LDMOS 2-stage integrated Doherty MMIC Rev. 1 — 9 January 2020

Product profile 1.

1.1 General description

The BLM10D2327-60ABG is a 2-stage fully integrated Doherty MMIC solution using Ampleon's state of the art GEN10 LDMOS MMIC technology. The carrier and peaking device, input splitter and output combiner are integrated in a single package. This device is perfectly suited as general purpose driver or mMIMO final in the frequency range from 2300 MHz to 2700 MHz. Available in gull wing.

Table 1. **Application performance**

Typical RF performance at T_{case} = 25 °C; I_{Dq} = 70 mA (carrier and peaking); V_{GSq(peaking)} = V_{GSq(carrier)} – 0.47 V. Test signal: 1-carrier W-CDMA 5 MHz; PAR = 9.9 dB; measured in an Ampleon f = 2300 MHz to 2700 MHz frequency band application circuit.

Test signal	f	V _{DS}	P _{L(AV)}	G _p	ησ	P _{L(M)}
	(MHz)	(V)	(dBm)	(dB)	(%)	(dBm)
1-carrier W-CDMA 5 MHz PAR 9.9 dB	2500	28	40	28.2	40.8	48.9

1.2 Features and benefits

- Integrated input splitter
- Integrated output combiner
- High efficiency
- High output impedance thanks to integrated pre-match
- Designed for wideband operation (frequency 2300 MHz to 2700 MHz)
- Integrated temperature compensation bias
- Independent control of carrier and peaking bias
- Integrated ESD protection
- Source impedance 50 Ω ; high power gain
- For RoHS compliance see the product details on the Ampleon website

1.3 Applications

RF power MMIC for multi-carrier and multi-standard GSM, W-CDMA and LTE base stations in the 2300 MHz to 2700 MHz frequency range

LDMOS 2-stage integrated Doherty MMIC

2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2.Pin descri	ption	
Symbol	Pin	Description
V _{DS1}	1	drain-source voltage of driver stages
V _{GS(P)}	2	gate-source voltage of peaking P
V _{GS(C)}	3	gate-source voltage of carrier C
RF_IN	4	RF input
V _{GS(C)}	5	gate-source voltage of carrier C
V _{GS(P)}	6	gate-source voltage of peaking P
V _{DS1}	7	drain-source voltage of driver stages
RF_OUT/V _{DS2}	8	RF output / drain-source voltage of final stages
GND	flange	RF ground

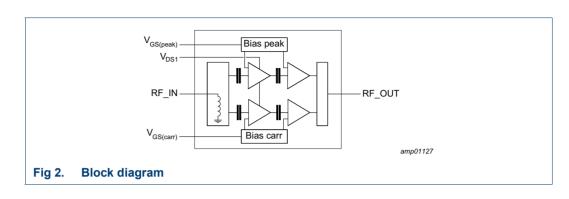

3. Ordering information

Table 3. Ordering information

Type number	Packag	Package				
	Name	Description	Version			
BLM10D2327-60ABG		plastic, heatsink small outline package; 8 leads	OMP-400-8G-1			

LDMOS 2-stage integrated Doherty MMIC

4. Block diagram

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{DS}	drain-source voltage		-0.5	+65	V
V _{GS}	gate-source voltage		-6	+9	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	200	°C
T _{case}	case temperature	[1]	-	150	°C

[1] Continuous use at maximum temperature will affect the reliability. For details refer to the online MTF calculator.

6. Thermal characteristics

Table 5. Thermal characteristics

Measured for total device.

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-c)}	thermal resistance from junction to	$T_{case} = 90 \ ^{\circ}C; P_{L} = 5 \ W$ [1]	2.19	K/W
	case	$T_{case} = 90 \ ^{\circ}C; P_{L} = 10 \ W$ [1]	1.63	K/W

[1] When operated with a 1-carrier W-CDMA with PAR = 9.9 dB.

7. Characteristics

Table 6.DC characteristics

$T_{case} = 25$ °C.							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Carrier	,						
V _{GSq}	gate-source quiescent voltage	V _{DS} = 28 V; I _D = 80 mA	1.7	2.25	2.55	V	
I _{GSS}	gate leakage current	V _{GS} = 1 V; V _{DS} = 0 V	-	-	140	nA	
Peaking							
I _{GSS}	gate leakage current	V _{GS} = 1 V; V _{DS} = 0 V	-	-	140	nA	

All information provided in this document is subject to legal disclaimers.

LDMOS 2-stage integrated Doherty MMIC

Table 6. DC characteristics ...continued

$T_{case} = 25 \ \mathcal{C}.$								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Final stages								
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μA		
Driver stages								
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μA		

Table 7. RF Characteristics

Typical RF performance at $T_{case} = 25 \ C$; $V_{DS} = 28 \ V$; $I_{Dq} = 80 \ mA$ (carrier);

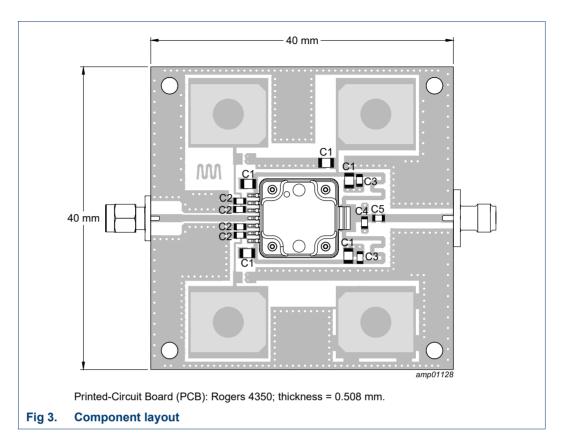
 $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.44 V$; $P_{L(AV)} = 10 W$; f = 2500 MHz measured in an Ampleon production circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G _p	power gain		26.3	28.3	30.3	dB
η _D	drain efficiency	P _L = 10 W (40 dBm)	40	42.8	-	%
		$P_L = P_{L(5dB)}$	39.5	42.3	-	%
RL _{in}	input return loss		-	-	-10	dB
P _{L(M)}	peak output power	at 5 dB compression	47.8	48.5	-	dBm

8. Application information

Table 8. Typical performance

 $T_{case} = 25 \ ^{\circ}C$; $V_{DS} = 28 \ V$; $I_{Dq} = 70 \ mA$ (driver and final stages). Test signal: 1-carrier LTE 20 MHz; PAR = 7.6 dB at 0.01 % probability CCDF; typical performance in an Ampleon f = 2300 MHz to 2700 MHz frequency band asymmetrical integrated Doherty application circuit.


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
P _{L(3dB)}	output power at 3 dB compression point	f = 2500 MHz	[1]	-	48.4	-	dBm
P _{L(5dB)}	output power at 5 dB compression point	f = 2500 MHz	[1]	-	48.7	-	dBm
$\phi_{s21}/\phi_{s21}(norm)$	normalized phase response	f = 2500 MHz; at 3 dB compression point	[2]	-	-34	-	0
η_D	drain efficiency	8 dB OBO (P _{L(AV)} = 40 dBm); f = 2500 MHz		-	42.6	-	%
G _p	power gain	P _{L(AV)} = 40 dBm; f = 2500 MHz		-	28.4	-	dB
B _{video}	video bandwidth	$P_{L(AV)}$ = 39 dBm; set to obtain IMD3 = -30 dBc; 2-tone CW; f = 2500 MHz		-	400	-	MHz
G _{flat}	gain flatness	P _{L(AV)} = 40 dBm; from 2300 MHz to 2700 MHz		-	1	-	dB
ACPR _{20M}	adjacent channel power ratio (20 MHz)	P _{L(AV)} = 40 dBm; f = 2500 MHz		-	-33	-	dB
$\Delta G / \Delta T$	gain variation with temperature	f = 2500 MHz	[3]	-	0.05	-	dB/∘C
К	Rollett stability factor	T _{case} = -40 °C; f = 0.1 GHz to 6.1 GHz	[3]	-	>1	-	

[1] Pulsed CW power sweep measurement (δ = 10 %; t_p = 100 µs).

[2] 25 ms CW power sweep measurement.

[3] S-parameters measured with broadband demo board.

LDMOS 2-stage integrated Doherty MMIC

Table 9. Demo test circuit list of components

See Figure 3 for component layout.

Component	Description	Value	Remarks
C1	multilayer ceramic chip capacitor	10 μF, 50 V	SMD 0805
C2	multilayer ceramic chip capacitor	4.7 μF, 6.3 V	SMD 0603
C3	multilayer ceramic chip capacitor	5.6 pF	SMD 0603
C4	multilayer ceramic chip capacitor	1.6 pF	SMD 0603
C5	multilayer ceramic chip capacitor	3.9 pF	SMD 0603

Product data sheet

BLM10D2327-60ABG

Rev. 1 — 9 January 2020

© Ampleon Netherlands B.V. 2020. All rights reserved. 6 of 13

_ сз C1 🕂 ÷ ÷ V_{GS(C)} Q C1 _||-V_{DS1} Bias Peak C2 RF in V_{GS(P)} V_{GS(C)} RF_OUT/V_{DS2} C2 RF_IN C2 V_{GS(C)} V_{GS(P)} C2 V_{DS1} ᆒ Bias Carrier Q V_{GS(P)} ÷ ÷ + сз C1 +

GND

÷

V_{DS} Q

Electrical schematic Fig 4.


RF out

amp01129

C5

± C4

All information provided in this document is subject to legal disclaimers

LDMOS 2-stage integrated Doherty MMIC

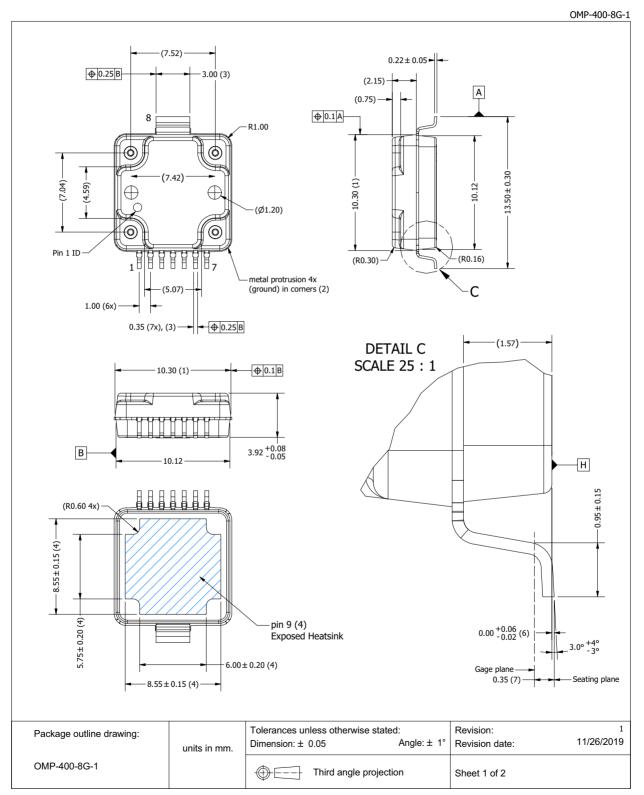
8.1 Ruggedness in a Doherty operation

The BLM10D2327-60ABG is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 32 V; I_{Dq} = 80 mA (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.48$ V; corresponding to $P_{L(3dB)} - 5$ dB under Z_S = 50 Ω load; f = 2700 MHz (1-carrier W-CDMA signal); T_{case} = 25 °C.

8.2 Impedance information

Table 10. Typical impedance for optimum Doherty operation

Measured load-pull data per section; test signal: pulsed CW; $T_{case} = 25 \text{ °C}$; $V_{DS} = 28 \text{ V}$; $I_{Dq} = 90 \text{ mA}$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.44 \text{ V}$; $t_p = 100 \mu s$; $\delta = 10 \%$. Typical values.


	tuned for optimu	tuned for optimum Doherty operation						
f	ZL	G _{p(max)}	PL	໗ _{add} [1]	η _{add} [2]			
(MHz)	(Ω)	(dB)	(dBm)	(%)	(%)			
2300	12.5 – j13.0	28.2	48.3	46.3	49.2			
2400	14.4 - j12.2	28.2	48.2	47.5	47.5			
2500	12.6 - j10.9	28.0	48.3	48.7	46.8			
2600	10.5 – j10.3	28.0	48.6	50.8	47.3			
2700	10.6 - j10.3	27.7	48.7	50.5	46.0			

[1] At 3 dB gain compression point.

[2] At P_L = 40 dBm.

LDMOS 2-stage integrated Doherty MMIC

9. Package outline

Fig 5. Package outline OMP-400-8G-1 (sheet 1 of 2)

BLM10D2327-60ABG

All information provided in this document is subject to legal disclaimers

LDMOS 2-stage integrated Doherty MMIC

OMP-400-8G-1

Units in mm.					OMP-400-8		
Dimensions are excluding mold protrusion. Areas located adjacent to the leads have a maximum mold protrusion of 0.25 mm (per side) and 0.62 mm max. In length. In between the 7 leads the protrusion is 0.25 mm max. At all other areas the mold protrusion is maximum 0.15 mm per side. See also detail B. (2) The metal protrusion is maximum 0.16 mm per side. See also detail B. (3) The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location. The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along the original heatsink perimeter. (5) The leads and exposed heatsink are plated with matte Tin (Sn). Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 DETAIL A SCALE 25 : 1 DETAIL B SCALE 25 : 1 DETAIL B SCALE 25 : 1 Toterances unless otherwise stated: Detrances there is a stated: Detrance in the seating is a stated: Detrance in the seating is a stated: Detrance is 0.5 Angle: ± 11 Revision date: 11/28/2 MP-400-86:1				Drawing Notes			
 mm (per side) and 0.62 mm max. In length. In between the 7 leads the protrusion is 0.25 mm max. At all other areas the mold protrusion is maximum 0.15 mm per side. See also detail B. The metal protrusion is maximum 0.15 mm per side. See also detail B. The metal protrusion is maximum 0.15 mm per side. See also detail B. The metal protrusion is maximum 0.15 mm per side. See also detail B. The metal protrusion (detail A). The lead damber (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the damber location. The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along the original heatsink perimeter. The leads and exposed heatsink are plated with matte Tin (Sn). Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the lead. Gage plane (foot length) to be measured from the seating plane. 	Items	Description					
mold protrusion is maximum 0.15 mm per side. See also detail B. (2) The metal protrusions (details). (3) The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location. (4) The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along the original heatsink perimeter. (5) The leads and exposed heatsink are plated with mate Tin (Sn). Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A DETAIL A (a) DETAIL A (b) DETAIL A (c) DETAIL B (c) DETAIL B (c) DETAIL B (c) DETAIL B (c) DETAIL A (c) DETAIL B <tr< td=""><td></td><td>Dimensions are exc</td><td>luding mold protru</td><td>sion. Areas located adjacent to the leads have a</td><td>maximum mold protrusion of 0.25</td></tr<>		Dimensions are exc	luding mold protru	sion. Areas located adjacent to the leads have a	maximum mold protrusion of 0.25		
(2) The metal protrusion (tite bars) in the corner will not stick out of the molding compound protrusions (detail A). (3) The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location. (4) The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along the original heatsink perimeter. (5) The leads and exposed heatsink are plated with matte Tin (Sn). Dimension is measured with respect to the bottom of the heatsink batum H. Positive value means that the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 Unclassing the original heatsink perimeter. DETAIL A SCALE 25 : 1 Intertain the bottom of the lead. DETAIL B SCALE 25 : 1 DETAIL B SCALE 25 : 1 Units in mm. Tolerances unless otherwise stated:: Devision: # 0.05 MP-400-8G-1	(1)	mm (per side) and ().62 mm max. in le	ength. In between the 7 leads the protrusion is 0.2	25 mm max. At all other areas the		
(3) The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location. (4) The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along the original heatsink perimeter. (5) The leads and exposed heatsink are plated with matte Tin (Sn). (6) Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the lead. (7) Cage plane (foot length) to be measured from the seating plane. DETAIL A DETAIL A SCALE 25 : 1 Increasing plane. DETAIL B SCALE 25 : 1 DETAIL B DETAIL B DETA							
(4) The hatched area indicates the exposed heatsink. The dimensions represent the values between two opposite points along the original heatsink perimeter. (5) The leads and exposed heatsink are plated with matter Tin (Sn). (6) Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 Image: the dimensioner of the lead. Image: the dimensioner of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 Image: the dimensioner of the lead. Image: the dimensioner of the lead. (8) DETAIL A Image: the lead damber Image: the dimensioner of the lead damber Image: the dimensioner of the lead damber Image: the dimensioner the origin with the positive value means that the bottom of metal protrusion DETAIL B SCALE 25 : 1 Image: the dimensioner the origin with the section of metal protrusion the lead. The data damber Image: the dimensioner the origin with the section of metal protrusion the lead. Image: the dimensioner the origin with the section of the lead. The dimension: the origin with the bottom of the lead. The dimension: the	(2)	The metal protrusio	n (tie bars) in the c	corner will not stick out of the molding compound	protrusions (detail A).		
(4) the original heatsink perimeter. (5) The leads and exposed heatsink are plated with matte Tin (Sn). (6) Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. (7) Gage plane (foot length) to be measured from the seating plane. (7) Gage plane (foot length) to be measured from the seating plane. (8) DETAIL A (9) Calle 25 : 1 (9) Detraine the bottom of metal protrusion (9) Detraine the bottom of metal protrusion (9) Detraine the bottom of metal protrusion (10) Detraine the bottom of metal protrusion (11) Detraine the bottom of metal protrusion (12) Detraine the bottom of metal protrusion (12) Detraine the bottom of the lead. (12) Detraine the bottom of metal protrusion (12) Detraine the bottom of metal protrusion (12) Detraine the bottom of the lead. (12) Detraine the bottom of the lead. (12) Detraine the bottom of the lead. (12) <t< td=""><td>(3)</td><td>The lead dambar (n</td><td>netal) protrusions a</td><td>are not included. Add 0.14 mm max to the total le</td><td>ad dimension at the dambar location.</td></t<>	(3)	The lead dambar (n	netal) protrusions a	are not included. Add 0.14 mm max to the total le	ad dimension at the dambar location.		
the original heatsink perimeter. (6) The leads and exposed heatsink are plated with matte Tin (Sn). Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 Determine the tead of the seating plane. DETAIL A SCALE 25 : 1 Determine the bottom of metal protrusion DETAIL B SCALE 25 : 1 Determine the tead of the seated: DETAIL B SCALE 25 : 1 Determine the seated: DETAIL B SCALE 25 : 1 Determine the tead of the seated: Toterances unless otherwise stated: Determine the tead of the seated of		The hatched area ir	ndicates the expos	ed heatsink. The dimensions represent the value	s between two opposite points along		
Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the heatsink is higher than the bottom of the heatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 Decretion of metal protrusion Details dambar location Details A SCALE 25 : 1 Location of metal protrusion DETAIL B SCALE 25 : 1 Decretion of metal protrusion Decretion of metal protrusion Details B SCALE 25 : 1 Decretion of metal protrusion Decretion of metal protrusion Details B scale 25 : 1 Decretion of metal protrusion Decretion of metal protrusion Details B scale dambar location Decretion of metal protrusion Revision: Revision: Details B scale 25 : 1 Decretion of metal protrusion Revision: Revision: MP-400-8G-1 units in mm. Tolerances unless otherwise stated: Dimension: ± 0.05 Revision date: 11/26/2		the original heatsinl	k perimeter.				
(6) neatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. Image: Control of the lead of the	(5)	The leads and expo	osed heatsink are p	plated with matte Tin (Sn).			
Teatsink is higher than the bottom of the lead. (7) Gage plane (foot length) to be measured from the seating plane. DETAIL A SCALE 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 DETAIL B SCALE 25 : 1 DETAIL B SCALE 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1 Image: Scale 25 : 1		Dimension is measu	ured with respect to	o the bottom of the heatsink Datum H. Positive va	alue means that the bottom of the		
DETAIL A SCALE 25 : 1		heatsink is higher th	nan the bottom of t	he lead.			
SCALE 25 : 1 B Control of the second of th	(7)	Gage plane (foot le	ngth) to be measu	red from the seating plane.			
units in mm. Dimension: ± 0.05 Angle: ± 1° Revision date: 11/26/2	B			lead dambar location DETAIL B	o.15 mox.(1)		
MP-400-8G-1	Package out	line drawing:	units in mm				
	OMP-400-8G-1 Third angle projection Sheet 2 of 2						

Fig 6. Package outline OMP-400-8G-1 (sheet 2 of 2)

BLM10D2327-60ABG

All information provided in this document is subject to legal disclaimers.

LDMOS 2-stage integrated Doherty MMIC

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

Table 11. ESD sensitivity

ESD model	Class
Charged Device Model (CDM); According to ANSI/ESDA/JEDEC standard JS-002	C3 [1]
Human Body Model (HBM); According to ANSI/ESDA/JEDEC standard JS-001	1C 🔼

[1] CDM classification C3 is granted to any part that passes after exposure to an ESD pulse of 1000 V.

[2] HBM classification 1C is granted to any part that passes after exposure to an ESD pulse of 1000 V.

11. Abbreviations

Table 12. Abbreviations				
Acronym	Description			
CW	Continuous Wave			
ESD	ElectroStatic Discharge			
GEN10	Tenth Generation			
GSM	Global System for Mobile Communications			
LDMOS	Laterally Diffused Metal Oxide Semiconductor			
LTE	Long Term Evolution			
mMIMO	Massive Multiple Input-Multiple Output			
MMIC	Monolithic Microwave Integrated Circuit			
MTF	Median Time to Failure			
OBO	Output Back Off			
PAR	Peak-to-Average Ratio			
RoHS	Restriction of Hazardous Substances			
SMD	Surface Mounted Device			
W-CDMA	Wideband Code Division Multiple Access			

12. Revision history

Table 13. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
BLM10D2327-60ABG v.1	20200109	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Maturity — The information in this document can only be regarded as final once the relevant product(s) has passed the Release Gate in Ampleon's release process. Prior to such release this document should be regarded as a draft version.

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer's third party customer's in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

LDMOS 2-stage integrated Doherty MMIC

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon's warranty of the product for such

14. Contact information

automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon's standard warranty and Ampleon's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: <u>http://www.ampleon.com</u> For sales office addresses, please visit: <u>http://www.ampleon.com/sales</u>

Product data sheet

LDMOS 2-stage integrated Doherty MMIC

15. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 1
2	Pinning information 2
2.1	Pinning 2
2.2	Pin description 2
3	Ordering information 2
4	Block diagram 3
5	Limiting values 3
6	Thermal characteristics 3
7	Characteristics 3
8	Application information 4
8.1	Ruggedness in a Doherty operation 7
8.2	Impedance information
9	Package outline 8
10	Handling information 10
11	Abbreviations 10
12	Revision history 10
13	Legal information
13.1	Data sheet status 11
13.2	Definitions 11
13.3	Disclaimers
13.4	Trademarks 12
14	Contact information 12
15	Contents 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Ampleon Netherlands B.V. 2020.

All rights reserved.

For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales

Date of release: 9 January 2020 Document identifier: BLM10D2327-60ABG