

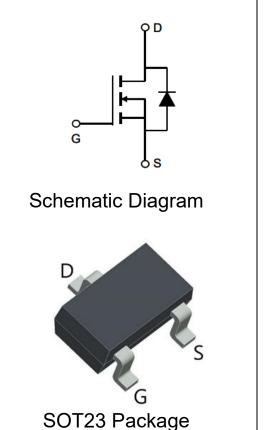
CHIPLINK N-Channel Enhancement Mode Power MOSFET

Description

The LX2312S combines advanced trench technology to provide excellent $R_{\rm DS(ON)}$. This device is suitable for use as a load switch or PWM applications.

Features

V_{DS}=20V, I_D=6.8A


$$\begin{split} R_{DS(ON)typ*} &= 15 m \Omega @V_{GS} = 4.5 V \\ R_{DS(ON)typ*} &= 19 m \Omega @V_{GS} = 2.5 V \end{split}$$

- High power and current handing capability
- Termination is Lead-free and RoHS Compliant

Applications

- PWM applications
- Load switch
- Power Management

Maximum Ratings($T_A=25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Maximum	Units
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V _{GS}	±10	V
Continuous Drain Current -Tc=25℃		6.8	Α
-Tc=70℃	ID	4	Α
Pulsed Drain Current ^B	I _{DM}	25	Α
Maximum Power Dissipation ^A	P _D	1.25	W
Junction and Storage Temperature Range	T _J , T _{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction to Ambient	R _{QJA}	100	°C/W
---	------------------	-----	------

Electrical Characteristics (T_A=25 °C unless otherwise specified)

Parameter	Symbol	Test conditions	MIN	TYP	MAX	UNIT
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	20			V
Gate-Threshold Voltage	$V_{th(GS)}$	V_{DS} = V_{GS} , I_{D} =250 uA	0.45	0.65	1.1	V
Gate-body Leakage	IGSS	V _{DS} =0V, V _{GS} =±10V			±100	nA
Zero Gate Voltage Drain Current	IDSS	V _{DS} =20V, V _{GS} =0V			1	uA
Drain-Source On-Resistance	D	$V_{GS} = 4.5V, I_D = 2.5A$		15	18	mΩ
Dialii-Source Off-Resistance	R _{DS(ON)}	$V_{GS} = 2.5 V, I_{D} = 2.0 A$		19	23	mΩ
Forward Transconductance	g FS	$V_{DS}=5V, I_{D}=1.0A$	2			S
Dynamic Characteristics						
Input Capacitance	Ciss	101/11/01/		500		
Output Capacitance	Coss	$V_{DS} = 10V$, $V_{GS} = 0V$, F = 1MHz		90		pF
Reverse Transfer Capacitance	C _{rss}	1 - 1101112		70		
Switching Capacitance						
Turn-on Delay Time	t _{d(on)}			20		nS
Turn-on Rise Time	t _r	$V_{DD} = 10V, R_{L} = 2.9\Omega$		18		nS
Turn-off Delay Time	t _{d(off)}	$V_{GS} = 4.5V$, $R_{GEN}=3\Omega$		60		nS
Turn-off Fall Time	t _f			28		nS
Total Gate Charge	Q_g	$V_{DS} = 10V, I_{D}=2A,$		10		nC
Gate-Source Charge	Q_{gs}	V _{GS} =4.5V		2.3		nC
Gate-Drain Charge	Q_{gd}			2.9		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _D =5A			1.2	V
Diode Forward Current	ls				6.8	Α

Notes:

- A. The Power dissipation P_D is based on T_{J(MAX)}=150 °C, using≤10s junction-to ambient thermal resistance.
- B. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150 $^{\circ}$ C. Ratings are based on low frequency and duty cycles to keep initial T_J =25 $^{\circ}$ C.
- C. The Static characteristics in Figures are obtained using \leq 300 μ s pulses, duty cycle 2% max.

Typical Electrical and Thermal Characteristics

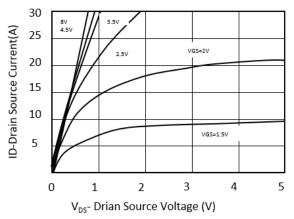
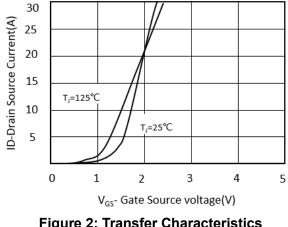



Figure 1: Output Characteristics

Figure 2: Transfer Characteristics

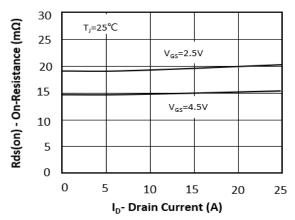


Figure 3: On-Resistance Vs. Drain Current

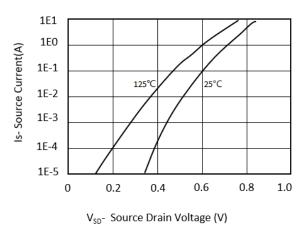


Figure 4: Body Diode Characteristics

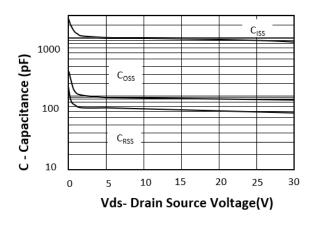


Figure 5: Capacitance Characteristics

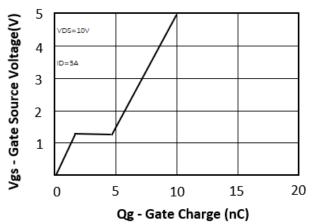
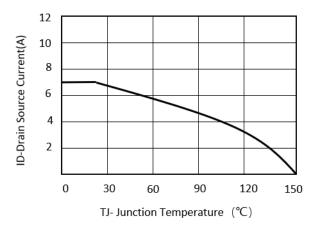



Figure 6: Gate Charge Characteristics

1.8 1.6 Normalized On-Resistance 1.4 1.2 1.0 0.8 0.6 50 0 25 75 100 150 125 TJ- Junction Temperature (°C)

Figure 7: Drain Current Vs Junction Temperature

Figure 8: Normalized On-resistance Vs. Junction Temperature

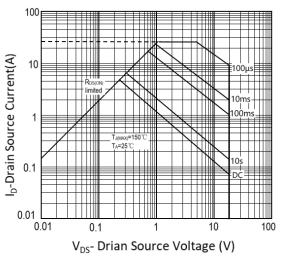


Figure 9: Safe Operation Area

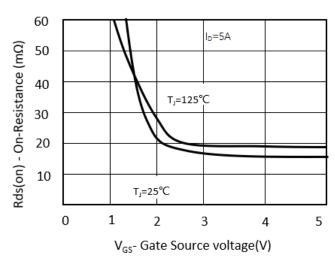
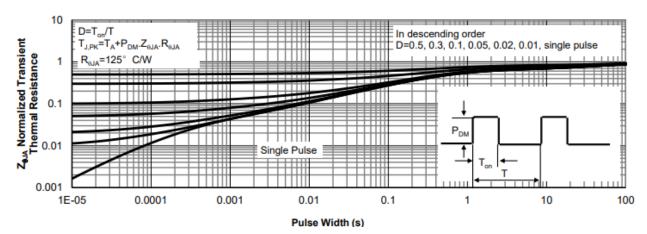
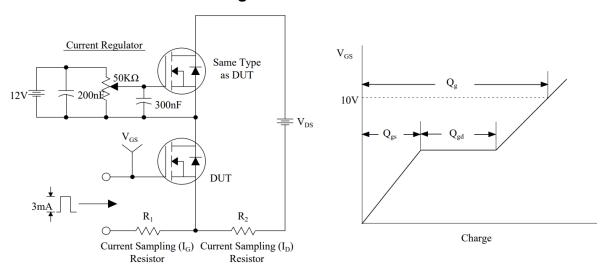
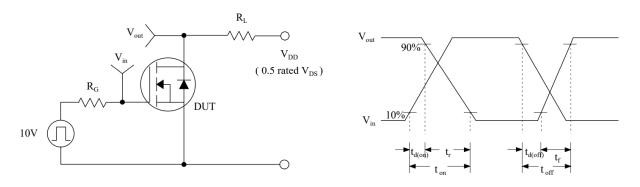
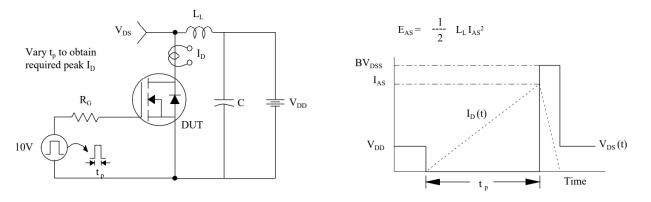


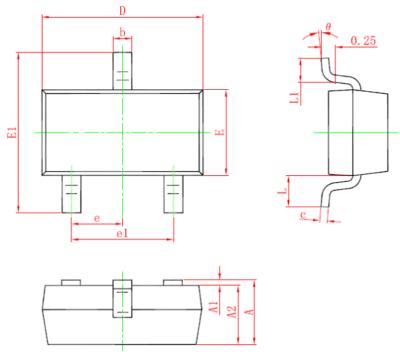
Figure 10: On-Resistance De-rating


Figure 11: Normalized Maximum Transient Thermal Impedance


Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms

SOT23 Package Information

C) male al	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITIAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED.

CHIPLINK DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS.

THIS DOCUMENT SUPERSEDES AND REPLACES ALL INFORMATION PREVIOUSLY SUPPLIED. CHIPLINK RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.