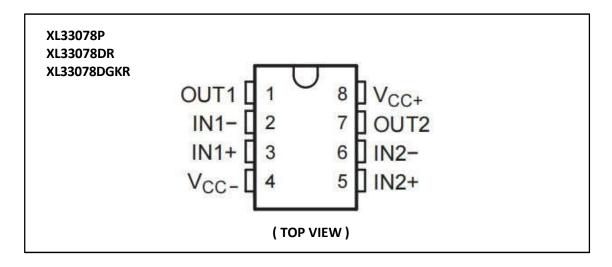

1. DESCRIPTION

The XL33078 series is a bipolar dual operational amplifier with high-performance specifications for use in quality audio and data-signal applications. This device operates over a wide range of single- and dual-supply voltages and offers low noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic distortion, excellent phase and gain margins, large output voltage swing with no deadband crossover distortion, and symmetrical sink/source performance.

2. FEATURES

- Dual-Supply Operation . . . ±5 V to ±18 V
- Low Noise Voltage 5.0 nV/VHz (Typical)
- Low Input Offset Voltage...... 0.3mV (Typical)
- Low Total Harmonic Distortion......0.003% (Typical)
- High Slew Rate..... 7 V/μs (Typical)
- High-Gain Bandwidth Product 16 MHz (Typical)
- High Open-Loop AC Gain 800 at 20 kHz
- Large Output-Voltage Swing......+14.1V to -14.6 V
- Excellent Gain and Phase Margins


3. SYMBOL (EACH AMPLIFIER)

www.xinluda.com 1/16 Rev 1.1

4. PIN CONFIGURATIONS AND FUNCTIONS

5. ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC+}	Supply voltage ⁽²⁾		18	V
V _{CC-}	Supply voltage ⁽²⁾		-18	V
V _{CC+} - V _{CC-}	Supply voltage		36	V
	Input voltage, either input ⁽²⁾⁽³⁾		$V_{\text{CC+}}$ or $V_{\text{CC-}}$	V
	Input current ⁽⁴⁾		±10	mA
	Duration of output short circuit ⁽⁵⁾		Unlimited	
0	Package thermal impedance, junction to free	SOP/VSSOP	105/180	°C/M
θ_{JA}	air ⁽⁶⁾⁽⁷⁾	DIP	90	°C/W
T _J	Operating virtual junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-.
- (3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
- (4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
- (5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
- (6) Maximum power dissipation is a function of TJ (max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ (max) TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
- (7) The package thermal impedance is calculated in accordance with JESD 51-7

6. RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V _{CC-}	Cupplywaltage	-5	-15	W
V _{CC+}	Supply voltage	5	15	V
T _A	Operating free-air temperature range	-40	85	°C

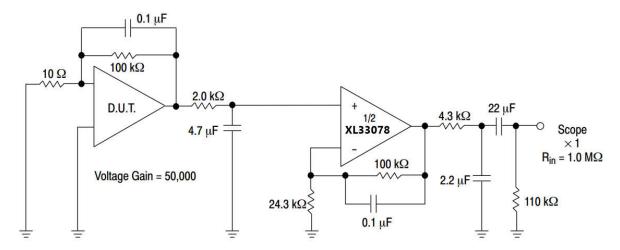
www.xinluda.com 2/16 Rev 1.1

7. ELECTRICAL CHARACTERISICS

 $V_{CC-} = -15 \text{ V}, V_{CC+} = 15 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
V _{IO} Input offset voltage		Vo = 0, Rs = 10 Ω, Vcm = 0		Ta = 25°C		0.3	3	mV
V _{IO}	iliput offset voltage	$VO = 0$, $KS = 10 \Omega$, $VCM = 0$		Ta = -40°C to 85°C			4	mv
αV_{IO}	Input offset voltage temperature coefficient	Vo = 0, Rs =	10 Ω, Vcm = 0	T _A = -40°C to 85°C		2		∞V/°C
1		Vo = 0, Vcm = 0		Ta = 25°C		350	780	
I _{IB}	Input bias current	VO - 0, VCM	- 0	Ta = -40°C to 85°C			860	nA
1.	Input offset current	Vo = 0, Vcm = 0		Ta = 25°C		30	190	nΛ
l _{IO}	input onset current			Ta = -40°C to 85°C			220	nA
V_{ICR}	Common-mode input voltage range	ΔV10 = 5 mV	, Vo = 0		±13	±14		>
	Large-signal differential	$RL \ge 2 k\Omega$, $Vo = \pm 10 V$		Ta = 25°C	90	110		dB
A_{VD}	voltage amplification			T _A = -40°C to 85°C	85			
	Maximum output voltage swing	m output Swing VID = ±1 V RL	RL = 600 Ω	Vom+		10.7		V
				Vom-		-11.9		
V			RL = 2k Ω	Vom+	13.2	13.8		
V_{OM}			KL = 2K 12	Vom-	-13.2	-13.7		
			$R_L = 10k \Omega$ Vom+	Vom+	13.5	14.1		
				-14	-14.6			
CMMR	Common-mode rejection ratio	V _{IN} = ±13 V			80	100		dB
$k_{\text{SVR}}^{(1)}$	Supply-voltage rejection ratio	Vcc+ = 5 V to 15 V, Vcc- = -5 V to -15 V			80	105		dB
, Ou	Output short-circuit current	VID = 1 V, Output to GND		Source current	15	30		mA
los				Sink current	-20	-35		
1	Supply current (per	Vo = 0		TA = 25°C		2.6	5	mA
I _{CC}	channel)	VO = 0	T _A = -40°C to 85°C		•	6.5		

NOTE: (1) Measured with Vcc± differentially varied at the same time


8. OPERATING CHARACTERISTICS

 $V_{CC-} = -15 \text{ V}$, $V_{CC+} = 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT	
SR	Slew rate at unity gain	AVD = 1, VIN = -10 V to 10 V , RL = $2 \text{ k}\Omega$, CL = 100 pF		4.5	7		V/µs	
GBW	Gain bandwidth product	f = 100 kHz		8	16		MHZ	
B ₁	Unity gain frequency	Open loop			9		MHZ	
_	Gain margin	RL = 2 kΩ	CL = 0 pF		-11		dB	
G _m			CL = 100 pF		-6		ив	
Φ.	Phase margin	RL = 2 kΩ	CL = 0 pF		55		dog	
Фт		KL = 2 KL2	CL = 100 pF		40		deg	
	Amp-to-amp isolation	f = 20 Hz to 20 kHz			-120		dB	
	Power bandwidth	$V_0 = 27 V(PP)$, $R_L = 2 kΩ$, $THD \le 1\%$			120		kHz	
THD	Total harmonic distortion	$V_0 = 3 \text{ Vrms}, \text{ AVD} = 1, \text{ RL} = 2 \text{ k}\Omega, \text{ f} = 20 \text{ Hz to } 20 \text{ kHz}$			0.002		%	
Zo	Open-loop output impedance	Vo = 0, f = 9 MHz			35		Ω	
r _{id}	Differential input resistance	Vcm = 0			160		kΩ	
C _{id}	Differential input capacitance	Vсм = 0		15		pF		
Vn	Equivalent input noise voltage	f = 1 kHz, Rs = 100 Ω			5.0		nV/VHz	
In	Equivalent input noise current	f = 1 kHz			1.5		pA/vHz	

<u>www.xinluda.com</u> 3 / 16 Rev 1.1

Note: All capacitors are non-polarized.

Figure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)

<u>www.xinluda.com</u> 4 / 16 Rev 1.1

0

-15

-10

-5

0

V_{CM} - Common Mode Voltage - V

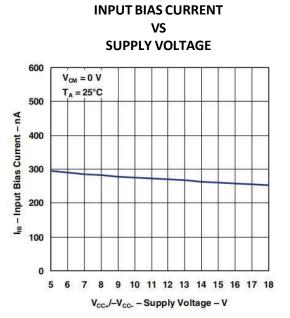
5

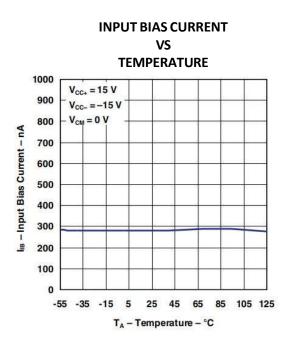
10

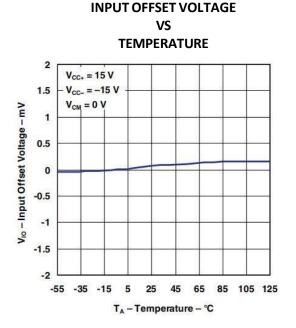
15

9. TYPICAL CHARACTERISTICS CURVE

INPUT BIAS CURRENT

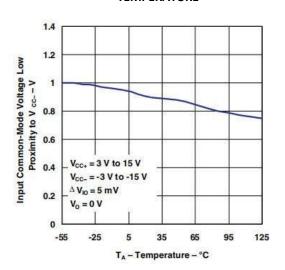

VS
COMMON-MODE VOLTAGE

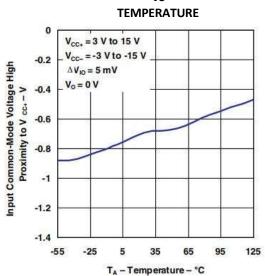

600

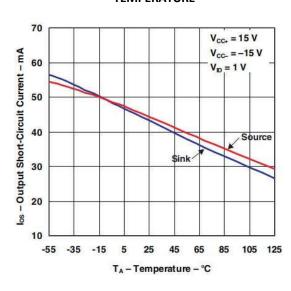

V_{CC+} = 15 V
V_{CC-} = -15 V
T_A = 25°C

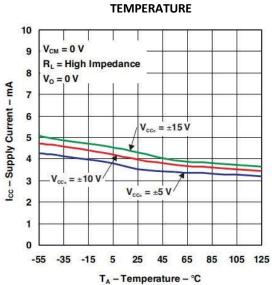
300

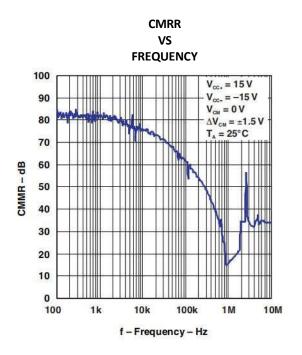
sering that 200
100
100

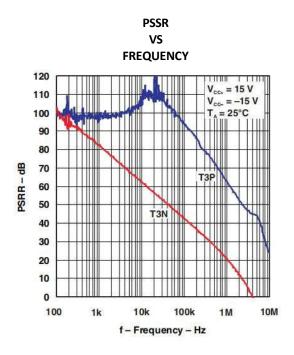


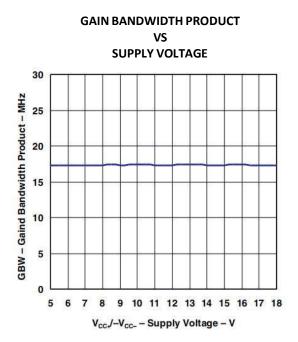


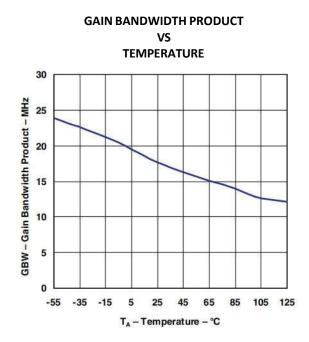

INPUT COMMON-MODE VOLTAGE LOW PROXIMITY TO V_{CC}- VS
TEMPERATURE

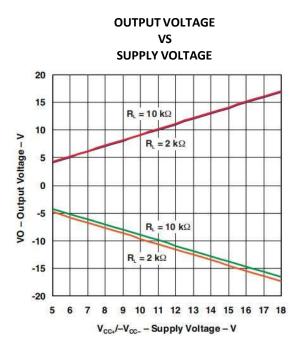

INPUT COMMON-MODE VOLTAGE HIGH PROXIMITY TO $\ensuremath{\text{V}_{\text{CC+}}}$ $\ensuremath{\text{VS}}$

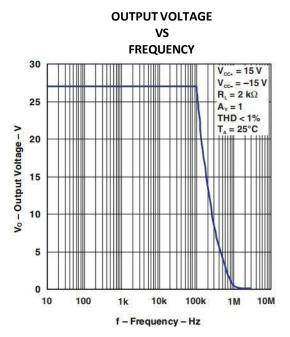

OUTPUT SHORT-CIRCUIT CURRENT VS TEMPERATURE

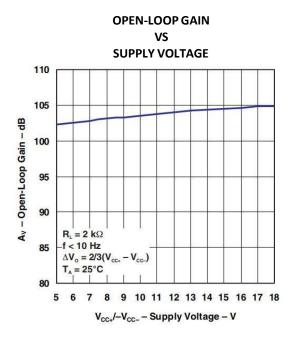


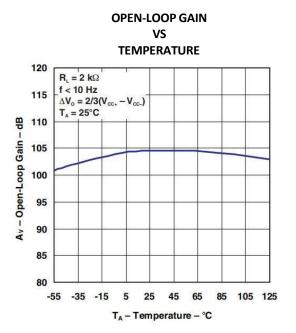

SUPPLY CURRENT VS

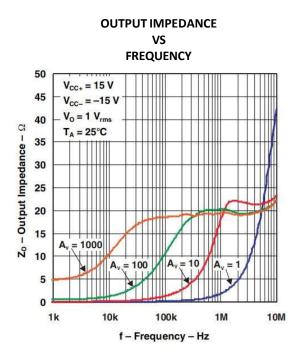


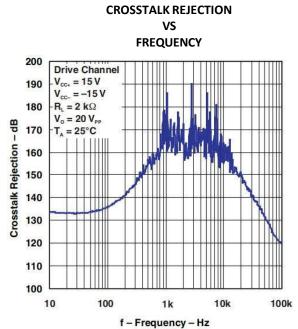


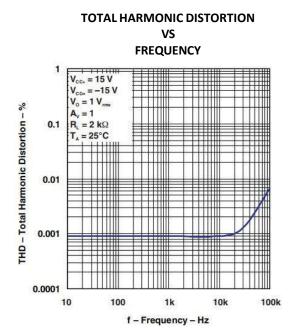


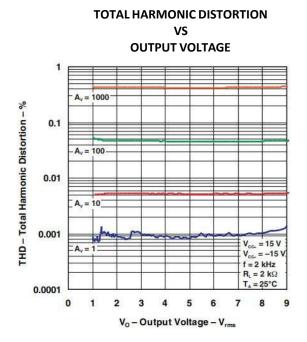


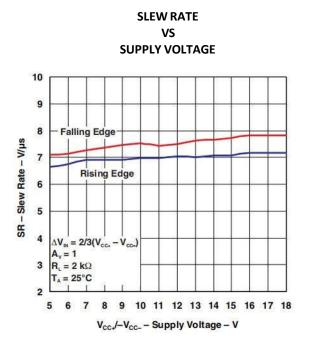


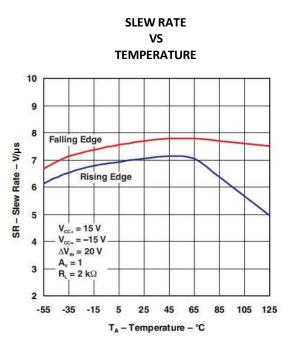


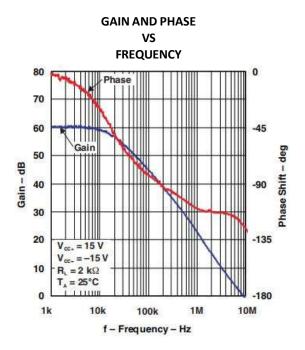


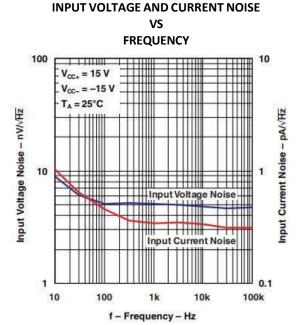


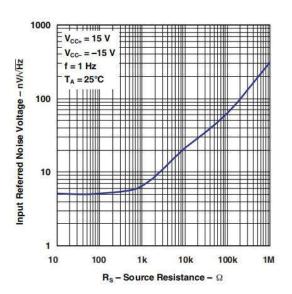


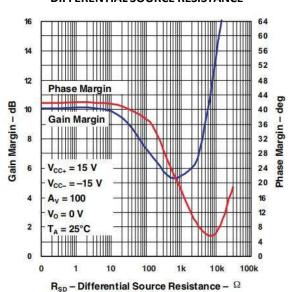


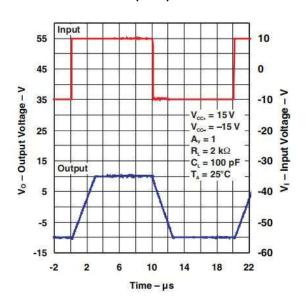






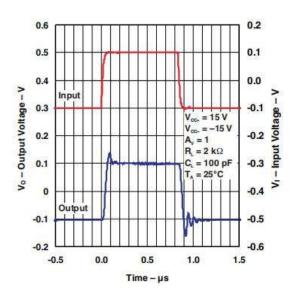




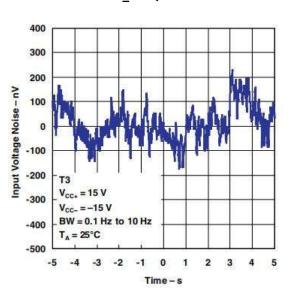

INPUT REFERRED NOISE VOLTAGE VS SOURCE RESISTANCE

GAIN AND PHASE MARGIN VS DIFFERENTIAL SOURCE RESISTANCE

LARGE SIGNAL TRANSIENT RESPONSE (Av=1)

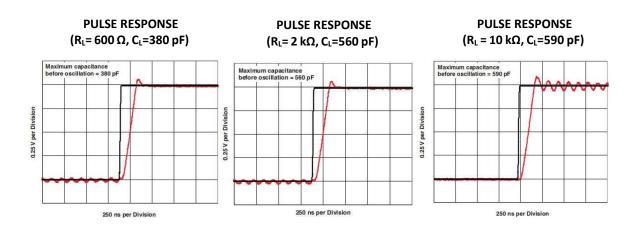


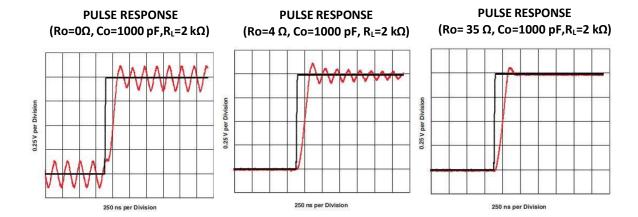
LARGE SIGNAL TRANSIENT RESPONSE (Av=-1)



SMALL SIGNAL TRANSIENT RESPONSE

LOW_FREQUENCY NOISE


<u>www.xinluda.com</u> 12 / 16 Rev 1.1



10. APPLICATION INFORMATION

Output Characteristics

All operating characteristics are specified with 100-pF load capacitance. The XL33078 can drive higher capacitance loads. However, as the load capacitance increases, the resulting response pole occurs at lower frequencies, causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation occurs varies from lot to lot. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 2).

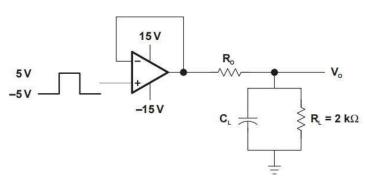
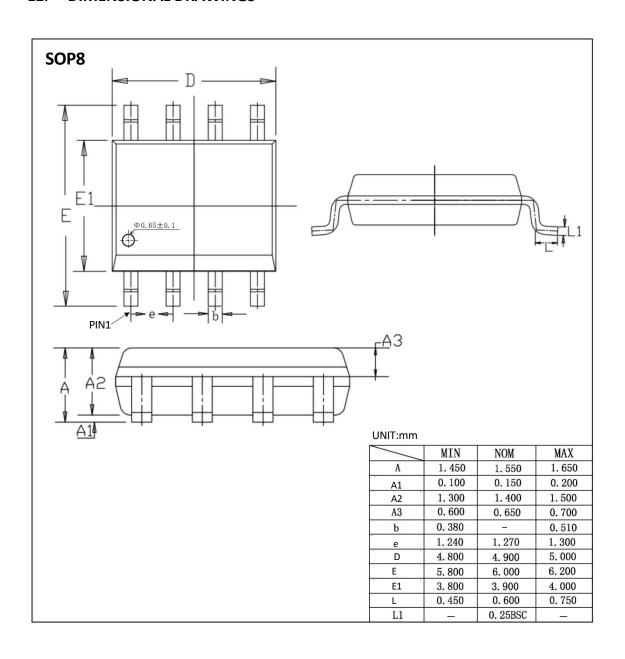
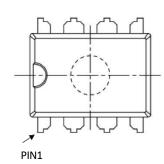


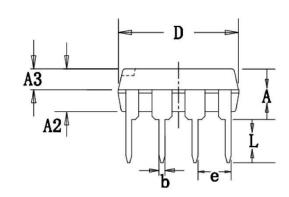
Figure 2. Output Characteristics

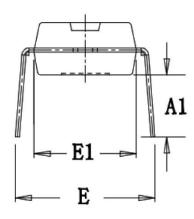


11. ORDERING INFORMATION

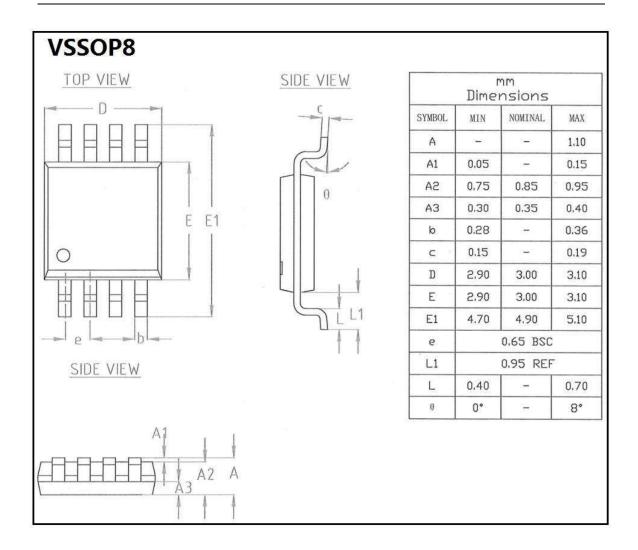
Ordering Information


Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity
XL33078P	XL33078P	DIP8	9.25 * 6.38	- 40 to 85	MSL3	Tube 50	2000
XL33078DR	XL33078	SOP8	4.90 * 3.90	- 40 to 85	MSL3	T&R	2500
XL33078DGKR	33078	VSSOP8	3.00 * 3.00	- 40 to 85	MSL3	T&R	2500


12. DIMENSIONAL DRAWINGS



DIP8



UNIT:mm

	MIN	NOM	MAX
A	3.600	3. 800	4. 000
A1	3. 786	3. 886	3. 986
A2	3. 200	3. 300	3. 400
A3	1.550	1.600	1.650
b	0.440	_	0. 490
е	2.510	2. 540	2. 570
D	9. 150	9. 250	9. 350
E	7.800	8. 500	9. 200
E1	6. 280	6. 380	6. 480
L	3.000	_	_

