic environments.

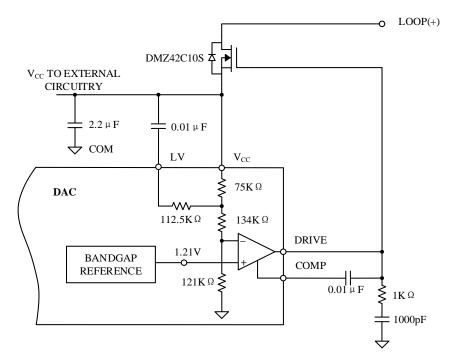
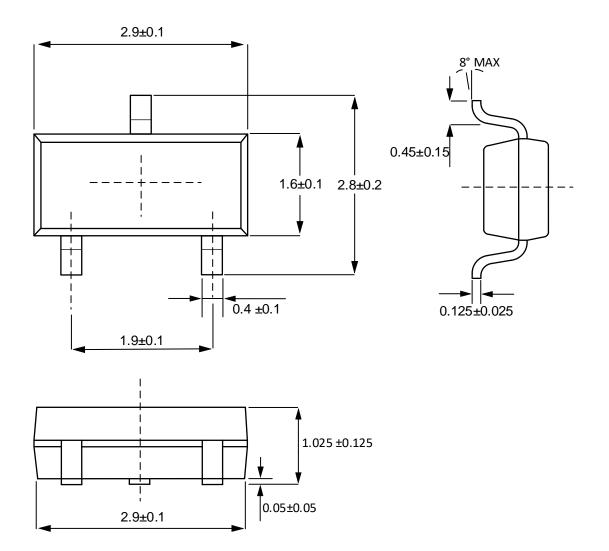



Figure 15. Collocation with operational amplifier

SOT-23

Published by ARK Microelectronics Co., Ltd. ADD: D26, UESTC National Science Park No. 1 Shuangxing Avenue, Chengdu, Sichuan.All All Rights Reserved.

Disclaimers

ARK Microelectronics Co., Ltd. reserves the right to make change without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to ARK Microelectronics Co., Ltd's terms and conditions supplied at the time of order acknowledgement.

ARK Microelectronics Co., Ltd. warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent ARK Microelectronics Co., Ltd deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessary performed.

ARK Microelectronics Co., Ltd. does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using ARK Microelectronics Co., Ltd's components. To minimize risk, customers must provide adequate design and operating safeguards.

ARK Microelectronics Co., Ltd. does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in ARK Microelectronics Co., Ltd's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for such altered documentation.

Resale of ARK Microelectronics Co., Ltd's products with statements different from or beyond the parameters stated by ARK Microelectronics Co., Ltd. for the product or service voids all express or implied warrantees for the associated ARK Microelectronics Co., Ltd's product or service and is unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for any such statements.

Life Support Policy:

ARK Microelectronics Co., Ltd's products are not authorized for use as critical components in life devices or systems without the expressed written approval of ARK Microelectronics Co., Ltd.

As used herein:

- 1. Life support devices or systems are devices or systems which:
 - a. are intended for surgical implant into the human body,
 - b. support or sustain life,
 - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.