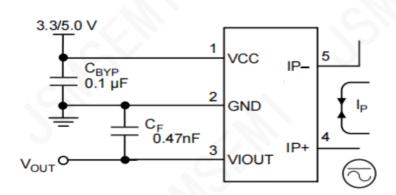
DESCRIPTION

The ACS759 series is an open-loop Hall current sensing chip that combines high accuracy, high bandwidth, high response, high linearity, and low temperature drift. ACS759 provides $0\sim 200 \text{A}$ large current measurement range. ACS759 can also do $-40~^{\circ}\text{C} \sim 125~^{\circ}\text{C}$ full temperature range of typical sensitivity temperature drift $\pm 0.2\%$ of the performance indicators. It provides a new solution for the high accuracy and high performance current sensor area. ACS759 adapts to strong electromagnetic and high isolation current detection environment. In addition, ACS759 series products have passed ROHS and other certifications.

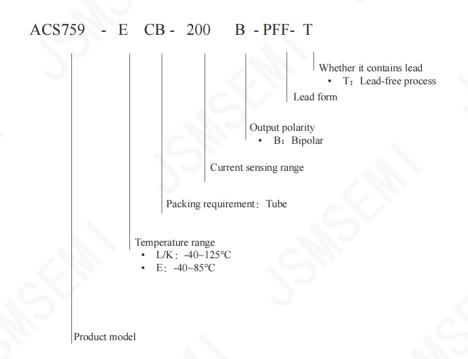

FEATURES

- · High Accuracy, Large Current
- 0~200A Current sensor
- Offset temperature drift: ±5mV
- Sensitivity total output error:±1%
- Typical sensitivity temperature drift: ±0.2%
- Typical linearity error: ±0.2%
- · High Bandwidth, Fast Response
- Typical bandwidth: 250kHz
- Typical response time: 1.5μs
- High Anti-interference, High Isolation
- The integrated magnetic core resists stray magnetic field interference.
- Isolated voltage: 5000Vrms

TYPICAL APPLICATIONS

- · Photovoltaic Inverter
- · Industrial Inverter
- · Commercial Air Conditioning
- · Charging Station
- · Welding Machine
- · Balancing Car
- UPS

TYPICAL APPLICATION CIRCUIT



SELECTION GUIDE

Part Number	Output Mode	I _{PR} (A)	Sensitivity (mV/A)	Lead Form	Operating Temperature	Packing	
ACS759LCB-050B-PFF-T		±50	26.4	PFF		40 pieces per tube	
ACS759LCB-100B-PFF-T		±100	13.2	PFF	-40°C ~ 125°C		
ACS759KCB-150B-PFF-T	Ratiometric	. 1.50	0.0	PFF			
ACS759KCB-150B-PSS-T	Output Mode	±150	8.8	PSS			
ACS759ECB-200B-PFF-T				PFF	40, 9590		
SCS759ECB-200B-PSS-T	1	±200	6.6	PSS	-40~85°C		

Note: Changes in ambient temperature may affect the maximum operating current of the product. For specific information, please refer to the derating curve. If you have other range requirements, please contact our sales. New range will be added without notice.

PART NUMBER SPECIFICATION

ACS759xCB-xxxB-Pxx-T

High accuracy, Large current, High bandwidth Current Sensor IC

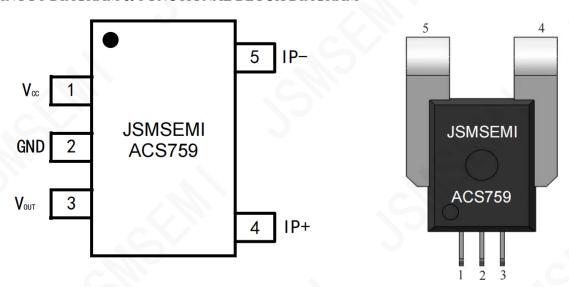
1. ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Unit	Min.	Typ.	Max.
Supply Voltage	V _{cc}	V	-0.3	/	6.5
Output Current	I _{OUTmax}	mA	-45	/	45
Proportional output	V _{OUTmax}	V	0.1	/	V _{cc} -0.1
Storage temperature	T _s	°C	-55	/	150
Operating Ambient Temperature	T _A	°C	-40	/	125
Maximum Junction Temperature	$T_{J_{max}}$	°C	/	/	165

Note: Operation outside the absolute maximum ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under recommended operating conditions. If used outside the recommended operating conditions but within the absolute maximum ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

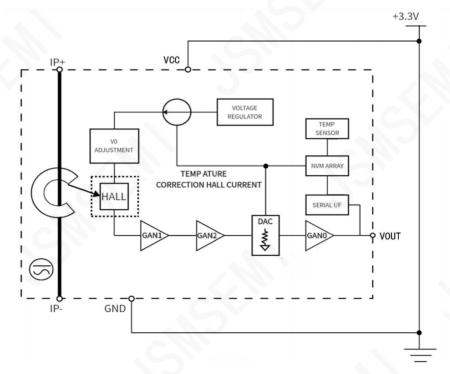
2. ESD RATINGS

Characteristic	Symbol	Unit	Notes	Value
Human Body Model	V _{HBM}	kV	ESD between any two pine	±6
Charged Device Model	V_{CDM}	kV	ESD between any two pins	±1


3. ISOLATION CHARACTERISTICS

Characteristic	Symbol	Unit	Notes	Value
Dielectric Surge Voltage	V_{SURGE}	V Test method refers to IEC61000-4-5, 1.2μs/50μs waveform.		8000
Dielectric Strength Test Voltage	$V_{\rm ISO}$		60s, 50Hz isolation withstand voltage parameters, according to UL62368-1, test 6kV/1s before delivery to verify the insulation performance, and verify the partial discharge is less than 5pc.	
Working Voltage for Pasic Isolation	V_{WVBI}	V _{PK} or V _{CC}	Maximum approved working voltage for basic (single)	1800
Working Voltage for Basic Isolation		V_{RMS}	isolation according to UL 60950-1 (edition 2).	1272
Working Voltage for Reinforced	$V_{_{\mathrm{WVRI}}}$	V _{PK} or V _{CC}	Maximum approved working voltage for reinforced isolation	900
Isolation	WVRI	V _{RMS}	according to UL 60950-1 (edition 2).	636

4. TYPICAL OVERCURRENT CAPABILITY


Characteristic	Symbol	Unit	Notes	Value
			T _A =25°C, Current On 1s, off 99s, Apply 100 pulses	1200
Maximum Current Test	I_{POC}	A	T _A =85°C, Current On 1s, off 99s, Apply 100 pulses	900
			T _A =125°C, Current On 1s, off 99s, Apply 100 pulses	600

5. PINOUT DIAGRAM & FUNCTIONAL BLOCK DIAGRAM

Number	Name	Description
PIN1	VCC	Device power supply terminal pin
PIN2	GND	Device ground terminal pin
PIN3	VOUT	Analog output signal pin
PIN4	IP+	Current flows into the chip, positive direction
PIN5	IP-	Current flows out of the chip, negative direction

Pinout Diagram

Functional Block Diagram

6. ELECTRICAL CHARACTERISTICS

 T_A =25°C, V_{CC} =3.3V, C_L =0.47nF, C_{VCC} =100nF(Unless otherwise noted)

Characteristic	Symbol	Unit	Test Conditions	Min.	Тур.	Max.
			ACS758KCB-050B-XXX-T	-50	/	50
	I		ACS758KCB-100B-XXX-T	-100	/	100
Rated Current	PN	A	ACS758KCB-150B-XXX-T	-150	/	150
			ACS758ECB-200B-XXX-T	-200	/	200
Supply Voltage	V _{CC}	V		3	3.3	3.6
Supply Current ^{Note1}	I_{cc}	mA		6	6.5	12
Primary Conductor Resistance ^{Note1}	R_{P}	mΩ	1	/	0.1	/
Power-On Time ^{Note2}	T_{PO}	ms	Chip power-on $(V_{CC}>3.0V)$, V_{OUT} stable time	/	1	/
Rise time	T_R	μs	1	/	1	/
Propagation Delay	T_{PROP}	μs	1	/	0.5	/
Response Time	T _{RESPONSE}	μs	1	/	1.5	/
Output Capacitive Load ^{Note2}	$C_{\rm L}$	nF	$ m V_{OUT}$ - $ m V_{GND}$	/	0.47	10
Output Resistive Load ^{Note2}	$R_{\rm L}$	kΩ	1	4.7	1	/
DC Output Resistance ^{Note2}	R _{OUT}	Ω	1	1	1	/
Undervoltage-Lockout ^{Note1}	V_{UVLOD}	V	Undervoltage protection rising threshold	1	2.3	/
	V_{UVLOE}	V	Undervoltage protection drop threshold	1	2.1	/
Undervoltage-Lockout ^{Notel}	T_{UVLOD}	μs	Undervoltage protection rise time	1	500	/
Ondervoltage-Lockout	T_{UVLOE}	μs	Undervoltage protection drop time	/	50	/
Output Current Capability	\mathbf{I}_{SINK}	mA	Sink current of output Pin	/	50	/
Output Current Capability	$\mathbf{I}_{\text{SOURCE}}$	mA	Source current of output Pin	/	55	/
Output Voltage Range	V_s	V	R_L =10k Ω to V_{CC} or GND	0.1	/	V _{cc} -0.1
Internal Bandwidth	BW_{I}	kHz	200A range, small signal measurement	/	250	/
Sensitivity Symmetry Error Ratiometric Output	E _{SYM}	%	1	-0.1	±0.01	0.1
Sensitivity Error ^{Note1}	S_{ERR}	%	$V_{cc}=3.15\sim3.45V$	-0.5	0	0.5
Nonlinearity ^{Note1}	E_{LIN}	%	<=100A	-0.1	0.03	0.1
rommeanty	-LIN	70	<=200A	-0.2	0.05	0.2
Sensitivity Temperature Drift Note1			$T_A {=} 85^{\circ}\mathrm{C} \sim 125^{\circ}\mathrm{C}$	-1.0	±0.2	1.0
	dS_{ERR}	%	$T_A=25^{\circ}C \sim 85^{\circ}C$	-0.8	±0.2	0.8
			T_A =-40°C ~ 25°C	-1.0	±0.2	1.0
Offset Temperature Drift ^{Note1}	V _{IOUT(Q)TC}	mV	$T_A = 25^{\circ}C \sim 125^{\circ}C$	-5	/	5
onset reinperature Drift	▼ IOUT(Q)TC	III V	$T_A = -40 ^{\circ}\text{C} \sim 25 ^{\circ}\text{C}$	-5	/	5

Note 1: These parameters are obtained from laboratory testing with $3\sigma\,\text{data}.$

Note2: These parameters are guaranted by design.

ACS759LCB-050B-PFF-T PERFORMANCE CHARACTERISTICS

 T_A =25°C, V_{CC} =3.3V, C_L =0.47nF, C_{VCC} =100nF(Unless otherwise noted)

Characteristic	Symbol	Unit	Test Conditions	Min.	Typ. Note1	Max.
NOMINAL PERFORMANC	Έ		, CV	!		
Sensitivity (Vcc=3.3V)	Sens	mV/A	$\begin{array}{c} SACS758KCB\text{-}050B\text{-}XXX\text{-}T \\ I_{PRmin} < I_{PR} < I_{PRmax} \end{array}$	/	V _{cc} *26.4 /3.3	/
Zero Current Output	V	V	Unipolar, I _{PR} =0A	/	V _{CC} *0.1	/
Voltage	$V_{\text{IOUT(Q)}}$	V	Bipolar, I _{PR} =0A	1	V _{CC} *0.5	/
ACCURACY PERFORMAN	ICE					
Noise	V_{N}	mVrms	/	1	7	/
Manualia Official Forman	T	mV	$I_p=0A$, I_{PRmax}	1	0.4	/
Magnetic Offset Error	I _{ERROM}	mA	$I_p=0A$, I_{PRmax}	/	10	/
Total Output Error	E _{TOT}	%	$I_p = I_{PRmax}, T_A = -40$ °C ~ 125°C	-1	±0.2	1
TOTAL OUTPUT ERROR C	COMPONENT	S: $E_{TOT} = (V_{IOUT} - V_{IOUT})$	$V_{\rm IOUTIdeal}$)/(Sens _{Ideal} ×I _P)×100%			
Sensitivity Error	E _{SENS}	%	$I_P = I_{PRmax}$, $T_A = 25$ °C ~ 125 °C	-0.5	±0.2	0.5
			I_P =0A, T_A =25°C ~ 125°C	-10	±0.2	10
Offset Error	V_{OE}	mV	$I_{P}=0A, T_{A}=25^{\circ}C$	-5	±0.2	5
			$I_p=0 A, T_A=-40 ^{\circ}C \sim 125 ^{\circ}C$	-10	±0.2	10
LIFETIME DRIFT CHARAC	CTERISTICS					
Sensitivity Error Lifetime Drift	$E_{\text{SENS_drift}}$	%	After reliability test, T _A =25°C	1	±0.5	/
Total Output Error Lifetime Drift	$E_{\text{TOT_drift}}$	%	After reliability test, T _A =25°C	/	±0.5	/

Note: These parameters are obtained from laboratory testing with 3σ data.

ACS759LCB-100B-PFF-T PERFORMANCE CHARACTERISTIC

 T_A =25°C, V_{CC} =3.3V, C_L =0.47nF, C_{VCC} =100nF(Unless otherwise noted)

Characteristic	Symbol	Unit	Test Conditions	Min.	Typ. Note 1	Max.
NOMINAL PERFORMANC	E					
Sensitivity (V _{CC} =3.3V)	Sens	mV/A	$\begin{array}{c} \text{SACS758KCB-100B-XXX-T} \\ I_{\text{PRmin}} < I_{\text{PR}} < I_{\text{PRmax}} \end{array}$	/	V _{cc} *13.2 /3.3	/
Zero Current Output	$V_{IOUT(Q)}$	v	Unipolar, I _{PR} =0A	/	V _{cc} *0.1	/
Voltage	V IOUT(Q)	V	Bipolar, I _{PR} =0A	1	V _{cc} *0.5	/
ACCURACY PERFORMAN	ICE					
Noise	V_{N}	mVrms	1	/	5	/
Manustic Offert Fores	I	mV	$I_P=0A$, I_{PRmax}	/	0.6	/
Magnetic Offset Error I _{ERR}	I _{ERROM}	mA	$I_p=0A$, I_{PRmax}	/	30	/
Total Output Error	E _{TOT}	%	$I_P = I_{PRmax}$, $T_A = -40$ °C ~ 125 °C	-1	±0.2	1
TOTAL OUTPUT ERROR C	COMPONENT	$S: E_{TOT} = (V_{IOU})$	T-V _{IOUT Ideal})/(Sens _{Ideal} ×I _P)×100%		C	
Sensitivity Error	E_{SENS}	%	$I_p = I_{PRmax}$, $T_A = 25$ °C ~ 125 °C	-0.5	±0.2	0.5
			I_P =0A, T_A =25°C ~ 125°C	-10	±0.2	10
Offset Error	V_{OE}	mV	I _P =0A, T _A =25°C	-5	±0.2	5
		-	I_P =0 A, T_A =-40°C ~ 125°C	-10	±0.2	10
LIFETIME DRIFT CHARAC	CTERISTICS					
Sensitivity Error Lifetime Drift	$E_{\text{SENS_drift}}$	%	After reliability test, T _A =25°C	/	±0.5	/
Total Output Error Lifetime Drift	$E_{\text{TOT_drift}}$	%	After reliability test, T _A =25°C	/	±0.5	/

Note: These parameters are obtained from laboratory testing with $3\sigma\mbox{ data}.$

ACS759KCB-150B-PFF-T /ACS759KCB-150B-PSS-T PERFORMANCE CHARACTERISTIC

 T_A =25°C, V_{CC} =3.3V, C_L =0.47nF, C_{VCC} =100nF(Unless otherwise noted)

Characteristic	Symbol	Unit	Test Conditions	Min.	Typ. Note1	Max.
NOMINAL PERFORMANC	Œ		C			
Sensitivity (V _{CC} =3.3V)	Sens	mV/A	$\begin{array}{c} SACS758KCB150BXXXT \\ I_{PRmin} \!<\! I_{PR} \!<\! I_{PRmax} \end{array}$	/	V _{cc} *8.8 /3.3	/
Zero Current Output	V	V	Unipolar, I _{PR} =0A	/	V _{CC} *0.1	/
Voltage	$V_{\text{IOUT(Q)}}$	V	Bipolar, I _{PR} =0A	/	V _{cc} *0.5	/
ACCURACY PERFORMAN	ICE					
Noise	V_{N}	mVrms	1	1	4	/
Magnetic Offeet Emer	I	mV	I _p =0A, I _{PRmax}	1	0.8	/
Magnetic Offset Error	I _{ERROM}	mA	$I_p=0A$, I_{PRmax}	/	60	/
Total Output Error	E _{TOT}	%	$I_p = I_{PRmax}, T_A = -40 ^{\circ}C \sim 125 ^{\circ}C$	-1	±0.2	1
TOTAL OUTPUT ERROR C	COMPONENT	S: $E_{TOT} = (V_{IOUT} - V_{IOUT})$	OUT Ideal)/(Sens _{Ideal} ×I _P)×100%	'		
Sensitivity Error	E _{SENS}	%	$I_p = I_{PRmax}$, $T_A = 25$ °C ~ 125 °C	-0.5	±0.2	0.5
			$I_p=0A, T_A=25^{\circ}C \sim 125^{\circ}C$	-10	±0.2	10
Offset Error	V_{OE}	mV	$I_{P}=0A, T_{A}=25^{\circ}C$	-5	±0.2	5
			$I_P=0 A, T_A=-40^{\circ}C \sim 125^{\circ}C$	-10	±0.2	10
LIFETIME DRIFT CHARAC	CTERISTICS					
Sensitivity Error Lifetime Drift	$E_{\text{SENS_drift}}$	%	After reliability test, T _A =25°C	1	±0.5	/
Total Output Error Lifetime Drift	$E_{\text{TOT_drift}}$	%	After reliability test, T _A =25°C	/	±0.5	/

Note: These parameters are obtained from laboratory testing with 3σ data.

ACS759ECB-200B-PFF-T/ACS759ECB-200B-PSS-T PERFORMANCE CHARACTERISTIC

 T_A =25°C, V_{CC} =3.3V, C_L =0.47nF, C_{VCC} =100nF(Unless otherwise noted)

Characteristic	Symbol	Unit	Test Conditions	Min.	Typ. Note 1	Max.
NOMINAL PERFORMANC	EE					
Sensitivity (V _{CC} =3.3V)	Sens	mV/A	$\begin{aligned} \text{SACS758ECB-200B-XXX-T} \\ \text{I}_{\text{PRmin}} < \text{I}_{\text{PR}} < \text{I}_{\text{PRmax}} \end{aligned}$	/	V _{cc} *6.6 /3.3	/
Zero Current Output	V	V	Unipolar, I _{PR} =0A	/	V _{CC} *0.1	/
Voltage	$V_{\text{IOUT(Q)}}$	· ·	Bipolar, I _{PR} =0A	1	V _{CC} *0.5	/
ACCURACY PERFORMAN	NCE					
Noise	$V_{_{\mathrm{N}}}$	mVrms	1	1	3	/
Magnetic Offset Error I _{ERROM}	ī	mV	$I_p=0A$, I_{PRmax}	/	1	/
	ERROM	mA	$I_p=0A$, $I_{p_{Rmax}}$	/	100	/
Total Output Error	E _{TOT}	%	$I_P = I_{PRmax}, T_A = -40^{\circ}C \sim 125^{\circ}C$	-1	±0.2	1
TOTAL OUTPUT ERROR O	COMPONENT	S: $E_{TOT} = (V_{IOUT} - V_{IOUT} - V_{IOU$	$I_{\text{IOUT Ideal}}$)/(Sens _{Ideal} × I_{P})×100%			
Sensitivity Error	E _{SENS}	%	$I_p = I_{PRmax}, T_A = 25^{\circ}C \sim 125^{\circ}C$	-0.5	±0.2	0.5
			I_P =0A, T_A =25°C ~ 125°C	-10	±0.2	10
Offset Error	V_{OE}	mV	I _P =0A, T _A =25°C	-5	±0.2	5
			$I_P=0 A, T_A=-40 ^{\circ}C \sim 125 ^{\circ}C$	-10	±0.2	10
LIFETIME DRIFT CHARAC	CTERISTICS					
Sensitivity Error Lifetime Drift	$E_{\text{SENS_drift}}$	%	After reliability test, T _A =25°C	/	±0.5	/
Total Output Error Lifetime Drift	$E_{\text{TOT_drift}}$	%	After reliability test, T _A =25°C	/	±0.5	/

Note: These parameters are obtained from laboratory testing with $3\sigma\,\text{data}.$

ACS759xCB-xxxB-Pxx-T

High accuracy, Large current, High bandwidth Current Sensor IC

7. PARAMETERS DESCRIPTION

7.1 Sensitivity Sens

The change in sensor IC output in response to a 1A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G/A) (1G = 0.1 mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.

7.2 Sensitivity error E_{SENS}

Sensitivity error E_{SENS} refers to the percentage deviation between the actual measured sensitivity and the ideal sensitivity.

For example, when Vcc = 5V,

$$E_{SENS} = (Sens_{Meas}(5V) - Sens_{Ideal}(5V)) / Sens_{Ideal}(5V) \times 100\%$$

7.3 The sensitivity temperature drift of dS_{ERR}

Over the entire operating temperature range is defined as:

$$dS_{ERR} = (Sens_{(TA)} - Sens_{(25^{\circ}C)}) / Sens_{(25^{\circ}C)} \times 100\%$$

7.4 Saturation output voltage V_{OUT-SAT(H/L)}

 $V_{\text{OUT-SAT(H)}}$ is the maximum output of the chip under the positive current.

V_{OUT-SAT(L)} is the maximum output of the chip under negative current.

7.5 Zero current output voltage V_{IOUT(O)}

I_n=0, Output voltage of the sensor V_{IOUT(Q)}.

For bipolar devices, the output voltage $V_{IOUT(O)} = V_{CC} \times 0.5$

, For unipolar devices, the output voltage $V_{\text{IOUT(Q)}}\!\!=\!\!V_{\text{CC}}\!\!\times\!\!0$

Wariation in $V_{IOUT(Q)}$ can be attributed to the resolution of the linear IC quiescent voltage trim and thermal drift.

7.6 Offset voltage V_{OE}

Used to measure the influence of external non-magnetic factors. Under zero-current conditions, in ratiometric output mode, it is the difference between the actual output voltage and the theoretical output voltage.

7.7 Offset temperature drift V_{IOUT(O)TC}

Due to internal circuit tolerance and heat dissipation, static output voltage due to internal circuit tolerance and heat dissipation $V_{\rm OUT(O)}$ differential static output voltage $V_{\rm OE}$. May shift with operating temperature $V_{\rm OUT(O)TC}$.

 $V_{IOUT(Q)TC} = V_{OUT(Q)(TA)} - V_{OUT(25^{\circ}C)}$

7.8 Noise V_N

Noise is the macroscopic sum of thermal noise and shot noise inside the current sensor.

Dividing the noise (mV) by the sensitivity (mV/A) gives the smallest current that the device can resolve.

7.9 Symmetry E_{SYM}

Definition: The relationship between the actual output voltage $V_{\text{IOUT-POSHALF}}$ and the forward half-range $V_{\text{IOUT-POSHALF}}$ and reverse half-range $V_{\text{IOUT-NEGHALF}}$ outputs.

The formula is defined as follows:

$$E_{\text{SYM}} = (1 - (V_{\text{IOUT-POSHALF}} - V_{\text{IOUT(Q)}}) / (V_{\text{IOUT(Q)}} - V_{\text{IOUT-NEGHALF}})) \times 100\%$$

7.10 Nonlinearity E_{LIN}

The design output of the device varies linearly with the measured current.

Ideally, under the same supply voltage and ambient temperature conditions, the output sensitivity of the device is the same for two different current sizes I1(half scale current) and I2(full scale current). In practical application, there is a difference in sensitivity for the measurement of two different current sizes I1 and I2, and nonlinear sensitivity error E_{LIN} describes the difference digitally.

In the chip, positive current nonlinearity E_{LINPOS} and negative current nonlinearity E_{LINNEG} are defined as follows:

I_{POSx}, I_{NEGx} is positive current and negative current

$$I_{POS2} = 2 \times I_{POS1}$$

$$I_{NEG2} = 2 \times I_{NEG1}$$

 $Sens_{Ix} = (V_{IOUT(Ix)} - V_{IOUT(Q)})/Ix$

$$E_{LINPOS} = (1 - (Sens_{IPOS2} / Sens_{IPOS1})) \times 100\%$$

Due to the hysteresis effect of the internal magnetic core, magnetic saturation exists at high currents. Therefore, the nonlinear error

increases when the measured current exceeds 200A. [Specific reference to the sensitivity error E_{SENS}]

7. PARAMETER DESCRIPTION (CONTINUED)

7.11 Proportional output sensitivity error S_{ERR}

The proportional output sensitivity error S_{ERR} is defined based on the supply voltage Vcc:

$$S_{ERR} = (1 - ((Sens_{Vcc}/Sens_{SV}) / (Vcc/3.3V))) \times 100\%$$

Proportional output error of static voltage

theoretical ratio when Vcc varies from 4.5V to 5.5V, or at V_{cc} =3.3V and the theoretical ratio when V_{CC} varies from 3.0V to 3.6V

$$V_{0zero} = (1 - ((Vout1/Vout0) / (Vcc/3.3V))) \times 100\%$$

7.12 Total output error E_{TOT}

The difference between the current measurement from the sensor IC and the actual current (I_P), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:

$$E_{\text{TOT}} = (V_{\text{IOUT}} - V_{\text{IOUTIdeal}}) / (Sens_{\text{Ideal}} \times I_p) \times 100\%$$

At relatively large current, E_{TOT} is mainly sensitivity error, while at relatively small current, E_{TOT} is mainly zero current sensitivity error voltage V_{OE}. As I_P approaches zero, E_{TOT} approaches infinity due to the bias voltage.

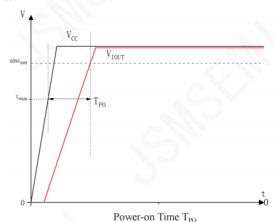
$$V_{IOUTIdeal} = V_{IOUT(Q)} + (Sens_{Ideal} \times I_{P})$$

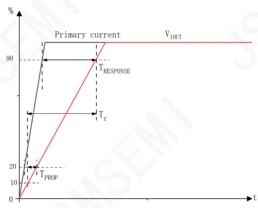
7.13 Dynamic response characteristic

7.13.1 Power-on time T_{PO}

When the supply is ramped to its operating voltage, the device requires a finite amount of time to power its internal components before responding to an input magnetic field. Power-On Time (T_{PO}) is defined as the time interval between the power supply has reached its minimum specified operating voltage ($V_{\mbox{\tiny UVLOD}}$) and the sensor output has settled within $\pm 10\%$ of its steady-state value under an applied magnetic field.

7.13.2 Rise time T.

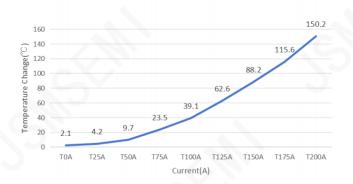

The time interval between the sensor output voltage reaches 10% of its full-scale value and it reaches 90% of its full-scale value.

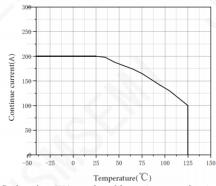

7.13.3 Propagation delay T_{PROP}

The time interval between the sensed primary current reaches 20% of its final value and the sensor output voltage reaches 20% of its fullscale value.

7.13.4 Response Time T_{RESPONSE}

Error between the ratio of V_{out1} and V_{out0} value at V_{CC} =5V and the The time interval between the sensed primary current reaches 90% of its final value and the sensor output voltage reaches 90% of its fullscale value.

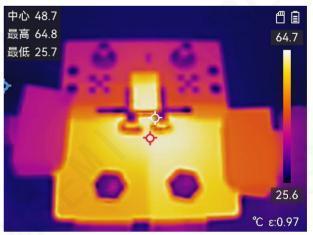




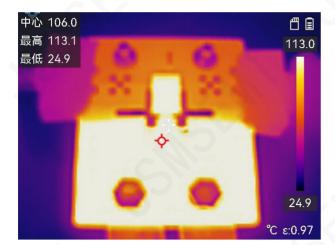
Dynamic Response Time Parameters

8. THERMAL EVALUATION

The product will naturally heat up during useing, and the thermal curve performance of this device was measured in a windless environment at 25±3°C in application laboratory



Products above 200A are only used for transient current detection, if you need to work for a long time, please add additional heat dissipation.

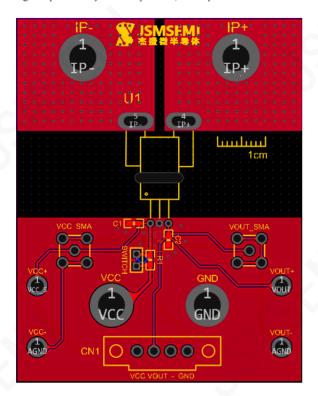


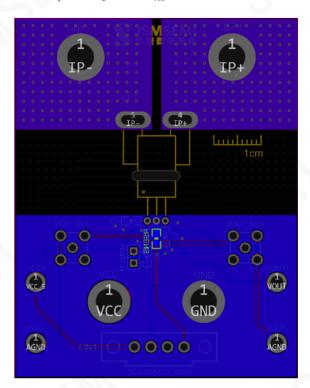
Derating curve

Thermal performance of 50A

中心 156.3 ₫ 🖹 最高 173.5 173.5 最低 ~23.3 ~23.2 °C ε:0.97

Thermal performance of 150A

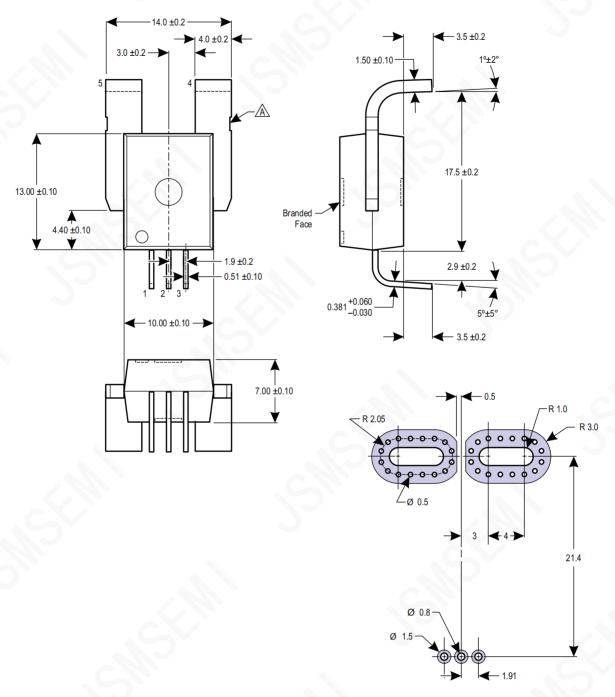

Thermal performance of 200A



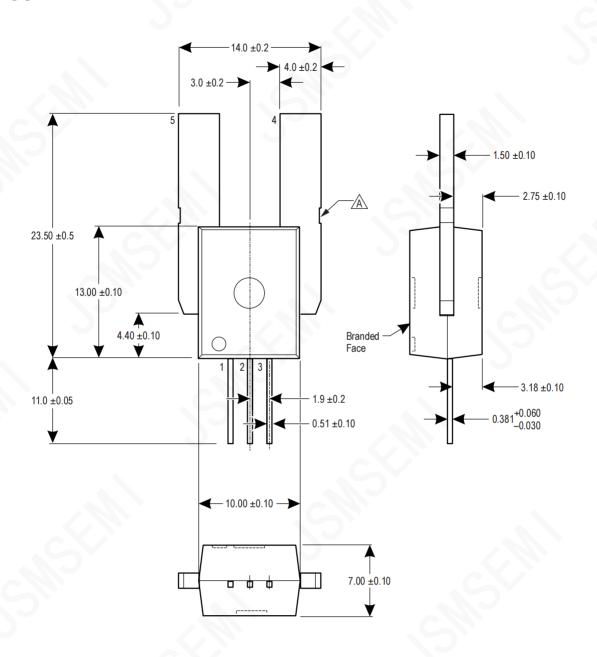
9. LAYOUT GUIDELINES

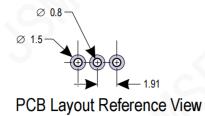
Test information of the demo board

The IP heat dissipation copper thickness of the demo board is 4oz, the heat dissipation area is 2×986 (mm²), the test wiring uses Kelvin sense to avoid the voltage drop caused by GND impedance, and capacitors should set to the chip pins as close as possible. C_L =0.47nF, C_{VCC} =100nF



FigDemo board


10. PACKAGE OUTLINE(CONTINUED)


PFF

PCB Layout Reference View

PSS

Revision History

Rev.	Change	Date
V1.0	Initial version	3/17/2021

Important Notice

JSMSEMI Semiconductor (JSMSEMI) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC JSMSEMI PRODUCTS ARE SPECIFICALLY DESIGNATED BY JSMSEMI FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF JSMSEMI PRODUCTS WHICH JSMSEMI HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

JSMSEMI assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using JSMSEMI products.

Resale of JSMSEMI products or services with statements different from or beyond the parameters stated by JSMSEMI for that product or service voids all express and any implied warranties for the associated JSMSEMI product or s ervice. JSMSEMI is not responsible or liable for any such statements.

JSMSEMI All Rights Reserved. Information and data in this document are owned by JSMSEMI wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from JSMSEMI.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.When designing equipment, refer to the "Delivery Specification" for the JSMSEMI product that you intend to use.

For additional information please visit www.jsmsemi.com