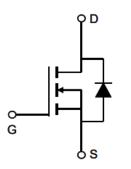


CHIPLINK N-Channel Enhancement Mode Power MOSFET

Description

The LX3400BL combines advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltage as low as 2.5V. This device is suitable for use as a load switch or PWM applications.


Features

- V_{DS} =30V, I_D =5.8A $R_{DS(ON)}$ <25mΩ@ V_{GS} =10V $R_{DS(ON)}$ <31mΩ@ V_{GS} =4.5V $R_{DS(ON)}$ <45mΩ@ V_{GS} =2.5V
- Low gate charge
- High power and current handing capability
- Termination is Lead-free and RoHS Compliant

Applications

- PWM applications
- Load switch
- Power Management

Maximum Ratings(T_A=25 °C unless otherwise noted)

Parameter	Symbol	Maximum	Units
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±12	V
Continuous Drain Current	I _D	5.8	Α
Pulsed Drain Current ^B	I _{DM}	23	Α
Maximum Power Dissipation ^A	P _D	1.3	W
Junction and Storage Temperature Range	T _J , T _{STG}	-55 To 150	$^{\circ}\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction to Ambient	R _{QJA}	96	°C /W

Electrical Characteristics (T_A =25 $^{\circ}$ Cunless otherwise specified)

Parameter	Symbol	Test conditions	MIN	TYP	MAX	UNIT
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	30			V
Gate-Threshold Voltage	$V_{th(GS)}$	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	0.6	0.8	1.2	V
Gate-body Leakage	IGSS	$V_{DS}=0V$, $V_{GS}=\pm 12V$			±100	nA
Zero Gate Voltage Drain Current	IDSS	V _{DS} =30V, V _{GS} =0V			1	uA
		V_{GS} =10V, I_D =5A		21	25	mΩ
Drain-Source On-Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_D =4A		23	31	mΩ
		$V_{GS} = 2.5V, I_D = 3A$		30	45	mΩ
Forward Transconductance	g FS	$V_{DS}=5V$, $I_D=5A$	10			S
Dynamic Characteristics						
Input Capacitance	C _{iss}	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		635		
Output Capacitance	Coss	$V_{DS} = 15V$, $V_{GS} = 0V$, F=1MHz		56		pF
Reverse Transfer Capacitance	C _{rss}	1 - 11VII 12		46		
Switching Capacitance						
Turn-on Delay Time	t _{d(on)}	$V_{DD} = 15V, R_{L} = 2.7\Omega$		3.3		nS
Turn-on Rise Time	t _r			4.8		nS
Turn-off Delay Time	t _{d(off)}	$V_{GS} = 10V, R_{GEN} = 3\Omega$		26		nS
Turn-off Fall Time	t _f			4		nS
Total Gate Charge	Q_g	$V_{DS} = 15V, I_{D}=5A,$		5.2		nC
Gate-Source Charge	Q_{gs}	V _{GS} =4.5V		1.2		nC
Gate-Drain Charge	Q_{gd}			1.7		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _D =5A			1.2	V
Diode Forward Current	ls				5.8	Α

Notes:

- A. The Power dissipation P_D is based on T_{J(MAX)}=150 °C, using≤10s junction-to ambient thermal resistance.
- B. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150 °C.Ratings are based on low frequency and duty cycles to keep initial T_J =25 °C.
- C. The Static characteristics in Figures are obtained using \leq 300 μ s pulses, duty cycle 2% max.

Typical Electrical and Thermal Characteristics

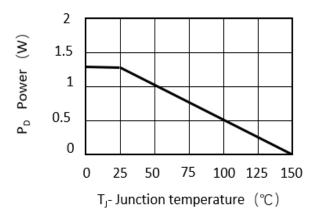


Figure 1: Power Dissipation

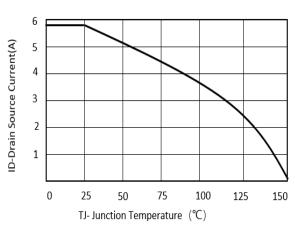


Figure 2: Drain Current



Figure 3: On-region Characteristic

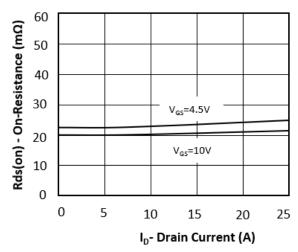
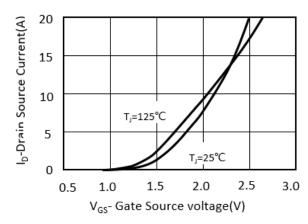



Figure 4: Drain-Source On-Resistance

Figure 5: Transfer Characteristics

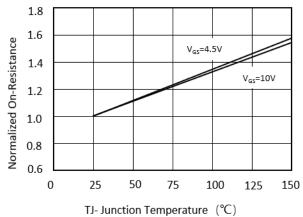


Figure 6: On-resistance VS. Junction Temperature

 C_{ISS}

20

25

30

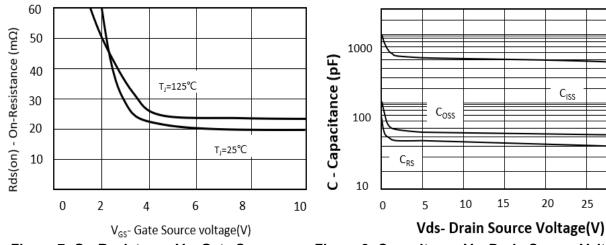


Figure 7: On-Resistance Vs. Gate Source **Voltage**

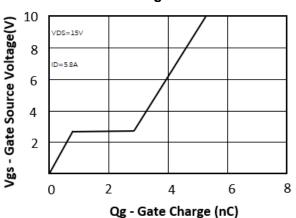


Figure 9: Gate Charge

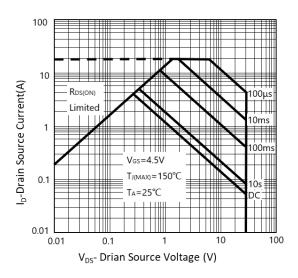
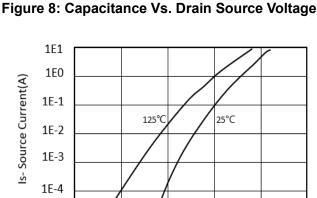



Figure 11: Safe Operation Area

0.4

V_{SD}- Source Drain Voltage (V)

0.6

0.8

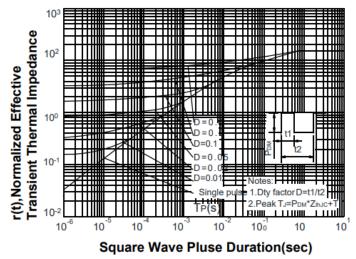
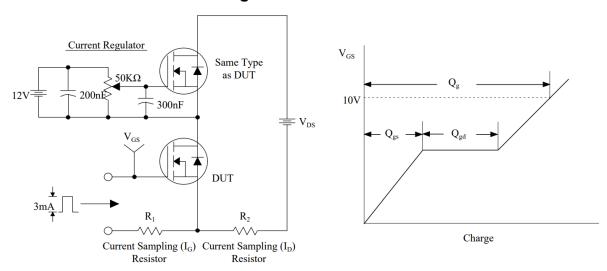
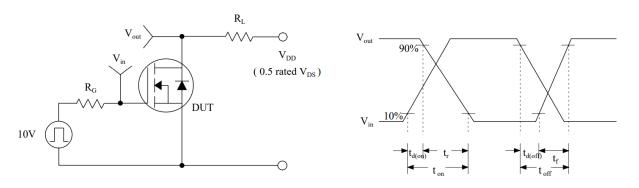

1.0

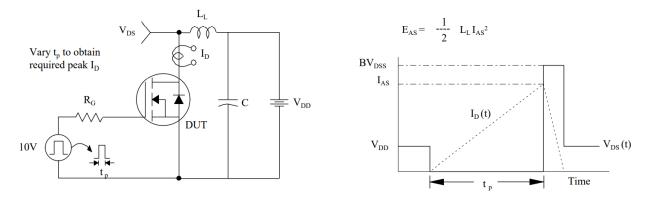
Figure 10: Source-Drain Diode Forward

0.2

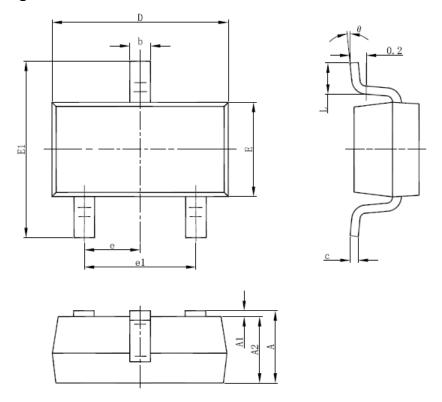
1E-5


0


Figure 12: Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms

SOT23-3L Package Information

County of I	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITIAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED.

CHIPLINK DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS.

THIS DOCUMENT SUPERSEDES AND REPLACES ALL INFORMATION PREVIOUSLY SUPPLIED. CHIPLINK RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.