

IDT82V3389 Datasheet

SYNCHRONOUS ETHERNET IDT WAN PLLTM IDT CONFIDENTIAL

Version 6 DATASHEET June 13, 2012

© 2019 Renesas Electronics Corporation

DISCLAIMER

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time without noting, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other the analysis bolic on an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may resume on its use to lice. Is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SU PORT HULICY

Integrated Device Technology's products are not authorized for use as critic componer in life s. Fort devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems which (a) intend or surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reas. The to result in a significant injury to the user. 2. A critical component is any components of a life support device or system ose fail to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its

2. A critical component is any components of a life support device or system one tail to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

RENESAS

Table of Contents DATASHEET

FEA	TU	-		-
			NS	
			N	
-	-	-	BLOCK DIAGRAM	
1 F	PIN	ASSIG	SNMENT	12
			RIPTION	
3 F			NAL DESCRIPTION	
3	3.1	RESET	Γ	18
3			ER CLOCK	
3	3.3	INPUT	CLOCKS & FRAME SYNC SIGNAL	19
		3.3.1	Input Clocks	19
_		3.3.2	Frame SYNC Input Signals	19
	3.4 S.5			20
	3.5	3.5.1	CLOCK QUALITY MONITORING	22
		3.5.2	Frequency Monitoring	22
2	3.6		DPLL INPUT CLOCK SELECTION	
•		3.6.1	External Fast Selection (T0 only)	24
		3.6.2	Forced Selection	25
		3.6.3	Automatic Selection	25
3	3.7	SELEC	CTED INPUT CLOCK MONITORING	26
		3.7.1	T0 / T4 DPLL Locking Detection	26
			3.7.1.1 Fast Loss	
			3.7.1.2 Coarse Phase Loss	
			3.7.1.3 Fine Phase Loss	
		270	3.7.1.4 Hard Limit Exceeding	
			Phase Lock Alarm (T0 only)	
	3.8			
		3.8.1	Input Clock Validity	
			Selected Input Clock Switch	
			3.8.2.1 Revertive Switch	
			3.8.2.2 Non-Revertive Switch (T0 only)	29
			Selected / Qualified Input Clocks Indication	
3	3.9		CTED INPUT CLOCK STATUS VS. DPLL OPERATING MODE	
			T0 Selected Input Clock vs. DPLL Operating Mode	
			T4 Selected Input Clock vs. DPLL Operating Mode	
	5.10		DPLL OPERATING MODE T0 DPLL Operating Mode	
		3.10.1	3.10.1.1 Free-Run Mode	
			3.10.1.2 Pre-Locked Mode	
			3.10.1.3 Locked Mode	
				-

			3.10.1.3.1	Temp-Holdover Mode		33
		3.10.1.4	Lost-Phase	e Mode		33
		3.10.1.5	Holdover M	/lode		34
			3.10.1.5.1	Automatic Instantaneous		34
			3.10.1.5.2	Automatic Slow Averaged		34
					ead	
		3,10,1,6				
	3 11					36
	0.11	3 11 1 PED Out	fnut l imit			36
		3112 Frequen	nov Offeat Li	imit		36
		3.11.2 Trequen	i only)			36
		3.11.5 FDO (10)ffeat Salací	tion (TO only)		36
		3.11.4 Filase 0	he of T0 / T			26
		3.11.3 FIVE Fal	TO Dath			30
	2 1 2					
	3.1Z					. JO 20
	3.13		NO & FRAIN	IE STNC SIGNALS		. JO 20
				it Cianala		30
	244	3.13.2 Frame S		IT SIGNAIS		40
	3.14	MASIER / SLAV		URATION		43
	3.15	INTERRUPT SU				.44
	3.10	TU AND 14 SUN				.44
	3.17 TVD			IG TECHNIQUES		40
4	ITP		ATION			40
_	4.1					
5						
	5.4	MOTOROLA MO)DE			. 54
	5.5	SERIAL MODE				. 56
6	JTA	G				59
7						
	7.1					
	1.2					
			•		Registers	
					Status Registers	
			•	5	······································	
				•	······································	
				0		
		•	-	•		
				•		
0	T 110	•			······	
8						31
	8.1	JUNCTION TEM	IPERATURE	Ξ	,	131

	8.2	EXAMPLE	OF JU	NCTION TEMPERATURE CALCUL	_ATION	
	8.3	HEATSINK		UATION		
	8.4	TQFP EPA	D THE	RMAL RELEASE PATH		
9						
	9.2	RECOMME	ENDED	OPERATION CONDITIONS		
		I/O SPECI	FICATIO	ONS		
		9.3.1 CN	IOS Inp	out / Output Port		
		9.3.2 PE	CI/IV	/DS Input / Output Port		135
		9.3	3.2.1 F	PECL Input / Output Port		
		9.3	322 1	VDS Input / Output Port		137
			3.2.3	Single-Ended Input for Differential In	iput	
	9.4	JITTER PE	ERFORM	MANCE		
	9.5	OUTPUT V	NANDE	R GENERATION		
	9.6	INPUT / OI	UTPUT	CLOCK TIMING		
	9.7	OUTPUT C	CLOCK	TIMING		
PA	CKA	GE DIME	INSIO	NS		
				-		

List of Tables DATASHEET

Table 1 [.]	Pin Description	13
	Related Bit / Register in Chapter 3.2	
Table 3:	Related Bit / Register in Chapter 3.3	
	Pre-Divider Functions	
Table 5:	Related Bit / Register in Chapter 3.5	
Table 6:	Input Clock Selection for T0 Path	
Table 7:	Input Clock Selection for T4 Path	
	External Fast Selection	
	Related Bit / Register in Chapter 3.6	
	Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz)	
	Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz)	
	Related Bit / Register in Chapter 3.7	
Table 13:	Conditions of Qualified Input Clocks Available for T0 & T4 Selection	
	Related Bit / Register in Chapter 3.8	
	T0 DPLL Operating Mode Control	
	T4 DPLL Operating Mode Control	
	Related Bit / Register in Chapter 3.9	
Table 18:	Frequency Offset Control in Temp-Holdover Mode	
Table 19:	Frequency Offset Control in Holdover Mode	
	Holdover Frequency Offset Read	
Table 21:	Related Bit / Register in Chapter 3.10	35
Table 22:	Related Bit / Register in Chapter 3.11	37
Table 23:	Related Bit / Register in Chapter 3.12	38
	Outputs on OUT1 ~ OUT5 if Derived from T0/T4 DPLL Outputs	
	Outputs on OUT1 ~ OUT5 if Derived from T0/T4 APLL	
Table 26:	Synchronization Control	4(
Table 27:	Related Bit / Register in Chapter 3.13	42
	Device Master / Slave Control	
	Related Bit / Register in Chapter 3.15	
	Microprocessor Interface	
	Microprocessor Interface Pins	
	Access Timing Characteristics in EPROM Mode	
	Read Timing Characteristics in Multiplexed Mode	
	Write Timing Characteristics in Multiplexed Mode	
	Read Timing Characteristics in Intel Mode	
	Write Timing Characteristics in Intel Mode	
	Read Timing Characteristics in Motorola Mode	54
	Write Timing Characteristics in Motorola Mode	5
	Read Timing Characteristics in Serial Mode	
	Write Timing Characteristics in Serial Mode	
	JTAG Timing Characteristics	
	Register List and Map	
	Power Consumption and Maximum Junction Temperature	
	Thermal Data	
	Absolute Maximum Rating	
· · · · · · · · · · · · · · · · · · ·	Recommended Operation Conditions	
	CMOS Input Port Electrical Characteristics	
	CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics	

Table 49:	CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics	134
Table 50:	CMOS Output Port Electrical Characteristics	134
Table 51:	PECL Input / Output Port Electrical Characteristics	136
Table 52:	LVDS Input / Output Port Electrical Characteristics	137
Table 53:	Output Clock Jitter Generation (jitter measured on one differential output (OUT6 or OUT7) with all other outputs disabled)	139
Table 54:	Output Clock Jitter Generation (jitter measured on one CMOS output (OUT1 - OUT5) with all other outputs disabled)	142
Table 55:	Input/Output Clock Timing 3	145
Table 56:	Output Clock Timing	147

7

List of Figures DATASHEET

Figure 1	Functional Block Diagram	11
	Pin Assignment (Top View)	
	Pre-Divider for An Input Clock	
0	Input Clock Activity Monitoring	
	External Fast Selection	
	Qualified Input Clocks for Automatic Selection	
	T0 Selected Input Clock vs. DPLL Automatic Operating Mode	
	T4 Selected Input Clock vs. DPLL Automatic Operating Mode	
	On Target Frame Sync Input Signal Timing	
	0.5 UI Early Frame Sync Input Signal Timing	
	0.5 UI Late Frame Sync Input Signal Timing	
•	1 UI Late Frame Sync Input Signal Timing	
	1 UI Late Frame Sync 2K/8K Pulse Input Signal Timing	
	On Target Frame Sync 2K/8K Pulse Input Signal Timing	
	Physical Connection Between Two Devices	
	IDT82V3389 Power Decoupling Scheme	
	Typical Application	
Figure 18.	EPROM Access Timing Diagram	49
	Multiplexed Read Timing Diagram	
Figure 20.	Multiplexed Write Timing Diagram	51
Figure 21.	Intel Read Timing Diagram	52
	Intel Write Timing Diagram	
	Motorola Read Timing Diagram	
	Motorola Write Timing Diagram	
Figure 25.	Serial Read Timing Diagram (CLKE Asserted Low)	56
Figure 26.	Serial Read Timing Diagram (CLKE Asserted High)	56
Figure 27.	Serial Write Timing Diagram	57
	JTAG Interface Timing Diagram	
Figure 29.	Assembly for Expose Pad thermal Release Path (Side View)	132
	Recommended PECL Input Port Line Termination	
	Recommended PECL Output Port Line Termination	
	Recommended LVDS Input Port Line Termination	
Figure 33.	Recommended LVDS Output Port Line Termination	137
Figure 34.	Example of Single-Ended Signal to Drive Differential Input	138
Figure 35.	Output Wander Generation (TDEV)	143
Figure 36.	Output Wander Generation (MTIE)	143
Figure 37.	Input / Output Clock Timing	144
Figure 38.	Output Clock Timing	146
Figure 39.	100-Pin EQG Package Dimensions (a) (in Millimeters)	152
Figure 40.	100-Pin EQG Package Dimensions (b) (in Millimeters)	153
Figure 41.	EQG100 Recommended Land Pattern with Exposed Pad (in Millimeters)	154

RENESAS

SYNCHRONOUS ETHERNET

WAN PLL

IDT82V3389 DATASHEET

FEATURES

HIGHLIGHTS

- The first single PLL chip:
- · Features 0.5 MHz to 560 Hz bandwidth
- Provides node clock for ITU-T G.8261/G.8262 Synchronous Ethernet
- Exceeds GR-253-CORE (OC-12) and ITU-T G.813 (STM-16/ Option I) jitter generation requirements
- Provides node clocks for Cellular and WLL base-station (GSM and 3G networks)
- Provides clocks for DSL access concentrators (DSLAM), especially for Japan TCM-ISDN network timing based ADSL equipments

MAIN FEATURES

- Provides an integrated single-chip solution for Synchronous Equipment Timing Source, including Stratum 3, SMC, 4E and 4 clocks
- Employs DPLL and APLL to feature excellent jitter performance and minimize the number of the external components
- Integrates T0 DPLL and T4 DPLL; T4 DPLL locks independently or locks to T0 DPLL
- Supports Forced or Automatic operating mode switch controlled by an internal state machine; it supports Free-Run, Locked and Holdover modes
- Supports programmable DPLL bandwidth (0.5 MHz to 560 Hz in 19 steps) and damping factor (1.2 to 20 in 5 steps)
- Supports 1.1X10⁻⁵ ppm absolute holdover accuracy and 4.4X10⁻⁸ ppm instantaneous holdover accuracy
- Supports PBO to minimize phase transients on T0 DPLL output to be no more than 0.61 ns
- Supports phase absorption when phase changes on T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds
- Supports programmable input-to-output phase offset adjustment
- Limits the phase and frequency offset of the outputs
- Supports manual and automatic selected input clock switch
- Supports automatic hitless selected input clock switch on clock failure

- Supports three types of input clock sources: recovered clock from STM-N or OC-n, PDH network synchronization timing and external synchronization reference timing
- Provides a 2 kHz, 4 kHz or 8 kHz frame sync input signal, and a 2 kHz and an 8 kHz frame sync output signals
- Provides 5 input clocks whose frequency cover from 2 kHz to 622.08 MHz
- Provides 5 output clocks whose frequency cover from 1 Hz to 622.08 MHz
- Provides output clocks for BITS, GPS, 3G, GSM, etc.
- Supports PECL/LVDS and CMOS input/output technologies
- Supports master clock calibration
- Supports Master/Slave application (two chips used together) to enable system protection against single chip failure
- Supports frequency monitor hysteresis
- Supports Telcordia GR-1244-CORE, GR-253-CORE, ITU-T G.812, ITU-T G.8262, ITU-T G.813 and ITU-T G.783

OTHER FEATURES

- Multiple microprocessor interface modes: EPROM, Multiplexed, Intel, Motorola and Serial
- IEEE 1149.1 JTAG Boundary Scan
- Single 3.3 V operation with 5 V tolerant CMOS I/Os
- 100-pin TQFP package, Green package options available

APPLICATIONS

- BITS / SSU
- SMC / SEC (SONET / SDH)
- DWDM cross-connect and transmission equipments
- Synchronous Ethernet equipments
- Central Office Timing Source and Distribution
- Core and access IP switches / routers
- Gigabit and Terabit IP switches / routers
- IP and ATM core switches and access equipments
- Cellular and WLL base-station node clocks
- Broadband and multi-service access equipments
- Any other telecom equipments that need synchronous equipment system timing

DESCRIPTION

The IDT82V3389 is an integrated, single-chip solution for the Synchronous Equipment Timing Source for Stratum 3, 4E, 4, EEC-Option 1, EEC-Option 2 and SMC clocks in SONET / SDH / Ethernet equipments, DWDM and Wireless base station, DSL concentrator, Router and Access Network applications.

The device supports three types of input clock sources: recovered clock from STM-N or OC-n, PDH network synchronization timing and external synchronization reference timing.

The device consists of T0 and T4 paths. The T0 path is a high quality and highly configurable path to provide system clock for node timing synchronization within a SONET / SDH network. The T4 path is simpler and less configurable for equipment synchronization. The T4 path locks independently from the T0 path or locks to the T0 path.

An input clock is automatically or manually selected for T0 and T4 each for DPLL locking. Both the T0 and T4 paths support three primary operating modes: Free-Run, Locked and Holdover. In Free-Run mode, the DPLL refers to the master clock. In Locked mode, the DPLL locks to the selected input clock. In Holdover mode, the DPLL resorts to the frequency data acquired in Locked mode. Whatever the operating mode is,

the DPLL gives a stable performance without being affected by operating conditions or silicon process variations.

If the DPLL outputs are processed by T0/T4 APLL, the outputs of the device will be in a better jitter/wander performance.

The device provides programmable DPLL bandwidths: 0.5 MHz to 560 Hz in 19 steps and damping factors: 1.2 to 20 in 5 steps. Different settings cover all SONET / SDH clock synchronization requirements.

A high stable input is required for the master clock in different applications. The master clock is used as a reference clock for all the internal circuits in the device. It can be calibrated within \pm 741 ppm.

All the read/write registers are accessed through a microprocessor interface. The device supports five microprocessor interface modes: EPROM, Multiplexed, Intel, Motorola and Serial.

In general, the device can be used in Master/Slave application. In this application, two devices should be used together to enable system protection against single chip failure. See Chapter 4 Typical Application for details.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

1 PIN ASSIGNMENT

Figure 2. Pin Assignment (Top View)

2 PIN DESCRIPTION

Table 1: Pin Description

Name	Pin No.	I/O	Туре	Description ¹
			(Global Control Signal
OSCI	10	I	CMOS	OSCI: Crystal Oscillator Master Clock A nominal 12.8000 MHz clock provided by a crystal oscillator is input on this pin. It is the master clock for the device.
FF_SRCSW	18	l pull-down	CMOS	FF_SRCSW: External Fast Selection Enable During reset, this pin determines the default value of the EXT_SW bit (b4, 0BH) ² . The EXT_SW bit determines whether the External Fast Selection is enabled. High: The default value of the EXT_SW bit (b4, 0BH) is '1' (External Fast selection is enabled); Low: The default value of the EXT_SW bit (b4, 0BH) is '0' (External Fast selection is dis- abled). After reset, this pin selects an input clock pair for the T0 DPLL if the External Fast selection is enabled: High: Pair IN1 / IN3 is selected. Low: Pair IN2/ IN4 is selected. After reset, the input on this pin takes no effect if the External Fast selection is disabled.
MS/SL	99	l pull-up	CMOS	MS/SL: Master / Slave Selection This pin, together with the MS_SL_CTRL bit (b0, 13H), controls whether the device is config- ured as the Master or as the Slave. Refer to Chapter 3.14 Master / Slave Configuration for details. The signal level on this pin is reflected by the MASTER_SLAVE bit (b1, 09H).
SONET/SDH	100	l pull-down	CMOS	SONET/SDH: SONET / SDH Frequency Selection During reset, this pin determines the default value of the IN_SONET_SDH bit (b2, 09H): High: The default value of the IN_SONET_SDH bit is '1' (SONET); Low: The default value of the IN_SONET_SDH bit is '0' (SDH). After reset, the value on this pin takes no effect.
RST	74	l pull-up	CMOS	RST: Reset A low pulse of at least 50 μ s on this pin resets the device. After this pin is high, the device will still be held in reset state for 500 ms (typical).
			Frame	Synchronization Input Signal
EX_SYNC1	45	l pull-down	CMOS	EX_SYNC1: External Sync Input 1 A 2 kHz, 4 kHz or 8 kHz signal is input on this pin.
				Input Clock
IN1	46	l pull-down	CMOS	IN1: Input Clock 1 A N x 2 kHz, N x 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin.
IN2	47	l pull-down	CMOS	IN2: Input Clock 2 A N x 2 kHz, N x 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin.
IN3_POS IN3_NEG	40 41	1	PECL/LVDS	IN3_POS / IN3_NEG: Positive / Negative Input Clock 3 A N x 2 kHz, N x 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz, 156.25 MHz, 311.04 MHz or 622.08 MHz clock is differentially input on this pair of pins. Whether the clock signal is PECL or LVDS is automatically detected. Single-ended input for differential input is also supported. Refer to Chapter 9.3.2.3 Single-Ended Input for Differential Input.

Name	Pin No.	I/O	Туре	Description ¹
IN4_POS IN4_NEG	42 43	I	PECL/LVDS	IN4_POS / IN4_NEG: Positive / Negative Input Clock 4 A N x 2 kHz, N x 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz, 156.25 MHz, 311.04 MHz or 622.08 MHz clock is differentially input on this pair of pins. Whether the clock signal is PECL or LVDS is automatically detected. Single-ended input for differential input is also supported. Refer to Chapter 9.3.2.3 Single- Ended Input for Differential Input.
IN5	54	l pull-down	CMOS	IN5: Input Clock 5 A N x 2 kHz, N x 4 kHz, N x 8 kHz ³ , 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin. In Slave operation, the frequency of the T0 selected input clock IN5 is recommended to be 6.48 MHz.
			Output F	Frame Synchronization Signal
FRSYNC_8K	30	0	CMOS	FRSYNC_8K: 8 kHz Frame Sync Output An 8 kHz signal is output on this pin.
MFRSYNC_2K	31	0	CMOS	MFRSYNC_2K: 2 kHz Multiframe Sync Output A 2 kHz signal is output on this pin.
				Output Clock
OUT1	90	0	CMOS	OUT1: Output Clock 1 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 ⁴ , N x T1 ⁵ , N x 13.0 MHz ⁶ , N x 3.84 MHz ⁷ , 5 MHz, 10 MHz, 20 MHz, 25 MHz, E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 125 MHz, 155.52 MHz or 156.25 MHz clock is output on this pin.
OUT2	93	0	CMOS	OUT2: Output Clock 2 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 ⁴ , N x T1 ⁵ , N x 13.0 MHz ⁶ , N x 3.84 MHz ⁷ , 5 MHz, 10 MHz, 20 MHz, 25 MHz, E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 125 MHz, 155.52 MHz or 156.25 MHz clock is output on this pin.
OUT3	94	0	CMOS	OUT3: Output Clock 3 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 ⁴ , N x T1 ⁵ , N x 13.0 MHz ⁶ , N x 3.84 MHz ⁷ , 5 MHz, 10 MHz, 20 MHz, 25 MHz, E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 125 MHz, 155.52 MHz or 156.25 MHz clock is output on this pin.
OUT4_POS OUT4_NEG	34 35	0	PECL/LVDS	OUT4_POS / OUT4_NEG: Positive / Negative Output Clock 4 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 ⁴ , N x T1 ⁵ , N x 13.0 MHz ⁶ , N x 3.84 MHz ⁷ , 5 MHz, 10 MHz, 20 MHz, 25 MHz, E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 125 MHz, 155.52 MHz, 156.25 MHz, 311.04 MHz, 312.5 MHz, 622.08 MHz or 625 MHz clock is differentially output on this pair of pins.
OUT5_POS OUT5_NEG	36 37	0	PECL/LVDS	OUT5_POS / OUT5_NEG: Positive / Negative Output Clock 5 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 ⁴ , N x T1 ⁵ , N x 13.0 MHz ⁶ , N x 3.84 MHz ⁷ , 5 MHz, 10 MHz, 20 MHz, 25 MHz, E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 125 MHz, 155.52 MHz, 156.25 MHz, 311.04 MHz, 312.5 MHz, 622.08 MHz or 625 MHz clock is differentially output on this pair of pins.
			M	icroprocessor Interface
CS	70	l/O pull-up	CMOS	CS: Chip Selection In EPROM mode, this pin is an output. In Multiplexed, Intel, Motorola and Serial modes, this pin is an input.A transition from high to low must occur on this pin for each read or write operation and this pin should remain low until the operation is over.
INT_REQ	8	0	CMOS	INT_REQ: Interrupt Request This pin is used as an interrupt request. The output characteristics are determined by the HZ_EN bit (b1, 0CH) and the INT_POL bit (b0, 0CH).

Name	Pin No.	I/O	Туре	Description ¹
MPU_MODE0 MPU_MODE1 MPU_MODE2	60 59 58	l pull-down	CMOS	MPU_MODE[2:0]: Microprocessor Interface Mode Selection The device supports five microprocessor interface modes: EPROM, Multiplexed, Intel, Motorola and Serial. During reset, these pins determine the default value of the MPU_SEL_CNFG[2:0] bits (b2~0, 7FH) as follows: 001 (EPROM mode); 010 (Multiplexed mode); 011 (Intel mode); 100 (Motorola mode); 101 (Serial mode); 110 - 111 (Reserved). After reset, these pins are general purpose inputs. The microprocessor interface mode is selected by the MPU_SEL_CNFG[2:0] bits (b2~0, 7FH). After reset de-assertion, wait 10µs for the mode to be active. The value of these pins is always reflected by the MPU_PIN_STS[2:0] bits (b2~0, 02H).
				A[6:0]: Address Bus In EPROM mode, these pins are outputs. They are the address bus of the EPROM interface.
A0 / SDI	69			Intel and Motorola modes, these pins are inputs, they are the address bus of the micropro- cessor interface.
A1 / CLKE	68		CMOS	SDI: Serial Data Input
A2	67	1/0		In Serial mode, this pin is used as the serial data input. Address and data on this pin are seri-
A3	66	I/O pull-down		ally clocked into the device on the rising edge of SCLK.
A4	65			CLKE: SCLK Active Edge Selection In Serial mode, this pin is an input, it selects the active edge of SCLK to update the SDO:
A5	64			High - The falling edge; Low - The rising edge.
A6	63		1	In Multiplexed mode, A0/SDI, A1/CLKE and A[6:2] pins should be connected to ground. In Serial mode, A[6:2] pins should be connected to ground. See Table 31 for details.
AD0 / SDO	83			AD[7:0]: Address / Data Bus
AD1	82			In EPROM, Intel and Motorola modes, these pins are the bi-directional data bus of the micro- processor interface.
AD2	81			In Multiplexed mode, these pins are the bi-directional address/data bus of the microproces- sor interface.
AD3	80	I/O	01400	SDO: Serial Data Output
AD4	79	pull-down	CMOS	In Serial mode, this pin is used as the serial data output. Data on this pin is serially clocked out of the device on the active edge of SCLK.
AD5	78			In Serial mode, AD[7:1] pins should be connected to ground.
AD6	77			
AD7	76			
WR	71	l pull-up	CMOS	WR: Write Operation In Multiplexed and Intel modes, this pin is asserted low to initiate a write operation. In Motorola mode, this pin is asserted low to initiate a write operation or s asserted high to ini- tiate a read operation. In EPROM and Serial modes, this pin should be connected to ground.

Name	Pin No.	I/O	Туре	Description ¹
RD	72	l pull-up	CMOS	RD: Read Operation In Multiplexed and Intel modes, this pin is asserted low to initiate a read operation. In EPROM, Motorola and Serial modes, this pin should be connected to ground.
ALE / SCLK	73	l pull-down	CMOS	ALE: Address Latch Enable In Multiplexed mode, the address on AD[7:0] pins is sampled into the device on the falling edge of ALE. SCLK: Shift Clock In Serial mode, a shift clock is input on this pin. Data on SDI is sampled by the device on the rising edge of SCLK. Data on SDO is updated on the active edge of SCLK. The active edge is determined by the CLKE. In EPROM, Intel and Motorola modes, this pin should be connected to ground.
RDY	75	0	CMOS	RDY: Ready/Data Acknowledge In Multiplexed and Intel modes, a high level on this pin indicates that a read/write cycle is completed. A low level on this pin indicates that wait state must be inserted. In Motorola mode, a low level on this pin indicates that valid information on the data bus is ready for a read operation or acknowledges the acceptance of the written data during a write operation. In EPROM and Serial modes, this pin should be connected to ground.
			J	ITAG (per IEEE 1149.1)
TRST	2	l pull-down	CMOS	TRST: JTAG Test Reset (Active Low) A low signal on this pin resets the JTAG test port. This pin should be connected to ground when JTAG is not used.
TMS	7	l pull-up	CMOS	TMS: JTAG Test Mode Select The signal on this pin controls the JTAG test performance and is sampled on the rising edge of TCK.
тск	9	l pull-down	CMOS	TCK: JTAG Test Clock The clock for the JTAG test is input on this pin. TDI and TMS are sampled on the rising edge of TCK and TDO is updated on the falling edge of TCK. If TCK is idle at a low level, all stored-state devices contained in the test logic will indefinitely retain their state.
TDI	23	l pull-up	CMOS	TDI: JTAG Test Data Input The test data is input on this pin. It is clocked into the device on the rising edge of TCK.
TDO	21	0	CMOS	TDO: JTAG Test Data Output The test data is output on this pin. It is clocked out of the device on the falling edge of TCK. TDO pin outputs a high impedance signal except during the process of data scanning. This pin can indicate the interrupt of T0 selected input clock fail, as determined by the LOS_FLAG_ON_TDO bit (b6, 0BH). Refer to Chapter 3.8.1 Input Clock Validity for details.
				Power & Ground
VDDD1	12			VDDDn: 3.3 V Digital Power Supply VDDDn connections should be connected using the recommended decoupling scheme
VDDD2	16			shown in Figure 16.
VDDD3	13			
VDDD4	50	Power	-	
VDDD5	61			
VDDD6	85			
VDDD7	86			

© 2019 Renesas Electronics Corporation

Name	Pin No.	I/O	Туре	Description ¹
VDDA1	6			VDDAn: 3.3 V Analog Power Supply
VDDA2	19	Power	-	VDDAn connections should be connected using the recommended decoupling scheme shown in Figure 16.
VDDA3	91			
VDDD8	26	Power	-	VDDD8: 3.3 V Digital Power Supply
VDD_DIFF1	33	Power	-	VDD_DIFF1: 3.3 V Power Supply for OUT4
VDD_DIFF2	39	Power	-	VDD_DIFF2: 3.3 V Power Supply for OUT5
DGND1	11			DGNDn: Digital Ground
DGND2	15			
DGND3	14			
DGND4	49	Ground	-	
DGND5	62			
DGND6	84			
DGND7	87			
AGND1	5			AGNDn: Analog Ground
AGND2	20	Ground	-	
AGND3	92			
GND_DIFF1	32	Ground		GND_DIFF: Ground for OUT4
GND_DIFF2	38	Ground		GND_DIFF: Ground for OUT5
DGND8	29	Ground	-	DGND8: Digital Ground
AGND	1	Ground		AGND: Analog Ground
				Others
IC1	3			IC: Internally Connected
IC2	4			Internal Use. These pins should be left open for normal operation.
IC3	17			
IC4	22	-	-	
IC5	96			
IC6	97			
IC7	98			
NC	24, 25, 27, 28, 44, 48, 51, 52, 53, 55, 56, 57, 88, 89, 95	-	-	NC: Not Connected
2. The contents in the 3. N x 8 kHz: 1 ≤ N ≤ 4. N x E1: N = 1, 2, 3 5. N x T1: N = 1, 2, 3 6. N x 13.0 MHz: N =	e brackets indicate the positio 19440. 5, 4, 6, 8, 12, 16, 24, 32, 48, 6 5, 4, 6, 8, 12, 16, 24, 32, 48, 6	on of the regist		unused output pins are don't-care.

Pin Description

3 FUNCTIONAL DESCRIPTION

3.1 RESET

The reset operation resets all registers and state machines to their default value or status.

After power on, the device must be reset for normal operation.

For a complete reset, the RST pin must be asserted low for at least 50 μ s. After the RST pin is pulled high, the device will still be in reset state for 500 ms (typical). If the RST pin is held low continuously, the device remains in reset state.

3.2 MASTER CLOCK

A nominal 12.8000 MHz clock, provided by a crystal oscillator, is input on the OSCI pin. This clock is provided for the device as a master clock. The master clock is used as a reference clock for all the internal circuits. A better active edge of the master clock is selected by the OSC_EDGE bit to improve jitter and wander performance.

In fact, an offset from the nominal frequency may input on the OSCI pin. This offset can be compensated by setting the NOMINAL_FREQ_VALUE[23:0] bits. The calibration range is within \pm 741 ppm.

The performance of the master clock should meet GR-1244-CORE, GR-253-CORE, ITU-T G.812 and G.813 criteria.

Table 2: Related Bit / Register in Chapter 3.2

Bit	Register	Address (Hex)
NOMINAL_FREQ_VALUE[23:0]	NOMINAL_FREQ[23:16]_CNFG, NOMINAL_FREQ[15:8]_CNFG, NOMINAL_FREQ[7:0]_CNFG	06, 05, 04
OSC_EDGE	DIFFERENTIAL_IN_OUT_OSCI_CNFG	0A

3.3 INPUT CLOCKS & FRAME SYNC SIGNAL

Altogether 5 clocks and 1 frame sync signal are input to the device.

3.3.1 INPUT CLOCKS

The device provides 5 input clock ports.

According to the input port technology, the input ports support the following technologies:

- PECL/LVDS
- CMOS

According to the input clock source, the following clock sources are supported:

- T1: Recovered clock from STM-N or OC-n
- · T2: PDH network synchronization timing
- T3: External synchronization reference timing

IN1, IN2 and IN5 support CMOS input signal only and the clock sources can be from T1, T2 or T3.

IN3 and IN4 support PECL/LVDS input signal and automatically detect whether the signal is PECL or LVDS. The clock sources can be from T1, T2 or T3.

For SDH and SONET networks, the default frequency is different. SONET / SDH frequency selection is controlled by the IN_SONET_SDH bit. During reset, the default value of the IN_SONET_SDH bit is determined by the SONET/SDH pin: high for SONET and low for SDH. After reset, the input signal on the SONET/SDH pin takes no effect.

IDT82V3389 supports single-ended input for differential input. Refer to Chapter 9.3.2.3 Single-Ended Input for Differential Input.

3.3.2 FRAME SYNC INPUT SIGNALS

A 2 kHz, 4 kHz or 8 kHz frame sync signal is input on the EX_SYNC1 pin. It is a CMOS input. The input frequency should match the setting in the SYNC_FREQ[1:0] bits.

The frame sync input signal is used for frame sync output signal synchronization. Refer to Chapter 3.13.2 Frame SYNC Output Signals for details.

Table 3: Related Bit / Register in Chapter 3.3

Bit	Register	Address (Hex)
IN_SONET_SDH SYNC_FREQ[1:0]	INPUT_MODE_CNFG	09

3.4 INPUT CLOCK PRE-DIVIDER

Each input clock is assigned an internal Pre-Divider. The Pre-Divider is used to divide the clock frequency down to the internal DPLL's required input frequency, which is no more than 38.88 MHz.

For IN1 ~ IN5, the DPLL required frequency is set by the corresponding IN_FREQ[3:0] bits.

Each Pre-Divider consists of a DivN Divider and a Lock 8k Divider. IN3 and IN4 also include an HF (High Frequency) Divider. Figure 3 shows a block diagram of the pre-dividers for an input clock and Table 4 shows the Pre-Divider Functions.

When the Lock 8k Divider is used, the input clock is divided down to 8 kHz internally; the PRE_DIVN_VALUE [14:0] bits are not required. Lock 8k Divider can be used for 1.544 MHz, 2.048 MHz, 6.48 MHz, 19.44 MHz, 25.92 MHz or 38.88 MHz input clock frequency and the corresponding IN_FREQ[3:0] bits should be set to match the input frequency.

For 2 kHz, 4 kHz or 8 kHz input clock frequency only, the Pre-Divider should be bypassed by setting IN3_DIV[1:0] bits / IN4_DIV[1:0] bits = 0, DIRECT_DIV bit = 0, and LOCK_8K bit = 0. The corresponding IN_FREQ[3:0] bits should be set to match the input frequency. The input clock can be inverted, as determined by the IN_2K_4K_8K_INV bit.

The HF Divider, which is only available for IN3 and IN4, should be used when the input clock is higher than (>) 155.52 MHz. The input clock can be divided by 4, 5 or can bypass the HF Divider, as determined by the IN3_DIV[1:0]/IN4_DIV[1:0] bits correspondingly.

Either the DivN Divider or the Lock 8k Divider can be used or both can be bypassed, as determined by the DIRECT_DIV bit and the LOCK_8K bit.

When the DivN Divider is used for INn (1 \leq n \leq 5), the division factor setting should observe the following order:

- 1. Select an input clock by the PRE_DIV_CH_VALUE[3:0] bits;
- Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits;
- 3. Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits.

Once the division factor is set for the input clock selected by the PRE_DIV_CH_VALUE[3:0] bits, it is valid until a different division factor is set for the same input clock. The division factor is calculated as follows:

Division Factor = (the frequency of the clock input to the DivN Divider \div the frequency of the DPLL required clock set by the IN_FREQ[3:0] bits) - 1

The DivN Divider can only divide the input clock whose frequency is less than or equal to (\leq) 155.52 MHz.

The Pre-Divider configuration and the division factor setting depend on the input clock on one of the IN1 ~ IN5 pins and the DPLL required clock. Here is an example:

The input clock on the IN4 pin is 622.08 MHz; the DPLL required clock is 6.48 MHz by programming the IN_FREQ[3:0] bits of register IN4 to '0010'. Do the following step by step to divide the input clock:

- 1. Use the HF Divider to divide the clock down to 155.52 MHz: 622.08 ÷ 155.52 = 4, so set the IN4_DIV[1:0] bits to '01';
- 2. Use the DivN Divider to divide the clock down to 6.48 MHz: Set the PRE_DIV_CH_VALUE[3:0] bits to '0110';
 Set the DIRECT_DIV bit in Register IN4_CNFG to '1' and the LOCK_8K bit in Register IN4_CNFG to '0';
 155.52 ÷ 6.48 = 24; 24 - 1 = 23, so set the

PRE_DIVN_VALUE[14:0] bits to '10111'.

© 2019 Renesas Electronics Corporation

Figure 3. Pre-Divider for An Input Clock

Table 4: Pre-Divider Functions

Pre-Divider	Input Clock INn frequency	Control Register	Register/ Address ¹
HF- Divider	>155.52 MHz	IN3_DIV[1:0] IN4_DIV[1:0]	IN3_IN4_HF_DIV_CNFG (18)
Divider Bypassed	2KHz, 4KHz, 8KHz, 1.544 MHz, 2.048 MHz, 6.48 MHz, 19.44 MHz, 25.92 MHz or 38.88 MHz	IN_FREQ[3:0] – set to match input Clock INn frequency. LOCK_8K= 0'b; DIRECT_DIV= 0'b (Bypass Dividers)	IN1_CNFG ~ IN5_CNFG (16 ~ 17, 19 ~ 1A, 1F)
Lock 8K Divider	1.544 MHz, 2.048 MHz, 6.48 MHz, 19.44 MHz, 25.92 MHz or 38.88 MHz	IN_FREQ[3:0] – set to match input Clock INn frequency. LOCK_8K= 1'b; DIRECT_DIV= 0'b (select Lock 8k Divider)	IN1_CNFG ~ IN5_CNFG (16 ~ 17, 19 ~ 1A, 1F)
DivN	Nx8kHz ($2 \le N \le 19440$) Example: 25 MHz = 3125×8 kHz	LOCK_8K= 0'b; DIRECT_DIV= 1'b (select DivN Divider) IN_FREQ[3:0] – set to the DPLL required frequency. ('0000': 8 kHz (default)) PRE_DIV_CH_VALUE[3:0] PRE_DIVN_VALUE[14:0] Example: 25 MHz = 3125 x 8kHz Division Factor = 3125 -1= 3124 Dec (or 0C34h) PRE_DIVN_VALUE[7:0]= 34h PRE_DIVN_VALUE[14:8]= 0Ch	IN1_CNFG ~ IN5_CNFG (16 ~ 17, 19 ~ 1A, 1F) PRE_DIV_CH_CNFG (23) PRE_DIVN[14:8]_CNFG (25), PRE_DIVN[7:0]_CNFG (24)

3.5 INPUT CLOCK QUALITY MONITORING

The qualities of all the input clocks are always monitored in the following aspects:

- Activity
- Frequency

Activity and frequency monitoring are conducted on all the input clocks.

The qualified clocks are available for T0/T4 DPLL selection. The T0 and T4 selected input clocks have to be monitored further. Refer to Chapter 3.7 Selected Input Clock Monitoring for details.

3.5.1 ACTIVITY MONITORING

Activity is monitored by using an internal leaky bucket accumulator, as shown in Figure 4.

Each input clock is assigned an internal leaky bucket accumulator. The input clock is monitored for each period of 128 ms and the internal leaky bucket accumulator increases by 1 when an event is detected; it decreases by 1 if no event is detected within the period set by the decay rate. The event is that an input clock drifts outside (>) \pm 500 ppm with respect to the master clock within a 128 ms period.

There are four configurations (0 - 3) for a leaky bucket accumulator. The leaky bucket configuration for an input clock is selected by the corresponding BUCKET_SEL[1:0] bits. Each leaky bucket configuration consists of four elements: upper threshold, lower threshold, bucket size and decay rate.

The bucket size is the capability of the accumulator. If the number of the accumulated events reaches the bucket size, the accumulator will stop increasing even if further events are detected. The upper threshold is a point above which a no-activity alarm is raised. The lower threshold is a point below which the no-activity alarm is cleared. The decay rate is a certain period during which the accumulator decreases by 1 if no event is detected.

The leaky bucket configuration is programmed by one of four groups of register bits: the BUCKET_SIZE_n_DATA[7:0] bits, the UPPER_THRESHOLD_n_DATA[7:0] bits, the LOWER_THRESHOLD_n_DATA[7:0] bits and the DECAY_RATE_n_DATA[1:0] bits respectively; 'n' is 3.

The no-activity alarm status of the input clock is indicated by the INn_NO_ACTIVITY_ALARM bit (1 \leq n \leq 5).

The input clock with a no-activity alarm is disqualified for clock selection for T0/T4 DPLL.

3.5.2 FREQUENCY MONITORING

Frequency is monitored by comparing the input clock with a reference clock. The reference clock can be derived from the master clock or the output of T0 DPLL, as determined by the FREQ_MON_CLK bit.

A frequency hard alarm threshold is set for frequency monitoring. It has two thresholds, rejecting threshold and accepting threshold, which are set in HARD_FREQ_MON_THRESHOLD[7:0]. If the FREQ_MON_HARD_EN bit is '1', a frequency hard alarm is raised when the frequency of the input clock with respect to the reference clock is above the hard alarm rejecting threshold; the alarm is cleared when the frequency is below the hard alarm accepting threshold.

The frequency hard alarm accepting threshold can be calculated as follows:

Frequency	Hard	Alarm	Accepting	Threshold	(ppm)	=
(HARD_FRE	Q_MON	THRESI	HOLD[7:4]	+	1)	X
FREQ_MON	FACTO	R[3:0] (b	3~0)			

The frequency hard alarm rejecting threshold can be calculated as follows:

Frequency	Hard	Alarm	Rejecting	Threshold	(ppm)	=
(ALL_FREQ	HARD	THRESH	IOLD[3:0]	+	1)	X
FREQ_MON	FACTO	DR[3:0]				

If the FREQ_MON_HARD_EN bit is '1', the frequency hard alarm status of the input clock is indicated by the INn_FREQ_HARD_ALARM bit ($1 \le n \le 5$). When the FREQ_MON_HARD_EN bit is '0', no frequency hard alarm is raised even if the input clock is above the frequency hard alarm rejecting threshold.

The input clock with a frequency hard alarm is disqualified for clock selection for T0/T4 DPLL.

In addition, if the input clock is 2 kHz, 4 kHz or 8 kHz, its clock edges with respect to the reference clock are monitored. If any edge drifts outside $\pm 5\%$, the input clock is disqualified for clock selection for T0/T4 DPLL. The input clock is qualified if any edge drifts inside $\pm 5\%$. This function is supported only when the IN_NOISE_WINDOW bit is '1'.

The frequency of each input clock with respect to the reference clock can be read by doing the following step by step:

- 1. Select an input clock by setting the IN_FREQ_READ_CH[3:0] bits;
- 2. Read the value in the IN_FREQ_VALUE[7:0] bits and calculate as follows:

Input Clock Frequency (ppm) = IN_FREQ_VALUE[7:0] X FREQ_MON_FACTOR[3:0]

Note that the value set by the FREQ_MON_FACTOR[3:0] bits depends on the application.

Bit	Register	Address (Hex)	
BUCKET_SIZE_n_DATA[7:0] (n = 3)	BUCKET_SIZE_3_CNFG	3F	
UPPER_THRESHOLD_n_DATA[7:0] (n = 3)	UPPER_THRESHOLD_3_CNFG	3D	
LOWER_THRESHOLD_n_DATA[7:0] (n = 3)	LOWER_THRESHOLD_3_CNFG	3E	
DECAY_RATE_n_DATA[1:0] (n = 3)	DECAY_RATE_3_CNFG	40	
BUCKET_SEL[1:0]	IN1_CNFG ~ IN5_CNFG	16 ~ 17, 19 ~ 1A, 1	
INn_NO_ACTIVITY_ALARM ($1 \le n \le 5$)		44 45 40	
INn_FREQ_HARD_ALARM ($1 \le n \le 5$)	IN1_IN2_STS, IN3_IN4_STS, IN5_STS	44~ 45, 48	
FREQ_MON_CLK		0B	
FREQ_MON_HARD_EN	MON_SW_PBO_CNFG		
ALL_FREQ_HARD_THRESHOLD[7:0]	ALL_FREQ_MON_THRESHOLD_CNFG	2F	
FREQ_MON_FACTOR[3:0]	FREQ_MON_FACTOR_CNFG	2E	
IN_NOISE_WINDOW	PHASE_MON_PBO_CNFG	78	
IN_FREQ_READ_CH[3:0]	IN_FREQ_READ_CH_CNFG	41	
IN_FREQ_VALUE[7:0]	IN_FREQ_READ_STS	42	

Table 5: Related Bit / Register in Chapter 3.5

© 2019 Renesas Electronics Corporation

3.6 T0 / T4 DPLL INPUT CLOCK SELECTION

An input clock is selected for T0 DPLL and for T4 DPLL respectively.

For T0 path, the EXT_SW bit and the T0_INPUT_SEL[3:0] bits determine the input clock selection, as shown in Table 6:

Table 6: Input Clock Selection for T0 Path

Co	ntrol Bits	Input Clock Selection	
EXT_SW	T0_INPUT_SEL[3:0]		
1	don't-care	External Fast selection	
0	other than 0000	Forced selection	
Ū	0000	Automatic selection	

For T4 path, the T4 DPLL may lock to a T0 DPLL output or lock independently from T0 path, as determined by the T4_LOCK_T0 bit. When the T4 DPLL locks to the T0 DPLL output, the T4 selected input clock is a 77.76 MHz or 8 kHz signal from the T0 DPLL 77.76 MHz path (refer to Chapter 3.11.5.1 T0 Path), as determined by the T0_FOR_T4 bit. When the T4 path locks independently from the T0 path, the T4 DPLL input clock selection is determined by the T4_INPUT_SEL[3:0] bits. Refer to Table 7:

Table 7: Input Clock Selection for T4 Path

Control Bits - T4_INPUT_SEL[3:0]	Input Clock Selection
other than 0000	Forced selection
0000	Automatic selection

External Fast selection is done between IN1/IN3 and IN2/IN4 pairs.

Forced selection is done by setting the related registers.

Automatic selection is done based on the results of input clocks quality monitoring and the related registers configuration.

Table 8: External Fast Selection

The selected input clock is attempted to be locked in T0/T4 DPLL.

3.6.1 EXTERNAL FAST SELECTION (T0 ONLY)

The External Fast selection is supported by T0 path only. In External Fast selection, only IN1/IN3 and IN2/IN4 pairs are available for selection. Refer to Figure 5. The results of input clocks quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect input clock selection.

The T0 input clock selection is determined by the FF_SRCSW pin after reset (this pin determines the default value of the EXT_SW bit during reset, refer to Chapter 2 Pin Description), the IN1_SEL_PRIORITY[3:0] bits and the IN2_SEL_PRIORITY[3:0] bits, as shown in Figure 5 and Table 8:

Figure 5. External Fast Selection

	Control Pin & Bits		its Selected Input Clock	
FF_SRCSW (after reset)	IN1_SEL_PRIORITY[3:0]	IN2_SEL_PRIORITY[3:0]		
high	0000	- don't-care	IN3	
nigu -	other than 0000		IN1	
low	don't-care	0000	IN4	
low	uun t-cale	other than 0000	IN2	

3.6.2 FORCED SELECTION

In Forced selection, the selected input clock is set by the T0_INPUT_SEL[3:0] / T4_INPUT_SEL[3:0] bits. The results of input clocks quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect the input clock selection.

3.6.3 AUTOMATIC SELECTION

In Automatic selection, the input clock selection is determined by its validity, priority and locking allowance configuration. The validity

depends on the results of input clock quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring). Locking allowance is configured by the corresponding INn_VALID bit($1 \le n \le 5$). Refer to Figure 6. In all the qualified input clocks, the one with the highest priority is selected. The priority is set by the corresponding INn_SEL_PRIORITY[3:0] bits ($1 \le n \le 5$). If more than one qualified input clock INn is available and has the same priority, the input clock with the smallest 'n' is selected.

Figure 6. Qualified Input Clocks for Automatic Selection

Bit	Register	Address (Hex)
EXT_SW	MON_SW_PBO_CNFG	0B
T0_INPUT_SEL[3:0]	T0_INPUT_SEL_CNFG	50
T4_LOCK_T0 T0_FOR_T4 T4_INPUT_SEL[3:0]	T4_INPUT_SEL_CNFG	51
INn_SEL_PRIORITY[3:0] $(1 \le n \le 5)$	IN1_IN2_SEL_PRIORITY_CNFG IN3_IN4_SEL_PRIORITY_CNFG IN5_SEL_PRIORITY_CNFG	27 ~ 28, 2B
INn_VALID ($1 \le n \le 5$)	REMOTE_INPUT_VALID1_CNFG, REMOTE_INPUT_VALID2_CNFG	4C, 4D
INn ($1 \le n \le 5$)	INPUT_VALID1_STS, INPUT_VALID2_STS	4A, 4B
T4_T0_SEL	T4_T0_REG_SEL_CNFG	07
ote: * The setting in the 26 ~ 2C registers is either for T0 path or for T4 path, as det	ermined by the T4_T0_SEL bit.	1

Table 9: Related Bit / Register in Chapter 3.6

3.7 SELECTED INPUT CLOCK MONITORING

The quality of the selected input clock is always monitored (refer to Chapter 3.5 Input Clock Quality Monitoring) and the DPLL locking status is always monitored.

3.7.1 T0 / T4 DPLL LOCKING DETECTION

The following events are always monitored:

- · Fast Loss;
- · Coarse Phase Loss;
- Fine Phase Loss;
- Hard Limit Exceeding.

3.7.1.1 Fast Loss

A fast loss is triggered when the selected input clock misses 2 consecutive clock cycles. It is cleared once an active clock edge is detected.

For T0 path, the occurrence of the fast loss will result in T0 DPLL being unlocked if the FAST_LOS_SW bit is '1'. For T4 path, the occurrence of the fast loss will result in T4 DPLL being unlocked regardless of the FAST_LOS_SW bit.

3.7.1.2 Coarse Phase Loss

The T0/T4 DPLL compares the selected input clock with the feedback signal. If the phase-compared result exceeds the coarse phase limit, a coarse phase loss is triggered. It is cleared once the phase-compared result is within the coarse phase limit.

When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase limit depends on the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 10. When the selected input clock is of other frequencies than 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 11.

 Table 10: Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz)

MULTI_PH_8K_4K _2K_EN	WIDE_EN	Coarse Phase Limit
0	don't-care	±1 UI
1	0	±1 UI
	1	set by the PH_LOS_COARSE_LIMT[3:0] bits

 Table 11: Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz)

WIDE_EN	Coarse Phase Limit
0	±1 UI
1	set by the PH_LOS_COARSE_LIMT[3:0] bits

The occurrence of the coarse phase loss will result in T0/T4 DPLL being unlocked if the COARSE_PH_LOS_LIMT_EN bit is '1'.

3.7.1.3 Fine Phase Loss

The T0/T4 DPLL compares the selected input clock with the feedback signal. If the phase-compared result exceeds the fine phase limit programmed by the PH_LOS_FINE_LIMT[2:0] bits, a fine phase loss is triggered. It is cleared once the phase-compared result is within the fine phase limit.

The occurrence of the fine phase loss will result in T0/T4 DPLL being unlocked if the FINE_PH_LOS_LIMT_EN bit is '1'.

3.7.1.4 Hard Limit Exceeding

Two limits are available for this monitoring. They are DPLL soft limit and DPLL hard limit. When the frequency of the DPLL output with respect to the master clock exceeds the DPLL soft / hard limit, a DPLL soft / hard alarm will be raised; the alarm is cleared once the frequency is within the corresponding limit. The occurrence of the DPLL soft alarm does not affect the T0/T4 DPLL locking status. The DPLL soft alarm is indicated by the corresponding T0_DPLL_SOFT_FREQ_ALARM / T4_DPLL_SOFT_FREQ_ALARM bit. The occurrence of the DPLL hard alarm will result in T0/T4 DPLL being unlocked if the FREQ_LIMT_PH_LOS bit is '1'.

The DPLL soft limit is set by the DPLL_FREQ_SOFT_LIMT[6:0] bits and can be calculated as follows:

DPLL Soft Limit (ppm) = DPLL_FREQ_SOFT_LIMT[6:0] X 0.724

The DPLL hard limit is set by the DPLL_FREQ_HARD_LIMT[15:0] bits and can be calculated as follows:

DPLL Hard Limit (ppm) = DPLL_FREQ_HARD_LIMT[15:0] X 0.0014

3.7.2 LOCKING STATUS

The DPLL locking status depends on the locking monitoring results. The DPLL is in locked state if none of the following events is triggered during 2 seconds; otherwise, the DPLL is unlocked.

- Fast Loss (the FAST_LOS_SW bit is '1');
- Coarse Phase Loss (the COARSE_PH_LOS_LIMT_EN bit is '1');
- Fine Phase Loss (the FINE_PH_LOS_LIMT_EN bit is '1');
- DPLL Hard Alarm (the FREQ_LIMT_PH_LOS bit is '1').

If the FAST_LOS_SW bit, the COARSE_PH_LOS_LIMT_EN bit, the FINE_PH_LOS_LIMT_EN bit or the FREQ_LIMT_PH_LOS bit is '0', the DPLL locking status will not be affected even if the corresponding event is triggered. If all these bits are '0', the DPLL will be in locked state in 2 seconds.

The DPLL locking status is indicated by the T0_DPLL_LOCK / T4_DPLL_LOCK bit.

The T4_STS ¹ bit will be set when the locking status of the T4 DPLL changes (from 'locked' to 'unlocked' or from 'unlocked' to 'locked'). If the T4_STS ² bit is '1', an interrupt will be generated.

3.7.3 PHASE LOCK ALARM (T0 ONLY)

A phase lock alarm will be raised when the selected input clock can not be locked in T0 DPLL within a certain period. This period can be calculated as follows:

Period (sec.) = TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0]

The phase lock alarm is indicated by the corresponding INn_PH_LOCK_ALARM bit ($1 \le n \le 5$).

The phase lock alarm can be cleared by the following two ways, as selected by the PH_ALARM_TIMEOUT bit:

Table 12: Related Bit / Register in Chapter 3.7

- Be cleared when a '1' is written to the corresponding INn_PH_LOCK_ALARM bit;
- Be cleared after the period (= *TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0] in seconds*) which starts from when the alarm is raised.

The selected input clock with a phase lock alarm is disqualified for T0 DPLL locking.

Note that no phase lock alarm is raised if the T4 selected input clock can not be locked.

Bit	Register	Address (Hex)
FAST_LOS_SW		
PH_LOS_FINE_LIMT[2:0]	PHASE_LOSS_FINE_LIMIT_CNFG	5B *
FINE_PH_LOS_LIMT_EN		00
MULTI_PH_8K_4K_2K_EN		
WIDE_EN		
PH_LOS_COARSE_LIMT[3:0]	PHASE_LOSS_COARSE_LIMIT_CNFG	5A *
COARSE_PH_LOS_LIMT_EN		
T0_DPLL_SOFT_FREQ_ALARM	· · ·	
T4_DPLL_SOFT_FREQ_ALARM		52
T0_DPLL_LOCK	OPERATING_STS	
T4_DPLL_LOCK		
DPLL_FREQ_SOFT_LIMT[6:0]	DPLL_FREQ_SOFT_LIMIT_CNFG	65
FREQ_LIMT_PH_LOS	DPLL_FREQ_SOFT_LIWIT_CNFG	00
DPLL_FREQ_HARD_LIMT[15:0]	DPLL_FREQ_HARD_LIMIT[15:8]_CNFG, DPLL_FREQ_HARD_LIMIT[7:0]_CNFG	67, 66
T4_STS ¹	INTERRUPTS3_STS	0F
T4_STS ²	INTERRUPTS3_ENABLE_CNFG	12
TIME_OUT_VALUE[5:0]		08
MULTI_FACTOR[1:0]	PHASE_ALARM_TIME_OUT_CNFG	08
INn_PH_LOCK_ALARM ($1 \le n \le 5$)	IN1_IN2_STS, IN3_IN4_STS, IN5_STS	44 ~ 45, 48
PH_ALARM_TIMEOUT	INPUT_MODE_CNFG	09
T4_T0_SEL	T4_T0_REG_SEL_CNFG	07
ote: * The setting in the 5A and 5B registers is either for T0 path or for T	T4 path, as determined by the T4_T0_SEL bit.	

3.8 INPUT CLOCK SELECTION

If the input clock is selected by External Fast selection or by Forced selection, it can be switched by setting the related registers (refer to Chapter 3.6.1 External Fast Selection (T0 only) & Chapter 3.6.2 Forced Selection) any time. In this case, whether the input clock is qualified for DPLL locking does not affect the clock switch. If the T4 selected input clock is a T0 DPLL output, it can only be switched by setting the T0_FOR_T4 bit.

When the input clock is selected by Automatic selection, the input clock switch depends on its validity, priority and locking allowance configuration. If the current selected input clock is disqualified, a new qualified input clock may be switched to.

3.8.1 INPUT CLOCK VALIDITY

For all the input clocks, the validity depends on the results of input clock quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring). When all of the following conditions are satisfied, the input clock is valid; otherwise, it is invalid.

- No no-activity alarm (the INn_NO_ACTIVITY_ALARM bit is '0');
- No frequency hard alarm (the INn_FREQ_HARD_ALARM bit is '0');
- If the IN_NOISE_WINDOW bit is '1', all the edges of the input clock of 2 kHz, 4 kHz or 8 kHz drift inside ±5%; if the IN_NOISE_WINDOW bit is '0', this condition is ignored.

The validity qualification of the T0 selected input clock is different from that of the T4 selected input clock. The validity qualification of the T4 selected input clock is the same as the above. The T0 selected input clock is valid when all of the above and the following conditions are satisfied; otherwise, it is invalid.

- No phase lock alarm, i.e., the INn_PH_LOCK_ALARM bit is '0';
- If the ULTR_FAST_SW bit is '1', the T0 selected input clock misses less than (<) 2 consecutive clock cycles; if the ULTR_FAST_SW bit is '0', this condition is ignored.

The validities of all the input clocks are indicated by the INn ¹ bit ($1 \le n \le 5$). When the input clock validity changes (from 'valid' to 'invalid' or from 'invalid' to 'valid'), the INn ² bit will be set. If the INn ³ bit is '1', an interrupt will be generated.

When the T0 selected input clock has failed, i.e., the validity of the T0 selected input clock changes from 'valid' to 'invalid', the T0_MAIN_REF_FAILED¹ bit will be set. If the T0_MAIN_REF_FAILED² bit is '1', an interrupt will be generated. This interrupt can also be indicated by hardware - the TDO pin, as determined by the LOS_FLAG_TO_TDO bit. When the TDO pin is used to indicate this interrupt, it will be set high when this interrupt is generated and will remain high until this interrupt is cleared.

3.8.2 SELECTED INPUT CLOCK SWITCH

When the device is configured as Automatic input clock selection, T0 input clock switch is different from T4 input clock switch.

For T0 path, Revertive and Non-Revertive switches are supported, as selected by the REVERTIVE_MODE bit.

For T4 path, only Revertive switch is supported.

GR-1244 defines Revertive and Non-Revertive Reference switching. In Non-Revertive switching, a switch to an alternate reference is maintained even after the original reference has recovered from the failure that caused the switch. In Revertive switching, the clock switches back to the original reference after that reference recovers from the failure, independent of the condition of the alternate reference. In Non-Revertive switching, input clock switch is minimized

Conditions of the qualified input clocks available for T0 selection are different from that for T4 selection, as shown in Table 13:

 Table 13: Conditions of Qualified Input Clocks Available for T0 & T4

 Selection

	Conditions of Qualified Input Clocks Available for T0 & T4 Selection			
TO	 Valid, i.e., the INn ¹ bit is '1'; Priority enabled, i.e., the corresponding INn_SEL_PRIORITY[3:0] bits are not '0000'; Locking to the input clock is allowed, i.e., the corresponding INn_VALID bit is '0'. 			
T4	 Valid (all the validity conditions listed in Chapter 3.8.1 Input Clock Validity are satisfied); Priority enabled, i.e., the corresponding INn_SEL_PRIORITY[3:0] bits are not '0000'; Locking to the input clock is allowed, i.e., the corresponding INn_VALID bit is '0'. 			

The input clock is disqualified if any of the above conditions is not satisfied.

In summary, the selected input clock can be switched by:

- External Fast selection (supported by T0 path only);
- · Forced selection;
- · Revertive switch;
- · Non-Revertive switch (supported by T0 path only);
- T4 DPLL locked to T0 DPLL output (supported by T4 path only).

3.8.2.1 Revertive Switch

In Revertive switch, the selected input clock is switched when another qualified input clock with a higher priority than the current selected input clock is available.

The selected input clock is switched if any of the following is satisfied:

- · the selected input clock is disqualified;
- another qualified input clock with a higher priority than the selected input clock is available.

A qualified input clock with the highest priority is selected by revertive switch. If more than one qualified input clock INn is available and has the same priority, the input clock with the smallest 'n' is selected.

3.8.2.2 Non-Revertive Switch (T0 only)

In Non-Revertive switch, the T0 selected input clock is not switched when another qualified input clock with a higher priority than the current selected input clock is available. In this case, the selected input clock is switched and a qualified input clock with the highest priority is selected only when the T0 selected input clock is disqualified. If more than one qualified input clock is available and has the same priority, the input clock with the smallest 'n' is selected.

3.8.3 SELECTED / QUALIFIED INPUT CLOCKS INDICATION

The selected input clock is indicated by the CURRENTLY_SELECTED_INPUT[3:0] bits. Note if the T4 selected input clock is a T0 DPLL output, it can not be indicated by these bits.

The qualified input clocks with the three highest priorities are indicated by HIGHEST_PRIORITY_VALIDATED[3:0] bits, the SECOND_ PRIORITY_VALIDATED[3:0] bits and the THIRD_PRIORITY _VALIDATED[3:0] bits respectively. If more than one input clock INn has the same priority, the input clock with the smallest 'n' is indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits.

When the device is configured in Automatic selection and Revertive switch is enabled, the input clock indicated by the CURRENTLY_SELECTED_INPUT[3:0] bits is the same as the one indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits.

When all the input clocks for T4 path become unqualified, the INPUT_TO_T4 1 bit will be set. If the INPUT_TO_T4 2 bit is '1', an interrupt will be generated.

Bit	Register	Address (Hex)
T0_FOR_T4	T4_INPUT_SEL_CNFG	51
$INn^{1} (1 \le n \le 5)$	INPUT_VALID1_STS, INPUT_VALID2_STS	4A, 4B
$INn^{2} (1 \le n \le 5)$	INTERRUPTS1_STS, INTERRUPTS2_STS	0D, 0E
$INn^{3} (1 \le n \le 5)$	INTERRUPTS1_ENABLE_CNFG, INTERRUPTS2_ENABLE_CNFG	10, 11
INn_NO_ACTIVITY_ALARM ($1 \le n \le 5$)		
$INn_FREQ_HARD_ALARM (1 \le n \le 5)$	IN1_IN2_STS, IN3_IN4_STS, IN5_STS	44 ~ 45, 48
INn_PH_LOCK_ALARM ($1 \le n \le 5$)		
IN_NOISE_WINDOW	PHASE_MON_PBO_CNFG	78
ULTR_FAST_SW	MON SW PBO CNFG	0B
LOS_FLAG_TO_TDO		08
T0_MAIN_REF_FAILED ¹	INTERRUPTS2_STS	0E
T0_MAIN_REF_FAILED ²	INTERRUPTS2_ENABLE_CNFG	11
INPUT_TO_T4 ¹	INTERRUPTS3_STS	0F
INPUT_TO_T4 ²	INTERRUPTS3_ENABLE_CNFG	12
REVERTIVE_MODE	INPUT_MODE_CNFG	09
$INn_SEL_PRIORITY[3:0] (1 \le n \le 5)$	IN1_IN2_SEL_PRIORITY_CNFG, IN3_IN4_SEL_PRIORITY_CNFG, IN5_SEL_PRIORITY_CNFG	27 ~ 28, 2B
INn_VALID ($1 \le n \le 5$)	REMOTE_INPUT_VALID1_CNFG, REMOTE_INPUT_VALID2_CNFG	4C, 4D
CURRENTLY_SELECTED_INPUT[3:0]	PRIORITY_TABLE1_STS	4E *
HIGHEST_PRIORITY_VALIDATED[3:0]		7
SECOND_PRIORITY_VALIDATED[3:0]	PRIORITY TABLE2 STS	4F *
THIRD_PRIORITY_VALIDATED[3:0]		
T4_T0_SEL	T4_T0_REG_SEL_CNFG	07

Table 14: Related Bit / Register in Chapter 3.8

3.9 SELECTED INPUT CLOCK STATUS VS. DPLL OPERATING MODE

The operating modes supported by T0 DPLL are more complex than the ones supported by T4 DPLL. T0 DPLL supports three primary operating modes: Free-Run, Locked and Holdover, and three secondary, temporary operating modes: Pre-Locked, Pre-Locked2 and Lost-Phase. T4 DPLL supports three operating modes: Free-Run, Locked and Holdover. The operating modes of T0 DPLL and T4 DPLL can be switched automatically or by force, as controlled by the T0_OPERATING_MODE[2:0] / T4_OPERATING_ MODE[2:0] bits respectively.

When the operating mode is switched by force, the operating mode switch is under external control and the status of the selected input clock takes no effect to the operating mode selection.

When the operating mode is switched automatically, the internal state machines for T0 and for T4 automatically determine the operating mode respectively.

3.9.1 T0 SELECTED INPUT CLOCK VS. DPLL OPERATING MODE

The T0 DPLL operating mode is controlled by the T0_OPERATING_MODE[2:0] bits, as shown in Table 15:

Table 15: T0 DPLL Operating Mode Control

T0_OPERATING_MODE[2:0]	T0 DPLL Operating Mode
000	Automatic
001	Forced - Free-Run
010	Forced - Holdover
100	Forced - Locked
101	Forced - Pre-Locked2
110	Forced - Pre-Locked
111	Forced - Lost-Phase

When the operating mode is switched automatically, the operation of the internal state machine is shown in Figure 7.

Whether the operating mode is under external control or is switched automatically, the current operating mode is always indicated by the T0_DPLL_OPERATING_MODE[2:0] bits. When the operating mode switches, the T0_OPERATING_MODE ¹ bit will be set. If the T0_OPERATING_MODE ² bit is '1', an interrupt will be generated.

Figure 7. T0 Selected Input Clock vs. DPLL Automatic Operating Mode

Notes to Figure 7:

1. Reset.

- 2. An input clock is selected.
- 3. The T0 selected input clock is disqualified AND No qualified input clock is available.
- 4. The T0 selected input clock is switched to another one.
- 5. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is '1').
- 6. The T0 selected input clock is disqualified AND No qualified input clock is available.
- 7. The T0 selected input clock is unlocked (the T0_DPLL_LOCK bit is '0').
- 8. The T0 selected input clock is locked again (the T0_DPLL_LOCK bit is '1').
- 9. The T0 selected input clock is switched to another one.
- 10. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is '1').
- 11. The T0 selected input clock is disqualified **AND** No qualified input clock is available.
- 12. The T0 selected input clock is switched to another one.
- 13. The T0 selected input clock is disqualified AND No qualified input clock is available.
- 14. An input clock is selected.
- 15. The T0 selected input clock is switched to another one.

The causes of Item 4, 9, 12, 15 - 'the T0 selected input clock is switched to another one' - are: (The T0 selected input clock is disqualified **AND** Another input clock is switched to) **OR** (In Revertive switch, a qualified input clock with a higher priority is switched to) **OR** (The T0 selected input clock is switched to another one by External Fast selection or Forced selection).

Refer to Table 13 for details about the input clock qualification for T0 path.

3.9.2 T4 SELECTED INPUT CLOCK VS. DPLL OPERATING MODE

The T4 DPLL operating mode is controlled by the T4_OPERATING_MODE[2:0] bits, as shown in Table 16:

Table 16: T4 DPLL Operating Mode Control

T4_OPERATING_MODE[2:0]	T4 DPLL Operating Mode
000	Automatic
001	Forced - Free-Run
010	Forced - Holdover
100	Forced - Locked

When the operating mode is switched automatically, the operation of the internal state machine is shown in Figure 8:

Figure 8. T4 Selected Input Clock vs. DPLL Automatic Operating Mode

Notes to Figure 8:

- 1. Reset.
- 2. An input clock is selected.
- 3. (The T4 selected input clock is disqualified) **OR** (A qualified input clock with a higher priority is switched to) **OR** (The T4 selected input clock is switched to another one by Forced selection) **OR** (When T4 DPLL locks to the T0 DPLL output, the T4 selected input clock is switched by setting the T0_FOR_T4 bit).
- 4. An input clock is selected.
- 5. No input clock is selected.

Refer to Table 13 for details about the input clock qualification for T4 path.

Bit	Register	Address (Hex)
T0_OPERATING_MODE[2:0]	T0_OPERATING_MODE_CNFG	53
T4_OPERATING_MODE[2:0]	T4_OPERATING_MODE_CNFG	54
T0_DPLL_OPERATING_MOD E[2:0] T0_DPLL_LOCK	OPERATING_STS	52
T0_OPERATING_MODE ¹	INTERRUPTS2_STS	0E
T0_OPERATING_MODE ²	INTERRUPTS2_ENABLE_CNFG	11
T0_FOR_T4	T4_INPUT_SEL_CNFG	51

3.10 T0 / T4 DPLL OPERATING MODE

The T0/T4 DPLL gives a stable performance in different applications without being affected by operating conditions or silicon process variations. It integrates a PFD (Phase & Frequency Detector), a LPF (Low Pass Filter) and a DCO (Digital Controlled Oscillator), which form a closed loop. If no input clock is selected, the loop is not closed, and the PFD and LPF do not function.

The PFD detects the phase error, including the fast loss, coarse phase loss and fine phase loss (refer to Chapter 3.7.1.1 Fast Loss to Chapter 3.7.1.3 Fine Phase Loss). The averaged phase error of the T0/ T4 DPLL feedback with respect to the selected input clock is indicated by the CURRENT_PH_DATA[15:0] bits. It can be calculated as follows:

Averaged Phase Error (ns) = CURRENT_PH_DATA[15:0] X 0.61

The LPF filters jitters. Its 3 dB bandwidth and damping factor are programmable. A range of bandwidths and damping factors can be set to meet different application requirements. Generally, the lower the damping factor is, the longer the locking time is and the more the gain is.

The DCO controls the DPLL output. The frequency of the DPLL output is always multiplied on the basis of the master clock. The phase and frequency offset of the DPLL output may be locked to those of the selected input clock. The current frequency offset with respect to the master clock is indicated by the CURRENT_DPLL_FREQ[23:0] bits, and can be calculated as follows:

Current Frequency Offset (ppm) = CURRENT_DPLL_FREQ[23:0] X 0.000011

3.10.1 T0 DPLL OPERATING MODE

The T0 DPLL loop is closed except in Free-Run mode and Holdover mode.

For a closed loop, different bandwidths and damping factors can be used depending on DPLL locking stages: starting, acquisition and locked.

In the first two seconds when the T0 DPLL attempts to lock to the selected input clock, the starting bandwidth and damping factor are used. They are set by the T0_DPLL_START_BW[4:0] bits and the T0_DPLL_START_DAMPING[2:0] bits respectively.

During the acquisition, the acquisition bandwidth and damping factor are used. They are set by the T0_DPLL_ACQ_BW[4:0] bits and the T0_DPLL_ACQ_DAMPING[2:0] bits respectively.

When the T0 selected input clock is locked, the locked bandwidth and damping factor are used. They are set by the T0_DPLL_LOCKED_BW[4:0] bits and the T0_DPLL_LOCKED_DAMPING[2:0] bits respectively.

The corresponding bandwidth and damping factor are used when the T0 DPLL operates in different DPLL locking stages: starting, acquisition and locked, as controlled by the device automatically.

Only the locked bandwidth and damping factor can be used regardless of the T0 DPLL locking stage, as controlled by the AUTO_BW_SEL bit.

3.10.1.1 Free-Run Mode

In Free-Run mode, the T0 DPLL output refers to the master clock and is not affected by any input clock. The accuracy of the T0 DPLL output is equal to that of the master clock.

3.10.1.2 Pre-Locked Mode

In Pre-Locked mode, the T0 DPLL output attempts to track the selected input clock.

The Pre-Locked mode is a secondary, temporary mode.

3.10.1.3 Locked Mode

In Locked mode, the T0 selected input clock is locked. The phase and frequency offset of the T0 DPLL output track those of the T0 selected input clock.

In this mode, if the T0 selected input clock is in fast loss status and the FAST_LOS_SW bit is '1', the T0 DPLL is unlocked (refer to Chapter 3.7.1.1 Fast Loss) and will enter Lost-Phase mode when the operating mode is switched automatically; if the T0 selected input clock is in fast loss status and the FAST_LOS_SW bit is '0', the T0 DPLL lock-ing status is not affected and the T0 DPLL will enter Temp-Holdover mode automatically.

3.10.1.3.1 Temp-Holdover Mode

The T0 DPLL will automatically enter Temp-Holdover mode with a selected input clock switch or no qualified input clock available when the operating mode switch is under external control.

In Temp-Holdover mode, the T0 DPLL has temporarily lost the selected input clock. The T0 DPLL operation in Temp-Holdover mode and that in Holdover mode are alike (refer to Chapter 3.10.1.5 Holdover Mode) except the frequency offset acquiring methods. See Chapter 3.10.1.5 Holdover Mode for details about the methods. The method is selected by the TEMP_HOLDOVER_MODE[1:0] bits, as shown in Table 18:

Table 18: Frequency Offset Control in Temp-Holdover Mode

TEMP_HOLDOVER_MODE[1:0]	Frequency Offset Acquiring Method
00	the same as that used in Holdover mode
01	Automatic Instantaneous
10	Automatic Fast Averaged
11	Automatic Slow Averaged

The device automatically controls the T0 DPLL to exit from Temp-Holdover mode.

3.10.1.4 Lost-Phase Mode

In Lost-Phase mode, the T0 DPLL output attempts to track the selected input clock.

The Lost-Phase mode is a secondary, temporary mode.

3.10.1.5 Holdover Mode

In Holdover mode, the T0 DPLL resorts to the stored frequency data acquired in Locked mode to control its output. The T0 DPLL output is not

Table 19: Frequency Offset Control in Holdover Mode

phase locked to any input clock. The frequency offset acquiring method is selected by the MAN_HOLDOVER bit, the AUTO_AVG bit and the FAST_AVG bit, as shown in Table 19:

MAN_HOLDOVER	AUTO_AVG	FAST_AVG	Frequency Offset Acquiring Method
	0	don't-care	Automatic Instantaneous
0	1	0	Automatic Slow Averaged
	I	1	Automatic Fast Averaged
1	1 don't-care		Manual

3.10.1.5.1 Automatic Instantaneous

By this method, the T0 DPLL freezes at the operating frequency when it enters Holdover mode. The accuracy is $4.4X10^{-8}$ ppm.

3.10.1.5.2 Automatic Slow Averaged

By this method, an internal IIR (Infinite Impulse Response) filter is employed to get the frequency offset. The IIR filter gives a 3 dB attenuation point corresponding to a period of 110 minutes. The accuracy is 1.1×10^{-5} ppm.

3.10.1.5.3 Automatic Fast Averaged

By this method, an internal IIR (Infinite Impulse Response) filter is employed to get the frequency offset. The IIR filter gives a 3 dB attenuation point corresponding to a period of 8 minutes. The accuracy is 1.1×10^{-5} ppm.

3.10.1.5.4 Manual

By this method, the frequency offset is set by the T0_HOLDOVER_FREQ[23:0] bits. The accuracy is 1.1X10⁻⁵ ppm.

The frequency offset of the T0 DPLL output is indicated by the CURRENT_DPLL_FREQ[23:0] bits.

The device provides a reference for the value to be written to the T0_HOLDOVER_FREQ[23:0] bits. The value to be written can refer to the value read from the CURRENT_DPLL_FREQ[23:0] bits or the T0_HOLDOVER_FREQ[23:0] bits (refer to Chapter 3.10.1.5.5 Holdover Frequency Offset Read); or then be processed by external software filtering.

3.10.1.5.5 Holdover Frequency Offset Read

The offset value, which is acquired by Automatic Slow Averaged, Automatic Fast Averaged and is set by related register bits, can be read from the T0_HOLDOVER_FREQ[23:0] bits by setting the READ_AVG bit and the FAST_AVG bit, as shown in Table 20.

Table 20: Holdover Frequency Offset Read

READ_AVG	FAST_AVG	Offset Value Read from T0_HOLDOVER_FREQ[23:0]		
0	don't-care	The value is equal to the one written to.		
1	0	The value is acquired by Automatic Slow Averaged method, not equal to the one written to.		
	1	The value is acquired by Automatic Fast Averaged method, not equal to the one written to.		

The frequency offset in ppm is calculated as follows:

Holdover Frequency Offset (ppm) = T0_HOLDOVER_FREQ[23:0] X 0.000011

3.10.1.6 Pre-Locked2 Mode

In Pre-Locked2 mode, the T0 DPLL output attempts to track the selected input clock.

The Pre-Locked2 mode is a secondary, temporary mode.

3.10.2 T4 DPLL OPERATING MODE

The T4 path is simpler compared with the T0 path.

3.10.2.1 Free-Run Mode

In Free-Run mode, the T4 DPLL output refers to the master clock and is affected by any input clock. The accuracy of the T4 DPLL output is equal to that of the master clock.

3.10.2.2 Locked Mode

In Locked mode, the T4 selected input clock may be locked in the T4 DPLL.

When the T4 selected input clock is locked, the phase and frequency offset of the T4 DPLL output track those of the T4 selected input clock; when unlocked, the phase and frequency offset of the T4 DPLL output attempt to track those of the selected input clock.

The T4 DPLL loop is closed in Locked mode. Its bandwidth and damping factor are set by the T4_DPLL_LOCKED_BW[1:0] bits and the T4_DPLL_LOCKED_DAMPING[2:0] bits respectively.

3.10.2.3 Holdover Mode

In Holdover mode, the T4 DPLL resorts to the stored frequency data acquired in Locked mode to control its output. The T4 DPLL output is not

Table 21: Related Bit / Register in Chapter 3.10

phase locked to any input clock. The T4 DPLL freezes at the operating frequency when it enters Holdover mode. The accuracy is 4.4×10^{-8} ppm.

Bit	Register	Address (Hex)
CURRENT_PH_DATA[15:0]	CURRENT_DPLL_PHASE[15:8]_STS, CURRENT_DPLL_PHASE[7:0]_STS	69 *, 68 *
CURRENT_DPLL_FREQ[23:0]	CURRENT_DPLL_FREQ[23:16]_STS, CURRENT_DPLL_FREQ[15:8]_STS, CURRENT_DPLL_FREQ[7:0]_STS	64 *, 63 *, 62 *
T0_DPLL_START_BW[4:0]	T0_DPLL_START_BW_DAMPING_CNFG	
T0_DPLL_START_DAMPING[2:0]	TV_DFLL_START_DW_DAWFING_CNTG	56
T0_DPLL_ACQ_BW[4:0]	T0_DPLL_ACQ_BW_DAMPING_CNFG	
T0_DPLL_ACQ_DAMPING[2:0]		
T0_DPLL_LOCKED_BW[4:0]	T0_DPLL_LOCKED_BW_DAMPING_CNFG	
T0_DPLL_LOCKED_DAMPING[2:0]		
AUTO_BW_SEL	T0_BW_OVERSHOOT_CNFG	59
FAST_LOS_SW	PHASE_LOSS_FINE_LIMIT_CNFG	5B *
TEMP_HOLDOVER_MODE[1:0]		
MAN_HOLDOVER		
AUTO_AVG	T0_HOLDOVER_MODE_CNFG	5C
FAST_AVG		
READ_AVG		
T0_HOLDOVER_FREQ[23:0]	T0_HOLDOVER_FREQ[23:16]_CNFG, T0_HOLDOVER_FREQ[15:8]_CNFG, T0_HOLDOVER_FREQ[7:0]_CNFG	5F, 5E, 5D
T4_DPLL_LOCKED_BW[1:0]	T4_DPLL_LOCKED_BW_DAMPING_CNFG	61
T4_DPLL_LOCKED_DAMPING[2:0]		
T4_T0_SEL	T4_T0_REG_SEL_CNFG	07
Note: * The setting in the 5B, 62 ~ 64, 68 and 69 re	egisters is either for T0 path or for T4 path, as determined by the T4_T0_SEL bit.	·

3.11 T0 / T4 DPLL OUTPUT

The DPLL output is locked to the selected input clock. According to the phase-compared result of the feedback and the selected input clock, and the DPLL output frequency offset, the PFD output is limited and the DPLL output is frequency offset limited.

3.11.1 PFD OUTPUT LIMIT

The PFD output is limited to be within ± 1 UI or within the coarse phase limit (refer to Chapter 3.7.1.2 Coarse Phase Loss), as determined by the MULTI_PH_APP bit.

3.11.2 FREQUENCY OFFSET LIMIT

The DPLL output is limited to be within the DPLL hard limit (refer to Chapter 3.7.1.4 Hard Limit Exceeding).

For T0 DPLL, the integral path value can be frozen when the DPLL hard limit is reached. This function, enabled by the T0_LIMT bit, will minimize the subsequent overshoot when T0 DPLL is pulling in.

3.11.3 PBO (T0 ONLY)

The PBO function is only supported by the T0 path.

When a PBO event is triggered, the phase offset of the selected input clock with respect to the T0 DPLL output is measured. The device then automatically accounts for the measured phase offset and compensates an appropriate phase offset into the DPLL output so that the phase transients on the T0 DPLL output are minimized.

A PBO event is triggered if any one of the following conditions occurs:

- T0 selected input clock switches (the PBO_EN bit is '1');
- T0 DPLL exits from Holdover mode or Free-Run mode (the PBO_EN bit is '1');
- Phase changes on the T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds (the PH_MON_PBO_EN bit is '1').

For the first two conditions, the phase transients on the T0 DPLL output are minimized to be no more than 0.61 ns with PBO. The PBO can also be frozen at the current phase offset by setting the PBO_FREZ bit. When the PBO is frozen, the device will ignore any further PBO events triggered by the above two conditions, and maintain the current phase offset. When the PBO is disabled, there may be a phase shift on the T0 DPLL output and the T0 DPLL output tracks back to 0 degree phase offset with respect to the T0 selected input clock.

Phase changes of more than 1.0 μ s but less than 3.5 μ s that occur over an interval of less than 0.1 seconds may or may not be built-out.

An integrated Phase Transient Monitor can be enabled by the PH_MON_EN bit to monitor the phase changes on the T0 selected input

clock. When the phase changes are greater than a limit over an interval of less than 0.1 seconds, a PBO event is triggered and the phase transients on the DPLL output are absorbed. The limit is programmed by the PH_TR_MON_LIMT[3:0] bits, and can be calculated as follows:

Limit (ns) = (PH_TR_MON_LIMT[3:0] + 7) X 156

The phase offset induced by PBO will never result in a coarse or fine phase loss.

3.11.4 PHASE OFFSET SELECTION (T0 ONLY)

The phase offset of the T0 selected input clock with respect to the T0 DPLL output can be adjusted. If the device is configured as the Master, the PH_OFFSET_EN bit determines whether the input-to-output phase offset is enabled; if the device is configured as the Slave, the input-to-output phase offset is always enabled. If enabled, the input-to-output phase offset can be adjusted by setting the PH_OFFSET[9:0] bits.

The input-to-output phase offset can be calculated as follows: Phase Offset (ns) = PH_OFFSET[9:0] X 0.61

3.11.5 FIVE PATHS OF T0 / T4 DPLL OUTPUTS

The T0 DPLL output and the T4 DPLL output are phase aligned with the T0 selected input clock and the T4 selected input clock respectively every 125 μ s period. Each DPLL has five output paths.

3.11.5.1 T0 Path

The five paths for T0 DPLL output are as follows:

- 77.76 MHz path outputs a 77.76 MHz clock;
- 16E1/16T1 path outputs a 16E1 or 16T1 clock, as selected by the IN_SONET_SDH bit;
- GSM/OBSAI/16E1/16T1 path outputs a GSM, OBSAI, 16E1 or 16T1 clock, as selected by the T0_GSM_OBSAI_16E1_16T1_ SEL[1:0] bits;
- 12E1/24T1/E3/T3 path outputs a 12E1, 24T1, E3 or T3 clock, as selected by the T0_12E1_24T1_E3_T3_SEL[1:0] bits.
- ETH path outputs a 25 MHz clock.

T0 selected input clock is compared with a T0 DPLL output for DPLL locking. The output can only be derived from the 77.76 MHz path or the 16E1/16T1 path. The output path is automatically selected and the output is automatically divided to get the same frequency as the T0 selected input clock.

The T0 DPLL 77.76 MHz output or an 8 kHz signal derived from it can be provided for the T4 DPLL input clock selection (refer to Chapter 3.6 T0 / T4 DPLL Input Clock Selection).

T0 DPLL outputs are provided for T0/T4 APLL or device output process.

3.11.5.2 T4 Path

The five paths for T4 DPLL output are as follows:

- 77.76 MHz path outputs a 77.76 MHz clock;
- 16E1/16T1 path outputs a 16E1 or 16T1 clock, as selected by the IN_SONET_SDH bit;
- GSM/GPS/16E1/16T1 path outputs a GSM, GPS, 16E1 or 16T1 clock, as selected by the T4_GSM_GPS_16E1_16T1_ SEL[1:0] bits;
- 12E1/24T1/E3/T3 path outputs a 12E1, 24T1, E3 or T3 clock, as selected by the T4_12E1_24T1_E3_T3_SEL[1:0] bits.
- ETH path outputs a 25 MHz clock.

T4 selected input clock is compared with a T4 DPLL output for DPLL locking. The output can be derived from the 77.76 MHz path or the

Table 22: Related Bit / Register in Chapter 3.11

16E1/16T1 path. In this case, the output path is automatically selected and the output is automatically divided to get the same frequency as the T4 selected input clock.

In addition, T4 selected input clock is compared with the T0 selected input clock to get the phase difference between T0 and T4 selected input clocks, as determined by the T4_TEST_T0_PH bit.

T4 DPLL outputs are provided for T0/T4 APLL or device output process.

Bit	Register	Address (Hex)
MULTI_PH_APP	PHASE_LOSS_COARSE_LIMIT_CNFG	5A *
T0_LIMT	T0_BW_OVERSHOOT_CNFG	59
PBO_EN	MON SW PBO CNFG	0B
PBO_FREZ		UB
PH_MON_PBO_EN		
PH_MON_EN	PHASE_MON_PBO_CNFG	78
PH_TR_MON_LIMT[3:0]		
PH_OFFSET_EN	PHASE_OFFSET[9:8]_CNFG	7B
PH_OFFSET[9:0]	PHASE_OFFSET[9:8]_CNFG, PHASE_OFFSET[7:0]_CNFG	7B, 7A
IN_SONET_SDH	INPUT_MODE_CNFG	09
T0_GSM_OBSAI_16E1_16T1_SEL[1:0]	TO DPLL APLL PATH CNFG	55
T0_12E1_24T1_E3_T3_SEL[1:0]		55
T4_GSM_GPS_16E1_16T1_SEL[1:0]		60
T4_12E1_24T1_E3_T3_SEL[1:0]	T4_DPLL_APLL_PATH_CNFG	00
T4_TEST_T0_PH	T4_INPUT_SEL_CNFG	51
T4 T0 SEL	T4_T0_REG_SEL_CNFG	07

3.12 T0 / T4 APLL

A T0 APLL and a T4 APLL are provided for a better jitter and wander performance of the device output clocks.

The bandwidths of the T0/T4 APLL are set by the T0_APLL_BW[1:0] / T4_APLL_BW[1:0] bits respectively. The lower the bandwidth is, the better the jitter and wander performance of the T0/T4 APLL output are.

The input of the T0/T4 APLL can be derived from one of the T0 and T4 DPLL outputs, as selected by the T0_APLL_PATH[3:0] / T4_APLL_PATH[3:0] bits respectively.

Both the APLL and DPLL outputs are provided for selection for the device output.

Table 23: Related Bit / Register in Chapter 3.12

Bit	Register	Address (Hex)
T0_APLL_BW[1:0]	T0 T4 APLL BW CNFG	6A
T4_APLL_BW[1:0]		0,1
T0_APLL_PATH[3:0]	T0_DPLL_APLL_PATH_CNFG	55
T4_APLL_PATH[3:0]	T4_DPLL_APLL_PATH_CNFG	60

3.13 OUTPUT CLOCKS & FRAME SYNC SIGNALS

The device supports 5 output clocks and 2 frame sync output signals altogether.

Table 24: Outputs on OUT1 ~ OUT5 if Derived from T0/T4 DPLL Outputs

3.13.1 OUTPUT CLOCKS

The device provides 5 output clocks.

According to the output port technology, the output ports support the following technologies:

- PECL/LVDS;
- CMOS.

OUT1 ~ OUT3 output CMOS signals.

OUT4 and OUT5 output PECL or LVDS signals, as selected by the OUT4_PECL_LVDS bit and the OUT5_PECL_LVDS bit respectively.

The outputs on OUT1 ~ OUT5 are variable, depending on the signals derived from the T0/T4 DPLL and T0/T4 APLL outputs, and the corresponding OUTn_PATH_SEL[3:0] bits ($1 \le n \le 5$). The derived signal can be from the T0/T4 DPLL and T0/T4 APLL outputs, as selected by the corresponding OUTn_PATH_SEL[3:0] bits ($1 \le n \le 5$). If the signal is derived from one of the T0/T4 DPLL outputs, please refer to Table 24 for the output frequency. If the signal is derived from the T0/T4 APLL output frequency.

The outputs on OUT1 to OUT5 can be inverted, as determined by the corresponding OUTn_INV bit ($1 \le n \le 5$).

All the output clocks derived from T0/T4 selected input clock are aligned with the T0/T4 selected input clock respectively every 125 μs period.

OUTn_DIVIDER[3:0]	Outputs on OUT1 ~ OUT5 if derived from T0/T4 DPLL Outputs ²										
(Output Divider) ¹	77.76 MHz	12E1	16E1	24T1	16T1	E3	Т3	GSM (26 MHz)	ETH	OBSAI (30.72 MHz)	GPS (40 MHz)
0000					Output is	disabled (ou	utput low).				
0001											
0010		12E1	16E1	24T1	16T1	E3	Т3		25 MHz		
0011		6E1	8E1	12T1	8T1			13 MHz		15.36 MHz	20 MHz
0100		3E1	4E1	6T1	4T1						10 MHz
0101		2E1		4T1							
0110			2E1	3T1	2T1						5 MHz
0111		E1		2T1							
1000			E1		T1						
1001				T1							
1010	64 kHz										
1011	8 kHz										
1100	2 kHz										
1101	400 Hz										
1110	1Hz										
1111			•	•	Output is o	disabled (ou	itput high).	•			

2. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved.

Table 25: Outputs on OUT1 ~ OUT5 if Derived from T0/T4 APLL

OUTn_DIVIDER[3:0] (Output Divider) ¹	Outputs on OUT1 ~ OUT5 if derived from T0/T4 APLL Output 2											
	77.76 MHz X 4	12E1 X 4	16E1 X 4	24T1 X 4	16T1 X 4	E3	Т3	GSM (26 MHz X 2)	OBSAI (30.72 MHz X 10)	GPS (40 MHz)	ETH	
0000				1	Outpu	t is disabl	ed (output	low).				
0001	622.08 MHz ³										625 MHz	
0010	311.04 MHz ³	48E1	64E1	96T1	64T1	E3	Т3	104 MHz	307.2 MHz	40 MHz	125 MHz	
0011	155.52 MHz	24E1	32E1	48T1	32T1			52 MHz	153.6 MHz	20 MHz	312.5 MHz	
0100	77.76 MHz	12E1	16E1	24T1	16T1			26 MHz	76.8 MHz	10 MHz	156.25 MHz	
0101	51.84 MHz	8E1		16T1				13 MHz				
0110	38.88 MHz	6E1	8E1	12T1	8T1				38.4 MHz	5 MHz		
0111	25.92 MHz	4E1		8T1								
1000	19.44 MHz	3E1	4E1	6T1	4T1							
1001		2E1		4T1					61.44 MHz		125 MHz	
1010			2E1	3T1	2T1				30.72 MHz			
1011	6.48 MHz	E1		2T1					15.36 MHz			
1100			E1		T1				7.68 MHz			
1101				T1					3.84 MHz			
1110								1				
1111		1	1		Output	is disable	ed (output	high).	1			

1. $1 \le n \le 5$. Each output is assigned a frequency divider.

2. In the APLL, the selected T0/T4 DPLL output may be multiplied. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved.

3. The 622.08 MHz and 311.04 MHz differential signals are only output on OUT6 and OUT7.

3.13.2 FRAME SYNC OUTPUT SIGNALS

An 8 kHz and a 2 kHz frame sync signals are output on the FRSYNC_8K and MFRSYNC_2K pins if enabled by the 8K_EN and 2K_EN bits respectively. They are CMOS outputs.

The two frame sync signals are derived from the T0 APLL output and are aligned with the output clock. They can be synchronized to the frame sync input signal.

If the frame sync input signal with respect to the T0 selected input clock is above a limit set by the SYNC_MON_LIMT[2:0] bits, an external sync alarm will be raised and EX_SYNC1 is disabled to synchronize the frame sync output signals. The external sync alarm is cleared once EX_SYNC1 with respect to the T0 selected input clock is within the limit. If it is within the limit, whether EX_SYNC1 is enabled to synchronize the frame sync output signal is determined by the AUTO_EXT_SYNC_EN bit and the EXT_SYNC_EN bit. Refer to Table 26 for details.

When the frame sync input signal is enabled to synchronize the frame sync output signal, it should be adjusted to align itself with the T0 selected input clock. Nominally, the falling edge of EX_SYNC1 is aligned with the rising edge of the T0 selected input clock. EX_SYNC1 may be 0.5 UI early/late or 1 UI late due to the circuit and board wiring delays. Setting the sampling of EX_SYNC1 by the SYNC_PH1[1:0] bits will compensate this early/late. Refer to Figure 9 to Figure 12.

Table 26: Synchronization Control

The EX_SYNC_ALARM_MON bit indicates whether EX_SYNC1 is in external sync alarm status. The external sync alarm is indicated by the EX_SYNC_ALARM ¹ bit. If the EX_SYNC_ALARM ² bit is '1', the occurrence of the external sync alarm will trigger an interrupt.

The 8 kHz and the 2 kHz frame sync output signals can be inverted by setting the 8K_INV and 2K_INV bits respectively. The frame sync outputs can be 50:50 duty cycle or pulsed, as determined by the 8K_PUL and 2K_PUL bits respectively. When they are pulsed, the pulse width is defined by the period of OUT1; and they are pulsed on the position of the falling or rising edge of the standard 50:50 duty cycle, as selected by the 2K_8K_PUL_POSITION bit.

2K/8K pulse mode can also be supported. When the pulse is positive, 1UI late EX_SYNC1 shall be set. 2K pulse is output by writing '0x71' to the FR_MFR_SYNC_CNFG register (74H); 8K pulse is output by writing '0x6C' to the FR_MFR_SYNC_CNFG register. When the pulse is negative, on target EX_SYNC1 shall be set. 2K pulse is output by writing '0x73' to the FR_MFR_SYNC_CNFG register; 8K pulse is output by writing '0x64' to the FR_MFR_SYNC_CNFG register. To align EX_SYNC1 with Frame sync output signals, the pulse width only can be 38.88 MHz, 19.44 MHz and 6.48 MHz for master/slave application. Refer to Figure 13 and Figure 14.

SYNCHRONOUS ETHERNET WAN PLL

T0 selected input clock			T0 selected input clock			1
EX_SYNC1 Frame sync		▼	EX_SYNC1	_		
output signals			Frame sync output signals			
Output clocks			Output clocks			1
Figure 11. ().5 UI Late Frame Sync	: Input Signal Timing	Figure 13. 1 UI La	te Frame Sync 2 nal Timing	K/8K Pulse In	put Sig-
T0 selected input clock			T0 selected			1
EX_SYNC1 Frame sync		▼	EX_SYNC1	V		
output signals	V		Frame sync output signals ———	V		
Output clocks			Output clocks			1
Figure 12.	1 UI Late Frame Sync	Input Signal Timing	Figure 14. On Ta	arget Frame Syn Signal Timin		e Input
	G					
	$\langle $					
$\mathbf{\cdot}$						

Table 27: Related Bit / Register in Chapter 3.13

Bit	Register	Address (Hex)
OUT4_PECL_LVDS	DIFFERENTIAL_IN_OUT_OSCI_CNFG	0A
OUT5_PECL_LVDS	DIFFERENTIAL_IN_001_03CI_CINFG	UA
OUTn_PATH_SEL[3:0] $(1 \le n \le 5)$	OUT1_FREQ_CNFG ~ OUT5_FREQ_CNFG	6D ~ 71
OUTn_DIVIDER[3:0] $(1 \le n \le 5)$		00 11
IN_SONET_SDH		
AUTO_EXT_SYNC_EN	INPUT_MODE_CNFG	09
EXT_SYNC_EN		
8K_EN		
2K_EN		
8K_INV		
2K_INV	FR_MFR_SYNC_CNFG	74
8K_PUL		
2K_PUL		
2K_8K_PUL_POSITION		
SYNC_MON_LIMT[2:0]	SYNC_MONITOR_CNFG	7C
SYNC_PH1[1:0]	SYNC_PHASE_CNFG	7D
EX_SYNC_ALARM_MON	OPERATING_STS	52
EX_SYNC_ALARM ¹	INTERRUPTS3_STS	0F
EX_SYNC_ALARM ²	INTERRUPTS3_ENABLE_CNFG	12

3.14 MASTER / SLAVE CONFIGURATION

Master / Slave configuration is only supported by the T0 path of the device.

Two devices should be used together in order to:

- · Enable system protection against single chip failure;
- Guarantee no service interrupt during system maintenance, such as software or hardware upgrade.

Of the two devices, one is configured as the Master and the other is configured as the Slave. The configuration is made by the MS/SL pin and the MS_SL_CTRL bit (b0, 13H), as shown in Table 28:

Table 28: Device Master / Slave Control

Master /	Slave Control	Result		
MS/SL pin	MS_SL_CTRL Bit	- Result		
High	0	Master		
riigii	1	Slave		
Low	0	Slave		
LOW	1	Master		

In this application, all the output clocks derived from the T0 selected input clock and the frame sync output signals from the two devices are at the same frequency offset and phase. Refer to Chapter 3.13.2 Frame SYNC Output Signals for details.

The difference between the Master and the Slave is: in the Master, the IN5 should not be selected by the T0 DPLL; in the Slave, the following functions are automatically forced:

- · The T0 selected input clock is IN5;
- T0 PBO is disabled;
- T0 DPLL operates at the acquisition bandwidth and damping factor;
- EX_SYNC1 is used for synchronization;
- T0 DPLL operates in Locked mode.

In the Slave, the corresponding registers of the above forced functions can still be configured, but their configuration does not take any effect. The frequency of the T0 selected input clock IN5 is recommended to be 6.48 MHz.

Figure 15. Physical Connection Between Two Devices

3.15 INTERRUPT SUMMARY

The interrupt sources of the device are as follows:

- · T4 DPLL locking status change
- Input clocks for T0 path validity change
- T0 selected input clock fail
- No qualified input clock for T4 path is available
- T0 DPLL operating mode switch
- External sync alarm

All of the above interrupt events are indicated by the corresponding interrupt status bit. If the corresponding interrupt enable bit is set, any of the interrupts can be reported by the INT_REQ pin. The output characteristics on the INT_REQ pin are determined by the HZ_EN bit and the INT_POL bit.

Interrupt events are cleared by writing a '1' to the corresponding interrupt status bit. The INT_REQ pin will be inactive only when all the pending enabled interrupts are cleared.

In addition, the interrupt of T0 selected input clock fail can be reported by the TDO pin, as determined by the LOS_FLAG_TO_TDO bit.

Table 29: Related Bit / Register in Chapter 3.15

Bit	Register	Address (Hex)
HZ_EN	INTERRUPT CNFG	0C
INT_POL		00
LOS_FLAG_TO_TDO	MON_SW_PBO_CNFG	0B

3.16 T0 AND T4 SUMMARY

The main features supported by the T0 path are as follows:

- · Phase lock alarm;
- · Forced or Automatic input clock selection/switch;
- 3 primary and 3 secondary, temporary DPLL operating modes, switched automatically or under external control;
- Automatic switch between starting, acquisition and locked bandwidths/damping factors;
- Programmable DPLL bandwidths from 0.5 mHz to 560 Hz in 19 steps;
- Programmable damping factors: 1.2, 2.5, 5, 10 and 20;
- Fast loss, coarse phase loss, fine phase loss and hard limit exceeding monitoring;
- · Output phase and frequency offset limited;
- Automatic Instantaneous, Automatic Slow Averaged, Automatic Fast Averaged or Manual holdover frequency offset acquiring;
- PBO to minimize output phase transients;
- · Programmable output phase offset;
- · Low jitter multiple clock outputs with programmable polarity;
- Low jitter 2 kHz and 8 kHz frame sync signal outputs with programmable pulse width and polarity;
- Master / Slave application to enable system protection against single device failure.

The main features supported by the T4 path are as follows:

- Forced or Automatic input clock selection/switch;
- Locking to T0 DPLL output;
- 3 DPLL operating modes, switched automatically or under external control;
- Programmable DPLL bandwidth: 18 Hz, 35 Hz, 70 Hz and 560 Hz;
- Programmable damping factor: 1.2, 2.5, 5, 10 and 20;
- Fast loss, coarse phase loss, fine phase loss and hard limit exceeding monitoring;
- Output phase and frequency offset limited;
- · Automatic Instantaneous holdover frequency offset;
- · Low jitter multiple clock outputs with programmable polarity.

3.17 POWER SUPPLY FILTERING TECHNIQUES

Figure 16. IDT82V3389 Power Decoupling Scheme

To achieve optimum jitter performance, power supply filtering is required to minimize supply noise modulation of the output clocks. The common sources of power supply noise are switch power supplies and the high switching noise from the outputs to the internal PLL. The IDT82V3389 provides separate VDDA power pins for the internal analog PLL, VDD_DIFF for the differential output driver circuit and VDDD pins for the core logic as well as I/O driver circuits.

To minimize switching power supply noise generated by the switching regulator, the power supply output should be filtering with sufficient bulk capacity to minimize ripple and 0.1 μ F (0402 case size, ceramic) caps to filter out the switching transients.

For the IDT82V3389, the decoupling for VDDA, VDD_DIFF and VDDD are handled individually. VDDD, VDD_DIFF and VDDA should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. Figure 16 illustrated how bypass capacitor and ferrite bead should be connected to power pins.

The analog power supply VDDA and VDD_DIFF should have low impedance. This can be achieved by using one 10 uF (1210 case size, ceramic) and at least four 0.1 uF (0402 case size, ceramic) capacitors in parallel. The 0.1 uF (0402 case size, ceramic) capacitors must be placed right next to the VDDA and VDD_DIFF pins as close as possible. Note that the 10 uF capacitor must be of 1210 case size, and it must be ceramic for lowest ESR (Effective Series Resistance) possible. The 0.1 uF should be of case size 0402, this offers the lowest ESL (Effective Series Inductance) to achieve low impedance towards the high speed range.

For VDDD, at least ten 0.1 uF (0402 case size, ceramic) and one 10 uF (1210 case size, ceramic) capacitors are recommended. The 0.1 uF capacitors should be placed as close to the VDDD pins as possible.

Please refer to evaluation board schematic for details.

4 **TYPICAL APPLICATION**

The device supports Master / Slave application, as shown in Figure 17:

4.1 MASTER / SLAVE APPLICATION

Master / Slave application is only supported by the T0 path of the device.

In Master / Slave application, two devices should be used together. Of the two devices, one is configured as the Master and the other is configured as the Slave. Refer to Chapter 3.14 Master / Slave Configuration for details.

5 MICROPROCESSOR INTERFACE

The microprocessor interface provides access to read and write the registers in the device. The microprocessor interface supports the following five modes:

- EPROM mode;
- · Multiplexed mode;
- · Intel mode;
- Motorola mode;
- Serial mode.

The microprocessor interface mode is selected by the MPU_SEL_CNFG[2:0] bits (b2~0, 7FH). The interface pins in different interface modes are listed in Table 30 and Table 31:

Table 30: Microprocessor Interface

MPU_SEL_CNFG[2:0] bits	Microprocessor Interface Mode	Interface Pins
001	EPROM	CS, A[6:0], AD[7:0]
010	Multiplexed	CS, ALE, WR, RD, AD[7:0], RDY
011	Intel	CS, WR, RD, A[6:0], AD[7:0], RDY
100	Motorola	CS, WR, A[6:0], AD[7:0], RDY
101	Serial	CS, SCLK, SDI, SDO, CLKE

Table 31: Microprocessor Interface Pins

PIN	MODE				
	EPROM	MULTIPLEXED	INTEL	MOTOROLA	SERIAL
A0 / SDI	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT
A1 / CLKE	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT
A2	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT (Note 1)
A3	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT (Note 1)
A4	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT (Note 1)
A5	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT (Note 1)
A6	OUTPUT	INPUT (Note 1)	INPUT	INPUT	INPUT (Note 1)
AD0/SD0	INPUT	INPUT/OUTPUT	INPUT/OUTPUT	INPUT/OUTPUT	OUTPUT
AD[7:1]	INPUT	INPUT/OUTPUT	INPUT/OUTPUT	INPUT/OUTPUT	INPUT (Note 1)
CS	OUTPUT	INPUT	INPUT	INPUT	INPUT
WR	INPUT (Note 1)	INPUT	INPUT	INPUT	INPUT (Note 1)
RD	INPUT (Note 1)	INPUT	INPUT	INPUT (Note 1)	INPUT (Note 1)
RDY (Note 2)	Output (Note 1)	OUTPUT	OUTPUT	OUTPUT	Output (Note 1)
ALE/SCLK	INPUT (Note 1)	INPUT	INPUT (Note 1)	INPUT (Note 1)	INPUT

Note 1: This pin is not used in this mode, this pin should be connected to ground

Note 2: This pin is open drain

5.1 EPROM MODE

In this mode, the device is used with an EPROM. The configuration data will be automatically read from the EPROM after the device is powered on.

Figure 18. EPROM Access Timing Diagram

Table 32: Access Timing Characteristics in EPROM Mode

Symbol	Parameter	Min	Тур	Max	Unit
t _{acc}	CS to valid data delay time			920	ns

5.2 MULTIPLEXED MODE

Figure 19. Multiplexed Read Timing Diagram

Table 33: Read Timing Characteristics in Multiplexed Mode

Symbol	Parameter	Min	Тур	Мах	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid address to ALE falling edge setup time	2			ns
t _{su2}	Valid CS to Valid RD setup time	0			ns
t _{d1}	Valid RD to valid data delay time			5T + 10	ns
t _{d2}	Valid CS to valid RDY delay time		13		ns
t _{d4}	RD rising edge to AD[7:0] high impedance delay time		10		ns
t _{d5}	RD rising edge to RDY low delay time		13		ns
t _{d6}	CS rising edge to RDY release delay time		13		ns
t _{pw1}	Valid RD pulse width low	4.5T + 10 *			ns
t _{pw2}	Valid RDY pulse width low	4.5T + 10			ns
t _{pw3}	Valid ALE pulse width high	2			ns
t _{h1}	Valid address after ALE falling edge hold time	3			ns
t _{h2}	Valid CS after RD rising edge hold time	0			ns
t _{h3}	Valid RD after RDY rising edge hold time	0			ns
t _T	Time between ALE falling edge and RD falling edge	0			ns
t _{TI}	Time between consecutive Read-Read or Read-Write accesses (RD rising edge to ALE rising edge)	>T			ns

* Timing with RDY. If RDY is not used, t_{pw1} is 3.5T + 10.

Figure 20. Multiplexed Write Timing Diagram

Symbol	Parameter	Min	Тур	Max	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid address to ALE falling edge setup time	2			ns
t _{su2}	Valid CS to valid WR setup time	0			ns
t _{su3}	Valid data to WR rising edge setup time	3			ns
t _{d2}	Valid CS to valid RDY delay time		13		ns
t _{d5}	WR rising edge to RDY low delay time		13		ns
t _{d6}	CS rising edge to RDY release delay time		13		ns
t _{pw1}	Valid WR pulse width low	1.5T + 10			ns
t _{pw2}	Valid RDY pulse width low	1.5T + 10			ns
t _{pw3}	Valid ALE pulse width high	2			ns
t _{h1}	Valid address after ALE falling edge hold time	3			ns
t _{h2}	Valid CS after WR rising edge hold time	0			ns
t _{h3}	Valid WR after RDY rising edge hold time	0			ns
t _{h4}	Valid data after WR rising edge hold time	9			ns
t _T	Time between ALE falling edge and WR falling edge	0			ns
t _{TI}	Time between consecutive Write-Read or Write-Write accesses (WR rising edge to ALE rising edge)	>7T			ns

5.3 INTEL MODE

RENESAS

Figure 21. Intel Read Timing Diagram

Table 35: Read Timing Characteristics in Intel Mode

Symbol	Parameter	Min	Тур	Max	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid address to valid CS setup time	0			ns
t _{su2}	Valid CS to valid RD setup time	0			ns
t _{d1}	Valid RD to valid data delay time			5T + 10	ns
t _{d2}	Valid CS to valid RDY delay time		13		ns
t _{d4}	RD rising edge to AD[7:0] high impedance delay time		10		ns
t _{d5}	RD rising edge to RDY low delay time		13		ns
t _{d6}	CS rising edge to RDY release delay time		13		ns
t _{pw1}	Valid RD pulse width low	4.5T + 10 *			ns
t _{pw2}	Valid RDY pulse width low	4.5T + 10			ns
t _{h1}	Valid address after RD rising edge hold time	0			ns
t _{h2}	Valid CS after RD rising edge hold time	0			ns
t _{h3}	Valid RD after RDY rising edge hold time	0			ns
t _{TI}	Time between consecutive Read-Read or Read-Write accesses (RD rising edge to RD falling edge, or RD rising edge to WR falling edge)	>T			ns

Figure 22. Intel Write Timing Diagram

Table 36: Write Timing Characteristics in Intel Mode

Symbol	Parameter	Min	Тур	Max	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid address to valid CS setup time	0			ns
t _{su2}	Valid CS to valid WR setup time	0			ns
t _{su3}	Valid data before WR rising edge setup time	3			ns
t _{d2}	Valid CS to valid RDY delay time		13		ns
t _{d5}	WR rising edge to RDY low delay time		13		ns
t _{d6}	CS rising edge to RDY release delay time		13		ns
t _{pw1}	Valid WR pulse width low	1.5T + 10			ns
t _{pw2}	Valid RDY pulse width low	1.5T + 10			ns
t _{h1}	Valid address after WR rising edge hold time	0			ns
t _{h2}	Valid CS after WR rising edge hold time	0			ns
t _{h3}	Valid WR after RDY rising edge hold time	0			ns
t _{h4}	Valid data after WR rising edge hold time	9			ns
t _{TI}	Time between consecutive Write-Read or Write-Write accesses (WR rising edge to WR falling edge, or WR rising edge to RD falling edge)	>7T			ns

5.4 MOTOROLA MODE

RENESAS

Figure 23. Motorola Read Timing Diagram

Table 37: Read Timing Characteristics in Motorola Mode

Symbol	Parameter	Min	Тур	Мах	Unit
Т	One cycle time of the master clock		12.86		
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid address to valid CS setup time	0			ns
t _{su2}	Valid WR to valid CS setup time	0			ns
t _{d1}	Valid CS to valid data delay time			5T + 10	ns
t _{d2}	Valid CS to valid RDY delay time		13		ns
t _{d3}	CS rising edge to AD[7:0] high impedance delay time		10		ns
t _{d4}	CS rising edge to RDY release delay time		13		ns
t _{pw1}	Valid CS pulse width low	4.5T + 10 *			ns
t _{pw2}	Valid RDY pulse width high	4.5T + 10			ns
t _{h1}	Valid address after CS rising edge hold time	0			ns
t _{h2}	Valid WR after CS rising edge hold time	0			ns
t _{h3}	Valid CS after RDY falling edge hold time	0			ns
t _{r1}	RDY release time		3		ns
t _{TI}	Time between consecutive Read-Read or Read-Write accesses (CS rising edge to CS falling edge)	> T			ns

Figure 24. Motorola Write Timing Diagram

Table 38: Write Timing Characteristics in Motorola Mode

Symbol	Parameter	Min	Тур	Max	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid address to valid CS setup time	0			ns
t _{su2}	Valid WR to valid CS setup time	0			ns
t _{su3}	Valid data before CS rising edge setup time	3			ns
t _{d2}	Valid CS to valid RDY delay time		13		ns
t _{d4}	CS rising edge to RDY release delay time		13		ns
t _{pw1}	Valid CS pulse width low	1.5T + 10			ns
t _{pw2}	Valid RDY pulse width high	1.5T + 10			ns
t _{h1}	Valid address after valid CS rising edge hold time	0			ns
t _{h2}	Valid WR after valid CS rising edge hold time	0			ns
t _{h3}	Valid CS after RDY falling edge hold time	0			ns
t _{h4}	Valid data after valid CS rising edge hold time	9			ns
t _{r1}	RDY release time		3		ns
t _{TI}	Time between consecutive Write-Write or Write-Read accesses (CS rising edge to CS falling edge)	> 7T			ns

5.5 SERIAL MODE

SCLK

SDI

SDO

A0

A1

A3

High-Z

In a read operation, the active edge of SCLK is selected by CLKE. When CLKE is asserted low, data on SDO will be clocked out on the rising edge of SCLK. When CLKE is asserted high, data on SDO will be clocked out on the falling edge of SCLK. In a write operation, data on SDI will be clocked in on the rising edge of SCLK.

t_{d2}

D6 X D7

D5

D4

A6

Figure 26. Serial Read Timing Diagram (CLKE Asserted High)

t_{d1}

D0

D1

D2

D3

A5

Α4

Table 39: Read Timing Characteristics in Serial Mode

Symbol	Parameter	Min	Тур	Мах	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid SDI to valid SCLK setup time	4			ns
t _{su2}	Valid CS to valid SCLK setup time	14			ns
t _{d1}	Valid SCLK to valid data delay time		10		ns
t _{d2}	CS rising edge to SDO high impedance delay time		10		ns
t _{pw1}	SCLK pulse width low	5T + 10		X	ns
t _{pw2}	SCLK pulse width high	5T + 10			ns
t _{h1}	Valid SDI after valid SCLK hold time	6			ns
t _{h2}	Valid CS after valid SCLK hold time (CLKE = 0/1)	5			ns
t _{TI}	Time between consecutive Read-Read or Read-Write accesses (CS rising edge to CS falling edge)	10			ns

Table 40: Write Timing Characteristics in Serial Mode

Symbol	Parameter	Min	Тур	Max	Unit
Т	One cycle time of the master clock		12.86		ns
t _{in}	Delay of input pad		5		ns
t _{out}	Delay of output pad		5		ns
t _{su1}	Valid SDI to valid SCLK setup time	4			ns
t _{su2}	Valid CS to valid SCLK setup time	14			ns
t _{pw1}	SCLK pulse width low	5T+10			ns
t _{pw2}	SCLK pulse width high	5T+10			ns
t _{h1}	Valid SDI after valid SCLK hold time	6			ns
t _{h2}	Valid CS after valid SCLK hold time	5			ns
t _{TI}	Time between consecutive Write-Write or Write-Read accesses (CS rising edge to CS falling edge)	10			ns

6 JTAG

This device is compliant with the IEEE 1149.1 Boundary Scan standard except the following:

- The output boundary scan cells do not capture data from the core and the device does not support EXTEST instruction;
- The TRST pin is set low by default and JTAG is disabled in order to be consistent with other manufacturers.

The JTAG interface timing diagram is shown in Figure 28.

Figure 28. JTAG Interface Timing Diagram

Table 41: JTAG Timing Characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
t _{TCK}	TCK period	100			ns
ts	TMS / TDI to TCK setup time	25			ns
t _H	TCK to TMS / TDI Hold Time	25			ns
t _D	TCK to TDO delay time			50	ns

7 PROGRAMMING INFORMATION

After reset, all the registers are set to their default values. The registers are read or written via the microprocessor interface.

Before any write operation, the value in register PROTECTION_CNFG is recommended to be confirmed to make sure whether the write operation is enabled. The device provides 3 register protection modes:

- Protected mode: no other registers can be written except register PROTECTION_CNFG itself;
- Fully Unprotected mode: all the writable registers can be written;
- Single Unprotected mode: one more register can be written besides register PROTECTION_CNFG. After write operation (not including writing a '1' to clear a bit to '0'), the device automatically switches to Protected mode.

Writing '0' to the registers will take no effect if the registers are cleared by writing '1'.

T0 and T4 paths share some registers, whose addresses are 27H, 28H, 2BH, 4EH, 4FH, 5AH, 5BH, 62H ~ 64H, 68H and 69H. The names of shared registers are marked with a *. Before register read/write operation, register T4_T0_REG_SEL_CNFG is recommended to be confirmed to make sure whether the register operation is available for T0 or T4 path.

The access of the Multi-word Registers is different from that of the Single-word Registers. Take the registers (04H, 05H and 06H) for an example, the write operation for the Multi-word Registers follows a fixed sequence. The register (04H) is configured first and the register (06H) is configured last. The three registers are configured continuously and should not be interrupted by any operation. The crystal calibration configuration will take effect after all the three registers are configured. During read operation, the register (04H) is read first and the register (06H) is read last. The crystal calibration reading should be continuous and not be interrupted by any operation.

Certain bit locations within the device register map are designated as Reserved. To ensure proper and predictable operation, bits designated as Reserved must be set with their default values.

7.1 REGISTER MAP

Table 42 is the map of all the registers, sorted in an ascending order of their addresses.

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
			Globa	I Control Re	gisters	•		•	•	•
00	ID[7:0] - Device ID 1				ID[7:0]				P 65
01	ID[15:8] - Device ID 2		ID[15:8]						P 66	
02	MPU_PIN_STS - MPU_MODE[2:0] Pins Status		MPU_PIN_STS[2:0]						P 66	
04	NOMINAL_FREQ[7:0]_CNFG - Crys- tal Oscillator Frequency Offset Calibra- tion Configuration 1		NOMINAL_FREQ_VALUE[7:0]							P 66
05	NOMINAL_FREQ[15:8]_CNFG - Crys- tal Oscillator Frequency Offset Calibra- tion Configuration 2		NOMINAL_FREQ_VALUE[15:8]							P 67
06	NOMINAL_FREQ[23:16]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 3		NOMINAL_FREQ_VALUE[23:16]						P 67	
07	T4_T0_REG_SEL_CNFG - T0 / T4 Registers Selection Configuration	-	-	-	T4_T0_SE L	-	-	-	-	P 67
08	PHASE_ALARM_TIME_OUT_CNFG - Phase Lock Alarm Time-Out Configu- ration	MULTI_FA	CTOR[1:0]	0] TIME_OUT_VALUE[5:0]					P 68	
09	INPUT_MODE_CNFG - Input Mode Configuration	AUTO_EX T_SYNC_ EN	EXT_SYN C_EN	PH_ALAR M_TIMEO UT	SYNC_F	REQ[1:0]	IN_SONET _SDH	MASTER_ SLAVE	REVERTIV E_MODE	P 69
0A	DIFFERENTIAL_IN_OUT_OSCI_CNF G - Differential Input / Output Port & Master Clock Configuration		-	-	-	-	OSC_EDG E	OUT5_PE CL_LVDS	OUT4_PE CL_LVDS	P 70

Table 42: Register List and Map

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
0B	MON_SW_PBO_CNFG - Frequency Monitor, Input Clock Selection & PBO Control	FREQ_MO N_CLK	LOS_FLA G_TO_TD O	ULTR_FAS T_SW	EXT_SW	PBO_FRE Z	PBO_EN	-	FREQ_MO N_HARD_ EN	P 71
13	MS_SL_CTRL_CNFG - Master Slave Control	-	-	-	-	-	-	-	MS_SL_C TRL	P 72
7E	PROTECTION_CNFG - Register Pro- tection Mode Configuration				PROTECTIC	N_DATA[7:0]	P 72			
7F	MPU_SEL_CNFG - Microprocessor Interface Mode Configuration	-	-	-	-	-	MPU	_SEL_CNFG	6[2:0]	P 73
			Inte	errupt Regis	ters					
0C	INTERRUPT_CNFG - Interrupt Con- figuration	-	-	-	-	-	-	HZ_EN	INT_POL	P 74
0D	INTERRUPTS1_STS - Interrupt Status 1	-	-		IN[4:1]		-	-	P 74
0E	INTERRUPTS2_STS - Interrupt Status 2	T0_OPER ATING_MO DE	T0_MAIN_ REF_FAIL ED	-			IN5	-	-	P 75
0F	INTERRUPTS3_STS - Interrupt Status 3	EX_SYNC _ALARM	T4_STS	-	INPUT_TO _T4	-	-	-	-	P 76
10	INTERRUPTS1_ENABLE_CNFG - Interrupt Control 1	-	-		IN[4:1]		-	-	P 76
11	INTERRUPTS2_ENABLE_CNFG - Interrupt Control 2	T0_OPER ATING_MO DE	T0_MAIN_ REF_FAIL ED		-	-	IN5	-	-	P 77
12	INTERRUPTS3_ENABLE_CNFG - Interrupt Control 3	EX_SYNC _ALARM	T4_STS	-	INPUT_TO _T4	-	-	-	-	P 77
		Input Cloc	k Frequency	/ & Priority C	Configuration	n Registers				•
16	IN1_CNFG - Input Clock 1 Configura- tion	DIRECT_D IV	LOCK_8K	BUCKET	_SEL[1:0]		IN_FR	EQ[3:0]		P 78
17	IN2_CNFG - Input Clock 2 Configura- tion	DIRECT_D IV	LOCK_8K	BUCKET	_SEL[1:0]		IN_FRI	EQ[3:0]		P 79
18	IN3_IN4_HF_DIV_CNFG - Input Clock 3 & 4 High Frequency Divider Configu- ration	IN4_D		-	-	-	-	IN3_D	IV[1:0]	P 80
19	IN3_CNFG - Input Clock 3 Configura- tion	IV	LOCK_8K	BUCKET	_SEL[1:0]		IN_FRI	EQ[3:0]		P 81
1A	IN4_CNFG - Input Clock 4 Configura- tion	IV	LOCK_8K	BUCKET	_SEL[1:0]		IN_FR	EQ[3:0]		P 82
1F	IN5_CNFG - Input Clock 5 Configura- tion	DIRECT_D IV	LOCK_8K	BUCKET	_SEL[1:0]		IN_FR	EQ[3:0]		P 83
23	PRE_DIV_CH_CNFG - DivN Divider Channel Selection	-	-	-	-	F	PRE_DIV_CH	1_VALUE[3:0]	P 84
24	PRE_DIVN[7:0]_CNFG - DivN Divider Division Factor Configuration 1				PRE_DIVN	_VALUE[7:0]				P 84
25	PRE_DIVN[14:8]_CNFG - DivN Divider Division Factor Configuration 2	-			PRE_	DIVN_VALUE	[14:8]			P 85
27	IN1_IN2_SEL_PRIORITY_CNFG - Input Clock 1 & 2 Priority Configuration *		IN2_SEL_PF	RIORITY[3:0]			IN1_SEL_PF	RIORITY[3:0]		P 86

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page	
28	IN3_IN4_SEL_PRIORITY_CNFG - Input Clock 3 & 4 Priority Configuration *		IN4_SEL_P	RIORITY[3:0]		IN3_SEL_PI	RIORITY[3:0]		P 87	
2B	IN5_SEL_PRIORITY_CNFG - Input Clock 5 Priority Configuration *	-	-	-	-		P 88				
	-	out Clock Q	uality Monit	toring Config	guration & St	atus Regist	ers				
	FREQ_MON_FACTOR_CNFG - Fac- tor of Frequency Monitor Configuration	-	-	-	-		FREQ_MON_	_FACTOR[3:0	ונ	P 89	
2F	ALL_FREQ_MON_THRESHOLD_CN FG - Frequency Monitor Threshold for All Input Clocks Configuration	-ALL_FREQ_HARD_THRESHOLD[7:4] ALL_FREQ_HARD_THRESHOLD[3:0]							P 90		
31	UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0		UPPER_THRESHOLD_0_DATA[7:0]							P 90	
32	LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0		LOWER_THRESHOLD_0_DATA[7:0]								
33	BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0		BUCKET_SIZE_0_DATA[7:0]								
34	DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0	-	-	-	-	-	-		TE_0_DATA :0]	P 91	
35	UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1	UPPER_THRESHOLD_1_DATA[7:0]								P 92	
36	LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1		X	LOW	ER_THRESH	IOLD_1_DA	TA[7:0]			P 92	
	BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1			E	UCKET_SIZI	e_1_data[7	:0]			P 92	
38	DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1		-	-	-	-	-		TE_1_DATA :0]	P 93	
39	UPPER_THRESHOLD_2_CNFG - Upper Threshold for Leaky Bucket Configuration 2			UPP	ER_THRESH	OLD_2_DAT	FA[7:0]			P 93	
3A	LOWER_THRESHOLD_2_CNFG - Lower Threshold for Leaky Bucket Configuration 2			LOW	ER_THRESH	IOLD_2_DA	TA[7:0]			P 93	
3B	BUCKET_SIZE_2_CNFG - Bucket Size for Leaky Bucket Configuration 2			E	BUCKET_SIZI	E_2_DATA[7	:0]			P 94	
3C	DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2	-	-	-	-	-	-		TE_2_DATA :0]	P 94	
	UPPER_THRESHOLD_3_CNFG - Upper Threshold for Leaky Bucket Configuration 3			UPP	ER_THRESH	OLD_3_DAT	FA[7:0]			P 94	
3E	LOWER_THRESHOLD_3_CNFG - Lower Threshold for Leaky Bucket Configuration 3			LOW	ER_THRESH	IOLD_3_DA	TA[7:0]			P 95	
3F	BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3			B	UCKET_SIZI	E_3_DATA[7	:0]	1		P 95	
40	DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3	-	-	-	-	-	-		TE_3_DATA :0]	P 95	

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
41	IN_FREQ_READ_CH_CNFG - Input Clock Frequency Read Channel Selection	-	-	-	-		IN_FREQ_R	EAD_CH[3:0]		P 96
42	IN_FREQ_READ_STS - Input Clock Frequency Read Value				IN_FREQ_	VALUE[7:0]				P 96
44	IN1_IN2_STS - Input Clock 1 & 2 Sta- tus	-	IN2_FREQ _HARD_A LARM	IN2_NO_A CTIVITY_A LARM		-	IN1_FREQ _HARD_A _LARM	IN1_NO_A CTIVITY_A LARM		P 97
45	IN3_IN4_STS - Input Clock 3 & 4 Sta- tus	-	IN4_FREQ _HARD_A LARM	IN4_NO_A CTIVITY_A LARM		-	IN3_FREQ _HARD_A _LARM	IN3_NO_A CTIVITY_A LARM	NN3_PH_L OCK_ALA RM	P 98
48	IN5_STS - Input Clock 5 Status	-	-	-	-	-	IN5_FREQ _HARD_A LARM	IN5_NO_A CTIVITY_A LARM	IN5_PH_L OCK_ALA RM	P 99
		T0 /	T4 DPLL Inp	out Clock Se	lection Regi	sters				
4A	INPUT_VALID1_STS - Input Clocks Validity 1	-	-		IN[4:1]		-	-	P 100
4B	INPUT_VALID2_STS - Input Clocks Validity 2	-	-	-		-	IN5	-	-	P 100
4C	REMOTE_INPUT_VALID1_CNFG - Input Clocks Validity Configuration 1	-D	-	IN4_VALID	IN3_VALID	IN2_VALID	IN1_VALID	-	-	P 100
4D	REMOTE_INPUT_VALID2_CNFG - Input Clocks Validity Configuration 2	-	-		-	-	IN5_VALID	-	-	P 101
4E	PRIORITY_TABLE1_STS - Priority Status 1 *	HIGHE	ST_PRIORI	TY_VALIDAT	ED[3:0]	CURR	ENTLY_SEL	ECTED_INPL	JT[3:0]	P 101
4F	PRIORITY_TABLE2_STS - Priority Status 2 *	THIRD_HI	GHEST_PRIC	ORITY_VALI	DATED[3:0]	SECOND_HIGHEST_PRIORITY_VALIDATED[3:0]				P 102
50	T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration			-	-	T0_INPUT_SEL[3:0]				P 103
51	T4_INPUT_SEL_CNFG - T4 Selected Input Clock Configuration		T4_LOCK_ T0	T0_FOR_T 4	T0_PH		T4_INPU1	[_SEL[3:0]		P 104
		Т0 /	T4 DPLL Sta		•	isters				
52	OPERATING_STS - DPLL Operating Status	EX_SYNC _ALARM_ MON	T4_DPLL_ LOCK	T0_DPLL_ SOFT_FR EQ_ALAR M	T4_DPLL_ SOFT_FR EQ_ALRA M	T0_DPLL_ LOCK	T0_DPLL_(OPERATING_	_MODE[2:0]	P 105
53	T0_OPERATING_MODE_CNFG - T0 DPLL Operating Mode Configuration	-	-	-	-	-	T0_OPE	RATING_MC	DDE[2:0]	P 106
54	T4_OPERATING_MODE_CNFG - T4 DPLL Operating Mode Configuration	-	-	-	-	-	T4_OPE	ERATING_MO	DDE[2:0]	P 106
		T0 /	T4 DPLL & A	APLL Config	uration Reg					
55	T0_DPLL_APLL_PATH_CNFG - T0 DPLL & APLL Path Configuration		T0_APLL_	_PATH[3:0]			DBSAI_16E1 SEL[1:0]		4T1_E3_T3 _[1:0]	P 107
56	T0_DPLL_START_BW_DAMPING_C NFG - T0 DPLL Start Bandwidth & Damping Factor Configuration					T0_DPLL_START_BW[4:0]				P 108
57	T0_DPLL_ACQ_BW_DAMPING_CNF G - T0 DPLL Acquisition Bandwidth & T0_DPLL_ACQ_DAMPING[2:0] Damping Factor Configuration				T0_DPLL_ACQ_BW[4:0]					P 109

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
58	T0_DPLL_LOCKED_BW_DAMPING_ CNFG - T0 DPLL Locked Bandwidth & Damping Factor Configuration	T0_DPLL_L	LOCKED_DA	MPING[2:0]		T0_DPL	L_LOCKED_	_BW[4:0]	1	P 110
59	T0_BW_OVERSHOOT_CNFG - T0 DPLL Bandwidth Overshoot Configu- ration	AUTO_BW _SEL	-	-	-	T0_LIMT	-	-	-	P 111
5A	PHASE_LOSS_COARSE_LIMIT_CNF G - Phase Loss Coarse Detector Limit Configuration *	PH_LOS_L IMT_EN	WIDE_EN	MULTI_PH _APP	MULTI_PH _8K_4K_2 K_EN		H_LOS_COA	RSE_LIMT[3	:0]	P 112
5B	PHASE_LOSS_FINE_LIMIT_CNFG - Phase Loss Fine Detector Limit Con- figuration *	_EN	FAST_LOS _SW	-	-	-		DS_FINE_LIN	MT[2:0]	P 113
5C	T0_HOLDOVER_MODE_CNFG - T0 DPLL Holdover Mode Configuration	MAN_HOL DOVER	AUTO_AV G	FAST_AVG	READ_AV G		LDOVER_M [1:0]	-	-	P 114
5D	T0_HOLDOVER_FREQ[7:0]_CNFG - T0 DPLL Holdover Frequency Config- uration 1			Т	0_HOLDOVI	ER_FREQ[7:	0]			P 114
5E	T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Con- figuration 2			Т	0_HOLDOVE	ER_FREQ[15	:8]			P 115
5F	T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Con- figuration 3			тс	_HOLDOVE	R_FREQ[23:	16]			P 115
60	T4_DPLL_APLL_PATH_CNFG - T4 DPLL & APLL Path Configuration		T4_APLL_PATH[3:0] T4_GSM_GPS_16E1_1 T4_12E1_24T1_E3_T3 6T1_SEL[1:0] _SEL[1:0]						P 116	
61	T4_DPLL_LOCKED_BW_DAMPING_ CNFG - T4 DPLL Locked Bandwidth & Damping Factor Configuration	T4_DPLL_I	OCKED_DA	MPING[2:0]	-	-	-		LOCKED_B 1:0]	P 117
62	CURRENT_DPLL_FREQ[7:0]_STS - DPLL Current Frequency Status 1*			С	URRENT_DF	PLL_FREQ[7	:0]			P 117
63	CURRENT_DPLL_FREQ[15:8]_STS - DPLL Current Frequency Status 2 *			Cl	JRRENT_DP	PLL_FREQ[15	5:8]			P 117
64	CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3 *		T	CU	IRRENT_DPI	LL_FREQ[23	:16]			P 118
65	DPLL_FREQ_SOFT_LIMIT_CNFG - DPLL Soft Limit Configuration DPLL_FREQ_HARD_LIMIT[7:0]_CNF	FREQ_LIM T_PH_LOS			DPLL_FF	REQ_SOFT_	LIMT[6:0]			P 118
66	G - DPLL Hard Limit Configuration 1 DPLL FREQ HARD LIMIT[15:8] CN			DF	PLL_FREQ_H	IARD_LIMT[7	7:0]			P 118
	FG - DPLL Hard Limit Configuration 2 CURRENT_DPLL_PHASE[7:0]_STS -			DP	LL_FREQ_H	ARD_LIMT[1	5:8]			P 119
	DPLL Current Phase Status 1 * CURRENT_DPLL_PHASE[15:8]_STS	CURRENI_PH_DAIA[7:0]						P 119		
69	- DPLL Current Phase Status 2* T0_T4_APLL_BW_CNFG - T0 / T4			Γ	CURRENT_P	H_DATA[15:8	8] I	I		P 119
6A	APLL Bandwidth Configuration	-	- Output C	T0_APLL	_BW[1:0]	-	-	T4_APLL	BW[1:0]	P 120
			output 0	Singulation	Tregiatera					ł
6D	OUT1_FREQ_CNFG - Output Clock 1 Frequency Configuration		OUT1_PAT	"H_SEL[3:0]			OUT1_DI	VIDER[3:0]		P 121

Address (Hex)	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
6E	OUT2_FREQ_CNFG - Output Clock 2 Frequency Configuration		OUT2_PAT	H_SEL[3:0]			OUT2_DI	/IDER[3:0]		P 122
6F	OUT3_FREQ_CNFG - Output Clock 3 Frequency Configuration		OUT3_PAT	H_SEL[3:0]			OUT3_DI	/IDER[3:0]		P 123
70	OUT4_FREQ_CNFG - Output Clock 4 Frequency Configuration		OUT4_PAT	H_SEL[3:0]			OUT4_DI	/IDER[3:0]		P 124
71	OUT5_FREQ_CNFG - Output Clock 5 Frequency Configuration		OUT5_PAT	H_SEL[3:0]			OUT5_DI	/IDER[3:0]		P 125
72	OUTPUT_INV2 - Output Clock 4 & 5 Invert Configuration				-			OUT5_INV	OUT4_INV	P 121
73	OUTPUT_INV1 - Output Clock 1 ~ 3 Invert Configuration		-		OUT3_INV	OUT2_INV	OUT1_INV		-	P 122
	FR_MFR_SYNC_CNFG - Frame Sync & Multiframe Sync Output Configura- tion	IN_2K_4K_ 8K_INV	8K_EN	2K_EN	2K_8K_PU L_POSITI ON	8K_INV	8K_PUL	2K_INV	2K_PUL	P 127
		P	BO & Phase	e Offset Con	trol Registe	rs				
	PHASE_MON_PBO_CNFG - Phase Transient Monitor & PBO Configura- tion	IN_NOISE _WINDOW	-	PH_MON_ EN	PH_MON_ PBO_EN		PH_TR_MO	N_LIMT[3:0]		P 128
7A	PHASE_OFFSET[7:0]_CNFG - Phase Offset Configuration 1				PH_OFF	SET[7:0]				P 128
7B	PHASE_OFFSET[9:8]_CNFG - Phase Offset Configuration 2	PH_OFFS ET_EN		-	-	-	-	PH_OFF	SET[9:8]	P 129
		Sy	nchronizati	on Configur	ation Regist	ers	•	•		
	SYNC_MONITOR_CNFG - Sync Mon- itor Configuration	-	SYNC	C_MON_LIM	T[2:0]	-	-	-	-	P 130
7D	SYNC_PHASE_CNFG - Sync Phase Configuration			-	-	-	-	SYNC_I	PH1[1:0]	P 130

7.2 REGISTER DESCRIPTION

7.2.1 GLOBAL CONTROL REGISTERS

ID[7:0] - Device ID 1

Address: 00H Type: Read Default Value: 10	010000									
7	6	5	4	3	2	1	0			
ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0			
								_		
Bit	Name		Description							
7 - 0	ID[7:0]	Refer to the description of the ID[15:8] bits (b7~0, 01H).								

ID[15:8] - Device ID 2

Type:	ss: 01H Read It Value: 00	110011									
	7	6	5	4	3	2	1	0			
	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8			
			I								
	Bit	Name		Description							
	7 - 0	ID[15:8]	The value in the ID[15:0] bits are pre-set, representing the identification number for the IDT82V3389.								

MPU_PIN_STS - MPU_MODE[2:0] Pins Status

Address: 02H Type: Read										
Delault value	e: XXXXXXXX				*					
7	6	5	4	3 2	1	0				
·	•	•	•	- MPU_PIN_STS2	MPU_PIN_STS1	MPU_PIN_STS0				
Bit	Name			Description						
7 - 3	-	Reserved.								
2 - 0	MPU_PIN_STS[2:0]		the value of the MPU_ f these bits is determin	MODE[2:0] pins. ed by the MPU_MODE[2:0] pins during re	set.					

NOMINAL_FREQ[7:0]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 1

• ·	: 04H ead / Write Value: 000000	00						
	7	6	5	4	3	2	1	0
	/INAL_FRE _VALUE7	NOMINAL_FRE Q_VALUE6	NOMINAL_FRE Q_VALUE5	NOMINAL_FRE Q_VALUE4	NOMINAL_FRE Q_VALUE3	Nominal_Fre Q_Value2	Nominal_fre Q_value1	NOMINAL_FRE Q_VALUE0
Bit	Bit Name Description							
7 - 0	7 - 0 NOMINAL_FREQ_VALUE[7:0] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H).							

NOMINAL_FREQ[15:8]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 2

	: 05H ead / Write /alue: 000000	00						
	7	6	5	4	3	2	1	0
	/INAL_FRE VALUE15	NOMINAL_FRE Q_VALUE14	NOMINAL_FRE Q_VALUE13	NOMINAL_FRE Q_VALUE12	NOMINAL_FRE Q_VALUE11	NOMINAL_FRE Q_VALUE10	NOMINAL_FRE Q_VALUE9	NOMINAL_FRE Q_VALUE8
Bit Name Description								
7 - 0	7 - 0 NOMINAL_FREQ_VALUE[15:8] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H).							

NOMINAL_FREQ[23:16]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 3

	:: 06H ead / Write Value: 000000	00										
	7	6	5	4	3	2	1	0				
	/INAL_FRE _VALUE23	Nominal_Fre Q_Value22	NOMINAL_FRE Q_VALUE21	NOMINAL_FRE Q_VALUE20	NOMINAL_FRE Q_VALUE19	NOMINAL_FRE Q_VALUE18	NOMINAL_FRE Q_VALUE17	NOMINAL_FRE Q_VALUE16				
Bit		Name	Description									
7 - 0	NOMINAL_F	REQ_VALUE[23:16]	0.0000884, the cal For example, the f calculated as +3 pr 3 ÷ 0.0000884 = 3 So '008490' should	ibration value for the requency offset on (master clock in ppm DSCI is +3 ppm. Tho (Hex); e bits.	will be gotten.	-	ilue is multiplied by e calibration value is				

T4_T0_REG_SEL_CNFG - T0 / T4 Registers Selection Configuration

Address: 07H Type: Read / Writ Default Value: XX			ノ						
7	6		5	4	3	2	1	0	
· ·	-		•	T4_T0_SEL	•			-	
Bit	Name				Descri	ption			
7 - 5	-	Reserved.							
4	T4_T0_SEL	-T0_SEL A part of the registers are shared by T0 and T4 paths. These registers are addressed 27H, 28H, 2BH, 4EH, 4FH, 5AH, 5BH, 62H ~ 64H, 68H and 69H. This bit determines whether the register configuration is available for T0 or T4 path. 0: T0 path (default). 1: T4 path.							
3 - 0	-	Reserved.							

PHASE_ALARM_TIME_OUT_CNFG - Phase Lock Alarm Time-Out Configuration

Address: 08H Type: Read / Wri Default Value: 00												
7	6	5	4	3	2	1	0					
MULTI_FACT R1	FO MULTI_FACTO R0	TIME_OUT_VA LUE5	TIME_OUT_VA LUE4	TIME_OUT_VA LUE3	TIME_OUT_VA LUE2	TIME_OUT_VA LUE1	TIME_OUT_VAL UE0					
Bit	Bit Name		Description									
7 - 6	MULTI_FACTOR[1:0]	selected input cl phase lock alarm	hese bits determine a factor which has a relationship with a period in seconds. A phase lock alarm will be raised if the T0 elected input clock is not locked in T0 DPLL within this period. If the PH_ALARM_TIMEOUT bit (b5, 09H) is '1', the hase lock alarm will be cleared after this period (starting from when the alarm is raised). Refer to the description of the IME_OUT_VALUE[5:0] bits (b5~0, 08H). 0: 2 (default) 1: 4 0: 8									
5 - 0	TIME_OUT_VALUE[5:0]	bits (b7~6, 08H), A phase lock al	a period in seconds arm will be raised	s will be gotten. if the T0 selected in	nput clock is not lo	cked in T0 DPLL v	e MULTI_FACTOR[1:0] vithin this period. If the (starting from when the					

INPUT_MODE_CNFG - Input Mode Configuration

7	6	5	4	3	2	1	0				
AUTO_EXT NC_EN		PH_ALARM_TI MEOUT SYNC_FREQ1		SYNC_FREQ0	IN_SONET_SD H	MASTER_SLAV E	REVERTIVE_M ODE				
Bit	Name			Desc	ription						
7	AUTO_EXT_SYNC_EN	Refer to the description	on of the EXT_SYN								
			his bit, together with the AUTO_EXT_SYNC_EN bit (b7, 09H), determines whether EX_SYNC1 is enabled to syn the frame sync output signals.								
e		AUTO_EXT_SYNG	C_EN EXT_SYNC	C_EN	Synch	ronization					
6	EXT_SYNC_EN	don't-care	0		Disabl	ed (default)					
		0	1		E	nabled					
		1	1	Enabled i	if the T0 selected inp	ut clock is IN5; other	wise, disabled.				
5	PH_ALARM_TIMEOU1	45H & 48H). 1: The phase lock a (b7~6, 08H) in secon These bits set the fre	ds) which starts from	n when the alarm is	raised. (default)		MULTI_FACTOR[1				
4 - 3	SYNC_FREQ[1:0]	00: 8 kHz (default) 01: 8 kHz. 10: 4 kHz. 11: 2 kHz.	quency of the mame	sync signal input of	r ine EX_STNOT pin						
2	IN_SONET_SDH	This bit selects the SI 0: SDH. The DPLL re DPLL output from the 1: SONET. The DPLL T4 DPLL output from The default value of t	quired clock is 2.04 16E1/16T1 path is required clock is 1. the 16E1/16T1 path	8 MHz when the IN_ 16E1. 544 MHz when the II n is 16T1.	N_FREQ[3:0] bits (b3						
1	MASTER_SLAVE	This bit is read only. I Its default value is de	etermined by the MS	S/SL pin during reset							
0	REVERTIVE_MODE	This bit selects Rever 0: Non-Revertive swit 1: Revertive switch.		ve switch for T0 path	Ι.						

DIFFERENTIAL_IN_OUT_OSCI_CNFG - Differential Input / Output Port & Master Clock Configuration

Address: 0AH Type: Read / Write Default Value: XXXXX001										
	7	6	5	4	3		2	1	0	
	-	-	-	-	•		OSC_EDGE	OUT5_PECL_LVDS	OUT4_PECL_LVDS	
	Bit	Name	Description							
	7 - 3	-	Reserved.							
	2	OSC_EDGE	This bit selects a better active edge of the master clock. 0: The rising edge. (default) 1: The falling edge.							
	1	OUT5_PECL_LVDS	This bit selects a 0: LVDS. (defaul 1: PECL.		/ for OUT5.					
	0	OUT4_PECL_LVDS	This bit selects a 0: LVDS. 1: PECL. (defaul		/ for OUT4.					

MON_SW_PBO_CNFG - Frequency Monitor, Input Clock Selection & PBO Control

7		6	5	4	3	2	1	0		
FREQ_N LK		LOS_FLAG_TO _TDO	ULTR_FAST_SW	EXT_SW	PBO_FREZ	PBO_EN	·	FREQ_MON_H ARD_EN		
Bit Name			Description							
7	FRE	Q_MON_CLK	The bit selects a reference clock for input clock frequency monitoring. 0: The output of T0 DPLL. 1: The master clock. (default)							
6	LOS_FLAG_TO_TDO The bit determines whether the interrupt of T0 selected input clock fail - is reported by the TDO pin. O: Not reported. TDO pin is used as JTAG test data output which complies with IEEE 1149.1. (default) 1: Reported. TDO pin mimics the state of the T0_MAIN_REF_FAILED bit (b6, 0EH) and does not strictly of 1149.1.									
5	ULT	TR_FAST_SW This bit determines whether the T0 selected input clock is valid when missing 2 consecutive clock cycles or more. 0: Valid. (default) 1: Invalid.								
4		EXT_SW	This bit determines the T0 input clock selection. 0: Forced selection or Automatic selection, as controlled by the T0_INPUT_SEL[3:0] bits (b3~0, 50H). 1: External Fast selection. The default value of this bit is determined by the FF_SRCSW pin during reset.							
3	P	BO_FREZ	This bit is valid only when the PBO is enabled by the PBO_EN bit (b2, 0BH). It determines whether PBO is frozen at the cur rent phase offset when a PBO event is triggered. 0: Not frozen. (default) 1: Frozen. Further PBO events are ignored and the current phase offset is maintained.							
2		PBO_EN	This bit determines whether PBO is enabled when the T0 selected input clock switch or the T0 DPLL exiting from Holdov mode or Free-Run mode occurs. 0: Disabled. 1: Enabled. (default)							
1		-	Reserved.							
0	FREQ_I	EQ_MON_HARD_EN EQ_MON_HARD_EN This bit determines whether the frequency hard alarm is enabled when the frequency of the input clock with respect to reference clock is above the frequency hard alarm threshold. The reference clock can be the output of T0 DPLL or the n ter clock, as determined by the FREQ_MON_CLK bit (b7, 0BH). 0: Disabled. 1: Enabled. (default)								
	X C									

RENESAS

MS_SL_CTRL_CNFG - Master Slave Control

Address: /EH Type: Read / Write Default Value: 10000101									
7	6	5	4	3	2	1	0		
PROTECTIO DATA7	ON_ PROTECT DATA		N_ PROTECTION_ DATA4	PROTECTION_ DATA3	PROTECTION_ DATA2	PROTECTION_ DATA1	PROTECTION_ DATA0		
Bit	Name		Description						
7 - 0	PROTECTION_DATA[7:0] These bits select a register write protection mode. 00000000 - 10000100, 10000111 - 11111111: Protected mode. No other registers can be written except this register. 10000101: Fully Unprotected mode. All the writable registers can be written. (default) 10000110: Single Unprotected mode. One more register can be written besides this register. After write operation (not including writing a '1' to clear the bit to '0'), the device automatically switches to Protected mode.								

MPU_SEL_CNFG - Microprocessor Interface Mode Configuration

Address: 7FH Type: Read / Wri Default Value: X							
7	6	5	4	3	2	1	0
-	· ·	-	•	-	MPU_SEL_CNFG2	MPU_SEL_CNFG1	MPU_SEL_CNFG0
Bit	Name				Description		
7 - 3	-	Reserved.					
2 - 0	MPU_SEL_CNFG[2:0]	000: Reserve 001: EPROM 010: Multiple 011: Intel moo 100: Motorola 101: Serial m 110, 111: Res	mode. ked mode. de. a mode. ode. served.		e: the MPU_MODE[2:0] pir	ns during reset.	

7.2.2 **INTERRUPT REGISTERS**

INTERRUPT_CNFG - Interrupt Configuration

7		6	5	4	3	2	1	0
-		•	-	•	•	-	HZ_EN	INT_POL
Bit	Name				Descrip	otion		
7 - 2	-	Reserved						
1	HZ_EN	0: The out	put on the INT		when the interrupt is		s the opposite when the sin high impedance st	
0	INT_POL		ow. (default)	ctive level on the INT_	REQ pin for an activ	ve interrupt indication	on.	

INTERRUPTS1_STS - Interrupt Status 1

te 111111						
6	5	4	3	2	1	0
•	IN4	IN3	IN2	IN1	-	
Name			Descri	ption		
-	Reserved.					
	there is a transitio 0: Has not change 1: Has changed. (n (from '0' to '1' or from ed. (default)				
	Reserved.					
	111111 6 - Name - INn	111111 6 5 - IN4 Name - Reserved. This bit indicates there is a transitio 0: Has not change 1: Has changed. (This bit is cleared	111111 6 5 4 - IN4 IN3 Name - Reserved. This bit indicates the validity changes (from there is a transition (from '0' to '1' or from 0: Has not changed. INn 0: Has not changed. 1: Has changed. (default) This bit is cleared by writing a '1'.	111111 6 5 4 3 - IN4 IN3 IN2 Name Description Description - Reserved. This bit indicates the validity changes (from 'valid' to 'invalid' or 'there is a transition (from '0' to '1' or from '1' to '0') on the correspondence of the c	111111 6 5 4 3 2 - IN4 IN3 IN2 IN1 Name Description - Reserved. This bit indicates the validity changes (from 'valid' to 'invalid' or from 'invalid' to 'valid' to 'valid' there is a transition (from '0' to '1' or from '1' to '0') on the corresponding INn bit (b5~2, 0: Has not changed. INn 1: Has changed. (default) This bit is cleared by writing a '1'.	111111 6 5 4 3 2 1 - IN4 IN3 IN2 IN1 - Description - Reserved. This bit indicates the validity changes (from 'valid' to 'invalid' or from 'invalid' to 'valid') for the corresponding INn bit (b5~2, 4AH). Here n is a transition (from '0' to '1' or from '1' to '0') on the corresponding INn bit (b5~2, 4AH). Here n is a 0: Has not changed. INn 0: Has not changed. 1: Has changed. (default) This bit is cleared by writing a '1'. This bit is cleared by writing a '1'.

INTERRUPTS2_STS - Interrupt Status 2

Address: 0EH Type: Read / Writ Default Value: 00							
7	6	5	4	3	2	1	0
T0_OPERATI _MODE	NG T0_MAIN_REF_F AILED		-		IN5		
Bit	Name			Desc	cription		
7	T0_OPERATING_MODE	This bit indicates T0_DPLL_OPERATI 0: Has not switched. 1: Has switched. This bit is cleared by	NG_MODE[2:0] bit (default)	mode switch s (b2~0, 52H) chan		i.e., whether t	he value in the
6	T0_MAIN_REF_FAILED	This bit indicates wh changes from 'valid' 0: Has not failed. (de 1: Has failed. This bit is cleared by	to 'invalid'; i.e., whe fault)				fails when its validity Nn bit (4AH, 4BH).
5 - 3	-	Reserved.					
2	IN5	This bit indicates the there is a transition (i 0: Has not changed. 1: Has changed. (def This bit is cleared by	from '0' to '1' or froi fault)			o 'valid') for IN5 for `	T0 path, i.e., whether
1 - 0	-	Reserved.					

INTERRUPTS3_STS - Interrupt Status 3

Address: 0FH Type: Read / Wri Default Value: 11							
7	6	5	4	3	2	1	0
EX_SYNC_AL	ARM T4_STS	3 -	INPUT_TO_T4	•	·	-	·
Bit	Name			Descr	iption		
7	EX_SYNC_ALARM	This bit indicates wheth EX_SYNC_ALARM_MON 0: Not raised. 1: Raised. (default) This bit is cleared by writi	N bit (b7, 52H).	c alarm is raiseo	d; i.e., whether there	is a transition fr	rom '0' to '1' on the
6	T4_STS	This bit indicates the T4 I there is a transition (from 0: Has not changed. 1: Has changed. (default) This bit is cleared by writi	'0' to '1' or from '1' to				'locked'); i.e., whether
5	-	Reserved.					
4	INPUT_TO_T4	This bit indicates who HIGHEST_PRIORITY_VA 0: Has not changed. 1: Has changed. (default) This bit is cleared by writi	ALIDATED[3:0] bits(
3 - 0	-	Reserved.					

INTERRUPTS1_ENABLE_CNFG - Interrupt Control

Address: 10H Type: Read / Writ Default Value: 00							
7	6	5	4	3	2	1	0
-		IN4	IN3	IN2	IN1	-	•
Bit	Name			Descrip	otion		
7-6	-	Reserved.					
5 - 2	INn	This bit controls whether 'valid' to 'invalid' or from 'i 0: Disabled. (default) 1: Enabled.					
0 -1	-	Reserved					

INTERRUPTS2_ENABLE_CNFG - Interrupt Control 2

Address: 11H Type: Read / Wri Default Value: 00							
7	6	5	4	3	2	1	0
T0_OPERAT _MODE	ING T0_MAIN_REF_F AILED	•		•	IN5	·	•
Bit	Name			Desc	cription		
7	T0_OPERATING_MODE	This bit controls who switches, i.e., when 0: Disabled. (default 1: Enabled.	the T0_OPERATIN			Q pin when the TO	DPLL operating mode
6	T0_MAIN_REF_FAILED	This bit controls wh has failed; i.e., when 0: Disabled. (default 1: Enabled.	n the T0_MAIN_RE			EQ pin when the T	0 selected input clock
5 - 3	-	Reserved.					
2	IN5		l' to 'invalid' or from		reported on the INT i.e., when IN5 bit (b2		ne input clock validity
1 - 0	-	Reserved.					

INTERRUPTS3_ENABLE_CNFG - Interrupt Control 3

		1.0001100.					
INTERRUPTS3	_ENABLE_CNFG	Interrupt Control 3					
Address: 12H Type: Read / Wri Default Value: 00			X	·			
7	6	5	4	3	2	1	0
EX_SYNC_AL	ARM T4_STS		INPUT_TO_T4	·	-	-	·
Bit	Name			Descript	ion		
7	EX_SYNC_ALARM	This bit controls whethe occurred, i.e., when the E 0: Disabled. (default) 1: Enabled.			d on the INT_REQ	pin when an ext	ernal sync alarm has
6	T4_STS	This bit controls whethe changes (from 'locked' to 0: Disabled. (default) 1: Enabled.					
5	-	Reserved.					
4	INPUT_TO_T4	This bit controls whether become unqualified, i.e., 0: Disabled. (default) 1: Enabled.				in when all the inp	out clocks for T4 path
3 - 0	-	Reserved.					

7.2.3 INPUT CLOCK FREQUENCY & PRIORITY CONFIGURATION REGISTERS

IN1_CNFG - Input Clock 1 Configuration

Address: 16H Type: Read / Wr Default Value: 00									
7	6		5	4		3	2	1	0
DIRECT_DI	V LOCK_8K	BUC	CKET_SEL1	BUCKET_SEL0	IN_F	REQ3	IN_FREQ2	IN_FREQ1	IN_FREQ0
Bit	Name					Descri	ption		
7	DIRECT_DIV	Refer to the	he description	of the LOCK_8K bit	(b6. 16H).			
							es whether the DivN	I Divider or the Lock	8k Divider is used for
			DIRECT_DI	bit LOCK_8	(bit		Used	Divider	
6	LOCK_8K		0	0				ssed (default)	
			0	1				k Divider	
			1	0				Divider	
			1	1			Res	served	
5 - 4		00: Group 01: Group 10: Group 11: Group These bits 0000: 8 kł	 0; the address 1; the address 2; the address 3; the address s set the DPLL Hz. (default) 44 MHz (wher 8 MHz. 44 MHz. 	the four groups of le ses of the configural ses of the configural ses of the configurat required frequency the IN_SONET_SD	ion regis ion regis ion regis ion regis for IN1:	ters are 311 ters are 351 ters are 391 ters are 3D	H ~ 34H. (default) H ~ 38H. H ~ 3CH. H ~ 40H.		H bit (b2, 09H) is '0').
3-0	IN_FREQ[3:0]	1001: 2 kl 1010: 4 kl 1011 ~ 11	000: Reserved Hz. Hz. 11: Reserved.		e set hig	her than fre	equency of the input	clock.	

IN2_CNFG - Input Clock 2 Configuration

7	6		5	4	3	2	1	0
DIRECT_	DIV LOCK_8	K BUCK	ET_SEL1	BUCKET_SEL0	IN_FREQ3	IN_FREQ2	IN_FREQ1	IN_FREQ0
Bit	Name				Descri	ption		
7	DIRECT_DIV	Refer to the	description of t	he LOCK_8K bit (I		·		
		IN2:		```		es whether the DivN		8k Divider is use
			IRECT_DIV bi		bit	Used [
6	LOCK_8K		0	0		Both bypass	. ,	
			0	1		Lock 8k DivN E		
			1	1		Rese		
						ation registers for IN2		
5 - 4	BUCKET_SEL[1:0]	01: Group 1 10: Group 2 11: Group 3;	the addresses the addresses the addresses	s of the configurations of the configurations of the configurations	on registers are 31H on registers are 35H on registers are 39H on registers are 3DH	1 ~ 38H. 1 ~ 3CH.		
		0000: 8 kHz 0001: 1.544 0010: 6.48 M 0011: 19.44 0100: 25.92	. (default) MHz (when the MHz. MHz. MHz. MHz. MHz.	quired frequency f		/ 2.048 MHz (when t	the IN_SONET_SDF	H bit (b2, 09H) is
3 - 0	IN_FREQ[3:0]	0101: 38.88 0110 ~ 1000 1001: 2 kHz 1010: 4 kHz 1011 ~ 1111						

© 2019 Renesas Electronics Corporation

IN3_IN4_HF_DIV_CNFG - Input Clock 3 & 4 High Frequency Divider Configuration

Address: 18H Type: Read / Wrii Default Value: 00							
7	6	5	4	3	2	1	0
IN4_DIV1	IN4_DIV0	·	-	•	-	IN3_DIV1	IN3_DIV0
Bit	Name			Des	cription		
7 - 6	IN4_DIV[1:0]	These bits determi 00: Bypassed. (def 01: Divided by 4. 10: Divided by 5. 11: Reserved.		Divider is used and v	what the division fa	ictor is for IN4 frequen	cy division:
5 - 2	-	Reserved.					
1 - 0	IN3_DIV[1:0]	These bits determi 00: Bypassed. (def 01: Divided by 4. 10: Divided by 5. 11: Reserved.		Divider is used and v	what the division fa	ictor is for IN3 frequen	cy division:

IN3_CNFG - Input Clock 3 Configuration

7	6		5	4	3	2	1	0
DIRECT_D	DIV LOCK_8K	Bl	JCKET_SEL1	BUCKET_SEL0	IN_FREQ3	IN_FREQ2	IN_FREQ1	IN_FREQ0
Bit	Name				Descri	iption		
7	DIRECT_DIV	Refer to	the description	of the LOCK_8K bit (b6, 19H).			
		This bit, IN3:	-	ne DIRECT_DIV bit (I				8k Divider is use
			DIRECT_DIV		bit		Divider	
6	LOCK_8K		0	0			ssed (default)	
			0	1			k Divider	
			1	0			Divider served	
			I	I		Re	served	
5 - 4		10: Grou 11: Grou	up 2; the addres up 3; the addres	ses of the configurati ses of the configurati ses of the configurati required frequency f	on registers are 39 on registers are 3D	H ~ 3CH.		
		0000: 8 0001: 1 0010: 6	kHz.	the IN_SONET_SDI		?) / 2.048 MHz (wher	n the IN_SONET_SD	H bit (b2, 09H) is
3 - 0	IN_FREQ[3:0]	0100: 29 0101: 33 0110 ~ 1001: 2 1010: 4 1011 ~	5.92 MHz. 8.88 MHz. 1000: Reserved. kHz. kHz. 1111: Reserved.	should not be set hig	her than frequency	of the input clock.		

IN4_CNFG - Input Clock 4 Configuration

7	6		5	4	3	2	1	0		
DIRECT_D	DIV LOCK_8K	BI	UCKET_SEL1	BUCKET_SEL0	IN_FREQ3	IN_FREQ2	IN_FREQ1	IN_FREQ0		
Bit	Name				Descri	ption				
7	DIRECT_DIV	Refer to	efer to the description of the LOCK_8K bit (b6, 1AH).							
		This bit, IN4:	, together with th			es whether the DivN	Divider or the Lock	8k Divider is use		
6	LOCK_8K		0	0			sed (default)			
0	LOOK_OK		0	1						
			0 1 Lock 8k Divider 1 0 DivN Divider							
			1	1		Rese	erved			
		11: Grou	up 3; the address bits set the DPLL	ses of the configurati ses of the configuration required frequency f	on registers are 3D					
3 - 0	IN_FREQ[3:0]	0000: 8 0001: 1. 0010: 6. 0011: 19 0100: 29 0101: 38 0110 ~ 1001: 2 1010: 4 1011 ~	.544 MHz (when .48 MHz. 9.44 MHz. (defau 5.92 MHz. 8.88 MHz. 1000: Reserved. kHz. kHz. 1111: Reserved.	iit)) / 2.048 MHz (when		0H bit (b2, 09H) is		

© 2019 Renesas Electronics Corporation

IN5_CNFG - Input Clock 5 Configuration

7	6	5	4	3	2	1	0
DIRECT_[DIV LOCK_8K	BUCKET_SEL1	BUCKET_SEL0	IN_FREQ3	IN_FREQ2	IN_FREQ1	IN_FREQ0
D:4	Name			Deee	intion		
Bit					ription		
7	DIRECT_DIV	Refer to the description		, ,			
		This bit, together with t	the DIRECT_DIV bit	(b/, 1FH), determir	nes whether the DivN	Divider or the Lock	8k Divider is use
			1				
		DIRECT_DI	V bit LOCK_8	(bit	Used	Divider	
6	LOCK_8K	0	0		Both bypas	ssed (default)	
		0	1		Lock 8k Divider		
		1	0		DivN	Divider	
		1	1		Res	served	
5 - 4	BUCKET_SEL[1:0]	00: Group 0; the addre 01: Group 1; the addre 10: Group 2; the addre 11: Group 3; the addre	sses of the configura sses of the configura	tion registers are 3 tion registers are 3	5H ~ 38H. 9H ~ 3CH.		
3 - 0	IN_FREQ[3:0]	These bits set the DPL 0000: 8 kHz. 0001: 1.544 MHz (whe 0010: 6.48 MHz. 0011: 19.44 MHz. 0100: 25.92 MHz. 0101: 38.88 MHz. 0101: 38.88 MHz. 0110 ~ 1000: Reserved 1001: 2 kHz. 1010: 4 kHz. 1011 ~ 1111: Reserved For IN5, the required fr The default value of the In Master / Slave appli	n the IN_SONET_SD	H bit (b2, 09H) is ' be set higher than t he device applicati	hat of the input clock. on as follows:		

PRE_DIV_CH_CNFG - DivN Divider Channel Selection

7	6	5	4	3 2 1 0							
•	•	•	-	PRE_DIV_CH_VALUE3 PRE_DIV_CH_VALUE2 PRE_DIV_CH_VALUE1 PRE_DIV_CH							
Bit	١	Name			Descrip	otion					
7 - 4		-	Rese	rved.							
3 - 0	PRE_DIV_(CH_VALUE[3	Thes selec 0000 0001 0011 0100 0101 0110 0111 1011	e bits select an input clock ted input clock. : Reserved. (default) , 0010: Reserved. : IN1. : IN2. : IN3 : IN4 1000, 1001, 1010: Reserve			25H, 24H) is available fo				

PRE_DIVN[7:0]_CNFG - DivN Divider Division Factor Configuration 1

Address: 24H Type: Read / Writ Default Value: 00			$\langle \rangle$				
7	6	5	4	3	2	1	0
PRE_DIVN_V LUE7	A PRE_DIVN_VA LUE6	PRE_DIVN_VA LUE5	PRE_DIVN_VA LUE4	PRE_DIVN_VA LUE3	PRE_DIVN_VA LUE2	PRE_DIVN_VA LUE1	PRE_DIVN_VA LUE0
Bit	Name			Desc	cription		
7 - 0	PRE_DIVN_VALUE[7:0]	Refer to the descri	ption of the PRE_DI	VN_VALUE[14:8] bit	ts (b6~0, 25H).		

PRE_DIVN[14:8]_CNFG - DivN Divider Division Factor Configuration 2

Address: 25H Type: Read / Wri Default Value: X(
7	6	5	4	3	2	1	0		
-	PRE_DIVN_VAL I UE14	PRE_DIVN_VAL UE13	PRE_DIVN_VAL UE12	PRE_DIVN_VAL UE11	PRE_DIVN_VAL UE10	PRE_DIVN_VAL UE9	PRE_DIVN_VAL UE8		
Bit	Name	Description							
7	-	Reserved.							
6 - 0	PRE_DIVN_VALUE[14:8]	by the PRE_DIV_ A value from '1' t reserved. So the The division facto 1. Write the lower	Reserved. The division factor for an input clock is the value in the PRE_DIVN_VALUE[14:0] bits plus 1. The input clock is selected by the PRE_DIV_CH_VALUE[3:0] bits (b3~0, 23H). A value from '1' to '4BEF' (Hex) can be written into, corresponding to a division factor from 2 to 19440. The others are reserved. So the DivN Divider only supports an input clock whose frequency is less than or equal to (≤) 155.52 MHz. The division factor setting should observe the following order: 1. Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits; 2. Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits.						

IN1_IN2_SEL_PRIORITY_CNFG - Input Clock 1 & 2 Priority Configuration *

7	6	5		4	3	2	1	0
N2_SEL_PRIC RITY3	D IN2_SEL_PRIO RITY2	IN2_SEL_ RITY		SEL_PRIO RITY0	IN1_SEL_PRIO RITY3	IN1_SEL_PRIO RITY2	IN1_SEL_PRIO RITY1	IN1_SEL_PRIO RITY0
Bit	Name					Description		
7 - 4	INn_SEL_PRIORIT	TY[3:0]	0000: Disable 0001: Priority 1 0010: Priority 2 0011: Priority 3 0100: Priority 4 0101: Priority 4 0110: Priority 6 0111: Priority 7 1000: Priority 1 1011: Priority 1 1011: Priority 1 1100: Priority 1 1101: Priority 1 1110: Priority 1 1111: Priority 1	Nn for autom	5	lefault)		
3 - 0	INn_SEL_PRIORI	TY[3:0]		Nn for autom . (T0 default)	the corresponding atic selection. (T4 c			

IN3_IN4_SEL_PRIORITY_CNFG - Input Clock 3 & 4 Priority Configuration *

7	6	5	4	3	2	1	0			
IN4_SEL_PR RITY3	RIO IN4_SEL_PRIO RITY2	IN4_SEL_PRIO RITY1	IN4_SEL_PRIO RITY0	IN3_SEL_PRIO RITY3	IN3_SEL_PRIO RITY2	IN3_SEL_PRIO RITY1	IN3_SEL_PRIO RITY0			
Bit	Name		Description							
7 - 4	INn_SEL_PRIORITY	0000: Disa 0001: Prior 0011: Prior 0011: Prior 0100: Prior 0101: Prior 0110: Prior 1000: Prior 1001: Prior 1001: Prior 1010: Prior 1101: Prior 1101: Prior 1111: Prior	These bits set the priority of the corresponding INn. Here n is 4. 0000: Disable INn for automatic selection. 0001: Priority 1. 0010: Priority 2. 0011: Priority 3. 0100: Priority 5. 0110: Priority 6. 0111: Priority 7. (default) 1000: Priority 8. 1001: Priority 9. 1010: Priority 10. 1011: Priority 11. 1100: Priority 12. 1101: Priority 13. 1110: Priority 14. 1111: Priority 15.							
3 - 0	INn_SEL_PRIORITY	These bits set the priority of the corresponding INn. Here n is 3. 0000: Disable INn for automatic selection. 0001: Priority 1. 0010: Priority 2. 0011: Priority 3. 0100: Priority 4. 0101: Priority 5. 0110: Priority 5. 0110: Priority 6. (default)								

IN5_SEL_PRIORITY_CNFG - Input Clock 5 Priority Configuration *

7	6	5	4	3	2	1	0			
•	•	-		IN5_SEL_PRIO RITY3	IN5_SEL_PRIO RITY2	IN5_SEL_PRIO RITY1	IN5_SEL_PRIC RITY0			
Bit	Name		Description							
7 - 4	-	Reserved								
3 - 0	INn_SEL_PRIORITY[3:0]	0000: Disable IN 0001: Priority 1. 0010: Priority 2. 0011: Priority 3. 0100: Priority 4. 0101: Priority 5. 0110: Priority 6. 0111: Priority 7. 1000: Priority 8. 1001: Priority 9. 1010: Priority 10 1011: Priority 11	In for automatic sel (T0 Slave default) . (T0 Master defaul	responding INn. He ection. (T4 default) t)						

Programming Information

7.2.4 INPUT CLOCK QUALITY MONITORING CONFIGURATION & STATUS REGISTERS

FREQ_MON_FACTOR	CNFG - Factor of Freq	uency Monitor Configuration
-----------------	-----------------------	-----------------------------

7	6	5	4	3	2	1	0
		-		FREQ_MON_F ACTOR3	FREQ_MON_F ACTOR2	FREQ_MON_F ACTOR1	FREQ_MON_F ACTOR0
Bit Name Description							
7 - 4	-	Reserved.	termine a factor. The				
3 - 0	FREQ_MON_FACTOR[3	clock with res The factor rep ent application 0000: 0.0032. 0001: 0.0064. 0010: 0.0127.	efault)	ock in ppm (refer to t	the description of the	IN_FREQ_VALUE	7:0] bits (b7~0, 42l

______...3.81. (______1100 - 1111: <u>4</u>

ALL_FREQ_MON_THRESHOLD_CNFG - Frequency Monitor Threshold for All Input Clocks Configuration

Address: 2FH Type: Read / W Default Value: (
7	6	5	4	3	2	1	0			
	•	•		ALL_FREQ_HARD_ THRESHOLD3	ALL_FREQ_HARD_ THRESHOLD2	ALL_FREQ_HARD_ THRESHOLD1	ALL_FREQ_HARD_ THRESHOLD0			
Bit		Name			Descripti	ion				
7 - 4	ALL_FREQ_HA	ard_thresholi	D[7:4] The free The free Free FREQ	This threshold is symmetrical about zero.A value of 0010 bin corresponds to an alarm						
3 - 0	ALL_FREQ_H/	ARD_THRESHOLI	D[3:0] The frequence The frequ	bits are the rejecting thresp equency hard alarm thresh ency Hard Alarm Th _MON_FACTOR[3:0] (b3 ireshold is symmetrical al	hold in ppm can be calcu reshold (ppm) = (A ~0, 2EH)	lated as follows:				

UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0

Address: 31H Type: Read / Default Value	Write	110						
7		6	5	4	3	2	1	0
UPPER_ SHOLD_(A7	DAT	UPPER_THRE SHOLD_0_DAT A6			UPPER_THRE SHOLD_0_DAT A3	UPPER_THRE SHOLD_0_DAT A2	UPPER_THRE SHOLD_0_DAT A1	UPPER_THRE SHOLD_0_DAT A0
Bit		Name	Y			Description		
7 - 0	UPPER_THRESHOLD_0_DATA[7:0] These bits set an upper threshold for the internal leaky bucket accumulator. W lated events is above this threshold, a no-activity alarm is raised.							umber of the accumu

LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0

Address: 32F Type: Read / Default Value	Write	100							
7		6	5		4	3	2	1	0
LOWER_ SHOLD_0 A7		LOWER_THRE SHOLD_0_DAT A6	LOWER_ SHOLD_0 A5		LOWER_THRE SHOLD_0_DAT A4	LOWER_THRE SHOLD_0_DAT A3	LOWER_THRE SHOLD_0_DAT A2	LOWER_THRE SHOLD_0_DAT A1	LOWER_THRE SHOLD_0_DAT A0
Bit	Name Description								
	These hits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated								
7 - 0	LOWER_THRESHOLD_0_DATA[7:0] [reset to be be set a lower threshold for the internal leaky bucket accumulator. when the number of the accumulated events is below this threshold, the no-activity alarm is cleared.								

BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0

Address: 33H Type: Read / \ Default Value:	Vrite					,	
7	6	5	4	3	2	1	0
BUCKET_ _0_DAT		BUCKET_SIZE _0_DATA5	BUCKET_SIZE _0_DATA4	BUCKET_SIZE _0_DATA3	BUCKET_SIZE _0_DATA2	BUCKET_SIZE _0_DATA1	BUCKET_SIZE _0_DATA0
Bit	Name			De	scription		
7 - 0	BUCKET_SIZE_0_DATA		bucket size for the i the accumulator will				mulated events reach

DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0

Address: 34H Type: Read / Wr Default Value: X										
7	6		5	4	3	2	1	0		
-	-	Y			-		DECAY_RATE_ 0_DATA1	DECAY_RATE_ 0_DATA0		
Bit	Nar	ne				Description				
7 - 2	-		Reserved.							
1-0	DECAY_RATE		00: The accum 01: The accum 10: The accum	These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected.						

UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1

Address: 35H Type: Read / Default Value	Write	10							
7		6	5		4	3	2	1	0
	UPPER_THRE SHOLD_1_DAT A7 A6 UPPER_THRE SHOLD_1_DAT A6 A				UPPER_THRE SHOLD_1_DAT A4	UPPER_THRE SHOLD_1_DAT A3	UPPER_THRE SHOLD_1_DAT A2	UPPER_THRE SHOLD_1_DAT A1	UPPER_THRE SHOLD_1_DAT A0
Bit	Bit Name Description								
7 - 0	UPPER_THRESHOLD_1_DATA[7:0] These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised.								

LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1

Write	100							
	6	5		4	3	2	1	0
					LOWER_THRE SHOLD_1_DAT A3	LOWER_THRE SHOLD_1_DAT A2	LOWER_THRE SHOLD_1_DAT A1	LOWER_THRE SHOLD_1_DAT A0
	••					-		
t Name			Description					
			These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulate events is below this threshold, the no-activity alarm is cleared.					
	THRE 1_DAT	Write 9: 00000100 6 THRE LOWER_THRE 1_DAT SHOLD_1_DAT A6 Name	Write a: 00000100 6 5 THRE LOWER_THRE LOWER_TH 1_DAT SHOLD_1_DAT SHOLD_1_I A6 A5	Write a: 00000100 6 5 THRE LOWER_THRE LOWER_THRE LOWER_THRE SHOLD_1_DAT A6 Name LOWER THRESHOLD 1 DATA[7:0] These bits s	Write a: 00000100 THRE LOWER_THRE SHOLD_1_DAT A6 Name LOWER_THRESHOLD_1_DATATZ:01 These bits set a lower thresh	Write e: 00000100 6 5 4 3 THRE 1_DAT LOWER_THRE SHOLD_1_DAT A6 LOWER_THRE SHOLD_1_DAT A5 LOWER_THRE SHOLD_1_DAT A4 LOWER_THRE SHOLD_1_DAT A3 Name Image: Comparison of the internal legistic set a lower threshold for the lower thr	Write e: 00000100 6 5 4 3 2 THRE 1_DAT LOWER_THRE SHOLD_1_DAT A6 LOWER_THRE SHOLD_1_DAT A5 LOWER_THRE SHOLD_1_DAT A4 LOWER_THRE SHOLD_1_DAT A3 LOWER_THRE SHOLD_1_DAT A2 LOWER_THRE SHOLD_1_DAT A2 LOWER_THRE SHOLD_1_DAT A2 LOWER_THRE SHOLD_1_DAT A2 Name Description	Write a: 00000100 6 5 4 3 2 1 THRE 1_DAT LOWER_THRE SHOLD_1_DAT A6 LOWER_THRE SHOLD_1_DAT A5 LOWER_THRE SHOLD_1_DAT A4 LOWER_THRE SHOLD_1_DAT A3 LOWER_THRE SHOLD_1_DAT A2 LOWER_THRE SHOLD_1_DAT A1 LOWER_THRE SHOLD_1_DAT A1 LOWER_THRE SHOLD_1_DAT A2 LOWER_THRE SHOLD_1_DAT A1 Name Description LOWER_THRESHOLD_1_DATAT7(0) These bits set a lower threshold for the internal leaky bucket accumulator. When the number

BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1

Address: 37H Type: Read / Write Default Value: 000010	000	\bigcirc					
7	6	5	4	3	2	1	0
BUCKET_SIZE _1_DATA7	BUCKET_SIZE _1_DATA6	BUCKET_SIZE _1_DATA5	BUCKET_SIZE _1_DATA4	BUCKET_SIZE _1_DATA3	BUCKET_SIZE _1_DATA2	BUCKET_SIZE _1_DATA1	BUCKET_SIZE _1_DATA0
Bit	Name			D	escription		
7 - 0 BUC	KET_SIZE_1_DATA	[7:0] These bits set the bucket size	a bucket size for the e, the accumulator v	e internal leaky buck vill stop increasing e	et accumulator. If the ven if further events	e number of the accu are detected.	umulated events rea
		•					

DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1

Address: 38H Type: Read / Wr Default Value: X										
7	6	5	4	3	2	1	0			
				-	·	DECAY_RATE_ 1_DATA1	DECAY_RATE_ 1_DATA0			
Bit	Name				Description					
7 - 2	-	Reserved.					~			
1 - 0	DECAY_RATE_1_DATA[1:	00: The accu 01: The accu 10: The accu	hese bits set a decay rate for the internal leaky bucket accumulator: 2): The accumulator decreases by 1 in every 128 ms with no event detected. 2): The accumulator decreases by 1 in every 256 ms with no event detected. (default) 2): The accumulator decreases by 1 in every 512 ms with no event detected. 3): The accumulator decreases by 1 in every 512 ms with no event detected. 4): The accumulator decreases by 1 in every 1024 ms with no event detected.							

UPPER_THRESHOLD_2_CNFG - Upper Threshold for Leaky Bucket Configuration 2

Address: 39H Type: Read / V	Vrite							
Default Value:								
7	6	5	4	3	2	1	0	
UPPER_TH SHOLD_2_ A7		UPPER_THRE SHOLD_2_DAT A5	UPPER_THRE SHOLD_2_DAT A4	UPPER_THRE SHOLD_2_DAT A3	UPPER_THRE SHOLD_2_DAT A2	UPPER_THRE SHOLD_2_DAT A1	UPPER_THRE SHOLD_2_DAT A0	
Bit	Name				Description			
7 - 0	7 - 0 UPPER_THRESHOLD_2_DATA[7:0] The: later			eshold for the internative internative shold, a no-activity	al leaky bucket accu y alarm is raised.	mulator. When the n	umber of the accumu	

LOWER_THRESHOLD_2_CNFG - Lower Threshold for Leaky Bucket Configuration 2

Address: 3AH								
Type: Read / Writ	ho l							
Default Value: 00								
Delault value. 00	000100							
7	6	5	4	3	2	1	0	
LOWER_THR		LOWER_THRE	LOWER_THRE	LOWER_THRE	LOWER_THRE	LOWER_THRE	LOWER_THRE	
SHOLD_2_DA A7	AT SHOLD_2_DAT A6	SHOLD_2_DAT A5	SHOLD_2_DAT A4	SHOLD_2_DAT A3	SHOLD_2_DAT A2	SHOLD_2_DAT A1	SHOLD_2_DAT A0	
Bit	Name				Description			
7 - 0 L	7 - 0 LOWER_THRESHOLD_2_DATA[7:0] These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared.							

BUCKET_SIZE_2_CNFG - Bucket Size for Leaky Bucket Configuration 2

Address: 3BH Type: Read / \ Default Value:	Vrite	000									
7		6	5	4	3	2	1	0			
BUCKET_ _2_DAT		BUCKET_SIZE _2_DATA6	BUCKET_SIZE _2_DATA5	BUCKET_SIZE _2_DATA4	BUCKET_SIZE _2_DATA3	BUCKET_SIZE _2_DATA2	BUCKET_SIZE _2_DATA1	BUCKET_SIZE _2_DATA0			
Bit		Name		Description							
	These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reaches										
7 - 0	7 - 0 BUCKET_SIZE_2_DATA[7:0] These bits set a bucket size for the internal leaky bucket accumulator. If the internal leaky bucket accumulator in the internal leaky bucket accumulator ac										

DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2

l Write : XXXXX01					
6	5	4	3 2	1	0
•	-	-		DECAY_RATE_ 2_DATA1	DECAY_RATE_ 2_DATA0
Name			Description		
-	Reserved.				
DECAY_RATE_2_DATA[1:0]	00: The accumu 01: The accumu 10: The accumu	lator decreases b lator decreases b lator decreases b	by 1 in every 128 ms with no event det by 1 in every 256 ms with no event det by 1 in every 512 ms with no event det	ected. (default) ected.	
	Write XXXXX01 6 - Name	Write XXXXXX01	Write XXXXX01	Write XXXXXX01 6 5 4 3 2 - - - - - Name Description - - Name Description - DECAY_RATE_2_DATA[1:0] These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event deter 01: The accumulator decreases by 1 in every 256 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accumulator decreases by 1 in every 512 ms with no event deter 10: The accu	Write XXXXX01 6 5 4 3 2 1 - - - - DECAY_RATE_ 2_DATA1 2_DATA1 Name Description - Reserved. - -

UPPER_THRESHOLD_3_CNFG - Upper Threshold for Leaky Bucket Configuration 3

Address: 3DH Type: Read / Write Default Value: 00000	110							
7	6	5	4	3	2	1	0	
UPPER_THRE SHOLD_3_DAT A7	UPPER_THRE SHOLD_3_DAT A6	UPPER_THRE SHOLD_3_DA ⁻ A5		UPPER_THRE SHOLD_3_DAT A3	UPPER_THRE SHOLD_3_DAT A2	UPPER_THRE SHOLD_3_DAT A1	UPPER_THRE SHOLD_3_DAT A0	
Bit	Name				Description			
7 - 0 UPPER_THRESHOLD_3_DATA[7:0] These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumu- lated events is above this threshold, a no-activity alarm is raised.								

LOWER_THRESHOLD_3_CNFG - Lower Threshold for Leaky Bucket Configuration 3

Address: 3EH Type: Read / V Default Value:	Nrite	00						
7		6	5	4	3	2	1	0
LOWER_ SHOLD_3 A7		LOWER_THRE SHOLD_3_DAT A6	LOWER_T SHOLD_3_ A5	LOWER_THRE SHOLD_3_DAT A4	LOWER_THRE SHOLD_3_DAT A3	LOWER_THRE SHOLD_3_DAT A2	LOWER_THRE SHOLD_3_DAT A1	LOWER_THRE SHOLD_3_DAT A0
Bit		Name				Description		
7 - 0	- 0 LOWER_THRESHOLD_3_DATA[7:			ts set a lower thresh ents is below this thre			ulator. When the nu	mber of the accumu-

BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3

Address: 3FH Type: Read / W Default Value: 0					\sim		
7	6	5	4	3	2	1	0
BUCKET_S _3_DATA		BUCKET_SIZE _3_DATA5	BUCKET_SIZE _3_DATA4	BUCKET_SIZE _3_DATA3	BUCKET_SIZE _3_DATA2	BUCKET_SIZE _3_DATA1	BUCKET_SIZE _3_DATA0
Bit	Name			De	escription		
7 - 0	BUCKET_SIZE_3_DATA	17.111	t a bucket size for the accum	•			e accumulated events d.

DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3

Address: 40H Type: Read / Wri Default Value: XX							
7	6	5	4	3	2	1	0
-		•		-	•	DECAY_RATE_ 3_DATA1	DECAY_RATE_ 3_DATA0
Bit	Name			D	escription		
7 - 2	-	Reserved.					
1 - 0	DECAY_RATE_3_DATA[1:0]	00: The accumul 01: The accumul 10: The accumul	lator decreases by lator decreases by	1 in every 128 ms 1 in every 256 ms 1 in every 512 ms	with no event detect	ed. (default) ed.	

IN_FREQ_READ_CH_CNFG - Input Clock Frequency Read Channel Selection

ddress: 41H ype: Read / Wr)efault Value: X							
7	6	5	4	3	2	1	0
	· .	-	-	IN_FREQ_READ _CH3	IN_FREQ_READ _CH2	IN_FREQ_READ _CH1	IN_FREQ_READ _CH0
Bit	Name				Description		
7 - 4	-	Reserved.					
3 - 0	IN_FREQ_READ_CH[3:0]	0000: Reserv 0001, 0010: F 0011: IN1. 0100: IN2. 0101: IN3. 0110: IN4. 0111, 1000, 1 1011: IN5.	ed. (default)		ch with respect to the	reference clock can	be read.

IN_FREQ_READ_STS - Input Clock Frequency Read Value

Address: 42H Type: Read Default Value: 00	000000						
7	6	5	4	3	2	1	0
IN_FREQ_VA UE7	AL IN_FREQ_VAL UE6	IN_FREQ_VAL UE5	IN_FREQ_VAL UE4	IN_FREQ_VAL UE3	IN_FREQ_VAL UE2	IN_FREQ_VAL UE1	IN_FREQ_VAL UE0
Bit	Name			Desc	cription		
7 - 0	IN_FREQ_VALUE[7:0]	FREQ_MON_FAC be gotten. The input		2EH), the frequency y the IN_FREQ_REA	of an input clock with D_CH[3:0] bits (b3~	h respect to the refer 0, 41H).	the value in the rence clock in ppm will

 \sim

IN1_IN2_STS - Input Clock 1 & 2 Status

Address: 44H Type: Read Default Value: X	110X110						
7	6	5	4	3	2	1	0
•	IN2_FREQ_HAR D_ALARM	IN2_NO_ACT TY_ALARN		•	IN1_FREQ_HAR D_ALARM	IN1_NO_ACTIVI TY_ALARM	IN1_PH_LOCK_ ALARM
	1		Ι				
Bit	Name)			Description		
7	-		Reserved.				
6	IN2_FREQ_HAF	RD_ALARM	This bit indicates whether 0: Input frequency within I 1: Input frequency over th	hard accept reginered to the test of t	on. gion.		
5	IN2_NO_ACTIVI	TY_ALARM	This bit indicates whether 0: No no-activity alarm. 1: In no-activity alarm stat		ncy hard alarm status.		
4	IN2_PH_LOCK	(_ALARM	This bit indicates whether 0: No phase lock alarm. (1: In phase lock alarm sta If the PH_ALARM_TIME PH_ALARM_TIMEOUT b 08H) X MULTI_FACTOR[default) tus. OUT bit (b5, it (b5, 09H) is '1	09H) is '0', this bit i ', this bit is cleared afte	er a period (= <i>TIME_</i> C	OUT_VALUE[5:0] (b5~0,
3	-		Reserved.		,		
2	IN1_FREQ_HAF	RD_ALARM	This bit indicates whether 0: Input frequency within I 1: Input frequency over th	hard accept regi	on.		
1	IN1_NO_ACTIVI	TY_ALARM	This bit indicates whether 0: No no-activity alarm. 1: In no-activity alarm stat		ivity alarm status.		
0	IN1_PH_LOCK	(_ALARM	This bit indicates whether 0: No phase lock alarm. ((1: In phase lock alarm sta If the PH_ALARM_TIME PH_ALARM_TIMEOUT b 08H) X MULTI_FACTOR[default) tus. OUT bit (b5, it (b5, 09H) is '1	09H) is '0', this bit i ', this bit is cleared afte	er a period (= TIME_C	OUT_VALUE[5:0] (b5~0,

© 2019 Renesas Electronics Corporation

 \mathbf{i}

IN3_IN4_STS - Input Clock 3 & 4 Status

7	6	5		4	3	2	1	0	
-	IN4_FREQ_HAR D_ALARM	IN4_NO_AC TY_ALAR		IN4_PH_LOCK_ ALARM		IN3_FREQ_HAR D_ALARM	IN3_NO_ACTIVI TY_ALARM	IN3_PH_LOCK_ ALARM	
Bit	Name					Description			
7	-		Reser	ved.					
6	IN4_FREQ_HAR	D_ALARM	0: Inp 1: Inp	it indicates whether II ut frequency within ha ut frequency over the	ard accept regior hard reject regio	n.			
5	IN4_NO_ACTIVIT	Y_ALARM	0: No 1: In r	it indicates whether If no-activity alarm. no-activity alarm statu	s. (default)				
4	IN4_PH_LOCK	_ALARM	This bit indicates whether IN4 is in phase lock alarm status. 0: No phase lock alarm. (default) 1: In phase lock alarm status. If the PH_ALARM_TIMEOUT bit (b5, 09H) is '0', this bit is cleared by writing '1' to this bit; if th PH_ALARM_TIMEOUT bit (b5, 09H) is '1', this bit is cleared after a period (= <i>TIME_OUT_VALUE[5:0]</i> (<i>b5~</i> 08H) X MULTI_FACTOR[1:0] (<i>b7~6, 08H</i>) in seconds) which starts from when the alarm is raised.						
3	-		Reser	ved.					
2	IN3_FREQ_HAR	D_ALARM	This bit indicates whether IN3 is in frequency hard alarm status. 0: Input frequency within hard accept region. 1: Input frequency over the hard reject region.						
1	IN3_NO_ACTIVIT	Y_ALARM	0: No	it indicates whether II no-activity alarm. io-activity alarm statu		ty alarm status.			
0	1: In no-activity alarm status. (default) IN3_PH_LOCK_ALARM IN3_PH_LOCK_ALARM IN3_PH_LOCK_ALARM IF the PH_ALARM_TIMEOUT bit (b5, 09H) is '0', this bit is cleared by writing '1' to this bit PH_ALARM_TIMEOUT bit (b5, 09H) is '0', this bit is cleared by writing '1' to this bit PH_ALARM_TIMEOUT bit (b5, 09H) is '1', this bit is cleared after a period (= TIME_OUT_VALUE[5:0:08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in seconds) which starts from when the alarm is raised.							UT_VALUE[5:0] (b:	
)							

IN5_STS - Input Clock 5 Status

Address: 48H Type: Read Default Value: X	110X110						
7	6	5	4	3	2	1	0
·	-	•	-		IN5_FREQ_HA RD_ALARM	IN5_NO_ACTIV ITY_ALARM	IN5_PH_LOCK _ALARM
Bit	Name				Description		
7 - 3	-	Reserved.					
2	IN5_FREQ_HARD_ALARM	This bit indicates whether IN5 is in frequency hard alarm status. 0: Input frequency within hard accept region. 1: Input frequency over the hard reject region.					
1	IN5_NO_ACTIVITY_ALARM	0: No no-acti	ates whether IN5 is vity alarm. ity alarm status. (de	·	n status.		
0	IN5_PH_LOCK_ALARM	0: No phase 1: In phase lo If the PH_/ PH_ALARM_	TIMEOUT bit (b5,) bit (b5, 09H) is 09H) is '1', this bit	m status. s '0', this bit is cle is cleared after a perio /hich starts from when	od (= TIME_OUT_VA	

7.2.5 T0 / T4 DPLL INPUT CLOCK SELECTION REGISTERS

INPUT_VALID1_STS - Input Clocks Validity 1

Address: 4AH Type: Read							
Default Value: 0	0000000						
7	6	5	4	3	2	1	0
-	•	IN4	IN3	IN2	IN1	-	-
Bit	Name			Descrip	tion		
7 - 6	-	Reserved.					
5 - 2	INn	This bit indicates the val 0: Invalid. (default) 1: Valid.	idity of the correspond	ding INn. Here n is a	ny of 4 to 1.		
1 - 0	-	Reserved.				V	
INPUT_VALID	2_STS - Input C	Clocks Validity 2					

INPUT_VALID2_STS - Input Clocks Validity 2

Address: 4BH									
Type: Read									
Default Value: XX	K000000								
7	6	5	4	3	:	2	1	0	
-	· ·	•		-	11	15	-	•	
Bit	Name			Des	cription				
7 - 3	-	Reserved.							
2	IN5	This bit indicates the valu 0: Invalid. (default) 1: Valid.	dity of IN5.						
1 - 0	-	Reserved.							

REMOTE_INPUT_VALID1_CNFG - Input Clocks Validity Configuration 1

Address: 4CH							
Type: Read / Wri	ito						
Default Value: 11	111111						
7	6	5	4	3	2	1	0
·	-	IN4_VALID	IN3_VALID	IN2_VALID	IN1_VALID	-	•
Bit	Name			Descrip	tion		
7 - 6	-	Reserved.					
5 - 2	INn_VALID	This bit controls whether t 0: Enabled. 1: Disabled. (default)	he corresponding IN	In is allowed to be loo	cked for automatic se	election. Here n is a	any one of 4 to 1.
1 - 0	-	Reserved.					

REMOTE_INPUT_VALID2_CNFG - Input Clocks Validity Configuration 2

7	6	5	4	3	2	1	0
-	· ·	·	·	-	IN5_VALID	-	-
Bit	Name			Descrip	tion		
7 - 3	-	Reserved.					
2	IN5_VALID	This bit controls whether 0: Enabled. 1: Disabled. (default)	IN5 is allowed to be lo	ocked for automatic	selection.	V	
1-0	-	Reserved.					
RITY_TA	BLE1_STS - Pri	iority Status 1 *					

7	6	5	4	3	2	1	0
HIGHEST_PRI	HIGHEST_PRI	HIGHEST_PRI	HIGHEST_PRI	CURRENTLY_S	CURRENTLY_S	CURRENTLY_S	CURRENTLY_S
ORITY_VALIDA	ORITY_VALIDA	ORITY_VALIDA	ORITY_VALIDA	ELECTED_INP	ELECTED_INP	ELECTED_INP	ELECTED_INP
TED3	TED2	TED1	TED0	UT3	UT2	UT1	UT0

Bit	Name	Description
7 - 4	HIGHEST_PRIORITY_VALIDATED[3:0]	These bits indicate a qualified input clock with the highest priority. 0000: No input clock is qualified. (default) 0001, 0010: Reserved. 0011: IN1. 0100: IN2. 0101: IN3. 0110: IN4. 0111, 1000, 1001, 1010: Reserved. 1011: IN5. 1100, 1101, 1110, 1111: Reserved. Note that the input clock is indicated by these bits only when the corresponding INn (b5-2, 4CH) or INn (b2, 4DH) bit is '0'.
3-0	CURRENTLY_SELECTED_INPUT[3:0]	These bits indicate the T0/T4 selected input clock. 0000: No input clock is selected; or the T4 selected input clock is the T0 DPLL output. (default) 0001, 0010: Reserved. 0011: IN1 is selected. 0100: IN2 is selected. 0101: IN3 is selected. 0110: IN4 is selected. 0111, 1000, 1001, 1010: Reserved. 1011: IN5 is selected. 1100, 1101, 1110, 1111: Reserved. Note that the input clock is indicated by these bits only when the corresponding INn (b5-2, 4CH) or INn (b2, 4DH) bit is '0'.

PRIORITY_TABLE2_STS - Priority Status 2 *

7	6	5	4	3	2	1	0
THIRD_HIGH ST_PRIORITY VALIDATED	(_ ST_PRIORITY_	THIRD_HIGHE ST_PRIORITY_ VALIDATED1	THIRD_HIGH ST_PRIORITY VALIDATED0	_ EST_PRIORITY	SECOND_HIGH EST_PRIORITY _VALIDATED2	SECOND_HIGH EST_PRIORITY _VALIDATED1	SECOND_HIGH EST_PRIORITY _VALIDATED0
Bit	1	Name			Descriptio	on	
7 - 4	THIRD_HIGHEST_PP	RIORITY_VALIDATE	ED[3:0] D(3:0] ED[3	12. 13. 14. 100, 1001, 1010: Reser 15. 101, 1110, 1111: Reserv at the input clock is in 1Nn (b2, 4DH) bit is '0'	d. (default) ved. ved. dicated by these bit	s only when the cor	
3 - 0	SECOND_HIGHEST_F	PRIORITY_VALIDAT	ED[3:0] 0000: N 0001, 0 0011: II 0100: II 0101: II 0111: II 0111: II 1101: II 1100, 1 Note th	42. 13. 14. 000, 1001, 1010: Reser	d. (default) ved. ved. dicated by these bit		-
Ś)					

T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration

Address: 50H Type: Read / Wr Default Value: X									
7	6	5	4	3	2	1	0		
•	-	-	-	T0_INPUT_SEL3	T0_INPUT_SEL2	T0_INPUT_SEL1	T0_INPUT_SEL0		
Bit	Name	Description							
7 - 4	-	Reserved.							
3 - 0	T0_INPUT_SEL[3:0]	0000: Automatic se 0001, 0010: Reser 0011: Forced selec 0100: Forced selec 0101: Forced selec 0110: Forced selec 0110: Forced selec 0111, 1000, 1001, 1011: Forced selec	This bit determines T0 input clock selection. It is valid only when the EXT_SW bit (b4, 0BH) is '0'. 2000: Automatic selection. (default) 2001, 0010: Reserved. 20011: Forced selection - IN1 is selected. 2010: Forced selection - IN2 is selected. 2010: Forced selection - IN3 is selected. 20110: Forced selection - IN4 is selected. 20111: Forced selection - IN5 is selected. 20101: Forced selection - IN5 is sele						

T4_INPUT_SEL_CNFG - T4 Selected Input Clock Configuration

7	6	5	4	3	2	1	0			
-	T4_LOCK_T0	T0_FOR_T4	T0_FOR_T4 T4_TEST_T0_PH T4_INPUT_SEL3 T4_INPUT_SEL2 T4_INPUT_SEL1 T4_INPUT_SEL0							
					•		-			
Bit 7	Name	Reserved.		Des	scription					
6	T4_LOCK_T0	This bit determines whether the T4 DPLL locks to a T0 DPLL output or locks independently from the T0 DPLL. 0: Independently from the T0 path. (default) 1: Locks to a 77.76 MHz or 8 kHz signal from the T0 DPLL 77.76 MHz path.								
5	T0_FOR_T4	This bit is valid only when the T4_LOCK_T0 bit (b6, 51H) is '1'. It determines whether a 77.76 MHz or 8 kHz signal from t T0 DPLL 77.76 MHz path is selected by the T4 DPLL. 0: 77.76 MHz. (default) 1: 8 kHz.								
4	T4_TEST_T0_PH	This bit determines whether T4 selected input clock is compared with the feedback signal of the T4 DPLL for T4 DPLL lockin or is compared with the T0 selected input clock to get the phase difference between T0 and T4 selected input clocks. 0: The T4 DPLL output. (default) 1: The T0 selected input clock.								
3 - 0	T4_INPUT_SEL[3:0]	0000: Automatic 0001, 0010: Res 0011: Forced se 0100: Forced se 0101: Forced se 0110: Forced se 0110: Forced se 0111, 1000, 100 1011: Forced se	alid only when the T4 selection. (default) served. lection - IN1 is selecte lection - IN2 is selecte lection - IN3 is selecte lection - IN4 is selecte 1, 1010: Reserved. lection - IN5 is selecte 0, 1111: Reserved.	id. id. id. id.	H) is '0'. They determ	ines the T4 DPLL inp	ut clock selection.			

7.2.6 T0 / T4 DPLL STATE MACHINE CONTROL REGISTERS

OPERATING_STS - DPLL Operating Status

7		6	5		4	3	2	1	0	
EX_SYN RM_M		T4_DPLL_LO CK	T0_DPLL_ _FREQ_A		T4_DPLL_SOFT _FREQ_ALARM	T0_DPLL_LO CK	T0_DPLL_OPER ATING_MODE2	T0_DPLL_OPER ATING_MODE1	T0_DPLL_OPER ATING_MODE0	
Bit	1	Name		Description						
7	EX_SYNC_ALARM_MON				This bit indicates whether the frame sync input signal is in external sync alarm status. 0: No external sync alarm. 1: In external sync alarm status. (default)					
6	T4_DPLL_LOCK			This bit indicates the T4 DPLL locking status. 0: Unlocked. (default) 1: Locked.						
5	TO_C	PLL_SOFT_FRE	Q_ALARM	This bit indicates whether the T0 DPLL is in soft alarm status. 0: No T0 DPLL soft alarm. (default) 1: In T0 DPLL soft alarm status.						
4	T4_DPLL_SOFT_FREQ_ALARM			This bit indicates whether the T4 DPLL is in soft alarm status. 0: No T4 DPLL soft alarm. (default) 1: In T4 DPLL soft alarm status.						
3	T0_DPLL_LOCK				t indicates the T0 DP ocked. (default) ced.	LL locking status.				
2 - 0	T0_DF	PLL_OPERATING	_MODE[2:0]	000: R 001: Fi 010: H 011: R 100: Lo 101: P 110: Pi		nt operating mode	of T0 DPLL.			
	5									

T0_OPERATING_MODE_CNFG - T0 DPLL Operating Mode Configuration

T0_OPERATING_MODE2	RATING_MODE1 T0_OPERATING_MOD 1 0 RATING_MODE1 T4_OPERATING_MOD
ne T0 DPLL operating mode. fault) Run. over. ed. ocked2. ocked. Phase. Configuration	1 0
fault) Run. over. ed. ocked2. ocked. Phase. Configuration	
fault) Run. over. ed. ocked2. ocked. Phase. Configuration	
2	
T4_OPERATING_MODE2	RATING_MODE1 T4_OPERATING_MOI
[
Run. ver. d.	
	fault) Run. Iver. ed. Irved.

7.2.7 T0 / T4 DPLL & APLL CONFIGURATION REGISTERS

T0_DPLL_APLL_PATH_CNFG - T0 DPLL & APLL Path Configuration

7	6	5	4	3	2	1	0
T0_APLL_F 3	PATH T0_APLL_PA TH2	T0_APLL_PA TH1	T0_APLL_PA TH0	T0_GSM_OBSAI_ 16E1_16T1_SEL1	T0_GSM_OBSAI_ 16E1_16T1_SEL0	T0_12E1_24T1_ E3_T3_SEL1	T0_12E1_24T1_ E3_T3_SEL0
Bit	Name				Description		,
7 - 4	T0_APLL_PAT	FH[3:0]	0000: The output of 0001: The output of 0010: The output of 0010: The output of 0100: The output of 0101: The output of 0110: The output of 0111: The output of 1011: The output of 1011: The output of 1000: T0 ETH patt 1100: T4 ETH patt 1101~1111: Reser	n. ved.	path. (default) /E3/T3.path. path. Al/16E1/16T1 path. path. /E3/T3 path. path. 16E1/16T1 path.		
3 - 2	T0_GSM_OBSAI_16E1	_16T1_SEL[1:0]	00: 16E1. 01: 16T1. 10: GSM. 11: OBSAI.	an output clock from the			e SONET/SDH pin dur-
1 - 0	T0_12E1_24T1_E3_	.T3_SEL[1:0]	00: 12E1. 01: 24T1. 10: E3. 11: T3.	an output clock from the of the T0_12E1_24T			ONET/SDH pin during
\langle	$\mathbf{\mathbf{\mathbf{5}}}$						

T0_DPLL_START_BW_DAMPING_CNFG - T0 DPLL Start Bandwidth & Damping Factor Configuration

Address: 56H Type: Read / Wr Default Value: 07							
7	6	5	4	3	2	1	0
T0_DPLL_ST RT_DAMPING		T0_DPLL_STA RT_DAMPING		T0_DPLL_STA RT_BW3	T0_DPLL_STA RT_BW2	T0_DPLL_STA RT_BW1	T0_DPLL_STA RT_BW0
Bit	Name				Description		
7 - 5	T0_DPLL_START_DAI	MPING[2:0] 000: 010: 010: 011: 100: 101: 110,	100: 10. 101: 20.				
4 - 0	101: 20. 110, 111: Reserved. These bits set the starting bandwidth for T0 DPLL. 00000: 0.5 MHz. 00001: 1 MHz. 00010: 2 MHz. 00011: 4 MHz. 0010: 2 MHz. 0010: 8 MHz. 0010: 3 MHz. 0010: 15 MHz. 0010: 3 MHz. 0011: 5 MHz. 0010: 3 MHz. 0010: 10 MHz. 0010: 3 MHz. 0010: 0.1 Hz. 0100: 0.1 Hz. 0110: 30 MHz. 01001: 0.3 Hz. 0100: 0.1 Hz. 01001: 0.3 Hz. 0110: 0.6 Hz. 01001: 0.3 Hz. 0110: 0.5 Hz. 01101: 1.2 Hz. 0110: 2.5 Hz. 01101: 1.4 Lz. 0110: 2.5 Hz. 01101: 4 Hz. 0110: 3.8 Hz. 0110: 3.8 Hz. 0111: 18 Hz. (default) 10001: 35 Hz. 01001: 560 Hz. 10011: 560 Hz. 1001: 70 Hz. 10011: ~ 11111: Reserved.						

T0_DPLL_ACQ_BW_DAMPING_CNFG - T0 DPLL Acquisition Bandwidth & Damping Factor Configuration

F0_DPLL_ACC _DAMPING2 Bit		T0_DPLL_ACQ _DAMPING0	T0_DPLL_ACQ _BW4	T0_DPLL_ACQ _BW3	T0_DPLL_ACQ _BW2	T0_DPLL_ACQ	T0_DPLL_ACQ			
Bit	Name				DVV2	BW1 BW0				
				Description						
7 - 5	T0_DPLL_ACQ_DAMP	ING[2:0] 000: Res 001: 1.2. 010: 2.5. 011: 5. (0 100: 10. 101: 20. 110, 111	default) Reserved.		\leq		-			
4 - 0	T0_DPLL_ACQ_BW	00000: 0 00001: 1 00010: 2 00011: 4 00100: 8 00101: 1 00110: 3 00101: 0 01001: 0 01001: 0 01011: 1 01100: 2 01101: 4 01101: 3 01111: 1 10100: 3 10001: 7 10010: 5	MHz. MHz. MHz. 5 MHz. 0 MHz. 0 MHz. 1 Hz. 3 Hz. 6 Hz. 2 Hz. 5 Hz. Hz. Hz. Hz. 4 L. 6 Hz. 9 Hz. (default) 5 Hz. 0 Hz.	bandwidth for TO DPI						

T0_DPLL_LOCKED_BW_DAMPING_CNFG - T0 DPLL Locked Bandwidth & Damping Factor Configuration

efault Value: (7	6	5		4	3	2	1	0
T0_DPLL_LC ED_DAMPIN		T0_DPLL_L ED_DAMP		T0_DPLL_LOC KED_BW4	T0_DPLL_LOC KED_BW3	T0_DPLL_LOC KED_BW2	T0_DPLL_LOC KED_BW1	T0_DPLL_LOC KED_BW0
Bit	Name					Description		
7 - 5	T0_DPLL_LOCKED_DA	AMPING[2:0]	000: R 001: 1. 010: 2. 011: 5. 100: 10 101: 20 110, 11	5. (default)).). 1: Reserved.		\leq		
4 - 0	T0_DPLL_LOCKED.	_BW[4:0]	00000: 0001: 00010: 00101: 00101: 00110: 00111: 01000: 01011: 01010: 01011: 01101: 01111: 10000: 10001:	8 Hz. 18 Hz. 35 Hz.	andwidth for TO DPL	μ.		
$\langle $								

T0_BW_OVERSHOOT_CNFG - T0 DPLL Bandwidth Overshoot Configuration

Address: 59H Type: Read / Wri Default Value: 1>										
7	6	5	4	3	2	1	0			
AUTO_BW_S	EL -	•	•	T0_LIMT	-	-	· ·			
Bit	Name			Descrip	tion					
7	AUTO_BW_SEL	This bit determines whe 0: The starting and acqu regardless of the T0 DP 1: The starting, acquisiti stages. (default)	isition bandwidths LL locking stage.	/ damping factors are r	not used. Only the l	ocked bandwidth /				
6 - 4	-	Reserved.								
3	T0_LIMT	0: Not frozen.	his bit determines whether the integral path value is frozen when the T0 DPLL hard limit is reached. : Not frozen. : Frozen. It will minimize the subsequent overshoot when T0 DPLL is pulling in. (default)							
2 - 0	-	Reserved.								

PHASE_LOSS_COARSE_LIMIT_CNFG - Phase Loss Coarse Detector Limit Configuration *

Type:	ess: 5AH Read / Write It Value: 100001	01											
	7	6		5	4	3		2	1	0			
	ARSE_PH_L S_LIMT_EN	WIDE_EN		MULTI_PH_APP	MULTI_PH_8K_ 4K_2K_EN	_ PH_LOS_CO RSE_LIMT		_LOS_COA SE_LIMT2	PH_LOS_COA RSE_LIMT1	PH_LOS_COA RSE_LIMT0			
Bit	Na	me				D	escription						
7	COARSE_PH_	LOS_LIMT_EN	1: Enabled. (default)										
6	WIDE	_EN		r to the description of									
5	MULTI_F	PH_APP	0: Lin 1: Lin on th clock PH_L	s bit determines whether the PFD output of T0/T4 DPLL is limited to ±1 UI or is limited to the coarse phase limit. Limited to ±1 UI. (default) Limited to the coarse phase limit. When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase limit depends the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits; when the selected input ck is of other frequencies than 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the _LOS_COARSE_LIMT[3:0] bits. Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH) for details.									
			This bit, together with the WIDE_EN bit (b6, 5AH) and the PH_LOS_COARSE_LIMT[3:0] bits (b3~0, 5 coarse phase limit when the selected input clock is of 2 kHz, 4 kHz or 8 kHz. When the selected input clock cies than 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_ bits. Selected Input Clock MULTI_PH_8K_4K_2K_EN WIDE_EN Coarse Phase Lim										
4	MULTI_PH_8	K / K 2 K EN				0	don't-care		±1 UI				
4		_4I_2I_LI\		2 kHz, 4 kHz or 8	kHz		0		±1 UI				
						1	1	set by the	PH_LOS_COARSE_ (b3~0, 5AH).	LIMT[3:0] bits			
				other than 2 kHz	1		0		±1 UI				
				kHz and 8 kHz		on't-care	1	set by the	PH_LOS_COARSE_ (b3~0, 5AH).	_LIMT[3:0] bits			
3 - 0	PH_LOS_COAI	RSE_LIMT[3:0]	MUL ¹ 0000 0001 0010 0100 0101 0110 0111: 1000	TI_PH_8K_4K_2K_ : ±1 UI. : ±3 UI. : ±7 UI. : ±15 UI.	EN bit (b4, 5AH)		used only	in some c	ases. Refer to th	e description of the			

PHASE_LOSS_FINE_LIMIT_CNFG - Phase Loss Fine Detector Limit Configuration *

Address: 5BH Type: Read / Wri Default Value: 10										
7	6	5	4	3	2	1	0			
FINE_PH_LOS LIMT_EN	^{S_} FAST_LOS_SW			-	PH_LOS_FINE _LIMT2	PH_LOS_FINE _LIMT1	PH_LOS_FINE _LIMT0			
Bit	Name									
7	FINE_PH_LOS_LIMT_EN	0: Disabled.	Description his bit controls whether the occurrence of the fine phase loss will result in the T0/T4 DPLL being unlocked. Disabled. Enabled. (default)							
6	FAST_LOS_SW	path. This bit controls w 0: Does not result	whether the occurrer in the T0 DPLL bei 70/T4 DPLL being u	nce of the fast loss ing unlocked. T0 D	will result in the T0/T PLL will enter Temp-F	4 DPLL being unlock Holdover mode autor				
5 - 3	-	Reserved.								
2 - 0	PH_LOS_FINE_LIMT[2:0]	These bits set a fi 000: 0. 001: ± (45 ° ~ 90 010: ± (90 ° ~ 180 011: ± (180 ° ~ 36 100: ± (20 ns ~ 29 101: ± (60 ns ~ 69 110: ± (120 ns ~ 7 111: ± (950 ns ~ 9	°). 0°). (default) 50°). 5 ns). 5 ns). 125 ns).)						

T0_HOLDOVER_MODE_CNFG - T0 DPLL Holdover Mode Configuration

Address: 5CH Type: Read / W Default Value: (
7	6		5	4		3		2		1	0	
MAN_HOLD ER	OV AUTO_AVG	FAS	ST_AVG	READ_	AVG	TEMP_HO VER_MOI		TEMP_HOLDO VER_MODE0			•	
Bit	Name						C	Description				
7	MAN_HOLDOVER		Refer to the	Refer to the description of the FAST_AVG bit (b5, 5CH).								
6	AUTO_AVG			•		AST_AVG bit	•					
5	FAST_AVG	quency offse	MAN_HOLDOVER AUTO_AVG bit (b6, 5CH) and the MAN_HOLDOVER bit (b7, 5CH), determined in T0 DPLL Holdover Mode. MAN_HOLDOVER AUTO_AVG FAST_AVG Frequency Offset Acquiring Method in T0 DPLL Holdover Mode. 0 don't-care Automatic Instantaneous						cquiring Method			
			(1		1 don't		0 1	Automatic Instantaleous Automatic Slow Averaged (default) Automatic Fast Averaged Manual			
4	READ_AVG		(5FH ~ 5DH 0: The value (default) 1: The value The value is	This bit controls the holdover frequency offset reading, which is read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH). (5FH ~ 5DH). (0: The value read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH) is equal to the one written to them.								
3 - 2	TEMP_HOLDOVER_MOD	DE[1:0]	These bits determine the frequency offset acquiring method in T0 DPLL Temp-Holdover Mode. 00: The method is the same as that used in T0 DPLL Holdover mode.									
1 - 0	-		Reserved.									

T0_HOLDOVER_FREQ[7:0]_CNFG - T0 DPLL Holdover Frequency Configuration 1

Address: 5DH Type: Read / Write Default Value: 0000	0000									
7	6	5	4	3	2	1	0			
T0_HOLDOVER _FREQ7	T0_HOLDOVER _FREQ6	T0_HOLDOVER _FREQ5	T0_HOLDOVE R_FREQ4	T0_HOLDOVE R_FREQ3	T0_HOLDOVE R_FREQ2	T0_HOLDOVE R_FREQ1	T0_HOLDOVE R_FREQ0			
Bit	Name			De	scription					
7 - 0 TC	7 - 0 T0_HOLDOVER_FREQ[7:0] Refer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH).									

T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Configuration 2

T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Configuration 3

Address: 5FH Type: Read / Wri Default Value: 00									
7	6		5	4	3	2	1	0	
T0_HOLDOVE _FREQ23	T0_HOLDOVER _FREQ23 T0_HOLDOVER _FREQ22 T0_HOLDOVER _FREQ22 T0_HOLDOVER _FREQ21 T0_HOL _FREQ21 R_FRE				T0_HOLDOVE R_FREQ19	T0_HOLDOVE R_FREQ18	T0_HOLDOVE R_FREQ17	T0_HOLDOVE R_FREQ16	
Bit	Name				Description				
7 - 0	T0_HOLDOVER_FREQ	[23:16]	In T0 DPLL I ally; the valu	The T0_HOLDOVER_FREQ[23:0] bits represent a 2's complement signed integer. In T0 DPLL Holdover mode, the value written to these bits multiplied by 0.000011 is the frequency offset set man Illy; the value read from these bits multiplied by 0.000011 is the frequency offset automatically slow or fast ave liged or manually set, as determined by the READ_AVG bit (b4, 5CH) and the FAST_AVG bit (b5, 5CH).					

T4_DPLL_APLL_PATH_CNFG - T4 DPLL & APLL Path Configuration

7	6	5	4	3	2	1	0		
T4_APLL_P 3	ATH T4_APLL_PA TH2	T4_APLL_PA TH1	T4_APLL_PA TH0	T4_GSM_GPS_16 E1_16T1_SEL1	T4_GSM_GPS_16 E1_16T1_SEL0	T4_12E1_24T1_ E3_T3_SEL1	T4_12E1_24T1_ E3_T3_SEL0		
Bit	Name		Description						
7 - 4	T4_APLL_PAT	(((((((((((((((((((2000: The output of 2001: The output of 2001: The output of 2010: The output of 2010: The output of 2010: The output of 2011: The output of 2011: The output of 1000: T0 ETH path. 1100: T4 ETH path. 1101~1111: Reserve	ed.	E3/T3 path. path. /16E1/16T1 path. path. (default) E3/T3 path. path. GE1/16T1 path.		>		
3 - 2	T4_GSM_GPS_16E1_	(16T1_SEL[1:0] -	These bits select an output clock from the T4 DPLL GSM/GPS/16E1/16T1 path. 00: 16E1. 01: 16T1.						
1 - 0	T4_12E1_24T1_E3_	_T3_SEL[1:0]	00: 12E1. 01: 24T1. 10: E3. 11: T3.	n output clock from the f the T4_12E1_24T1_E			T/SDH pin during rese		

T4_DPLL_LOCKED_BW_DAMPING_CNFG - T4 DPLL Locked Bandwidth & Damping Factor Configuration

Address: 61H Type: Read / Wri Default Value: 01								
7	6	5	4		3	2	1	0
T4_DPLL_LOO ED_DAMPING		T4_DPLL_L ED_DAMP			-	•	T4_DPLL_LOC KED_BW1	T4_DPLL_LOC KED_BW0
Bit	Name					Description		
7 - 5	T4_DPLL_LOCKED_D/	amping[2:0]	These bits set the loc 000: Reserved. 001: 1.2. 010: 2.5. 011: 5. (default) 100: 10. 101: 20. 110, 111: Reserved.	ked damping fa	actor for T	4 DPLL.		Y
4 - 2	-		Reserved.					
1 - 0	T4_DPLL_LOCKED	_BW[1:0]	These bits set the loc 00: 18 Hz. (default) 01: 35 Hz. 10: 70 Hz. 11: 560 Hz.	ked bandwidth	for T4 DF	PLL.		

CURRENT_DPLL_FREQ[7:0]_STS - DPLL Current Frequency Status 1 *

Address: 62H Type: Read Default Value: 00	000000		\mathbf{N}	•						
7	6	5	4	3	2	1	0			
CURRENT_DI	P CURRENT_DP LL_FREQ6	CURRENT_DP LL_FREQ5	CURRENT_DP LL_FREQ4	CURRENT_DP LL_FREQ3	CURRENT_DP LL_FREQ2	CURRENT_DP LL_FREQ1	CURRENT_DP LL_FREQ0			
Bit	Name	1	Description							
7 - 0	CURRENT_DPLL_FR	EQ[7:0] Refer to th	Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H).							

CURRENT_DPLL_FREQ[15:8]_STS - DPLL Current Frequency Status 2 *

Address: 63H Type: Read Default Value: 00	0000000									
7	6	5	4	3	2	1	0			
CURRENT_D LL_FREQ15		CURRENT_DP LL_FREQ13	CURRENT_DP LL_FREQ12	CURRENT_DP LL_FREQ11	CURRENT_DP LL_FREQ10	CURRENT_DP LL_FREQ9	CURRENT_DP LL_FREQ8			
Bit Name Description										
7 - 0	CURRENT_DPLL_FRE	EQ[15:8] Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H).								

CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3 *

Address: 64H Type: Read Default Value: (0000000						
7	6	5	4	3	2	1	0
CURRENT_ LL_FREQ2		CURRENT_DP LL_FREQ21	CURRENT_DP LL_FREQ20	CURRENT_DP LL_FREQ19	CURRENT_DP LL_FREQ18	CURRENT_DP LL_FREQ17	CURRENT_DP LL_FREQ16
Bit	Name			[Description		
7 - 0	CURRENT_DPLL_FRE		.000011, the current				ue in these bits is mul- ect to the master clock

DPLL_FREQ_SOFT_LIMIT_CNFG - DPLL Soft Limit Configuration

Address: 65H Type: Read / V Default Value:		100					,		
7		6	5	4	3	2	1	0	
FREQ_LIM H_LOS	_	DPLL_FREQ_S OFT_LIMT6	DPLL_FREQ_S OFT_LIMT5	DPLL_FREQ_S OFT_LIMT4	DPLL_FREQ_S OFT_LIMT3	DPLL_FREQ_S OFT_LIMT2	DPLL_FREQ_S OFT_LIMT1	DPLL_FREQ_S OFT_LIMT0	
Bit		Name			D	escription			
7	F	REQ_LIMT_PH_LOS	0: Disabled.	This bit determines whether the T0/T4 DPLL in hard alarm status will result in its being unlocked. 0: Disabled. 1: Enabled. (default)					
6 - 0	DPLL	_FREQ_SOFT_LIMT	[6:0] ppm will be		•	is multiplied by 0.724	I, the DPLL soft limit	for T0 and T4 paths in	

DPLL_FREQ_HARD_LIMIT[7:0]_CNFG - DPLL Hard Limit Configuration 1

Address: 66H Type: Read / Write Default Value: 101010	11)					
7	6	5	4	3	2	1	0
DPLL_FREQ_H ARD_LIMT7	DPLL_FREQ_H ARD_LIMT6	DPLL_FREQ_H ARD_LIMT5	DPLL_FREQ_H ARD_LIMT4	DPLL_FREQ_H ARD_LIMT3	DPLL_FREQ_H ARD_LIMT2	DPLL_FREQ_H ARD_LIMT1	DPLL_FREQ_H ARD_LIMT0
Bit	Name				Description		
7 - 0 DPL	L_FREQ_HARD_LI	MT[7:0] Refer to the	e description of the D	DPLL_FREQ_HARD	_LIMT[15:8] bits (b7	~0, 67H).	

DPLL_FREQ_HARD_LIMIT[15:8]_CNFG - DPLL Hard Limit Configuration 2

Address: 67H Type: Read / Wri Default Value: 00							
7	6	5	4	3	2	1	0
DPLL_FREQ_ ARD_LIMT15		DPLL_FREQ_H ARD_LIMT13	DPLL_FREQ_H ARD_LIMT12	DPLL_FREQ_H ARD_LIMT11	DPLL_FREQ_H ARD_LIMT10	DPLL_FREQ_H ARD_LIMT9	DPLL_FREQ_H ARD_LIMT8
Bit	Name				Description		
7 - 0	DPLL_FREQ_HARD_LIMT[15:0] bits represent an unsigned integer. If the value is multiplied by 0.0014, the DPLL_FREQ_HARD_LIMT[15:8] DPLL hard limit for T0 and T4 paths in ppm will be gotten. The DPLL hard limit is symmetrical about zero. The DPLL hard limit is symmetrical about zero.						

CURRENT_DPLL_PHASE[7:0]_STS - DPLL Current Phase Status 1 *

Address: 68H Type: Read Default Value: 00	000000								
7	6	5	5 4 3 2 1 0						
CURRENT_PI _DATA7	H CURRENT_PH _DATA6	CURRENT_PH _DATA5							
D'4	Nama								
Bit	Name		Description						
7 - 0	CURRENT_PH_DATA	[7:0] Refer to the d	Refer to the description of the CURRENT_PH_DATA[15:8] bits (b7~0, 69H).						

CURRENT_DPLL_PHASE[15:8]_STS - DPLL Current Phase Status 2 *

Address: 69H Type: Read Default Value: 00000	000						
7	6	5	4	3	2	1	0
CURRENT_PH _DATA15	CURRENT_PH _DATA14	CURRENT_PH _DATA13	CURRENT_PH _DATA12	CURRENT_PH _DATA11	CURRENT_PH _DATA10	CURRENT_PH _DATA9	CURRENT_PH _DATA8
Bit	Name				escription		
7 - 0 CU	RRENT_PH_DATA[1	5:8] The CURREN averaged phase	T_PH_DATA[15:0] b se error of the T0/T4	its represent a 2's co DPLL feedback with	omplement signed in h respect to the select	teger. If the value is cted input clock in ns	multiplied by 0.61, the will be gotten.

T0_T4_APLL_BW_CNFG - T0 / T4 APLL Bandwidth Configuration

	0011011						
7	6	5	4	3	2	1	0
-	·	T0_APLL_BW2	T0_APLL_BW1	T0_APLL_BW0	T4_APLL_BW2	T4_APLL_BW1	T4_APLL_BW0
Bit	Name			Descri	ption		
7 - 6	-	Reserved.					<i>v</i>
5 - 3		These bits set the band 000 - 010: Reserved 011: 100 KHz. 100: 200 KHz. 101: 500 KHz. 110: 1 MHz. 111: 2 MHz.	width for T0 APLL.		\leq		
2 - 0		These bits set the band 000 - 010: Reserved 011: 100 KHz. 100: 200 KHz. 101: 500 KHz. 110: 1 MHz. 111: 2 MHz.	width for T4 APLL.	5			

7.2.8 OUTPUT CONFIGURATION REGISTERS

OUT1_FREQ_CNFG - Output Clock 1 Frequency Configuration

Address: 6DH Type: Read / Wri Default Value: 00										
7	6	5	4	3	2	1	0			
OUT1_PATH_ EL3	S OUT1_PATH_S EL2	OUT1_PATH_S EL1								
Bit	Name		Description							
7 - 4	OUT1_PATH_SEL[3:0]	0011: T0 DPLL ET 0100: The output of 0101: The output of 0110: The output of 0111: The output of 0111: The output of 1000 ~ 1010: The 1011: T4 DPLL ET 1100: The output of 1110: The output of 1110: The output of 1111: The output of	output of T0 APLL. H path. of T0 DPLL 77.76 M of T0 DPLL 12E1/24 of T0 DPLL 16E1/16 of T0 DPLL GSM/OE output of T4 APLL. H path. of T4 DPLL 77.76 M of T4 DPLL 12E1/24 of T4 DPLL 16E1/16 f T4 DPLL GSM/GF	Hz path. T1/E3/T3 path. T1 path. 3SAI/16E1/16T1 path Hz path. T1/E3/T3 path. T1 path. PS/16E1/16T1 path.	n.					
3 - 0	OUT1_DIVIDER[3:0]	The output frequent (selected by the C please refer to Tab	ncy is determined b DUT1_PATH_SEL[3:	0] bits (b7~4, 6DH)) factor selection. If the	. If the signal is deri	ived from one of the	or T0/T4 APLL output T0/T4 DPLL outputs, output, please refer to			

()

OUT2_FREQ_CNFG - Output Clock 2 Frequency Configuration

Address: 6EH Type: Read / Writ Default Value: 00									
7	6	5	4	3	2	1	0		
OUT2_PATH_ EL3	S OUT2_PATH_S EL2	OUT2_PATH_S EL1	OUT2_PATH_S EL0	OUT2_DIVIDER 3	OUT2_DIVIDER 2	OUT2_DIVIDER 1	OUT2_DIVIDER 0		
Bit	Name		Description						
7 - 4	OUT2_PATH_SEL[3:0]	1000 ~ 1010: The o 1011: T4 DPLL ETH 1100: The output of 1101: The output of 1110: The output of 1111: The output of	utput of T0 APLL. (path. T0 DPLL 77.76 MF T0 DPLL 12E1/24T T0 DPLL 16E1/16T T0 DPLL GSM/OB3 utput of T4 APLL. I path. T4 DPLL 77.76 MF T4 DPLL 12E1/24T T4 DPLL 16E1/16T T4 DPLL GSM/GPS	Iz path. 17/E3/T3 path. 71 path. SAI/16E1/16T1 path. Iz path. 17/E3/T3 path. 1 path. 5/16E1/16T1 path.					
3 - 0	OUT2_DIVIDER[3:0]	(selected by the Ol	cy is determined by JT2_PATH_SEL[3:0 24 for the division	the division factor a bits (b7~4, 6EH)). factor selection. If th	If the signal is deriv	ved from one of the	or T0/T4 APLL output T0/T4 DPLL outputs, output, please refer to		

.0.

OUT3_FREQ_CNFG - Output Clock 3 Frequency Configuration

Address: 6FH Type: Read / Wri Default Value: 00										
7	6	5	4	3	2	1	0			
OUT3_PATH_ EL3	S OUT3_PATH_S EL2	OUT3_PATH_S EL1								
Bit	Name		Description							
7 - 4	OUT3_PATH_SEL[3:0]	0011: T0 DPLL ET 0100: The output o 0101: The output o 0110: The output o 0111: The output o 1000 ~ 1010: The o 1011: T4 DPLL ET 1100: The output o 1101: The output o 1110: The output o 1111: The output o	butput of T0 APLL. (H path. f T0 DPLL 77.76 MF f T0 DPLL 12E1/24 f T0 DPLL 16E1/16 T0 DPLL GSM/OB butput of T4 APLL. H path. f T4 DPLL 77.76 MF f T4 DPLL 12E1/24 T4 DPLL 16E1/161 T4 DPLL GSM/GP	Hz path. T1/E3/T3 path. T1 path. SAI/16E1/16T1 path Hz path. T1/E3/T3 path. T1 path. S/16E1/16T1 path.						
3 - 0	OUT3_DIVIDER[3:0]	The output frequer (selected by the O please refer to Tab	UT3_PATH_SEL[3:	/ the division factor a 0] bits (b7~4, 6FH)). factor selection. If th	. If the signal is deri	ved from one of the	or T0/T4 APLL output T0/T4 DPLL outputs, output, please refer to			

.0.

OUT4_FREQ_CNFG - Output Clock 4 Frequency Configuration

Address:70H Type: Read / Wri Default Value: 00										
7	6	5	4	3	2	1	0			
OUT4_PATH_ EL3	S OUT4_PATH_S EL2	OUT4_PATH_S EL1	OUT4_PATH_S EL0	OUT4_DIVIDER 3	OUT4_DIVIDER 2	OUT4_DIVIDER 1	OUT4_DIVIDER 0			
Bit	Name		Description							
7 - 4	OUT4_PATH_SEL[3:0]	1000 ~ 1010: The c 1011: T4 DPLL ETH 1100: The output of 1101: The output of 1110: The output of 1111: The output of	utput of T0 APLL. (path. T0 DPLL 77.76 MF T0 DPLL 12E1/24T T0 DPLL 16E1/16T T0 DPLL GSM/OBS output of T4 APLL. 1 path. T4 DPLL 77.76 MF T4 DPLL 12E1/24T T4 DPLL 16E1/16T T4 DPLL GSM/GPS	Iz path. 17/E3/T3 path. 71 path. SAI/16E1/16T1 path. Iz path. 17/E3/T3 path. 1 path. 5/16E1/16T1 path.						
3 - 0	OUT4_DIVIDER[3:0]	(selected by the O please refer to Tabl	cy is determined by UT4_PATH_SEL[3:0	the division factor a bits (b7~4, 70H)). factor selection. If th	If the signal is deriv	ved from one of the	or T0/T4 APLL output T0/T4 DPLL outputs, output, please refer to			

.0.

OUT5_FREQ_CNFG - Output Clock 5 Frequency Configuration

Address:71H Type: Read / Wri Default Value: 00										
7	6	5	4	3	2	1	0			
OUT5_PATH_ EL3	S OUT5_PATH_S EL2	OUT5_PATH_S EL1	OUT5_PATH_S EL0	OUT5_DIVIDER 3	OUT5_DIVIDER 2	OUT5_DIVIDER 1	OUT5_DIVIDER 0			
Bit	Name		Description							
7 - 4		1000 ~ 1010: The o 1011: T4 DPLL ETH 1100: The output of 1101: The output of 1110: The output of 1111: The output of	utput of T0 APLL. (c path. T0 DPLL 77.76 MH T0 DPLL 12E1/24T T0 DPLL 16E1/16T T0 DPLL GSM/OBS utput of T4 APLL. path. T4 DPLL 77.76 MH T4 DPLL 12E1/24T T4 DPLL 16E1/16T T4 DPLL GSM/GPS	Iz path. 1/E3/T3 path. 5AI/16E1/16T1 path. Iz path. 1/E3/T3 path. 1 path. 5/16E1/16T1 path.						
3 - 0	OUT5_DIVIDER[3:0]	(selected by the Ol please refer to Table	cy is determined by JT5_PATH_SEL[3:0	the division factor a)] bits (b7~4, 71H)). factor selection. If th	If the signal is deriv	ved from one of the	or T0/T4 APLL output T0/T4 DPLL outputs, output, please refer to			

OUTPUT_INV2 - Output Clock 4 & 5 Invert Configuration

Address:72H Type: Read / Writ Default Value: 01		\square						
7	6	5	4	3	2	1	0	
-) -	-	-	-	OUT5_INV	OUT4_INV	
Bit	Name			Dese	cription			
7 - 2	•	Reserved.						
1	OUT5_INV	This bit determines wh 0: Not inverted. (defaul 1: Inverted.		OUT5 is inverted.				
0	OUT4_INV	This bit determines who 0: Not inverted. (defaul 1: Inverted.		OUT4 is inverted.				

OUTPUT_INV1 - Output Clock 1 ~ 3 Invert Configuration

Address:73H Type: Read / Wr Default Value: 0							
7	6	5	4	3	2	1	0
-	-	•	OUT3_INV	OUT2_INV	OUT1_INV	-	-
Bit	Name			Descri	ption		
7 - 5	-	Reserved.					
4	OUT3_INV	This bit determines whe 0: Not inverted. (default 1: Inverted.		OUT3 is inverted.			
3	OUT2_INV	This bit determines whe 0: Not inverted. (default 1: Inverted.		OUT2 is inverted.			
2	OUT1_INV	This bit determines whe 0: Not inverted. (default 1: Inverted.		OUT1 is inverted.			
1 - 0	-	Reserved.					

FR_MFR_SYNC_CNFG - Frame Sync & Multiframe Sync Output Configuration

7	6	5	4	3	2	1	0	
IN_2K_4K_8 NV	K_I 8K_EN	2K_EN	2K_8K_PUL_P OSITION	8K_INV	8K_PUL	2K_INV	2K_PUL	
Bit	Name				cription			
7	IN_2K_4K_8K_INV	This bit determir kHz or 8 kHz. 0: Not inverted. 1: Inverted.	nes whether the input (default)	clock is inverted bef	ore locked by the T)/T4 DPLL when the	e input clock is 2 kHz	
6	8K_EN		nes whether an 8 kHz SYNC_8K outputs low ault)		be output on FRSYN	NC_8K.		
5	2K_EN	0: Disabled. MFI	his bit determines whether a 2 kHz signal is enabled to be output on MFRSYNC_2K. : Disabled. MFRSYNC_2K outputs low. : Enabled. (default)					
4	2K_8K_PUL_POSITION	and the 2K_PUL mines the pulse 0: Pulsed on the	only when FRSYNC_{ bit (b0, 74H) is '1' or position referring to th falling edge of the star rising edge of the star	when the 8K_PUL the standard 50:50 dual and ard 50:50 dual and ard 50:50 duty cy	it (b2, 74H) and the uty cycle. /cle position. (defaul	2K_PUL bit (b0, 74		
3	8K_INV	This bit determin 0: Not inverted. 1: Inverted.	nes whether the outpu (default)	it on FRSYNC_8K is	inverted.			
2	8K_PUL	0: 50:50 duty cy	nes whether the outpu cle. (default) ulse width is defined			pulsed.		
1	2K_INV	This bit determin 0: Not inverted. 1: Inverted.	nes whether the outpu (default)	t on MFRSYNC_2K	is inverted.			
0	2K_PUL	0: 50:50 duty cy	nes whether the outpu cle. (default) ulse width is defined			or pulsed.		

7.2.9 PBO & PHASE OFFSET CONTROL REGISTERS

PHASE_MON_PBO	_CNFG - Phase	Transient Monitor	& PBO Configuration
---------------	---------------	--------------------------	---------------------

Address:78H Type: Read / Wri Default Value: 0>								
7	6	5	4	3	2	1	0	
IN_NOISE_W DOW	IN _	PH_MON_EN	PH_MON_PBO _EN	PH_TR_MON_L IMT3	PH_TR_MON_L IMT2	PH_TR_MON_L IMT1	PH_TR_MON_L IMT0	
Bit	Name		Description					
7	IN_NOISE_WINDOW	selected for T0/T4	This bit determines whether the input clock whose edge respect to the reference clock is outside ±5% is enabled to be selected for T0/T4 DPLL. D: Disabled. (default) 1: Enabled.					
6	-	Reserved.						
5	PH_MON_EN		itor the phase chan	DN_PBO_EN bit (b4 ges on the T0 select		nines whether the Pł	nase Transient Monitor	
4	PH_MON_PBO_EN	than a programm	able limit over an in PH_TR_MON_LIMT		1 seconds with the		input clock are greater ng '1'. The limit is pro-	
3 - 0	PH_TR_MON_LIMT[3:0]		ent an unsigned inte TR_MON_LIMT[3:	•	nsient Monitor limit i	n ns can be calculate	ed as follows:	

PHASE_OFFSET[7:0]_CNFG - Phase Offset Configuration 1

Address:7AH Type: Read / Write Default Value: 00000	000	\bigcirc					
7	6	5	4	3	2	1	0
PH_OFFSET7	PH_OFFSET6	PH_OFFSET5	PH_OFFSET4	PH_OFFSET3	PH_OFFSET2	PH_OFFSET1	PH_OFFSET0
Bit	Name			Descri	-		
7 - 0 PH_OFFSET[7:0] Refer to the description of the PH_OFFSET[9:8] bits (b1~0, 7BH).							
					·)·		

PHASE_OFFSET[9:8]_CNFG - Phase Offset Configuration 2

Address:7BH Type: Read / Wr Default Value: 02									
7	6	5	4	3	2	1	0		
PH_OFFSET N	_E _			-	•	PH_OFFSET9	PH_OFFSET8		
Bit	Name		Description						
7	PH_OFFSET_EN	This bit determines who If the device is configur 0: Disabled. (default) 1: Enabled. If the device is configur	ed as the Master, th	e input-to-output p	bhase offset:	enabled.	·		
6 - 2	-	Reserved.							
1 - 0		These bits represent a to adjust will be gotten.		ned integer. If the	value is multiplied by	0.61, the input-to-out	put phase offset in ns		

7.2.10 SYNCHRONIZATION CONFIGURATION REGISTERS

SYNC_MONITOR_CNFG - Sync Monitor Configuration

7	6	5	4	3	2	1	0
-	SYNC_MON_LIM	T2 SYNC_MON_LIMT1	SYNC_MON_LIMT0	•	-		-
Bit	Name			Description			
7	-	Reserved.					
6 - 4	SYNC_MON_LIMT[2:0]	These bits set the limit for th $000: \pm 1$ UI. $001: \pm 2$ UI. $010: \pm 3$ UI. (default) $011: \pm 4$ UI. $100: \pm 5$ UI. $101: \pm 6$ UI. $110: \pm 7$ UI. $111: \pm 8$ UI.	e external sync alarm.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
3 - 0	-	These bits must be set to '10	011'.				

SYNC_PHASE_CNFG - Sync Phase Configuration

7	6	5	4 3	2	1	0
-	•			•	SYNC_PH11	SYNC_PH10
Bit	Name		Desc	cription		
7 - 2	-	Reserved.				
1-0	SYNC_PH1[1:0]	These bits set the sampling of E nally, the falling edge of EX_SYN 00: On target. (default) 01: 0.5 UI early. 10: 1 UI late. 11: 0.5 UI late.				c output signal. N

8 THERMAL MANAGEMENT

The device operates over the industry temperature range -40°C ~ +85°C. To ensure the functionality and reliability of the device, the maximum junction temperature T_{jmax} should not exceed 125°C. In some applications, the device will consume more power and a thermal solution should be provided to ensure the junction temperature T_j does not exceed the T_{jmax} .

8.1 JUNCTION TEMPERATURE

Junction temperature T_j is the temperature of package typically at the geographical center of the chip where the device's electrical circuits are. It can be calculated as follows:

Equation 1:
$$T_i = T_A + P X \theta_{JA}$$

Where:

 θ_{JA} = Junction-to-Ambient Thermal Resistance of the Package

T_i = Junction Temperature

T_A = Ambient Temperature

P = Device Power Consumption

In order to calculate junction temperature, an appropriate θ_{JA} must be used. The θ_{JA} is shown in Table 44.

Power consumption is the core power excluding the power dissipated in the loads. Table 43 provides power consumption in special environments.

Table 43: Power Consumption and Maximum Junction Temperature

Package	Power Consumption (W)	Operating Voltage (V)	T _A (°C)	Maximum Junction Temperature (°C)
TQFP 100	1.9	3.6	85	125
TQFP/EQG100	1.9	3.6	85	125

8.2 EXAMPLE OF JUNCTION TEMPERATURE CALCULATION

Assume:

 $T_A = 85^{\circ}$ C $\theta_{JA} = 18.9^{\circ}$ C/W (TQFP/EQG100 Soldered & when airflow rate is 0 m/s)

$$P = 1.9W$$

Table 44: Thermal Data

The junction temperature T_i can be calculated as follows:

$$T_j = T_A + P X \theta_{JA} = 85^{\circ}C + 1.9W X 18.9^{\circ}C/W = 120.9^{\circ}C$$

The junction temperature of 120.9°C is below the maximum junction temperature of 125°C so no extra heat enhancement is required.

In some operation environments, the calculated junction temperature might exceed the maximum junction temperature of 125°C and an external thermal solution such as a heatsink is required.

8.3 HEATSINK EVALUATION

A heatsink is expanding the surface area of the device to which it is attached. θ_{JA} is now a combination of device case and heat-sink thermal resistance, as the heat flowing from the die junction to ambient goes through the package and the heatsink. θ_{JA} can be calculated as follows:

Equation 2: $\theta_{JA} = \theta_{JC} + \theta_{CH} + \theta_{HA}$

Where:

 θ_{JC} = Junction-to-Case Thermal Resistance θ_{CH} = Case-to-Heatsink Thermal Resistance θ_{HA} = Heatsink-to-Ambient Thermal Resistance

 θ_{CH} + θ_{HA} determines which heatsink and heatsink attachment can be selected to ensure the junction temperature does not exceed the maximum junction temperature. According to Equation 1 and 2,

 θ_{CH} + θ_{HA} can be calculated as follows:

Equation 3: $\theta_{CH} + \theta_{HA} = (T_j - T_A) / P - \theta_{JC}$

Assume:

$$\begin{split} T_{j} &= 125^{\circ} C \; (T_{jmax}) \\ T_{A} &= 85^{\circ} C \\ P &= 1.9 \; W \\ \theta_{JC} &= 16.1^{\circ} C/W \; (TQFP/EQG100) \end{split}$$

 θ_{CH} + θ_{HA} can be calculated as follows:

 θ_{CH} + θ_{HA} = (125°C - 85°C) / 1.9W - 16.1°C/W = 5.0°C/W

That is, if a heatsink and heatsink attachment whose θ_{CH^+} θ_{HA} is below or equal to 5.0°C/W is used in such operation environment, the junction temperature will not exceed the maximum junction temperature.

Package	Pin Count	Thermal Pad	Յ <mark>յշ</mark> (°C/W)	Յ _{JB} (°C/W)	θ _{JA} (°C/W) vs A			Air Flow in n	ir Flow in m/s		
i denuge		merman aa	°JC (°,)	°JB (•,)	0	1	2	3	4	5	
TQFP100	100	No	11.0	34.2	39.3	36.2	34.3	33.5	32.9	32.6	
TQFP/EQG100	100	Yes/Exposed	16.1	34.2	35.8	31.1	29.5	28.6	27.9	27.4	
TQFP/EQG100	100	Yes/Soldered*	16.1	1.3	18.9	14.6	13.5	12.9	12.6	12.4	
*note: Simulated wit	h 3 x 3 array	of thermal vias.		•		•	•	•	•		

8.4 TQFP EPAD THERMAL RELEASE PATH

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 29. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

Figure 29. Assembly for Expose Pad thermal Release Path (Side View)

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as 'heat pipes'. The number of vias (i.e. 'heat pipes') are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1 oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guide-line only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadfame Base Package, Amkor Technology.

9 ELECTRICAL SPECIFICATIONS

9.1 ABSOLUTE MAXIMUM RATING

Table 45: Absolute Maximum Rating

Symbol	Parameter	Min	Мах	Unit
V _{DD}	Supply Voltage V _{DD}	-0.5	5.5	V
V _{IN}	Input Voltage (non-supply pins)		5.5	V
V _{OUT}	Output Voltage (non-supply pins)		5.5	V
Τ _Α	Ambient Operating Temperature Range	-40	85	0°
T _{STOR}	Storage Temperature	-50	150	°C
ESD Performance				
CDM Classification - Class II (JE				
HBM Classification - Class 2 (JE	ESD22-A114)			
, , , , , , , , , , , , , , , , , , ,	,			

9.2 RECOMMENDED OPERATION CONDITIONS

Table 46: Recommended Operation Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
V _{DD}	Power Supply (DC voltage) V _{DD}	3.135	3.3	3.465	V	
T _A	Ambient Temperature Range	-40		85	°C	
I _{DD}	Supply Current			305	mA	Exclude the loading
P _{TOT}	Total Power Dissipation			1.1	W	current and power

9.3 I/O SPECIFICATIONS

9.3.1 CMOS INPUT / OUTPUT PORT

Table 47: CMOS Input Port Electrical Characteristics

Parameter	Description	Min	Тур	Max	Unit	Test Condition
V _{IH}	Input Voltage High	2			V	
V _{IL}	Input Voltage Low			0.8	V	
I _{IN}	Input Current			10	μΑ	
V _{IN}	Input Voltage	-0.5		5.5	V	

Table 48: CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics

Parameter	Description	Min	Тур	Max	Unit	Test Condition
V _{IH}	Input Voltage High	2			V	
V _{IL}	Input Voltage Low			0.8	V	
PU	Pull-Up Resistor		44		KΩ	
I _{IN}	Input Current			±150	μA	
V _{IN}	Input Voltage	-0.5		5.5	V	

Table 49: CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics

Parameter	Description	Min	Тур	Max	Unit	Test Condition
V _{IH}	Input Voltage High	2			V	
V _{IL}	Input Voltage Low			0.8	V	
			60			other CMOS input port with internal pull-down resistor
PD	Pull-Down Resistor		60		KΩ	TRST and TCK pin
			60			A[6:0], AD[7:0] pins
				±150		other CMOS input port with internal pull-down resistor
I _{IN}	Input Current			±150	μΑ	TRST and TCK pin
				±150		A[6:0], AD[7:0] pins
V _{IN}	Input Voltage	-0.5		5.5	V	

Table 50: CMOS Output Port Electrical Characteristics

Application Pin	Parameter	Description	Min	Тур	Max	Unit	Test Condition
	V _{OH}	Output Voltage High	2.4		V _{DD}	V	I _{OH} = -8 mA
Output Clock	V _{OL}	Output Voltage Low			0.4	V	I _{OL} = 8 mA
Output Clock	t _R	Rise time			4	ns	15 pF
	t _F	Fall time			4	ns	15 pF
	V _{OH}	Output Voltage High	2.4		V _{DD}	V	I _{OH} = -4 mA
Other Output	V _{OL}	Output Voltage Low			0.4	V	I _{OL} = 4 mA
	t _R	Rise Time			15	ns	50 pF
	t _F	Fall Time			15	ns	50 pF

9.3.2 PECL / LVDS INPUT / OUTPUT PORT

9.3.2.1 PECL Input / Output Port

Figure 30. Recommended PECL Input Port Line Termination

Table 51: PECL Input / Output Port Electrical Characteristics

Parameter	Description	Min	Тур	Max	Unit	Test Condition
V _{IL}	Input Low Voltage, Differential Inputs ¹	V _{DD} - 2.5		V _{DD} - 0.5	V	
V _{IH}	Input High Voltage, Differential Inputs ¹	V _{DD} - 2.4		V _{DD} - 0.4	V	
V _{ID}	Input Differential Voltage	1		1.4	V	
V_{IL_S}	Input Low Voltage, Single-ended Input ²	V _{DD} - 2.4		V _{DD} - 1.5	V	
V_{IH_S}	Input High Voltage, Single-ended Input ²	V _{DD} - 1.3		V _{DD} - 0.5	V	
Ι _{ΙΗ}	Input High Current, Input Differential Voltage V_{ID} = 1.4 V			10	μΑ	
Ι _{ΙL}	Input Low Current, Input Differential Voltage V_{ID} = 1.4 V	-10			μΑ	F
V _{OL}	Output Voltage Low ³	1.15		1.75	V	
V _{OH}	Output Voltage High ³	1.95		2.55	V	
V _{OD}	Output Differential Voltage ³	0.65		0.85	V	
t _{RISE}	Output Rise time (20% to 80%)	150		300	pS	
t _{FALL}	Output Fall time (20% to 80%)	150		300	pS	
t _{SKEW}	Output Differential Skew			100	pS	

1. Assuming a differential input voltage of at least 100 mV. **2.** Unused differential input terminated to V_{DD} -1.4 V.

3. With 50 Ω load on each pin to V_DD-2 V, i.e. 82 Ω to GND and 130 Ω to V_DD.

9.3.2.2 LVDS Input / Output Port

Figure 32. Recommended LVDS Input Port Line Termination

Table 52: LVDS Input / Output Port Electrical Characteristics

Parameter	Description	Min	Тур	Max	Unit	Test Condition
V _{CM}	Input Common-mode Voltage Range	200	1200	2200	mV	
V _{DIFF}	Input Peak Differential Voltage	100		900	mV	
V _{IDTH}	Input Differential Threshold	-100		100	mV	
R _{TERM}	External Differential Termination Impedance	95	100	105	Ω	
V _{OH}	Output Voltage High	1150		1850	mV	R _{LOAD} = 100 Ω ± 1%
V _{OL}	Output Voltage Low	850		1350	mV	R _{LOAD} = 100 Ω ± 1%
V _{OD}	Differential Output Voltage	247	350	454	mV	R _{LOAD} = 100 Ω ± 1%
V _{OS}	Output Offset Voltage	1095		1405	mV	R _{LOAD} = 100 Ω ± 1%
R _O	Differential Output Impedance	80		120	Ω	V _{CM} = 1.0 V or 1.4 V
ΔR_0	R _O Mismatch between A and B			20	%	V _{CM} = 1.0 V or 1.4 V
ΔV_{OD}	Change in V _{OD} between Logic 0 and Logic 1			50	mV	R _{LOAD} = 100 Ω ± 1%
ΔV_{OS}	Change in V _{OS} between Logic 0 and Logic 1			50	mV	R _{LOAD} = 100 Ω ± 1%
I _{SA} , I _{SB}	Output Current			24	mA	Driver shorted to GND
I _{SAB}	Output Current			12	mA	Driver shorted togethe
t _{RISE}	Output Rise time (20% to 80%)	100		300	pS	R _{LOAD} = 100 Ω ± 1%
t _{FALL}	Output Fall time (20% to 80%)	100		300	pS	R _{LOAD} = 100 Ω ± 1%
tSKEW	Output Differential Skew			100	pS	R _{LOAD} = 100 Ω ± 1%

137

9.3.2.3 Single-Ended Input for Differential Input

This is a recommended and tested interface circuit to drive differential input with a single-ended signal.

Figure 34. Example of Single-Ended Signal to Drive Differential Input

 $Vth = V_{DD}^{*}[R2/(R1+R2)]$

For the example in Figure 34, R1 = R2, so Vth = $V_{DD}/2 = 1.65 V$

The suggested single-ended signal input:

 $V_{IHmax} = V_{DD}$

V_{ILmin} = 0 V

 V_{swing} = 0.6 V ~ V_{DD}

DC offset (Swing Center) = Vth/2 +/- V_{swing}*10%

9.4 JITTER PERFORMANCE

Table 53: Output Clock Jitter Generation (jitter measured on one differential output (OUT6 or OUT7) with all other outputs disabled)

Test Definition ¹	Output Frequency	RMS Typ	Note	Test Filter
25 MHz without T0 APLL	25 MHz	46 pS		12 kHz - 12.5 MHz
125 MHz with T0 APLL	125 MHz	22 pS		12 kHz - 20 MHz
156.25 MHz with T0 APLL	156.25 MHz	23 pS		12 kHz - 20 MHz
N x 2.048 MHz without APLL		46 pS		20 Hz - 100 kHz
N x 2.048 MHz with T0 APLL		45 pS		20 Hz - 100 kHz
N x 1.544 MHz without APLL		47 pS		10 Hz - 40 kHz
N x 1.544 MHz with T0 APLL		47 pS		10 Hz - 40 kHz
44.736 MHz without APLL	44.736 MHz	50 pS		100 Hz - 800 kHz
44.736 MHz with T0 APLL	44.736 MHz	43 pS		100 Hz - 800 kHz
34.368 MHz without APLL	34.368 MHz	43 pS		10 Hz - 400 kHz
34.368 MHz with T0 APLL	34.368 MHz	48 pS		10 Hz - 400 kHz
625 MHz with T0 APLL	625 MHz	25 pS		1.875 MHz - 20 MHz

Test Definition ¹	Output Frequency	RMS Typ	Note	Test Filter
	19.44 MHz	1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 pS)	12 kHz - 1.3 MHz
		1.9 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-6430 pS)	500 Hz to 1.3 MHz
		1.6 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 pS)	65 kHz to 1.3 MHz
OC-3 and STM-1	77.76 MHz	1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 pS)	12 kHz - 1.3 MHz
Chip T0 DPLL + T0 APLL) 19.44 /Hz, 77.76 MHz, 155.52 MHz out- ut		1.8 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-6430 pS)	500 Hz to 1.3 MHz
		1.6 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 pS)	65 kHz to 1.3 MHz
		1.6 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 pS)	12 kHz - 1.3 MHz
	155.52 MHz	1.8 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-6430 pS)	500 Hz to 1.3 MHz
		1.5 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 pS)	65 kHz to 1.3 MHz

Table 53: Output Clock Jitter Generation (jitter measured on one differential output (OUT6 or OUT7) with all other outputs disabled)

Table 53: Output Clock Jitter Generation	(jitter measured on one differential out	put (OUT6 or OUT7) with all other outputs disabled)

Test Definition ¹	Output Frequency	RMS Typ	Note	Test Filter
		1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 Ul p-p (1 Ul-1608 pS)	12 kHz - 5 MHz
	77.76 MHz	1.8 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-1608 pS)	1000 Hz to 5 MHz
		1.4 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-1608 pS)	250 kHz to 5 MHz
OC-12 and STM-4		1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-1608 pS)	12 kHz - 5 MHz
hip T0 DPLL + T0 APLL) 77.76 Hz, 155.52 MHz, 622.08 MHz out-	155.52 MHz	1.8 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-1608 pS)	1000 Hz to 5 MHz
		1.4 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-1608 pS)	250 kHz to 5 MHz
	622.08 MHz	1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-1608 pS)	12 kHz - 5 MHz
		1.8 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-1608 pS)	1000 Hz to 5 MHz
		1.4 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-1608 pS)	250 kHz to 5 MHz
		1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-401.878 pS)	12 kHz - 20 MHz
	155.52 MHz	1.7 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-401.878 pS)	5000 Hz to 20 MHz
OC-48 and STM-16		0.9 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-401.878 pS)	1 MHz to 20 MHz
Chip T0 DPLL + T0 APLL) 155.52 /IHz, 622.08 MHz output		1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-401.878 pS)	12 kHz - 20 MHz
	622.08 MHz	1.7 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-401.878 pS)	5000 Hz to 20 MHz
\sim		0.8 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p	1 MHz to 20 MHz

Table 54: Output Clock Jitter Generation (jitter measured on one CMOS output (OUT1 - OUT5) with all other outputs disabled)

	Output Frequency	RMS Typ	Note	Test Filter
25 MHz without T0 APLL	25 MHz	47 pS		12 kHz - 12.5 MHz
125 MHz with T4 APLL	125 MHz	24 pS		12 kHz - 20 MHz
156.25 MHz with T4 APLL	156.25 MHz	23 pS		12 kHz - 20 MHz
N x 2.048 MHz without APLL		41 pS		20 Hz - 100 kHz
N x 2.048 MHz with T0/T4 APLL		44 pS		20 Hz - 100 kHz
N x 1.544 MHz without APLL		43 pS		10 Hz - 40 kHz
N x 1.544 MHz with T0/T4 APLL		44 pS		10 Hz - 40 kHz
44.736 MHz without APLL	44.736 MHz	47 pS		100 Hz - 800 kHz
44.736 MHz with T0/T4 APLL	44.736 MHz	45 pS		100 Hz - 800 kHz
34.368 MHz without APLL	34.368 MHz	44 pS		10 Hz - 400 kHz
34.368 MHz with T0/T4 APLL	34.368 MHz	44 pS		10 Hz - 400 kHz
_		1.7 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 pS)	12 kHz - 1.3 MHz
	19.44 MHz	9.44 MHz 1.9 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-6430 pS)	500 Hz to 1.3 MHz
		1.7 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 pS)	65 kHz to 1.3 MHz
		1.8 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 pS)	12 kHz - 1.3 MHz
OC-3 and STM-1 Chip T0 DPLL + T0 APLL) 19.44 MHz, 7.76 MHz, 155.52 MHz output	77.76 MHz	1.9 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-6430 pS)	500 Hz to 1.3 MHz
		1.7 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 pS)	65 kHz to 1.3 MHz
		1.8 pS	GR-253-CORE and ITU-T G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 pS)	12 kHz - 1.3 MHz
	155.52 MHz	1.9 pS	ITU-T G.813 Option 1 limit 0.5 UI p-p (1 UI-6430 pS)	500 Hz to 1.3 MHz
		1.7 pS	ITU-T G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 pS)	65 kHz to 1.3 MHz

9.5 OUTPUT WANDER GENERATION

RENESAS

Figure 36. Output Wander Generation (MTIE)

			10		1.61 -	- 44	
E.	eci	trica	I S	nec	ITIC	atio	ons

9.6 **INPUT / OUTPUT CLOCK TIMING**

The inputs and outputs are aligned ideally. But due to the circuit delays, there is delay between the inputs and outputs.

Table 55: Input/Output Clock Timing ³

Symbol	Typical Delay ¹ (ns)	Peak to Peak Delay Variation ² (ns)
t ₁	8	1
t ₂	5	1
t ₃	5	1
t ₄	6.5	1.5
t ₅	5	1
Note:		

Typical delay provided as reference only.
 'Peak to Peak Delay Variation' is the delay variation that is guaranteed not to be exceeded for IN5 in Master/Slave operation.
 Tested when IN3 is selected.

RENESAS

Figure 38. Output Clock Timing

Table 56: Output Clock Timing

Symbol	Typical Delay (ns)	Peak to Peak Delay Variation (ns)
t ₁	2.0	1
t ₂	-1.0	2
t ₃	-1.0	2
t ₄	-2.0	2
t ₅	-2.0	2
t ₆	-2.5	2
t ₇	-2.5	2
t ₈	-2.0	2
tg	-2.0	2
t ₁₀	-1.5	2
t ₁₁	-1.5	2
t ₁₂	-1.5	2
t ₁₃	-0.5	1
t ₁₄	-1.0	1

RENESAS

Glossary DATASHEET

3G	 Third Generation
ADSL	 Asymmetric Digital Subscriber Line
APLL	 Analog Phase Locked Loop
ATM	 Asynchronous Transfer Mode
BITS	 Building Integrated Timing Supply
CMOS	 Complementary Metal-Oxide Semiconductor
DCO	 Digital Controlled Oscillator
DPLL	 Digital Phase Locked Loop
DSL	 Digital Subscriber Line
DSLAM	 Digital Subscriber Line Access MUX
DWDM	 Dense Wavelength Division Multiplexing
EPROM	 Erasable Programmable Read Only Memory
ЕТН	 Synchronous Ethernet System
GPS	 Global Positioning System
GSM	 Global System for Mobile Communications
liR	 Infinite Impulse Response
IP	 Internet Protocol
ISDN	 Integrated Services Digital Network
JTAG	 Joint Test Action Group
LPF	 Low Pass Filter
LVDS	 Low Voltage Differential Signal
MTIE	 Maximum Time Interval Error
MUX	 Multiplexer
OBSAI	 Open Base Station Architecture Initiative
OC-n	 Optical Carried rate, n = 1, 3, 12, 48, 192, 768; 51 Mbit/s, 155 Mbit/s, 622 Mbit/s, 2.5 Gbit/s, 10 Gbit/s, 40 Gbit/s.
РВО	 Phase Build-Out

RENESAS IDT82V3389 DATASHEET

PDH	 Plesiochronous Digital Hierarchy
PECL	 Positive Emitter Coupled Logic
PFD	 Phase & Frequency Detector
PLL	 Phase Locked Loop
RMS	 Root Mean Square
PRS	 Primary Reference Source
SDH	 Synchronous Digital Hierarchy
SEC	 SDH / SONET Equipment Clock
SMC	 SONET Minimum Clock
SONET	 Synchronous Optical Network
SSU	 Synchronization Supply Unit
STM	 Synchronous Transfer Mode
TCM-ISDN	 Time Compression Multiplexing Integrated Services Digital Network
TDEV	 Time Deviation
UI	 Unit Interval
WLL	 Wireless Local Loop

© 2019 Renesas Electronics Corporation

Index DATASHEET

A
Averaged Phase Error
В
Bandwidths and Damping Factors
C
Calibration
Coarse Phase Loss
Crystal Oscillator
Current Frequency Offset
D
DCO
Division Factor
DPLL Hard Alarm
DPLL Hard Limit
DPLL Operating Mode 33, 34 Free-Run mode 33, 34 Holdover mode 33, 34 Holdover mode 34, 35 Automatic Fast Averaged 34 Automatic Instantaneous 34 Automatic Slow Averaged 34 Manual 34 Locked mode 33 Lost-Phase mode 33 Pre-Locked mode 33 Pre-Locked mode 34
DPLL Soft Alarm
DPLL Soft Limit
E
External Sync Alarm
Fast Loss

Frequency Hard Alarm	ŕ
Frequency Hard Alarm Threshold	
Н	
Hard Limit	
Holdover Frequency Offset	3
1	
IIR	3
Input Clock Frequency	2
Input Clock Selection	
Automatic selection	25, 2
External Fast selection Forced selection	,
Internal Leaky Bucket Accumulator Bucket Size	
Decay Rate	
Lower Threshold	
Upper Threshold	2
L	
Limit	
LPF	
Μ	
Master / Slave Application	4
Master / Slave Configuration	
-	
Master Clock	
Microprocessor Interface	
Microprocessor Interface microprocessor interface EPROM Intel	
Microprocessor Interface microprocessor interface EPROM Intel Motorola	
Microprocessor Interface microprocessor interface EPROM Intel	
Microprocessor Interface microprocessor interface EPROM Intel Motorola Multiplexed	
Microprocessor Interface microprocessor interface EPROM Intel Motorola Multiplexed Serial	

PFD	
Phase Lock Alarm	27, 28
Phase Offset	
Phase-compared	26, 36
Phase-time	
Pre-Divider DivN Divider HF Divider Lock 8k Divider	20 20

Reference Clock	 23
S	
Selected Input Clock Switch	 28
Non-Revertive switch	29
Revertive switch	 28
State Machine	 32
V	
Validity	28

R

PACKAGE DIMENSIONS

◀

Figure 41. EQG100 Recommended Land Pattern with Exposed Pad (in Millimeters)

ORDERING INFORMATION

Revision History

E.h	
February 17, 2011	Initial Revision
March 3, 2011	Page 155, Ordering Information Table - deleted PNG package information.
May 31, 2011	Page 136, Table 51, PECL Input/Output Port Electrical Characteristics - corrected typo for VOH unit from mV to V.
March 23, 2012	Page 120, T0_T4_APLL_BW_CNFG - T0 / T4 APLL Bandwidth Configurartion section / Address: 6AH Table - Rows 5-3 and 2-0 deleted 10KHz, 20 KHz and 50 KHz in the Description column; and added 000 - 010: Reserved.
June 11, 2012	Page 65, ID[7:0] - Device ID 1 Default Value: 10010000 Page 66, ID[15:8] - Device ID 2 Default Value: 00110011
June 13, 2012	Page 14, Pin 90 (OUT1): deleted 312.5 MHz. Pin 93 (OUT2): changed description to read the same as OUT1. Pin 94 (OUT3): changed description to read the same as OUT1. Pins 34, 35 (OUT4_POS / _NEG) and Pins 36, 37 (OUT5_POS / _NEG) swapped descriptions.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/