BLM10D1822-61ABG

LDMOS 2-stage integrated Doherty MMIC

AMPLEON

Rev. 1 — 19 October 2020

Product data sheet

1. Product profile

1.1 General description

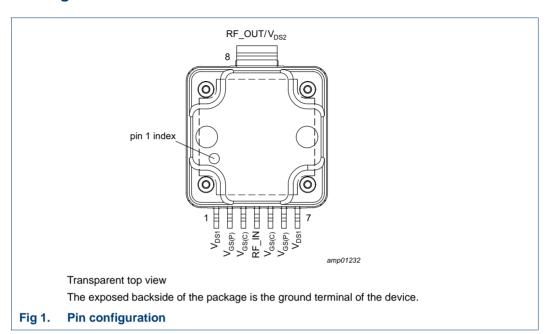
The BLM10D1822-61ABG is a 2-stage fully integrated Doherty MMIC solution using Ampleon's state of the art GEN10 LDMOS technology. The carrier and peaking device, input splitter and output combiner are integrated in a single package. This multiband device is perfectly suited as general purpose driver in the frequency range from 1800 MHz to 2200 MHz. Available in gull wing.

Table 1. Performance

Typical RF performance at $T_{case} = 25$ °C; $I_{Dq} = 100$ mA (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.36$ V. Test signal: 1-carrier LTE; carrier spacing = 20 MHz; PAR = 7.6 dB at 0.01 % probability on CCDF.

Test signal	f	V _{DS}	P _{L(M)}	G _p	η_{D}	ACPR _{20M}
	(MHz)	(V)	(dBm)	(dB)	(%)	(dBc)
1-carrier LTE 20 MHz	1990	28	40	27.5	42.5	-32

1.2 Features and benefits


- Integrated input splitter
- Integrated output combiner
- High efficiency
- Designed for broadband operation (frequency 1800 MHz to 2200 MHz)
- Integrated temperature compensated bias
- Independent control of carrier and peaking bias
- Integrated ESD protection
- Excellent thermal stability
- Source impedance 50 Ω ; high power gain
- For RoHS compliance see the product details on the Ampleon website

1.3 Applications

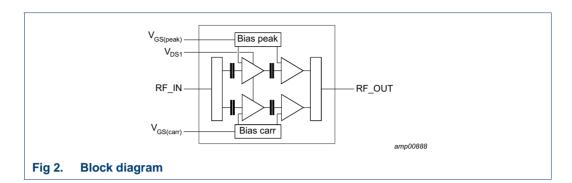
 RF power MMIC for multi-carrier and multi-standard GSM, W-CDMA and LTE base stations in the 1800 MHz to 2200 MHz frequency range

2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2. Pin description


Symbol	Pin	Description
V _{DS1}	1	drain-source voltage of driver stages
$V_{GS(P)}$	2	gate-source voltage of peaking P
V _{GS(C)}	3	gate-source voltage of carrier C
RF_IN	4	RF input
V _{GS(C)}	5	gate-source voltage of carrier C
$V_{GS(P)}$	6	gate-source voltage of peaking P
V _{DS1}	7	drain-source voltage of driver stages
RF_OUT/V _{DS2}	8	RF output / drain-source voltage of final stages
GND	flange	RF ground

3. Ordering information

Table 3. Ordering information

Type number	Packag	ackage						
	Name	Description	Version					
BLM10D1822-61ABG		plastic, heatsink small outline package; 8 leads	OMP-400-8G-1					

4. Block diagram

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-6	+9	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	200	°C
T _{case}	case temperature		-	150	°C
Pi	input power	[2]	-	13	dBm

^[1] Continuous use at maximum temperature will affect the reliability. For details refer to the online MTF calculator.

6. Thermal characteristics

Table 5. Thermal characteristics

Measured for total device.

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-c)}	thermal resistance from junction to	$T_{case} = 90 ^{\circ}C; P_{L} = 10 W$ [1]	1.9	K/W
	case	$T_{case} = 90 ^{\circ}C; P_{L} = 2.5 W$ [1]	2.7	K/W

^[1] When operated with a 1-carrier W-CDMA with PAR = 9.9 dB.

3 of 17

^[2] $T_{case} = 25$ °C; $V_{DS} = 28$ V; $I_{Dq} = 108$ mA (carrier and peaking); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.36$ V. Test signal: 1-carrier LTE 20 MHz, PAR = 7.6 dB at 0.01 % probability CCDF.

7. Characteristics

Table 6. DC characteristics

 $T_{\rm case} = 25 \, ^{\circ}{\rm C}$.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	f > 2000 MHz; up to 2 : 1 output impedance mismatch	[1]	-	28	32	V
		f ≤ 2000 MHz; up to 5 : 1 output impedance mismatch	[1]	-	28	32	V
		all frequencies; up to 5 : 1 output impedance mismatch	[1]	-	28	30	V
Carrier						•	
V_{GSq}	gate-source quiescent voltage	$V_{DS} = 28 \text{ V}; I_{D} = 100 \text{ mA}$		1.6	2.1	2.7	V
I _{GSS}	gate leakage current	V _{GS} = 9 V; V _{DS} = 0 V		-	-	140	nA
Peaking				•			
I _{GSS}	gate leakage current	V _{GS} = 9 V; V _{DS} = 0 V		-	-	140	nA
Final sta	iges					•	
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V		-	-	1.4	μΑ
Driver st	ages						
I _{DSS}	drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 28 \text{ V}$		-	-	1.4	μΑ

^[1] $I_{Dq} = 108$ mA (carrier and peaking); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.36$ V. Test signal: 1-carrier LTE 20 MHz, PAR = 7.6 dB at 0.01 % probability CCDF.

Table 7. RF Characteristics

Typical RF performance at T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq} = 100 mA (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.36$ V; $P_{L(AV)}$ = 10 W; unless otherwise specified measured in an Ampleon production circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Tested s	ignal: pulsed CW [1]					
G _p	power gain	f = 2000 MHz	26.5	28.5	30.5	dB
η_{D}	drain efficiency	P _L = 10 W (40 dBm)	40	45	-	%
		$P_L = P_{L(3dB)}$	44	51	-	%
RLin	input return loss		-	-15	-10	dB
P _{L(3dB)}	output power at 3 dB gain compression		47.1	47.8	-	dBm

^[1] Pulsed CW power sweep measurement (δ = 10 %, t_p = 100 μ s).

8. Application information

Table 8. Typical performance

 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq} = 100 mA (driver and final stages). Test signal: 1-carrier LTE 20 MHz, PAR 7.6 dB at 0.01 % probability CCDF; unless otherwise specified, typical performance in an Ampleon 1805 MHz to 2200 MHz frequency band asymmetrical integrated Doherty application circuit.

k output power	f = 1990 MHz				Max	Unit
	1 - 1000 Will 12	[1]	-	48.3	-	dBm
malized phase response	f = 1990 MHz; at 3 dB compression point;	[2]	-	-24.5	-	0
in efficiency	13 dB OBO (P _{L(AV)} = 35 dBm); f = 1990 MHz		-	29.6	-	%
	13 dB OBO (P _{L(AV)} = 35 dBm); f = 1990 MHz	[3]	-	28.7	-	%
ver gain	P _{L(AV)} = 35 dBm; f = 1990 MHz		-	27.8	-	dB
	IMD3 = -25 dBc; 2-tone CW;		-	618	-	MHz
n flatness	P _{L(AV)} = 35 dBm; f = 1805 MHz to 2200 MHz		-	0.6	-	dB
acent channel power ratio (20 MHz)	P _{L(AV)} = 35 dBm; f = 1990 MHz		-	-35.6	-	dB
n variation with temperature	f = 1990 MHz	[4]	-	0.06	-	dB/°C
lett stability factor	T_{case} = -40 °C; f = 0.2 GHz to 6.1 GHz	[4]	-	>1	-	
ve ec n	er gain b bandwidth flatness cent channel power ratio (20 MHz) variation with temperature	$f = 1990 \text{ MHz}$ $13 \text{ dB OBO (P}_{L(AV)} = 35 \text{ dBm});$ $f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 38 \text{ dBm}, \text{ set to obtain IMD3} = -25 \text{ dBc}; 2\text{-tone CW};$ $f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1805 \text{ MHz to }$ 2200 MHz $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz}$	$f = 1990 \text{ MHz}$ $13 \text{ dB OBO } (P_{L(AV)} = 35 \text{ dBm}); $ $f = 1990 \text{ MHz}$ $P_{L(AV)} = 35 \text{ dBm}; $ $P_{L(AV)} = 38 \text{ dBm}, $ $P_{L(AV)} = 38 $	$\begin{array}{c} f = 1990 \text{ MHz} \\ \hline 13 \text{ dB OBO } (P_{L(AV)} = 35 \text{ dBm}); \\ f = 1990 \text{ MHz} \\ \hline \end{array} \\ \text{er gain} \\ P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz} \\ \hline \text{o bandwidth} \\ P_{L(AV)} = 38 \text{ dBm}, \text{ set to obtain} \\ \text{IMD3} = -25 \text{ dBc}; 2\text{-tone CW}; \\ f = 1990 \text{ MHz} \\ \hline \\ \text{flatness} \\ P_{L(AV)} = 35 \text{ dBm}; f = 1805 \text{ MHz to} \\ 2200 \text{ MHz} \\ \hline \\ \text{cent channel power ratio } (20 \text{ MHz}) \\ \hline P_{L(AV)} = 35 \text{ dBm}; f = 1990 \text{ MHz} \\ \hline \\ \text{evariation with temperature} \\ f = 1990 \text{ MHz} \\ \hline \\ \text{T}_{case} = -40 \text{ °C}; f = 0.2 \text{ GHz to} \\ \hline \end{array} \\ \begin{array}{c} [3] \\ - \\ \hline \end{array}$	$\begin{array}{c} f = 1990 \text{ MHz} \\ 13 \text{ dB OBO } (P_{L(AV)} = 35 \text{ dBm}); \\ f = 1990 \text{ MHz} \\ \end{array} \qquad \begin{array}{c} 28.7 \\ = 1990 \text{ MHz} \\ \end{array} \qquad \begin{array}{c} 27.8 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 27.8 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 27.8 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 27.8 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1805 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1805 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1805 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array} \qquad \begin{array}{c} 618 \\ = 1990 \text{ mHz} \\ \end{array}$	$\begin{array}{c} f = 1990 \text{ MHz} \\ \hline 13 \text{ dB OBO } (P_{L(AV)} = 35 \text{ dBm}); \\ f = 1990 \text{ MHz} \\ \hline \end{array} \begin{array}{c} 31 \\ - 28.7 \\ - 35 \text{ dBm}; \\ - 27.8 \\ - 35 \text{ dBm}; \\ - 38 \text{ dBm}; \\ - 38$

^[1] Test signal: 1-carrier W-CDMA; test model 1; 64 DPCH; PAR = 9.9 dB at 0.01 % probability CCDF.

^{[2] 25} ms CW power sweep measurement.

^[3] Test signal: 2-carrier LTE 20 MHz spaced by 345 MHz, PAR = 8 dB at 0.01 % probability CCDF linearized.

^[4] S-parameters measured with broadband demo board.

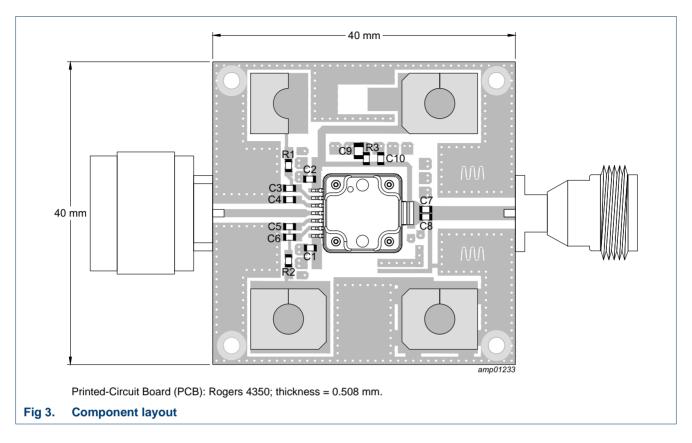
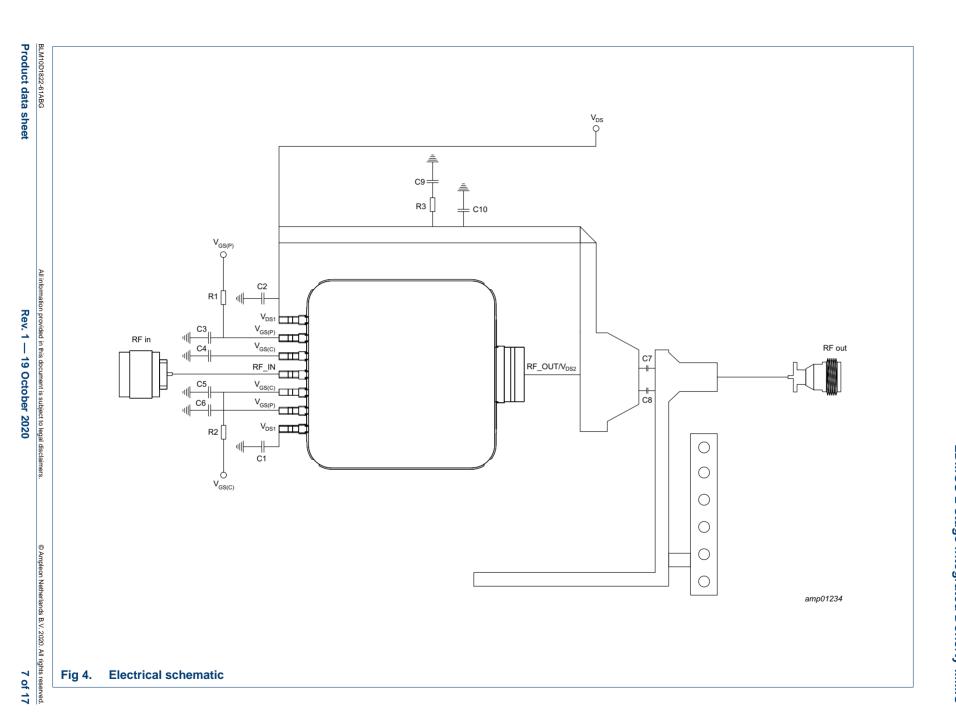



Table 9. Demo test circuit list of components

See Figure 3 for component layout.

Component	Description	Value	Remarks
C1, C2	multilayer ceramic chip capacitor	10 μF, 35 V	TDK: C2012X5R1V106K SMD 0805
C3, C4, C5, C6	multilayer ceramic chip capacitor	4.7 μF, 6.3 V	AVX: 06036D106MAT2A SMD 0603
C7	multilayer ceramic chip capacitor	1 pF	Murata: GQM1875C2E1R0WB12D SMD 0603
C8	multilayer ceramic chip capacitor	0.9 pF	Murata: GQM1875C2ER90BB12D SMD 0603
C9	multilayer ceramic chip capacitor	10 μF, 50 V	TDK: C2012X5R1V106K SMD 0805
C10	multilayer ceramic chip capacitor	9.1 pF	Murata: GQM1875C2E9R1CB12D SMD 0603
R1, R2	resistor	0 Ω	Multicomp: SMD 0603
R3	resistor	3 Ω	Multicomp: SMD 0603

8.1 Ruggedness in a Doherty operation

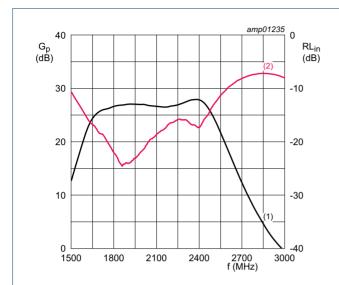
The BLM10D1822-61ABG is capable of withstanding a load mismatch corresponding to VSWR = 5 : 1 through all phases under the following conditions: V_{DS} = 30 V; I_{Dq} = 108 mA (carrier and peaking); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.36$ V; P_i corresponding to 41 dBm under Z_S = 50 Ω load; f = 2170 MHz (test signal: 1-carrier LTE 20 MHz, PAR = 7.6 dB at 0.01 % probability CCDF, is used during the stress); T_{case} = 25 °C. In such VSWR conditions, it is recommended not to exceed 30 V for the operating supply voltage.

The BLM10D1822-61ABG is capable of withstanding a 400 MHz white noise signal at 2 GHz (P_L = 42 dBm), 1.805 GHz (P_L = 38 dBm), 2.17 GHz (P_L = 38 dBm) or a 50 MHz white noise signal at 2.170 GHz (P_L = 42 dBm).

Conditions: $V_{DS} = 28 \text{ V}$, $I_{Dg} = 108 \text{ mA}$ (carrier and peaking), $T_{case} = 25 \,^{\circ}\text{C}$.

8.2 Impedance information

Table 10. Typical impedance for optimum Doherty operation


Measured load-pull data per section; test signal: pulsed CW; $T_{\rm case}$ = 25 °C; $V_{\rm DS}$ = 28 V; $I_{\rm Dq}$ = 100 mA (carrier); $V_{\rm GSq(peaking)}$ = $V_{\rm GSq(carrier)}$ – 0.36 V; $t_{\rm p}$ = 100 μ s; δ = 10 %. Typical values per section unless otherwise specified.

	tuned for optimum Doherty operation						
f	Z _L	Z _L G _{p(max)} P _L ո		η _{add} [1]	η _{add} [2]		
(MHz)	(Ω)	(dB)	(dBm)	(%)	(%)		
1800	22.816 – j6.170	28.597	48.273	48.836	46.255		
1900	22.187 – j2.743	29.207	48.088	51.479	47.814		
2000	20.708 - j7.364	28.915	48.032	52.069	46.803		
2100	22.706 – j4.197	28.620	48.100	56.063	46.777		
2200	22.076 – j1.029	28.209	47.700	57.646	47.034		

^[1] At 3 dB gain compression point.

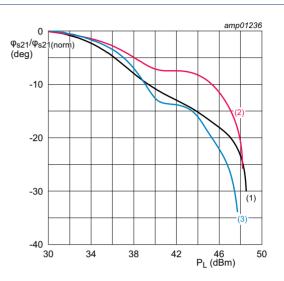
^[2] At $P_L = 40 \text{ dBm}$.

8.3 Graphs

 $T_{case} = 25 \, ^{\circ}C; \, V_{DS} = 28 \, V;$

 $I_{Dq1} + I_{Dq2} = 100 \text{ mA}$ (carrier and peaking stages);

 $V_{GS} = 2.19 \text{ V (carrier stage)};$


V_{GS} = 1.87 V (peaking stage).

Test signal: CW.

(1) magnitude of Gp

(2) magnitude of RLin

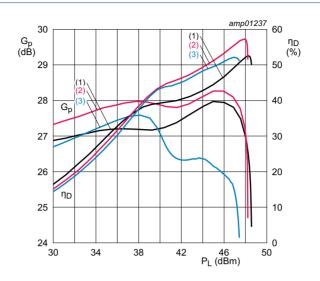
Fig 5. Wideband power gain and input return loss as function of frequency; typical values

 $T_{case} = 25 \, ^{\circ}C; \, V_{DS} = 28 \, V;$

 $I_{Dq1} + I_{Dq2} = 100 \text{ mA}$ (carrier and peaking stages);

 $V_{GS} = 2.19 V$ (carrier stage);

V_{GS} = 1.87 V (peaking stage).

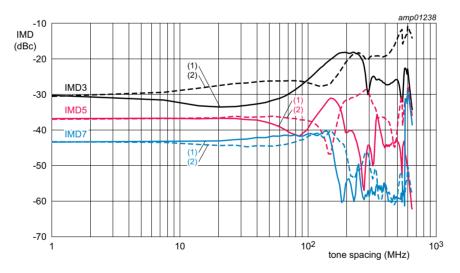

Test signal: 25 ms CW power sweep.

(1) f = 1805 MHz

(2) f = 1990 MHz

(3) f = 2200 MHz

Fig 6. Normalized phase response as a function of output power; typical values

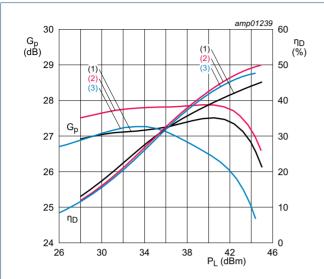


 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} + I_{Dq2} = 100 mA (carrier and peaking stages); V_{GS} = 2.19 V (carrier stage); V_{GS} = 1.87 V (peaking stage).

Test signal: pulsed CW power sweep (δ = 10 %; t_p = 100 μ s).

- (1) f = 1805 MHz
- (2) f = 1990 MHz
- (3) f = 2200 MHz

Fig 7. Power gain and drain efficiency as function of output power; typical values



 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} + I_{Dq2} = 100 mA (carrier and peaking stages); V_{GS} = 2.19 V (carrier stage); V_{GS} = 1.87 V (peaking stage).

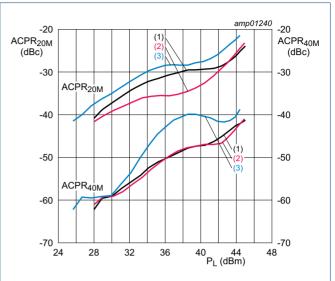
Test signal: 2-tone CW; f_c = 1990 MHz.

- (1) IMD low
- (2) IMD high

Fig 8. Intermodulation distortion as a function of tone spacing; typical values

 $T_{case} = 25 \, ^{\circ}C; \, V_{DS} = 28 \, V;$

 $I_{Dq1} + I_{Dq2} = 100 \text{ mA}$ (carrier and peaking stages);


 $V_{GS} = 2.19 \text{ V (carrier stage)};$

V_{GS} = 1.87 V (peaking stage).

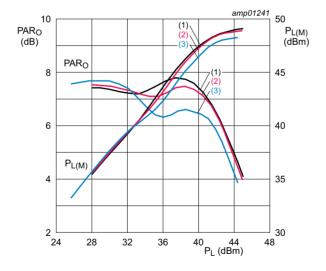
Test signal: 1-carrier LTE; PAR = 7.6 dB at 0.01 % probability CCDF.

- (1) f = 1805 MHz
- (2) f = 1990 MHz
- (3) f = 2200 MHz

Fig 9. Power gain and drain efficiency as function of output power; typical values

 $T_{case} = 25 \, ^{\circ}C; \, V_{DS} = 28 \, V;$

 $I_{Dq1} + I_{Dq2} = 100 \text{ mA}$ (carrier and peaking stages);


 $V_{GS} = 2.19 V$ (carrier stage);

V_{GS} = 1.87 V (peaking stage).

Test signal: 1-carrier LTE; PAR = 7.6 dB at 0.01 % probability CCDF.

- (1) f = 1805 MHz
- (2) f = 1990 MHz
- (3) f = 2200 MHz

Fig 10. Adjacent channel power ratio as a function of output power; typical values

 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} + I_{Dq2} = 100 mA (carrier and peaking stages); V_{GS} = 2.19 V (carrier stage); V_{GS} = 1.87 V (peaking stage).

Test signal: 1-carrier LTE; PAR = 7.6 dB at 0.01 % probability CCDF.

- (1) f = 1805 MHz
- (2) f = 1990 MHz
- (3) f = 2200 MHz

Fig 11. Output peak-to-average ratio and peak output power as function of output power; typical values

9. Package outline

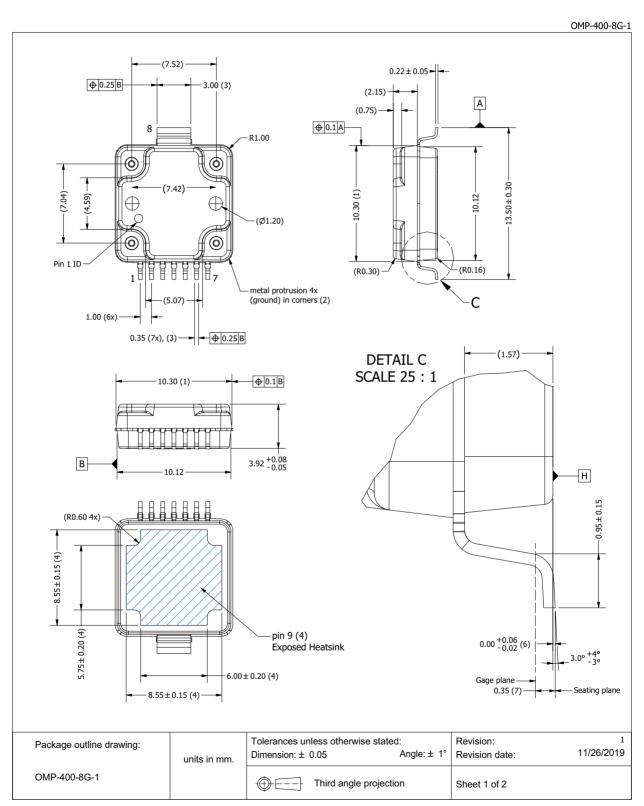


Fig 12. Package outline OMP-400-8G-1 (sheet 1 of 2)

OMP-400-8G-1

	Drawing Notes				
Items	Description				
	Dimensions are excluding mold protrusion. Areas located adjacent to the leads have a maximum mold protrusion of 0.25				
(1)	mm (per side) and 0.62 mm max. in length. In between the 7 leads the protrusion is 0.25 mm max. At all other areas the				
	mold protrusion is maximum 0.15 mm per side. See also detail B.				
(2)	The metal protrusion (tie bars) in the corner will not stick out of the molding compound protrusions (detail A).				
(3)	The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location				
(4)	The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along				
(4)	the original heatsink perimeter.				
(5)	The leads and exposed heatsink are plated with matte Tin (Sn).				
(0)	Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the				
(6)	heatsink is higher than the bottom of the lead.				
(7)	Gage plane (foot length) to be measured from the seating plane.				

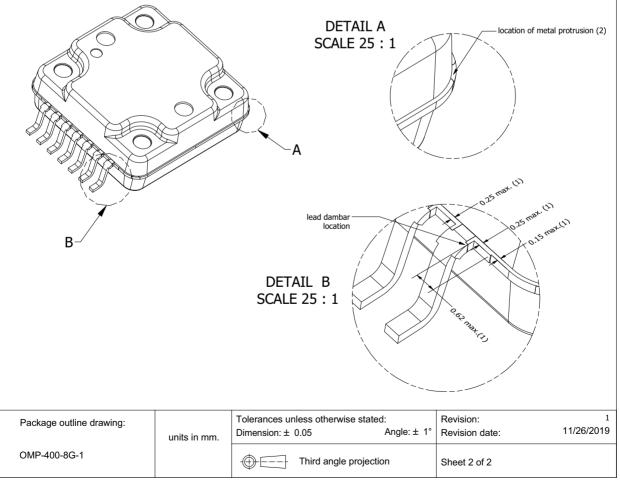


Fig 13. Package outline OMP-400-8G-1 (sheet 2 of 2)

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

Table 11. ESD sensitivity

ESD model	Class
Charged Device Model (CDM); According to ANSI/ESDA/JEDEC standard JS-002	C3 [1]
Human Body Model (HBM); According to ANSI/ESDA/JEDEC standard JS-001	1B 🔼

- [1] CDM classification C3 is granted to any part that passes after exposure to an ESD pulse of 1000 V.
- [2] HBM classification 1B is granted to any part that passes after exposure to an ESD pulse of 500 V.

11. Abbreviations

Table 12. Abbreviations

Acronym				
Acronym	Description			
CCDF	Complementary Cumulative Distribution Function			
CW	Continuous Wave			
DPCH	Dedicated Physical CHannel			
ESD	ElectroStatic Discharge			
GEN10	Tenth Generation			
GSM	Global System for Mobile Communications			
LDMOS	Laterally Diffused Metal Oxide Semiconductor			
LTE	Long Term Evolution			
MMIC	Monolithic Microwave Integrated Circuit			
MTF	Median Time to Failure			
ОВО	Output Back Off			
PAR	Peak-to-Average Ratio			
RoHS	Restriction of Hazardous Substances			
SMD	Surface Mounted Device			
VSWR	Voltage Standing Wave Ratio			
W-CDMA	Wideband Code Division Multiple Access			

12. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLM10D1822-61ABG v.1	20201019	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Maturity — The information in this document can only be regarded as final once the relevant product(s) has passed the Release Gate in Ampleon's release process. Prior to such release this document should be regarded as a draft version.

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

BLM10D1822-61ABG

LDMOS 2-stage integrated Doherty MMIC

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon's warranty of the product for such

automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon's standard warranty and Ampleon's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

AMPLEON

BLM10D1822-61ABG

LDMOS 2-stage integrated Doherty MMIC

15. Contents

1	Product profile	. 1
1.1	General description	. 1
1.2	Features and benefits	. 1
1.3	Applications	. 1
2	Pinning information	. 2
2.1	Pinning	. 2
2.2	Pin description	. 2
3	Ordering information	. 2
4	Block diagram	. 3
5	Limiting values	
6	Thermal characteristics	
7	Characteristics	. 4
8	Application information	. 5
8.1	Ruggedness in a Doherty operation	
8.2	Impedance information	
8.3	Graphs	. 9
9	Package outline	12
10	Handling information	14
11	Abbreviations	14
12	Revision history	14
13	Legal information	15
13.1	Data sheet status	15
13.2	Definitions	15
13.3	Disclaimers	15
13.4	Trademarks	16
14	Contact information	16
15	Contents	17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

All rights reserved.

For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales

Date of release: 19 October 2020 Document identifier: BLM10D1822-61ABG