
www.parallax.com/P2 ⬝ sales@parallax.com ⬝ support@parallax.com ⬝ +1 888-512-1024

Parallax Propeller 2 (P2X8C4M64P) Datasheet
The Propeller 2 is a multicore microcontroller for embedded systems that delivers high-speed parallel processing
with low current consumption in a small package. The Propeller's multiple processors enjoy full command of I/O
pins, the flexibility to change clock speed, the power to start and stop at will, and the ability to perform
simultaneous tasks in an independent or cooperative manner.

The Propeller 2 P2X8C4M64P microcontroller consists of 8 identical 32-bit processors (called cogs), each with
their own RAM, which connect to a common hub. The hub provides 512 KB of shared RAM, a CORDIC math solver,
and housekeeping facilities. The architecture supports 64 smart I/O pins, each capable of many autonomous
analog and digital functions. The Propeller 2's assembly language (PASM2) features per-instruction conditional
execution, special looping mechanisms, and pattern-based instruction skipping to encourage fast, compact code.

Part Number Legend

P2X 8C 4M 64P

Propeller 2 8 cogs (processors) 4 Mbit Hub RAM (512 KB) 64 smart I/O pins

There are three memory regions: Register RAM, Lookup RAM, and Hub RAM. Each cog has its own Register RAM
and Lookup RAM (collectively called Cog RAM), while the Hub RAM is shared by all cogs.

Propeller 2 (P2X8C4M64P) RAM Memory Configuration

Region Depth Width Program Counter
Address Range (Hex)

PASM Instruction D/S
Address Range (Hex)

Cog "Register" RAM 512 32 bits $00000..$001FF $000..$1FF

Cog "Lookup" RAM 512 32 bits $00200..$003FF $000..$1FF

Hub RAM 524,288 8 bits $00400..$7FFFF $00000..$7FFFF

FEATURES
Eight powerful 32-bit processors, each with:

● Access to all I/O pins, plus four fast DAC output channels and four fast ADC input channels
● 512 longs of dual-port Register RAM for code and fast variables
● 512 longs of dual-port Lookup RAM for code, streamer lookup, and variables
● Ability to execute code directly from Register RAM, Lookup RAM, and Hub RAM
● ~350 unique instructions for math, logic, timing, and control operations
● 2-clock execution for all math and logic instructions, including 16 x 16 multiply

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 1

https://www.parallax.com/propeller-2/
mailto:sales@parallax.com

● 6-clock custom-bytecode executor for interpreted languages
● Ability to stream Hub RAM and/or Lookup RAM to DACs and pins or HDMI modulator
● Ability to stream pins and/or ADCs to Hub RAM
● Live colorspace conversion using a 3 x 3 matrix with 8-bit signed/unsigned coefficients
● Pixel blending instructions for 8:8:8:8 data
● 16 unique event trackers that can be polled and waited upon
● 3 prioritized interrupts that trigger on selectable events
● Cog-to-cog attention signals for swift coordination
● Hidden debug interrupt for single-stepping, breakpoint, and polling
● 8-level hardware stack for fastest subroutine calls/returns and push/pop operations
● Carry and Zero flag

Central hub serving the processors with:

● 512 KB of contiguous RAM in a 20-bit address space
○ 32-bits-per-clock sequential read/write for all cogs, simultaneously
○ readable and writable as bytes, words, or longs in little-endian format
○ last 16 KB of RAM is write-protectable

● 32-bit, pipelined CORDIC solver with scale-factor correction
○ 32-bit x 32-bit unsigned multiply with 64-bit result
○ 64-bit / 32-bit unsigned divide with 32-bit quotient and 32-bit remainder
○ 64-bit → 32-bit square root
○ Rotate (X32, Y32) by Theta32 → (X32, Y32)
○ (Rho32, Theta32) → (X32, Y32) polar-to-cartesian
○ (X32, Y32) → (Rho32, Theta32) cartesian-to-polar
○ 32 → 5.27 unsigned-to-logarithm
○ 5.27 → 32 logarithm-to-unsigned
○ Cogs can start CORDIC operations every 8 clocks and get results 55 clocks later

● 16 semaphore bits with atomic read-modify-write operations
● 64-bit free-running counter which increments every clock, cleared on reset
● High-quality pseudo-random number generator (Xoroshiro128**), true-random seeded at start-up, updates

every clock, provides unique data to each cog and pin
● Mechanisms for starting, polling, and stopping cogs
● 16KB boot ROM

○ Loads into last 16 KB of Hub RAM on boot up
○ SPI loader for automatic startup from 8-pin flash or SD card
○ Serial loader for startup from host

■ Hex and Base64 download protocols
■ Interactive terminal P2 Monitor
■ Interactive terminal TAQOZ Forth

64 Smart I/O pins, each with:

● 8-bit, 120-ohm (3ns) and 1k-ohm DACs with 16-bit oversampling, noise, and high/low digital modes
● Delta-sigma ADC with 5 ranges, 2 sources, and VIO/GIO calibration
● Several ADC sampling modes: automatic 2n SINC2, adjustable SINC2/SINC3, oscilloscope
● Logic, Schmitt, pin-to-pin-comparator, and 8-bit-level-comparator input modes
● 2/3/5/8-bit-unanimous input filtering with selectable sample rate
● Incorporation of inputs from relative pins, -3 to +3
● Negative or positive local feedback, with or without clocking
● Externally powered in blocks of 4 for clean analog Vdd reference
● Separate drive modes for high and low output: logic / 1.5 k / 15 k / 150 k / 1 mA / 100 µA / 10 µA / float

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 2

● Programmable 32-bit clock output, transition output, NCO/duty output
● Triangle/sawtooth/SMPS PWM output, 16-bit frame with 16-bit prescaler
● Quadrature decoding with 32-bit counter, both position and velocity modes
● 16 different 32-bit measurements involving one or two signals
● USB full-speed and low-speed (via odd/even pin pairs)
● Synchronous serial transmit and receive, 1 to 32 bits, up to clock/2 baud rate
● Asynchronous serial transmit and receive, 1 to 32 bits, up to clock/3 baud rate

Six clock modes, all under software control with glitch-free switching between sources:

● Internal 20+ MHz RC oscillator, nominally ~24 MHz, used as initial clock source
● Crystal oscillator with internal loading caps for 7.5 pF/15 pF crystals, can feed PLL
● Clock input, can feed PLL
● Fractional PLL with 1..64 crystal divider --> 1..1024 VCO multiplier --> optional (1..15)*2 VCO post-divider
● Internal ~20 kHz RC oscillator for low-power operation (130 µA)
● Clock can be stopped for lowest power until reset (100 µA, due to leakage)

Power requirements:

● Core: 1.8 VDC, powered via VDD pins
● Smart I/O pins: 3.3 VDC, powered in groups of 4 via VIO pins

Physical characteristics:

● Package type: Exposed-pad TQFP-100
● Dimensions: 14 x 14 mm
● Operating temperature range: AEC-Q100 Level 2 (-40 to +221 °F, -40 to +105 °C)
● Moisture Sensitivity Level (MSL) 3 (168 hours)

Table of Contents
FEATURES 1

PREFACE 5

HARDWARE 5

Pin Descriptions 5

Hardware Connections 7

Minimal Connections 7

External Crystal 8

Reset Switch 8

SPI Flash Boot Memory 8

MicroSD Boot Memory 9

Dual Boot Memory 10

OPERATION 11

HOST COMMUNICATION 11

P2 Monitor 11

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 3

TAQOZ 12

SYSTEM ORGANIZATION 12

Cogs 13

Cog RAM 13

Register RAM 13

Lookup RAM 14

Execution 14

Starting And Stopping Cogs 15

Cog Attention 15

Hub 16

Hub RAM 16

Cog-to-Hub RAM Interface 16

System Clock 17

Locks 19

CORDIC Solver 20

Smart I/O Pins 21

Direction and State 21

I/O Pin Timing 21

Pin Modes 22

I/O Pin Circuit 26

Equivalent Schematics for Each Unique I/O Pin Configuration 27

Smart Modes 33

Rebooting 35

PROPELLER 2 ASSEMBLY LANGUAGE (PASM2) IN BRIEF 36

SYSTEM CHARACTERISTICS 47

Absolute Maximum Electrical Ratings 47

DC Characteristics 47

AC Characteristics 48

PACKAGING 49

CHANGE LOG 50

PARALLAX INCORPORATED 50

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 4

PREFACE
This datasheet provides a condensed description of the concepts, features, and hardware of the Propeller 2
multicore microcontroller. It serves as a feature reference beyond that of the single-page spec sheet.

For additional documentation and resources, including programming tools, visit www.parallax.com/P2. The latest
version of this datasheet, along with links to a commentable Google Doc version, are available from the
Documentation section. In addition, there are links to more in-depth references for the Propeller 2 and its Spin2
and PASM2 languages, which may include commentable Google Docs.

HARDWARE
The Propeller 2 microcontroller's pin layout and simplified connections are described here for conceptual
reference. For most prototyping uses, Parallax recommends a pre-made Propeller 2 circuit, like the P2 Edge
Module (#P2-EC) or Propeller 2 Evaluation Board (#64000) that includes all the recommended connections and
layout design rules. Visit the Propeller 2 section of the Parallax online store for chips, evaluation boards,
accessories, and developer starter kit bundles.

Pin Descriptions
The Propeller 2 (P2X8C4M64P) features notable power and thermal considerations in its pinout:

● A large exposed under-side pad serves both as a ground reference (GND) for the core and I/O pins as well
as a heatsink to cool the silicon

● Multiple power pins (VDD) spaced regularly around the chip allow clean core power references across the
entire chip

● Multiple I/O power pins (Vxxyy) spaced regularly around the chip provide flexibility for the isolated,
ultra-stable power references required for clean DAC and ADC I/O operations

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 5

http://www.parallax.com/P2

Pin Descriptions

Pin Name Direction V (typ) Description

GND - 0 Exposed Pad (underside of chip); ground for core and smart pins – internally
connected to exposed pad. Connect to ground plane for thermal dissipation.

TEST I 0 Tied to ground

VDD - 1.8 Core power

P0-63 I/O 0 to 3.3 Smart pins. P58-P63 serve in the boot process, then general purpose after.

Vxxyy - 3.3 Power for smart pins in groups of 4: Pxx through Pyy

XO O -
Crystal Output. Provides feedback for an external crystal, or may be left
disconnected depending on CLK Register settings. No external resistors or
capacitors are required.

XI I -

Crystal Input. Can be connected to the output of crystal/oscillator pack (with XO
left disconnected), or to one leg of crystal (with XO connected to the other leg of
crystal or resonator) depending on CLK Register settings. No external resistors
or capacitors are required.

RESN I 0
Reset (active low). When low, resets the Propeller: all cogs disabled and I/O
pins floating. Propeller restarts 3 ms after RESn transitions from low to high.
Connect to a resistor to pull up to 3.3 V.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 6

Hardware Connections

Minimal Connections
The Propeller 2 is programmed via four wires and may optionally include an external crystal, reset switch, SPI
Flash and/or microSD memory.

Minimal Propeller 2 Connections

● All VDD pins must be connected to a single 1.8 V supply.
● All Vxxyy pins must be connected to 3.3 V. The Vxxyy pins can share a common 3.3 V supply, or be split

across multiple supplies. Typically those Vxxyy pins powering analog and digital functions would have
different supplies.

● All VDD and all Vxxyy pins must have closely-located bypass caps to GND (not shown).
● The common GND (EP) pad under the chip is also used for thermal dissipation. It is recommended to

connect the GND pad to a solid ground plane with multiple vias.
● TEST pin must always be connected to GND.
● RESN (reset) pin must always have a pullup resistor to 3.3 V (typically 10 KΩ).
● Programming and debugging is achieved with a serial interface, such as the Parallax PropPlug #32201.
● Minimal connections assume no external clock source connected to XI/XO– the internal clock must be

used (adjust source code to match). Refer to the AC Characteristics table for further information.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 7

External Crystal
The internal clock reference is good for very low power applications, but is also
fairly low accuracy.

For applications that require higher accuracy (ex: handling high speed data) an
external clock source is connected to XI/XO.

Typically a crystal would be connected between XI and XO, but an external clock
source could also be connected to XI only, with common options including a
clock source generator, oscillator, or MEMS resonator.

Refer to the AC Characteristics table for further information.

Reset Switch
Reset Switch can be optionally included and is a convenient way to
restart the Propeller 2 during development or in a final product.

The switch drives the Propeller 2 reset pin (RESN) to ground, and while
held low, the Propeller 2 remains in a dormant, low-power state.

Note that the RESN pin must always be pulled high (to 3.3 V) with an
external resistor, which is shown in the Minimal Connections diagram.

SPI Flash Boot Memory

SPI Flash Boot Memory Connections

● Refer to all requirements and recommendations for Minimal Connections
● When the Propeller 2 starts up (or is reset) with this circuit, there will be a serial programming window of

100 ms, then automatic boot from SPI flash. If SPI flash boot fails, then a further serial window of 60
seconds will be followed by shutdown.

● Each Propeller 2 firmware image requires up to 512 KB. A single SPI Flash chip could hold multiple
firmware images or code snippets, and/or be used for user data. The SPI Flash chip is fully available to
the user program as a general memory area.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 8

MicroSD Boot Memory

MicroSD Boot Memory Connections

● Refer to all requirements and recommendations for Minimal Connections
● When the Propeller 2 starts up (or is reset) with this circuit, it will automatically boot from firmware saved

on the microSD card. If microSD boot fails, a further serial window of 60 seconds will be followed by
shutdown.

● The microSD card must be formatted as FAT32, and the boot firmware file must be saved in the root of
the microSD card with the special filename: _BOOT_P2.BIX, or as second alternative _BOOT_P2.BIY if
the .BIX file is not found.

● Each Propeller 2 firmware image requires up to 512 KB. A single microSD card could hold multiple
firmware images or code snippets, and/or be used for user data. The microSD card is fully available to the
user program as a general memory area.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 9

Dual Boot Memory

Dual Boot Memory Connections

● Refer to all requirements and recommendations for Minimal Connections
● The Boot Mode Selection switch determines the active boot device; either SPI Flash or microSD.
● Switch closed (on) = SPI Flash boot mode : When the Propeller 2 starts up (or is reset) with this circuit,

there will be a serial programming window of 100 ms, then automatic boot from firmware stored in the
SPI flash memory. If SPI flash boot fails, a further serial window of 60 seconds will be followed by
shutdown.

● Switch open (off) = microSD boot mode : When the Propeller 2 starts up (or is reset) with this circuit, it will
automatically boot from firmware saved on the microSD card. If microSD boot fails then a further serial
window of 60 seconds will be followed by shutdown.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 10

OPERATION
Assuming a stable power supply and "high" RESn pin, the Propeller 2 boots up using the following procedure:

1. Within 5 ms, the Propeller 2 loads its Bootloader into cog 0.
2. The Bootloader checks the boot pattern (configuration) on pins P59-P61 and either communicates with a

host over serial, or loads (boots) an application from a connected flash chip or SD card.
3. All further activity is defined by the application itself. The application, and thus the developer, has

complete control over modifying internal clock speed, I/O pin usage and behavior, what cogs are running
at any given time, and more.

4. The Propeller continues running until all cogs shut each other (or themselves) down, the RESn pin goes
low, or the application requests a reboot.

See Propeller 2 Hardware Manual's Boot Up procedure section for more information.

HOST COMMUNICATION
In typical operation (above), the Propeller 2 will boot up with a user's pre-written Propeller application; however,
the same process also allows for loading new applications or interacting with the built-in systems. Most boot
patterns (pins P59-P61) trigger a serial communication window in which a host computer can talk with the
Propeller 2 serially over pins P62 and P63.

To enter interactive mode from a host computer:

● Run serial terminal software (like Parallax Serial Terminal, TeraTerm, or RealTerm)
● Disable character echo ("Echo On" in Parallax Serial Terminal)
● Configure for 9600 Baud to 2 MBaud (recommended), 8 data bits, 1 stop bit, no parity
● Press and release the Propeller 2 development board's Reset button
● Type "> " (greater than followed by a space), then either Ctrl+D or the ESC key to enter P2 Monitor or

TAQOZ mode, respectively

P2 Monitor
The P2 Monitor is a built-in interactive system that allows for viewing and manipulating memory and running
code. Use the P2 Monitor to explore and change current RAM contents or load and run code from microSD
memory. After power-up or reset (and while preventing autorun of a flash/microSD-resident application), invoke
the P2 Monitor from a terminal by typing: "> " (greater than followed by a space), then Ctrl+D.

Here is an example of listing the first 16 longs of Register RAM (in long format), by typing "000-010L":

*000-010L
000: FF800800 FC0C003F F606C832 FCDC041F '.......?...2....'
004: FD747E40 F0A6CA01 F426CA1F FD62CA00 '.t~@.....&...b..'
008: FB6EC9FA FC0C003F FD64C428 FF0007E0 '.n.....?.d.(....'
00C: FB06012C FD655229 FF0007E1 FB0420B8 '...,.eR)...... .'

Here is a list of the first 16 bytes of Hub RAM (in long format), typing "0000-0010L":

*0000-0010L
00000: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF '................'

For more information, see the P2 Monitor link on the Propeller 2 Documentation Page at www.parallax.com/p2.

To switch to TAQOZ while in P2 Monitor, type ESC followed by the Enter key.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 11

http://www.parallax.com/p2

TAQOZ
TAQOZ is a built-in interactive Forth language engine, based on Tachyon Forth. Use TAQOZ to explore "what ifs"
and quickly exercise P2 hardware for testing or debugging. After power-up or reset (and while preventing autorun
of a flash/microSD-resident application), invoke TAQOZ from a terminal by typing: "> " ESC (greater than followed
by a space), then the Escape key.

Toggle pin 56 (ex: blink an LED on P56) by typing:

56 blink (type "56 mute" to stop toggling)

...or by typing:

begin 56 high 250 ms 56 low 250 ms key until (press any key to stop toggling)

For more information, see the TAQOZ links on the Propeller 2 Documentation Page at www.parallax.com/p2.

To switch to P2 Monitor while in TAQOZ, type Ctrl+D.

SYSTEM ORGANIZATION
The Propeller 2 includes the following subsystems.

● Cogs (processors) - independent 32-bit processing units
○ Register RAM - private memory for cog to execute code and swiftly manipulate data
○ Lookup RAM - semi-private memory for cog to execute code and manipulate data tables/streams

● Hub - access manager for exclusive shared resources
○ Hub RAM - shared memory for all cogs to execute code and manipulate data
○ System Clock - clock source for all internal components
○ Locks - 16 semaphore bits to coordinate exclusive access of shared resources
○ CORDIC Solver - pipelined calculator for math functions

● Smart I/O Pins - I/O pins with optional Smart circuit for autonomous functions

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 12

http://www.parallax.com/p2

Cogs
The Propeller contains multiple processors, called cogs. Each cog has its own RAM and can start, stop, and
execute instructions independently of one another. All active cogs share the same System Clock, Hub RAM, and
I/O pins.

Cog RAM
Each cog's RAM is made of two blocks of 512 longs (512 x 32), called Register RAM and Lookup RAM, organized
as shown here.

Note that $1FE (INA) and $1FF (INB) are also the debug interrupt call address and return address, respectively.

Register RAM
Each cog's primary 512 x 32-bit dual-port Register RAM (Reg RAM for short) provides for code execution, fast
direct register access, and special use. It is read and written as longs (4 bytes) and contains general purpose,
dual-purpose, and special-purpose registers.

General Purpose Registers
RAM registers $000 through $1EF are general-purpose registers for code and data usage.

Dual-purpose Registers
RAM registers $1F0 through $1F7 may either be used as general-purpose registers, or may be used as
special-purpose registers if their associated functions are enabled.

Address Name Purpose

$1F0
$1F1
$1F2
$1F3
$1F4
$1F5
$1F6
$1F7

RAM / IJMP3
RAM / IRET3
RAM / IJMP2
RAM / IRET2
RAM / IJMP1
RAM / IRET1

RAM / PA
RAM / PB

Interrupt call address for INT3
Interrupt return address for INT3
Interrupt call address for INT2
Interrupt return address for INT2
Interrupt call address for INT1
Interrupt return address for INT1
CALLD-imm return, CALLPA parameter, or LOC address
CALLD-imm return, CALLPB parameter, or LOC address

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 13

Special-purpose Registers
RAM registers $1F8 through $1FF give mapped access to eight special-purpose functions. In general, when
specifying an address between $1F8 and $1FF, the PASM instruction accesses a special-purpose register, not just
the underlying RAM.

Address Name Purpose

$1F8
$1F9
$1FA
$1FB
$1FC
$1FD
$1FE
$1FF

PTRA
PTRB
DIRA
DIRB
OUTA
OUTB
INA1

INB2

Pointer A to Hub RAM
Pointer B to Hub RAM
Output enables for P31..P0
Output enables for P63..P32
Output states for P31..P0
Output states for P63..P32
Input states for P31..P0
Input states for P63..P32

1 Also debug interrupt call address
2 Also debug interrupt return address

Lookup RAM
Each cog's secondary 512 x 32-bit dual-port Lookup RAM (LUT RAM for short) is read and written as longs (4
bytes). It is useful for:

● Scratch space
● Streamer access
● Bytecode execution lookup table
● Smart pin data source
● Paired-Cog communication mechanism
● Code execution

Scratch Space
In contrast to Register RAM, the cog cannot directly reference Lookup RAM locations in the majority of its PASM
instructions. Instead, the desired location(s) must be read or written between Lookup RAM and Register RAM
using the RDLUT and WRLUT instructions, respectively. This is synonymous with other hardware architecture's
scratch storage using "LOAD" and "STORE" instructions. When using the RDLUT and WRLUT instructions, the
Lookup RAM's locations $200..$3FF are addressable as $000..$1FF.

Paired-Cog Communication Mechanism
Adjacent cogs whose ID numbers differ by only the LSB (cogs 0 and 1, 2 and 3, etc.) can allow their Lookup RAMs
to be written by the other cog via its local Lookup RAM writes. This allows adjacent cogs to share data quickly
through their Lookup RAMs. Use the SETLUTS instruction to enable/disable this feature and SETSE1..4 to
facilitate handshaking if necessary. Note that this adjacent cog access is implemented on the Lookup RAM's 2nd
port, which is also used by the streamer in DDS/LUT modes; these are not intended to be used simultaneously.

Execution
Cogs employ a five-stage pipelined execution architecture. When the execution pipeline is full, each PASM2
instruction effectively takes as little as two clock cycles to execute. If an instruction stalls for additional clock
cycles, all following instructions in the pipeline are also stalled. Any instruction that is conditionally canceled will
still move through the pipeline without stalling or executing. Branch instructions cause the pipeline to be flushed,
so the first instruction following the branch will take at least five clock cycles.

Cogs use 20-bit addresses for their program counters (PC); the upper bits (19 and beyond) are "don't care" bits on
the P2X8C4M64P, affording an execution space of up to 512 KB. Depending on the value of a cog's PC, an
instruction will be fetched from either its Register RAM, its Lookup RAM, or the Hub RAM.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 14

PASM2 Execution Regions

PC Address Instruction Source Memory Width PC Increment

$00000..$001FF Cog Register RAM 32 bits 1

$00200..$003FF Cog Lookup RAM 32 bits 1

$00400..$7FFFF Hub RAM 8 bits 4

Register Execution
When the PC is in the range of $00000 to $001FF, the cog fetches instructions from Cog Register RAM. This is
referred to as "cog execution." There are no special considerations when branching to a cog register address.

Lookup Execution
When the PC is in the range of $00200 to $003FF, the cog fetches instructions from Cog Lookup RAM. This is
referred to as "lut execution." There are no special considerations when branching to a cog lookup address.

Hub Execution
When the PC is in the range of $00400 to $7FFFF, the cog fetches instructions from Hub RAM. This is referred to
as "hub execution mode." Special considerations are involved with hub execution.

1. The PC rolling beyond $003FF will not initiate hub execution (it will just wrap back to $00000); a branch
must occur to get from register or lookup execution to hub execution.

2. Branching to a hub address takes a minimum of 13 clock cycles. If the instruction being branched to is
not long-aligned, one additional clock cycle is required.

3. When executing from Hub RAM, the cog employs the FIFO hardware to spool up instructions so that a
stream of instructions will be available for continuous execution. This means the FIFO cannot be used for
anything else. So, during hub execution these instructions cannot be used:

RDFAST / WRFAST / FBLOCK
RFBYTE / RFWORD / RFLONG / RFVAR / RFVARS
WFBYTE / WFWORD / WFLONG
XINIT / XZERO / XCONT - when the streamer mode engages the FIFO

It is not possible to execute code from hub addresses $00000 through $003FF, as the cog will instead read
instructions from the cog's Register RAM or Lookup RAM as indicated above.

Starting And Stopping Cogs
Any cog can start or stop any other cog, or restart or stop itself. Each cog has a unique ID which can be used to
start or stop it. It's also possible to start free (stopped or never started) cogs, without needing to know their IDs.
This way, applications can simply start free cogs, as needed, and as those cogs retire by stopping themselves or
getting stopped by others, they return to the pool of free cogs to become available again for restarting.

PASM2 code can ID its own cog (or get the running status of other cogs) with the COGID instruction, can start a
cog with COGINIT, and can stop a cog with COGSTOP. Using a SETQ instruction before a COGINIT instruction sets
the target cog's PTRA register to a 32-bit value; useful for pointing the new cog to runtime data or delivering a
single startup value.

Cog Attention
Each cog can request the attention of other cogs by using the COGATN instruction. One or more of the D
operand's lower 8 bits may be set high (1) to signal the corresponding cog or cogs. For each high bit, the
matching cog sees an 'attention' event for POLLATN / WAITATN / JATN / JNATN and interrupt use. The attention

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 15

strobe outputs from all cogs are OR'd together to form a composite set of 8 strobes from which each cog receives
its particular strobe.

In the intended use case, the cog receiving an attention request knows which other cog is strobing it and how to
respond. In cases where multiple cogs may request the attention of a single cog, some messaging structure may
need to be implemented in Hub RAM to differentiate requests.

Hub

Hub RAM
The globally-accessible Hub RAM can be read and written as bytes, words, and longs, in little-endian format. Hub
addresses are always byte-oriented. There are no special alignment rules for words and longs in Hub RAM. Cogs
can read and write bytes, words, and longs starting at any hub address, as well as execute PASM2 instructions
(longs) from any hub address starting at $400

The last 16 KB of Hub RAM is normally addressable at both its normal address range, as well as at
$FC000..$FFFFF. This provides a stable address space (regardless of future Propeller 2 variations) for the 16 KB
of internal ROM which gets cached into the last 16 KB of Hub RAM on startup. This upper 16 KB mapping is also
used by the cog debugging scheme.

The last 16 KB of RAM can be hidden from its normal address range and made read-only at $FC000..$FFFFF. This
is useful for making the last 16 KB of RAM persistent, like ROM. It is also how debugging is realized, as the RAM
mapped to $FC000..$FFFFF can still be written to while executing code from within debug interrupt service
routines, permitting the otherwise-protected RAM to be used as debugger-application space and cog-register
swap buffers for debug interrupts.

Cog-to-Hub RAM Interface
Hub RAM consists of 32-bit-wide single-port RAMs with byte-level write controls. This RAM is split into slices (one
per cog) that are multiplexed among all cogs. On the Propeller 2 (P2X8C4M64P), each RAM slice holds every 8th
long in the composite Hub RAM. Upon every clock cycle, each cog can access the "next" RAM slice, allowing for
continuous bidirectional streaming of sequential Hub RAM long values. The Hub RAM Interface diagram
illustrates this process conceptually as the collective of RAM slices rotates around, each facing a new cog every
clock cycle.

When a cog wants to read or write the Hub RAM, it must wait up to 7 clocks to access the initial RAM slice of
interest. Once that occurs, subsequent locations (slices) can be accessed on every clock, thereafter, for
continuous reading or writing of 32-bit longs.

Normally, if the cog chooses not to access the next available location upon the next clock, it must once again wait
up to 7 clocks to re-align with the desired slice. However, each cog has an optional hub FIFO interface that
smooths out data flow for less than 32-bits-per-clock access. This hub FIFO interface can be set for
hub-RAM-read or hub-RAM-write operation to allow Hub RAM to be either sequentially read or sequentially written
in any combination of bytes, words, or longs, at any rate, up to one long per clock. Regardless of the transfer
frequency or the word size, the FIFO will ensure that the cog's reads or writes are all properly conducted from/to
the composite Hub RAM.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 16

Cogs can access Hub RAM either via the sequential FIFO interface, or by waiting for RAM slices of interest, while
yielding to the FIFO. If the FIFO is not busy (which is soon the case if data is not being read from or written to it)
random accesses will have full opportunity to access the composite Hub RAM.

There are three ways the hub FIFO interface can be used, and it can only be used for one of these at a time:

● Hub execution (when the PC is $00400..$FFFFF)
● Streamer usage (background transfers from Hub RAM → pins/DACs, or from pins/ADCs → Hub RAM)
● Software usage (fast sequential-reading or sequential-writing instructions)

For streamer or software usage, FIFO operation must be established by a RDFAST or WRFAST instruction
executed from Cog RAM (Register/Lookup, $00000..$003FF). After that, and while remaining in Cog RAM, the
streamer can be enabled to begin moving data in the background, or the two-clock RFxxxx/WFxxxx instructions
can be used to manually read and write sequential data.

The FIFO contains (#cogs+11) stages. When in read mode, the FIFO loads continuously whenever less than
(#cogs+7) stages are filled, after which point, up to 5 more longs may stream in, potentially filling all stages.
These metrics ensure that the FIFO never underflows, under all potential reading scenarios.

System Clock
The system clock is the time base for all internal components and can be configured in several ways.

● Direct from internal slow clock (RCSLOW); a ~20 kHz oscillator is intended for low-power operation
● Direct from internal fast clock (RCFAST); a 20 MHz+ oscillator designed for minimum 20 MHz operation
● Direct from XI pin; driven externally via a clock oscillator or a crystal oscillator
● PLL-modified XI pin; driven externally via a clock oscillator or a crystal oscillator and the signal internally

modified by the PLL (phase-locked loop), usually to multiple to a much higher frequency

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 17

The system clock is configured by the running Propeller 2 application using the HUBSET instruction in this format:

HUBSET ##%0000_000E_DDDD_DDMM_MMMM_MMMM_PPPP_CCSS 'set clock mode

The bit fields (E, D, M, P, C, and S) are described in the following tables.

PLL Setting Value Effect Notes

%E 0/1 PLL off/on XI input must be enabled by %CC. Allow 10ms for
crystal+PLL to stabilize before switching over to PLL clock
source.

%DDDDDD 0..63 1..64 division of XI pin
frequency

This divided XI frequency feeds into the phase-frequency
comparator's 'reference' input.

%MMMMMMMMMM 0..1023 1..1024 division of
VCO frequency

This divided VCO frequency feeds into the
phase-frequency comparator's 'feedback' input. This
frequency division has the effect of multiplying the divided
XI frequency (per %DDDDDD) inside the VCO. The VCO
frequency should be kept within 100 MHz to 200 MHz.

%PPPP 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

VCO / 2
VCO / 4
VCO / 6
VCO / 8
VCO / 10
VCO / 12
VCO / 14
VCO / 16
VCO / 18
VCO / 20
VCO / 22
VCO / 24
VCO / 26
VCO / 28
VCO / 30
VCO / 1

This divided VCO frequency is selectable as the system
clock when SS = %11.

%CC XI status XO status XI / XO impedance XI / XO loading caps

%00 ignored float Hi-Z OFF

%01 input 600-ohm drive 1M-ohm OFF

%10 input 600-ohm drive 1M-ohm 15pF per pin

%11 input 600-ohm drive 1M-ohm 30pF per pin

%SS Clock Source Notes

%11 PLL CC != %00 and E=1, allow 10ms for crystal+PLL to stabilize before switching to PLL

%10 XI CC != %00, allow 5ms for crystal to stabilize before switching to XI pin

%01 RCSLOW ~20 kHz, can be switched to at any time, low-power

%00 RCFAST 20+ MHz (nominally ~24 MHz) can be switched to at any time— used on boot up.

WARNING: Incorrectly switching away from the PLL setting (%SS = %11) can cause a glitch which will hang the
clock circuit. In order to safely switch, always start by switching to an internal oscillator using either HUBSET
#$F0 (for RCFAST) or HUBSET #$F1 (for RCSLOW).

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 18

PLL Example
The PLL divides the XI pin frequency from 1 to 64, then multiplies the resulting frequency from 1 to 1024 in the
VCO. The VCO frequency can be used directly, or divided by 2, 4, 6, ...30, to get the final PLL clock frequency which
can be used as the system clock.

The PLL's VCO is designed to run between 100 MHz and 200 MHz and should be kept within that range.

𝑉𝐶𝑂 = 𝐹𝑟𝑒𝑞(𝑋𝐼) × (%𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 1)
(%𝐷𝐷𝐷𝐷𝐷𝐷 + 1)

𝑃𝐿𝐿 = 𝑖𝑓(%𝑃𝑃𝑃𝑃 = 15) ⇒ 𝑉𝐶𝑂
𝑃𝐿𝐿 = 𝑖𝑓(%𝑃𝑃𝑃𝑃 ≠ 15) ⇒ 𝑉𝐶𝑂

(%𝑃𝑃𝑃𝑃 + 1) × 2

Let's say you have a 20 MHz crystal attached to XI and XO and you want to run the Prop2 at 148.5 MHz. You
could divide the crystal by 40 (%DDDDDD = 39) to get a 500 kHz reference, then multiply that by 297
(%MMMMMMMMMM = 296) in the VCO to get 148.5 MHz. You would set %PPPP to %1111 to use the VCO
output directly. The configuration value would be %1_100111_0100101000_1111_10_11. The last two 2-bit fields
select 15 pf crystal mode and the PLL. In order to realize this clock setting, though, it must be done over a few
steps:

HUBSET #$F0 'set 20 MHz+ (RCFAST) mode

HUBSET ##%1_100111_0100101000_1111_10_00 'enable crystal+PLL, stay in RCFAST mode

WAITX ##20_000_000/100 'wait ~10ms for crystal+PLL to stabilize

HUBSET ##%1_100111_0100101000_1111_10_11 'now switch to PLL running at 148.5 MHz

The clock selector controlled by the %SS bits has a deglitching circuit which waits for a positive edge on the old
clock source before disengaging, holding its output high, and then waiting for a positive edge on the new clock
source before switching over to it. It is necessary to select mode %00 or %01 while waiting for the crystal and/or
PLL to settle into operation, before switching over to either.

Locks
For application-defined cog coordination, the hub provides a pool of 16 semaphore bits, called locks. Cogs may
use locks, for example, to manage exclusive access of a resource or to represent an exclusive state, shared
among multiple cogs. What a lock represents is completely up to the application using it; they are a means of
allowing one cog at a time the exclusive status of 'owner' of a particular lock ID. In order to be useful, all
participant cogs must agree on a lock's ID and what purpose it serves.

The LOCK instructions are:

LOCKNEW D {WC}

LOCKRET {#}D

LOCKTRY {#}D {WC}

LOCKREL {#}D {WC}

Lock Usage

In order to use a lock, one cog must first allocate a lock with LOCKNEW and communicate that lock's ID with other
cooperative cogs. Cooperative cogs then use LOCKTRY and LOCKREL to respectively take or release ownership
of the state which that lock represents. If the lock is no longer needed by the application, it may be returned to the
unallocated lock pool by executing LOCKRET. A cog may allocate more than one lock.

At any time, a cog may attempt to own a lock (ie: the state that lock represents) by using LOCKTRY. The Hub
grants or denies ownership in response, ensuring that, at most, one cog owns the lock at any time. If a cog is

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 19

granted ownership, it can perform the task defined for that lock and then use LOCKREL to release ownership,
allowing any other cog to attempt ownership. Only the cog that has taken ownership of the lock can release it;
however, a lock will also be implicitly released if the owner cog is stopped (COGSTOP) or restarted (COGINIT).

CORDIC Solver
The Hub contains a 54-stage pipelined CORDIC solver (Coordinate Rotation Digital Computer) that can compute
the following functions for all cogs:

● Multiply: 32 x 32 unsigned multiply with 64-bit product
● Divide: 64 / 32 unsigned divide with 32-bit quotient and 32-bit remainder
● Square Root: root of 64-bit unsigned value with 32-bit result
● Rotation: 32-bit signed (X, Y) rotation around (0, 0) by a 32-bit angle with 32-bit signed (X, Y) results
● Cartesian to Polar: 32-bit signed (X, Y) to 32-bit (length, angle) cartesian to polar operation
● Polar to Cartesian: 32-bit (length, angle) to 32-bit signed (X, Y) polar to cartesian operation
● Integer to Logarithm: 32-bit unsigned integer to 5:27-bit logarithm
● Logarithm to Integer: 5:27-bit logarithm to 32-bit unsigned integer

Each cog can issue one CORDIC instruction per its hub access window (which occurs once every eight clocks)
and retrieve the result 55 clocks later via the GETQX and GETQY instructions. For faster throughput, cogs can
take advantage of the hub access window and CORDIC pipeline relationship to issue a stream of CORDIC
instructions interleaved with retrieving corresponding results, achieving up to one CORDIC result every eight
clocks. Each cog's active CORDIC instructions and forthcoming results are completely isolated from each other,
as well as from other cogs; however, each result must be retrieved on time or else it will be overwritten by the
following result, if any.

Multiply
Use the QMUL instruction to multiply two unsigned 32-bit numbers together and retrieve the CORDIC result with
the GETQX and GETQY instructions (for lower and upper long, respectively).

Divide
Use the QDIV or QFRAC instruction (either with optional preceding SETQ instruction) to divide a 64-bit numerator
by a 32-bit denominator, then retrieve the CORDIC results with the GETQX and GETQY instructions (for quotient
and remainder, respectively).

Square Root
Use the QSQRT instruction on a 64-bit number and retrieve the square root CORDIC result with the GETQX
instruction.

Rotation
Use the SETQ instruction followed by the QROTATE instruction to rotate a 32-bit signed Y and X point pair by an
unsigned 32-bit angle and retrieve the CORDIC results with the GETQX and GETQY instructions for X and Y,
respectively.

Cartesian to Polar
Use the QVECTOR instruction to convert a (X, Y) cartesian coordinate into (length, angle) polar coordinate and
retrieve the CORDIC results with the GETQX and GETQY instructions (for length and angle, respectively).

Polar to Cartesian
Use the QROTATE instruction to convert a (length, angle) polar coordinate into (X, Y) cartesian coordinate and
retrieve the CORDIC results with the GETQX and GETQY instructions (for X and Y, respectively).

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 20

Integer to Logarithm
Use the QLOG instruction on an unsigned 32-bit integer and retrieve the 5:27-bit logarithm CORDIC result (5-bit
exponent and 27-bit mantissa) with the GETQX instruction.

Logarithm to Integer
Use the QEXP instruction on a 5:27-bit logarithm and retrieve the unsigned 32-bit integer CORDIC result with the
GETQX instruction.

Smart I/O Pins
Every I/O pin features versatile digital and analog capabilities as well as autonomous state machine functions
that would otherwise require processor time to perform. The combination of pin modes and smart modes
provides adept functionality for application design, increasing the Propeller 2 potential beyond what multicore
architecture alone provides. There are 24 low-level pin modes and 34 high-level smart modes.

Each I/O pin's behavior is described by the combination of four settings: 1) direction (input/output), 2) state
(output drive / input sense), 3) pin mode, and 4) smart mode (optional).

Direction and State
In simplest form, I/O pins are controlled via dedicated cog registers and the instructions that affect them.

I/O Pin Registers
Register Cog Address Purpose

DIRA $1FA Output enable bits for P0..P31 (active high)

DIRB $1FB Output enable bits for P32..P63 (active high)

OUTA $1FC Output state bits for P0..P31 (corresponding DIRA bit must be high to enable output)

OUTB $1FD Output state bits for P32..P63 (corresponding DIRB bit must be high to enable output)

INA $1FE Input state bits for P0..P31

INB $1FF Input state bits for P32..P63

General-purpose and special pin instructions can write to DIRA / DIRB / OUTA / OUTB to affect pin input/output
behavior and can read from INA / INB to retrieve pin states. General-purpose instructions operate on the entire
32-bit register (all pins) while the special pin instructions operate on a single bit (pin) within them.

Special Pin Instructions
Instructions Purpose

DIRL/DIRH/DIRC/DIRNC/DIRZ/DIRNZ/DIRRND/DIRNOT {#}D Affect pin D bit in DIRx

OUTL/OUTH/OUTC/OUTNC/OUTZ/OUTNZ/OUTRND/OUTNOT {#}D Affect pin D bit in OUTx

FLTL/FLTH/FLTC/FLTNC/FLTZ/FLTNZ/FLTRND/FLTNOT {#}D Affect pin D bit in OUTx, clear bit in DIRx

DRVL/DRVH/DRVC/DRVNC/DRVZ/DRVNZ/DRVRND/DRVNOT {#}D Affect pin D bit in OUTx, set bit in DIRx

TESTP {#}D WC/WZ/ANDC/ANDZ/ORC/ORZ/XORC/XORZ Read pin D bit in INx and affect C or Z

TESTPN {#}D WC/WZ/ANDC/ANDZ/ORC/ORZ/XORC/XORZ Read pin D bit in !INx and affect C or Z

The selected pin mode and smart mode (if other than the default) may override some of the above, as described
in their respective sections, later.

I/O Pin Timing
Between each physical I/O pin and the cog(s) controlling them, there is a chain of three single-bit registers (reg).
The live signal (input or output) traverses through this chain on the way to its destination as described below.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 21

When a DIRx/OUTx bit is changed by any instruction, it takes three additional clocks after the instruction before
the pin starts transitioning to the new state. Here this delay is demonstrated using DRVH to set I/O pin P0's output
enable (OE) and drive P0's output latch high.

Note that "P0 OE" and "P0 HIGH" begin their transition on the rising edge of clock 5; however, the duration until
complete depends on clock frequency and circuit load. The I/O pads are asynchronous (not tied strictly to the
clock) so with a slow operating frequency, the transition may complete within 1 clock, whereas with higher
frequencies it may take multiple clocks to complete.

When an INx register is read by an instruction, it will reflect the state of the pins registered three clocks before the
start of the instruction. Here this delay is demonstrated using TESTB:

When a TESTP/TESTPN instruction is used to read a pin, the value read will reflect the state of the pin registered
two clocks before the start of the instruction. Effectively, TESTP/TESTPN get fresher INx data than is available
via the INx registers:

Pin Modes
Each I/O pin has 13 low-level pin mode configuration bits which determine the mode of operation (1 of 24) for its
3.3 V circuit. The pin mode is set using the WRPIN instruction, where the 13 'M' bits within the instruction's D
operand specifies the pin mode configuration. Note that in some smart pin modes, the configuration bits are
partially overwritten to set things like DAC values.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 22

The format of the WRPIN's D operand value is:

%AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0

● A = PIN input selector
● B = ADJ input selector
● F = PIN and ADJ input logic/filtering (applied to result of PIN and ADJ input selectors)
● M = pin mode
● T = pin DIR/OUT control (default = %00)
● S = smart mode

(A) PIN or (B) ADJ Input Selector
%AAAA
%BBBB Selection

0xxx true (default)

1xxx inverted

x000 this pin's read state (default)

x001 relative +1 pin's read state

x010 relative +2 pin's read state

x011 relative +3 pin's read state

x100 this pin's OUT bit from cogs

x101 relative -3 pin's read state

x110 relative -2 pin's read state

x111 relative -1 pin's read state

(F) PIN and ADJ Logic/Filtering
%FFF Logic/Filter

000 A, B (default)

001 A AND B, B

010 A OR B, B

011 A XOR B, B

100 A, B, both filtered using global filt0 settings

101 A, B, both filtered using global filt1 settings

110 A, B, both filtered using global filt2 settings

111 A, B, both filtered using global filt3 settings
The resultant 'A' will drive the IN signal in non-smart-pin modes.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 23

(M) Pin Mode

WRPIN D[20:8] Configuration Resulting Internal Configuration

M[12:0] Input Pin Output1 CIOHHHLLL OE2 DAC ADC ADC Mode Comparator

0000_CIOHHHLLL
0001_CIOHHHLLL
0010_CIOHHHLLL
0011_CIOHHHLLL
0100_CIOHHHLLL
0101_CIOHHHLLL
0110_CIOHHHLLL
0111_CIOHHHLLL

Pin Logic
Pin Logic
Adj Logic

Pin Schmitt
Pin Schmitt
Adj Schmitt
Pin > Adj
Pin > Adj

OUT
Input
Input
OUT
Input
Input
OUT
Input

CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL

DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Pin > Adj
Pin > Adj

100000_OHHHLLL
100001_OHHHLLL
100010_OHHHLLL
100011_OHHHLLL
100100_OHHHLLL
100101_OHHHLLL
100110_OHHHLLL
100111_OHHHLLL

ADC, GND
ADC, Vxxyy
ADC, float

ADC, Pin 1x
ADC, Pin 3.16x
ADC, Pin 10x

ADC, Pin 31.6x
ADC, Pin 100x

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL

DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

000
001
010
011
100
101
110
111

0
0
0
0
0
0
0
0

10100_DDDDDDDD
10101_DDDDDDDD
10110_DDDDDDDD
10111_DDDDDDDD

ADC, Pin 1x 3

ADC, Pin 1x 3

ADC, Pin 1x 3

ADC, Pin 1x 3

DAC 990 Ω, 3.3 V
DAC 600 Ω, 2.0 V

DAC 123.75 Ω, 3.3 V
DAC 75 Ω, 2.0 V

10xxxxxxx
10xxxxxxx
10xxxxxxx
10xxxxxxx

0
0
0
0

DIR
DIR
DIR
DIR

OUT
OUT
OUT
OUT

011
011
011
011

0
0
0
0

1100_CDDDDDDDD
1101_CDDDDDDDD
1110_CDDDDDDDD
1111_CDDDDDDDD

Pin > D
Pin > D
Adj > D
Adj > D

OUT, 1.5 kΩ
!Input, 1.5 kΩ
Input, 1.5 kΩ
!Input, 1.5 kΩ

C00001001
C01001001
C00001001
C01001001

DIR
DIR
DIR
DIR

0
0
0
0

0
0
0
0

Pin > D
Pin > D
Adj > D
Adj > D

1OUT means output latch bit drives output; Input means the 'Input' column's item drives output
2 OE is digital logic output enable only; analog output is indicated in the DAC column
3 if OUT bit = 1

Pin Mode Legend

C IN/OUT

0
1

Live 1

Clocked 2

I IN

0
1

True
Not (inverted)

O Output

0
1

True
Not (inverted)

HHH
LLL Drive

000
001
010
011
100
101
110
111

Fast
1.5 kΩ
15 kΩ
150 kΩ
1 mA
100 µA
10 µA
Float

OE = digital output enable (when DIR bit high)

DAC = digital to analog converter enable (when DIR bit high)

ADC = analog to digital converter enable (fixed, or when OUT bit high)

OUT = output latch bit; 0: low, 1: high.
Exception: DAC modes use OUT as 0: disable, 1: enable.

DIR = direction bit; 0: input (float), 1: output (drive)
Exception: DAC modes use DIR as 0: disable, 1: enable.

DDDDDDDD and D = DAC Level

1 used for feedback operations; provides continuous (non-clocked) signal
2 signal updates on clock edge only

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 24

(T) Pin DIR/OUT Control
Default (%TT = 00)

for odd pins 'OTHER' = even pin's NOT (inverted) output state (diff source)

for even pins 'OTHER' = unique pseudo-random bit (noise source)

for all pins 'SMART' = smart pin output which overrides OUT/OTHER

'DAC_MODE' is enabled when M[12:10] = %101

'BIT_DAC' outputs {2{M[7:4]}} for 'high' or {2{M[3:0]}} for 'low' in DAC_MODE

for smart pin mode "off" (%SSSSS = %00000)

DIR enables output

for non-DAC_MODE

0x OUT drives output

1x OTHER drives output

for DAC_MODE

00 DIR enables DAC, M[7:0] sets DAC level

01 OUT enables ADC, M[3:0] selects cog DAC channel

10 OUT drives BIT_DAC

11 OTHER drives BIT_DAC

for smart pin mode "on" (%SSSSS > %00000)

x0 output disabled, regardless of DIR

x1 output enabled, regardless of DIR

for DAC smart pin modes (%SSSSS = %00001..%00011)

0x OUT enables DAC in DAC_MODE, M[7:0] overridden

1x OTHER enables DAC in DAC_MODE, M[7:0] overridden

for non-DAC smart pin modes (%SSSSS = %00100..%11111)

0x SMART/OUT drives output, or BIT_DAC if DAC_MODE

1x SMART/OTHER drives output, or BIT_DAC if DAC_MODE

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 25

I/O Pin Circuit
Below is a diagram of a single I/O pin circuit which is powered from its local 3.3V supply pin (Vxxyy). It connects
to its own physical pin (PIN), as well as its adjacent odd or even pin (ADJ). I/O Pins P0 and P1 see each other as
adjacent pins, as do P2 and P3, etc.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 26

Equivalent Schematics for Each Unique I/O Pin Configuration

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 27

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 28

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 29

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 30

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 31

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 32

Smart Modes
Each I/O pin has built-in 'smart pin' circuitry which (when enabled) performs one of 34 different autonomous
functions on the pin. Smart pins free the cogs from the need to micromanage many I/O operations by providing
high-bandwidth concurrent hardware functions that cogs could otherwise not perform as well through I/O pin
manipulating instructions.

In normal operation, an I/O pin's output enable is controlled by its DIR bit, its output state is controlled by its OUT
bit, and its IN bit returns the pin's read state. With smart pin mode enabled, its DIR bit is used as an active-low
reset signal to the smart pin circuitry, while the output enable state is controlled by a configuration bit. In some
modes, the smart pin circuit takes over driving the output state, in which case the OUT bit gets ignored. Its IN bit
serves as a flag to indicate to the cog(s) that the smart pin has completed some function or an event has
occurred, and acknowledgment is perhaps needed.

To configure a smart pin, first set its DIR bit to low (holding it in reset) then use WRPIN, WXPIN, and WYPIN to
establish the mode and related parameters. Once configured, DIR can be raised high and the smart pin will begin
operating. After that, depending on the mode, you may feed it new data via WXPIN/WYPIN or retrieve results using
RDPIN/RQPIN. These activities are usually coordinated with the IN signal going high; explained later.

Note that while a smart pin is configured, the %TT bits (of the WRPIN instruction's D operand) will govern the pin's
output enable, regardless of the DIR state.

Smart pins have four 32-bit registers inside of them:

Smart Pin Registers

32-bit Register Purpose

Mode smart pin mode, as well as low-level I/O pin mode (write-only)

X mode-specific parameter (write-only)

Y mode-specific parameter (write-only)

Z mode-specific result (read-only)

These four registers are written and read via the following 2-clock instructions, in which S/# is used to select the
pin number (0..63) and D/# is the 32-bit data conduit:

WRPIN D/#,S/# - Set smart pin S/# mode to D/#, ack pin
WXPIN D/#,S/# - Set smart pin S/# parameter X to D/#, ack pin

WYPIN D/#,S/# - Set smart pin S/# parameter Y to D/#, ack pin

RDPIN D,S/# {WC} - Get smart pin S/# result Z into D, flag into C, ack pin

RQPIN D,S/# {WC} - Get smart pin S/# result Z into D, flag into C, don't ack pin

AKPIN S/# - Acknowledge pin S/#

Each smart pin has a 34-bit input bus and a 33-bit output bus that connect it to the cogs.

To configure and control smart pins, each cog writes data and acknowledgement signals to the smart pin input
bus. Each smart pin OR's all incoming 34-bit buses from the collective of cogs in the same way DIR and OUT bits
are OR'd before going to the pins. Therefore, if you intend to have multiple cogs execute WRPIN / WXPIN / WYPIN /
RDPIN / AKPIN instructions on the same smart pin, you must be sure that they do so at different times, in order to
avoid clobbering each other's bus data. Reading a smart pin with RDPIN can cause the same conflict; however,

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 33

any number of cogs can read a smart pin simultaneously without bus conflict by using RQPIN ('read quiet'), since
it does not utilize the smart pin input bus for acknowledgement signaling (like RDPIN does).

Each smart pin writes to it's output bus to convey its Z result and a special flag. The RDPIN and RQPIN multiplex
and read these buses, so that a pin's Z result is read into D and its special flag can be read into C. C will be either a
mode-related flag or the MSB of the Z result.

When a mode-related event occurs in a smart pin, it raises its IN signal to alert the cog(s) that new data is ready,
new data can be loaded, or some process has finished. A cog can test for this signal via the TESTP instruction
and can acknowledge a smart pin by executing a WRPIN, WXPIN, WYPIN, RDPIN, or AKPIN instruction for it. This
acknowledgement causes the smart pin to lower its IN signal so that it can be raised again on the next event.
After a WRPIN / WXPIN / WYPIN / RDPIN / AKPIN, it takes two clocks for IN to drop, before it can be polled again.

A smart pin can be reset at any time, without the need to reconfigure it, by clearing and then setting its DIR bit.

To return a pin to normal mode, do a 'WRPIN #0,pin'.

(S) Smart Pin Modes

%SSSSS Mode Note

00000 smart pin off; normal operation (default)

00001 long repository M[12:10] != %101 (not DAC_MODE)

00010 long repository M[12:10] != %101 (not DAC_MODE)

00011 long repository M[12:10] != %101 (not DAC_MODE)

00001 DAC noise M[12:10] = %101 (DAC_MODE)

00010 DAC 16-bit dither, noise M[12:10] = %101 (DAC_MODE)

00011 DAC 16-bit dither, PWM M[12:10] = %101 (DAC_MODE)

001001 pulse/cycle output

001011 transition output

001101 NCO frequency

001111 NCO duty

010001 PWM triangle

010011 PWM sawtooth

010101 PWM switch-mode power supply, V and I feedback

01011 periodic/continuous: A-B quadrature encoder

01100 periodic/continuous: inc on A-rise & B-high

01101 periodic/continuous: inc on A-rise & B-high / dec on A-rise & B-low

01110 periodic/continuous: inc on A-rise {/ dec on B-rise}

01111 periodic/continuous: inc on A-high {/ dec on B-high}

10000 time A-states

10001 time A-highs

10010 time X A-highs/rises/edges -or- timeout on X A-high/rise/edge

10011 for X periods, count time

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 34

10100 for X periods, count states

10101 for periods in X+ clocks, count time

10110 for periods in X+ clocks, count states

10111 for periods in X+ clocks, count periods

11000 ADC sample/filter/capture, internally clocked

11001 ADC sample/filter/capture, externally clocked

11010 ADC scope with trigger

110111 USB host/device even/odd pin pair = DM/DP

111001 sync serial transmit A-data, B-clock

11101 sync serial receive A-data, B-clock

111101 async serial transmit baud rate

11111 async serial receive baud rate
1 OUT signal overridden

Rebooting
While normally powered, the Propeller 2 reboots if it receives a low pulse on the RESn pin or executes a HUBSET
##$1000_0000 instruction. Both reset methods, external (via RESn pin) and internal (via HUBSET), behave the
same; however, the internal reset is not detectable externally using the RESn pin.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 35

PROPELLER 2 ASSEMBLY LANGUAGE (PASM2) IN BRIEF

Math and Logic Instructions

Instruction Description Clocks
Reg, LUT, & Hub

ABS D {WC/WZ/WCZ} Get absolute value of D into D. D = ABS(D). C = D[31]. * 2

ABS D,{#}S {WC/WZ/WCZ} Get absolute value of S into D. D = ABS(S). C = S[31]. * 2

ADD D,{#}S {WC/WZ/WCZ} Add S into D. D = D + S. C = carry of (D + S). * 2

ADDS D,{#}S {WC/WZ/WCZ} Add S into D, signed. D = D + S. C = correct sign of (D + S). * 2

ADDSX D,{#}S {WC/WZ/WCZ} Add (S + C) into D, signed and extended. D = D + S + C. C = correct sign of (D + S + C). Z = Z AND (result == 0). 2

ADDX D,{#}S {WC/WZ/WCZ} Add (S + C) into D, extended. D = D + S + C. C = carry of (D + S + C). Z = Z AND (result == 0). 2

AND D,{#}S {WC/WZ/WCZ} AND S into D. D = D & S. C = parity of result. * 2

ANDN D,{#}S {WC/WZ/WCZ} AND !S into D. D = D & !S. C = parity of result. * 2

BITC D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = C. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITH D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = 1. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITL D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = 0. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITNC D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = !C. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITNOT D,{#}S {WCZ} Toggle bits D[S[9:5]+S[4:0]:S[4:0]]. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITNZ D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = !Z. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITRND D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = RNDs. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original
D[S[4:0]]. 2

BITZ D,{#}S {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = Z. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BMASK D Get LSB-justified bit mask of size (D[4:0] + 1) into D. D = ($0000_0002 << D[4:0]) - 1. 2

BMASK D,{#}S Get LSB-justified bit mask of size (S[4:0] + 1) into D. D = ($0000_0002 << S[4:0]) - 1. 2

CMP D,{#}S {WC/WZ/WCZ} Compare D to S. C = borrow of (D - S). Z = (D == S). 2

CMPM D,{#}S {WC/WZ/WCZ} Compare D to S, get MSB of di�erence into C. C = MSB of (D - S). Z = (D == S). 2

CMPR D,{#}S {WC/WZ/WCZ} Compare S to D (reverse). C = borrow of (S - D). Z = (D == S). 2

CMPS D,{#}S {WC/WZ/WCZ} Compare D to S, signed. C = correct sign of (D - S). Z = (D == S). 2

CMPSUB D,{#}S {WC/WZ/WCZ} Compare and subtract S from D if D >= S. If D => S then D = D - S and C = 1, else D same and C = 0. * 2

CMPSX D,{#}S {WC/WZ/WCZ} Compare D to (S + C), signed and extended. C = correct sign of (D - (S + C)). Z = Z AND (D == S + C). 2

CMPX D,{#}S {WC/WZ/WCZ} Compare D to (S + C), extended. C = borrow of (D - (S + C)). Z = Z AND (D == S + C). 2

CRCBIT D,{#}S Iterate CRC value in D using C and polynomial in S. If (C XOR D[0]) then D = (D >> 1) XOR S, else D = (D >> 1). 2

CRCNIB D,{#}S Iterate CRC value in D using Q[31:28] and polynomial in S. Like CRCBIT x 4. Q = Q << 4. Use 'REP
#n,#1'+SETQ+CRCNIB+CRCNIB+CRCNIB... 2

DECMOD D,{#}S {WC/WZ/WCZ} Decrement with modulus. If D = 0 then D = S and C = 1, else D = D - 1 and C = 0. * 2

DECOD D Decode D[4:0] into D. D = 1 << D[4:0]. 2

DECOD D,{#}S Decode S[4:0] into D. D = 1 << S[4:0]. 2

ENCOD D {WC/WZ/WCZ} Get bit position of top-most '1' in D into D. D = position of top '1' in S (0..31). C = (S != 0). * 2

ENCOD D,{#}S {WC/WZ/WCZ} Get bit position of top-most '1' in S into D. D = position of top '1' in S (0..31). C = (S != 0). * 2

FGE D,{#}S {WC/WZ/WCZ} Force D >= S. If D < S then D = S and C = 1, else D same and C = 0. * 2

FGES D,{#}S {WC/WZ/WCZ} Force D >= S, signed. If D < S then D = S and C = 1, else D same and C = 0. * 2

FLE D,{#}S {WC/WZ/WCZ} Force D <= S. If D > S then D = S and C = 1, else D same and C = 0. * 2

FLES D,{#}S {WC/WZ/WCZ} Force D <= S, signed. If D > S then D = S and C = 1, else D same and C = 0. * 2

GETBYTE D Get byte established by prior ALTGB instruction into D. 2

GETBYTE D,{#}S,#N Get byte N of S into D. D = {24'b0, S.BYTE[N]). 2

GETNIB D Get nibble established by prior ALTGN instruction into D. 2

GETNIB D,{#}S,#N Get nibble N of S into D. D = {28'b0, S.NIBBLE[N]). 2

GETWORD D Get word established by prior ALTGW instruction into D. 2

GETWORD D,{#}S,#N Get word N of S into D. D = {16'b0, S.WORD[N]). 2

INCMOD D,{#}S {WC/WZ/WCZ} Increment with modulus. If D = S then D = 0 and C = 1, else D = D + 1 and C = 0. * 2

LOC PA/PB/PTRA/PTRB,#{\}A Get {12'b0, address[19:0]} into PA/PB/PTRA/PTRB (per W). If R = 1, address = PC + A, else address = A. "\"
forces R = 0. 2

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 36

MERGEB D Merge bits of bytes in D. D = {D[31], D[23], D[15], D[7], ...D[24], D[16], D[8], D[0]}. 2

MERGEW D Merge bits of words in D. D = {D[31], D[15], D[30], D[14], ...D[17], D[1], D[16], D[0]}. 2

MODC c {WC} Modify C according to cccc. C = cccc[{C,Z}]. 2

MODCZ c,z {WC/WZ/WCZ} Modify C and Z according to cccc and zzzz. C = cccc[{C,Z}], Z = zzzz[{C,Z}]. 2

MODZ z {WZ} Modify Z according to zzzz. Z = zzzz[{C,Z}]. 2

MOV D,{#}S {WC/WZ/WCZ} Move S into D. D = S. C = S[31]. * 2

MOVBYTS D,{#}S Move bytes within D, per S. D = {D.BYTE[S[7:6]], D.BYTE[S[5:4]], D.BYTE[S[3:2]], D.BYTE[S[1:0]]}. 2

MUL D,{#}S {WZ} D = unsigned (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0). 2

MULS D,{#}S {WZ} D = signed (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0). 2

MUXC D,{#}S {WC/WZ/WCZ} Mux C into each D bit that is '1' in S. D = (!S & D) | (S & {32{ C}}). C = parity of result. * 2

MUXNC D,{#}S {WC/WZ/WCZ} Mux !C into each D bit that is '1' in S. D = (!S & D) | (S & {32{!C}}). C = parity of result. * 2

MUXNIBS D,{#}S For each non-zero nibble in S, copy that nibble into the corresponding D nibble, else leave that D nibble the
same. 2

MUXNITS D,{#}S For each non-zero bit pair in S, copy that bit pair into the corresponding D bits, else leave that D bit pair the
same. 2

MUXNZ D,{#}S {WC/WZ/WCZ} Mux !Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{!Z}}). C = parity of result. * 2

MUXQ D,{#}S Used after SETQ. For each '1' bit in Q, copy the corresponding bit in S into D. D = (D & !Q) | (S & Q). 2

MUXZ D,{#}S {WC/WZ/WCZ} Mux Z into each D bit that is '1' in S. D = (!S & D) | (S & {32{ Z}}). C = parity of result. * 2

NEG D {WC/WZ/WCZ} Negate D. D = -D. C = MSB of result. * 2

NEG D,{#}S {WC/WZ/WCZ} Negate S into D. D = -S. C = MSB of result. * 2

NEGC D {WC/WZ/WCZ} Negate D by C. If C = 1 then D = -D, else D = D. C = MSB of result. * 2

NEGC D,{#}S {WC/WZ/WCZ} Negate S by C into D. If C = 1 then D = -S, else D = S. C = MSB of result. * 2

NEGNC D {WC/WZ/WCZ} Negate D by !C. If C = 0 then D = -D, else D = D. C = MSB of result. * 2

NEGNC D,{#}S {WC/WZ/WCZ} Negate S by !C into D. If C = 0 then D = -S, else D = S. C = MSB of result. * 2

NEGNZ D {WC/WZ/WCZ} Negate D by !Z. If Z = 0 then D = -D, else D = D. C = MSB of result. * 2

NEGNZ D,{#}S {WC/WZ/WCZ} Negate S by !Z into D. If Z = 0 then D = -S, else D = S. C = MSB of result. * 2

NEGZ D {WC/WZ/WCZ} Negate D by Z. If Z = 1 then D = -D, else D = D. C = MSB of result. * 2

NEGZ D,{#}S {WC/WZ/WCZ} Negate S by Z into D. If Z = 1 then D = -S, else D = S. C = MSB of result. * 2

NOT D {WC/WZ/WCZ} Get !D into D. D = !D. C = !D[31]. * 2

NOT D,{#}S {WC/WZ/WCZ} Get !S into D. D = !S. C = !S[31]. * 2

ONES D {WC/WZ/WCZ} Get number of '1's in D into D. D = number of '1's in S (0..32). C = LSB of result. * 2

ONES D,{#}S {WC/WZ/WCZ} Get number of '1's in S into D. D = number of '1's in S (0..32). C = LSB of result. * 2

OR D,{#}S {WC/WZ/WCZ} OR S into D. D = D | S. C = parity of result. * 2

RCL D,{#}S {WC/WZ/WCZ} Rotate carry left. D = [63:32] of ({D[31:0], {32{C}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. * 2

RCR D,{#}S {WC/WZ/WCZ} Rotate carry right. D = [31:0] of ({{32{C}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. * 2

RCZL D {WC/WZ/WCZ} Rotate C,Z left through D. D = {D[29:0], C, Z}. C = D[31], Z = D[30]. 2

RCZR D {WC/WZ/WCZ} Rotate C,Z right through D. D = {C, Z, D[31:2]}. C = D[1], Z = D[0]. 2

REV D Reverse D bits. D = D[0:31]. 2

RGBEXP D Expand 5:6:5 RGB value in D[15:0] into 8:8:8 value in D[31:8]. D = {D[15:11,15:13], D[10:5,10:9], D[4:0,4:2],
8'b0}. 2

RGBSQZ D Squeeze 8:8:8 RGB value in D[31:8] into 5:6:5 value in D[15:0]. D = {15'b0, D[31:27], D[23:18], D[15:11]}. 2

ROL D,{#}S {WC/WZ/WCZ} Rotate left. D = [63:32] of ({D[31:0], D[31:0]} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. * 2

ROLBYTE D Rotate-left byte established by prior ALTGB instruction into D. 2

ROLBYTE D,{#}S,#N Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]). 2

ROLNIB D Rotate-left nibble established by prior ALTGN instruction into D. 2

ROLNIB D,{#}S,#N Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]). 2

ROLWORD D Rotate-left word established by prior ALTGW instruction into D. 2

ROLWORD D,{#}S,#N Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]). 2

ROR D,{#}S {WC/WZ/WCZ} Rotate right. D = [31:0] of ({D[31:0], D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. * 2

SAL D,{#}S {WC/WZ/WCZ} Shift arithmetic left. D = [63:32] of ({D[31:0], {32{D[0]}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else
D[31]. * 2

SAR D,{#}S {WC/WZ/WCZ} Shift arithmetic right. D = [31:0] of ({{32{D[31]}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else
D[0]. * 2

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 37

SCA D,{#}S {WZ} Next instruction's S value = unsigned (D[15:0] * S[15:0]) >> 16. * 2

SCAS D,{#}S {WZ} Next instruction's S value = signed (D[15:0] * S[15:0]) >> 14. In this scheme, $4000 = 1.0 and $C000 = -1.0. * 2

SETBYTE {#}S Set S[7:0] into byte established by prior ALTSB instruction. 2

SETBYTE D,{#}S,#N Set S[7:0] into byte N in D, keeping rest of D same. 2

SETD D,{#}S Set D field of D to S[8:0]. D = {D[31:18], S[8:0], D[8:0]}. 2

SETNIB {#}S Set S[3:0] into nibble established by prior ALTSN instruction. 2

SETNIB D,{#}S,#N Set S[3:0] into nibble N in D, keeping rest of D same. 2

SETR D,{#}S Set R field of D to S[8:0]. D = {D[31:28], S[8:0], D[18:0]}. 2

SETS D,{#}S Set S field of D to S[8:0]. D = {D[31:9], S[8:0]}. 2

SETWORD {#}S Set S[15:0] into word established by prior ALTSW instruction. 2

SETWORD D,{#}S,#N Set S[15:0] into word N in D, keeping rest of D same. 2

SEUSSF D Relocate and periodically invert bits within D. Returns to original value on 32nd iteration. Forward pattern. 2

SEUSSR D Relocate and periodically invert bits within D. Returns to original value on 32nd iteration. Reverse pattern. 2

SHL D,{#}S {WC/WZ/WCZ} Shift left. D = [63:32] of ({D[31:0], 32'b0} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. * 2

SHR D,{#}S {WC/WZ/WCZ} Shift right. D = [31:0] of ({32'b0, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. * 2

SIGNX D,{#}S {WC/WZ/WCZ} Sign-extend D from bit S[4:0]. C = MSB of result. * 2

SPLITB D Split every 4th bit of D into bytes. D = {D[31], D[27], D[23], D[19], ...D[12], D[8], D[4], D[0]}. 2

SPLITW D Split odd/even bits of D into words. D = {D[31], D[29], D[27], D[25], ...D[6], D[4], D[2], D[0]}. 2

SUB D,{#}S {WC/WZ/WCZ} Subtract S from D. D = D - S. C = borrow of (D - S). * 2

SUBR D,{#}S {WC/WZ/WCZ} Subtract D from S (reverse). D = S - D. C = borrow of (S - D). * 2

SUBS D,{#}S {WC/WZ/WCZ} Subtract S from D, signed. D = D - S. C = correct sign of (D - S). * 2

SUBSX D,{#}S {WC/WZ/WCZ} Subtract (S + C) from D, signed and extended. D = D - (S + C). C = correct sign of (D - (S + C)). Z = Z AND (result
== 0). 2

SUBX D,{#}S {WC/WZ/WCZ} Subtract (S + C) from D, extended. D = D - (S + C). C = borrow of (D - (S + C)). Z = Z AND (result == 0). 2

SUMC D,{#}S {WC/WZ/WCZ} Sum +/-S into D by C. If C = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

SUMNC D,{#}S {WC/WZ/WCZ} Sum +/-S into D by !C. If C = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

SUMNZ D,{#}S {WC/WZ/WCZ} Sum +/-S into D by !Z. If Z = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

SUMZ D,{#}S {WC/WZ/WCZ} Sum +/-S into D by Z. If Z = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

TEST D {WC/WZ/WCZ} Test D. C = parity of D. Z = (D == 0). 2

TEST D,{#}S {WC/WZ/WCZ} Test D with S. C = parity of (D & S). Z = ((D & S) == 0). 2

TESTB D,{#}S WC/WZ Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]]. 2

TESTB D,{#}S ORC/ORZ Test bit S[4:0] of D, OR into C/Z. C/Z = C/Z OR D[S[4:0]]. 2

TESTB D,{#}S ANDC/ANDZ Test bit S[4:0] of D, AND into C/Z. C/Z = C/Z AND D[S[4:0]]. 2

TESTB D,{#}S XORC/XORZ Test bit S[4:0] of D, XOR into C/Z. C/Z = C/Z XOR D[S[4:0]]. 2

TESTBN D,{#}S WC/WZ Test bit S[4:0] of !D, write to C/Z. C/Z = !D[S[4:0]]. 2

TESTBN D,{#}S ORC/ORZ Test bit S[4:0] of !D, OR into C/Z. C/Z = C/Z OR !D[S[4:0]]. 2

TESTBN D,{#}S ANDC/ANDZ Test bit S[4:0] of !D, AND into C/Z. C/Z = C/Z AND !D[S[4:0]]. 2

TESTBN D,{#}S XORC/XORZ Test bit S[4:0] of !D, XOR into C/Z. C/Z = C/Z XOR !D[S[4:0]]. 2

TESTN D,{#}S {WC/WZ/WCZ} Test D with !S. C = parity of (D & !S). Z = ((D & !S) == 0). 2

WRC D Write 0 or 1 to D, according to C. D = {31'b0, C). 2

WRNC D Write 0 or 1 to D, according to !C. D = {31'b0, !C). 2

WRNZ D Write 0 or 1 to D, according to !Z. D = {31'b0, !Z). 2

WRZ D Write 0 or 1 to D, according to Z. D = {31'b0, Z). 2

XOR D,{#}S {WC/WZ/WCZ} XOR S into D. D = D ^ S. C = parity of result. * 2

XORO32 D Iterate D with xoroshiro32+ PRNG algorithm and put PRNG result into next instruction's S. 2

ZEROX D,{#}S {WC/WZ/WCZ} Zero-extend D above bit S[4:0]. C = MSB of result. * 2

Pin & Smart Pin Instructions

Instruction Description Clocks
Cog, LUT & Hub

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 38

Pin

DIRC {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DIRH {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DIRL {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DIRNC {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DIRNOT {#}D {WCZ} Toggle DIR bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DIRNZ {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DIRRND {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z =
DIR bit. 2

DIRZ {#}D {WCZ} DIR bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit. 2

DRVC {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVH {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVL {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVNC {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVNOT {#}D {WCZ} Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVNZ {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVRND {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

DRVZ {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTC {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTH {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTL {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTNC {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTNOT {#}D {WCZ} Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTNZ {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTRND {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

FLTZ {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit. 2

OUTC {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit. 2

OUTH {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit. 2

OUTL {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit. 2

OUTNC {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit. 2

OUTNOT {#}D {WCZ} Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z =
OUT bit. 2

OUTNZ {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit. 2

OUTRND {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z =
OUT bit. 2

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 39

OUTZ {#}D {WCZ} OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit. 2

TESTP {#}D WC/WZ Test IN bit of pin D[5:0], write to C/Z. C/Z = IN[D[5:0]]. 2

TESTP {#}D ORC/ORZ Test IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR IN[D[5:0]]. 2

TESTP {#}D ANDC/ANDZ Test IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND IN[D[5:0]]. 2

TESTP {#}D XORC/XORZ Test IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR IN[D[5:0]]. 2

TESTPN {#}D WC/WZ Test !IN bit of pin D[5:0], write to C/Z. C/Z = !IN[D[5:0]]. 2

TESTPN {#}D ORC/ORZ Test !IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR !IN[D[5:0]]. 2

TESTPN {#}D ANDC/ANDZ Test !IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND !IN[D[5:0]]. 2

TESTPN {#}D XORC/XORZ Test !IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR !IN[D[5:0]]. 2

Smart Pin
AKPIN {#}S Acknowledge smart pins S[10:6]+S[5:0]..S[5:0]. Wraps within A/B pins. Prior SETQ overrides S[10:6]. 2

GETSCP D Get four-channel oscilloscope samples into D. D = {ch3[7:0],ch2[7:0],ch1[7:0],ch0[7:0]}. 2

RDPIN D,{#}S {WC} Read smart pin S[5:0] result "Z" into D, acknowledge smart pin. C = modal result. 2

RQPIN D,{#}S {WC} Read smart pin S[5:0] result "Z" into D, don't acknowledge smart pin ("Q" in RQPIN means "quiet"). C = modal
result. 2

SETDACS {#}D DAC3 = D[31:24], DAC2 = D[23:16], DAC1 = D[15:8], DAC0 = D[7:0]. 2

SETSCP {#}D Set four-channel oscilloscope enable to D[6] and set input pin base to D[5:2]. 2

WRPIN {#}D,{#}S Set mode of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior SETQ
overrides S[10:6]. 2

WXPIN {#}D,{#}S Set "X" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior SETQ
overrides S[10:6]. 2

WYPIN {#}D,{#}S Set "Y" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior SETQ
overrides S[10:6]. 2

Branch Instructions

Instruction Description Clocks
Cog & LUT / Hub

CALL #{\}A Call to A by pushing {C, Z, 10'b0, PC[19:0]} onto stack. If R = 1 then PC += A, else PC = A. "\" forces R = 0. 4 / 13...20

CALL D {WC/WZ/WCZ} Call to D by pushing {C, Z, 10'b0, PC[19:0]} onto stack. C = D[31], Z = D[30], PC = D[19:0]. 4 / 13...20

CALLA #{\}A Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. If R = 1 then PC += A, else PC = A. "\" forces R
= 0. 5...12 1 / 14...32 1

CALLA D {WC/WZ/WCZ} Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. C = D[31], Z = D[30], PC = D[19:0]. 5...12 1 / 14...32 1

CALLB #{\}A Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. If R = 1 then PC += A, else PC = A. "\" forces R
= 0. 5...12 1 / 14...32 1

CALLB D {WC/WZ/WCZ} Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. C = D[31], Z = D[30], PC = D[19:0]. 5...12 1 / 14...32 1

CALLD D,{#}S {WC/WZ/WCZ} Call to S** by writing {C, Z, 10'b0, PC[19:0]} to D. C = S[31], Z = S[30]. 4 / 13...20

CALLD PA/PB/PTRA/PTRB,#{\}A Call to A by writing {C, Z, 10'b0, PC[19:0]} to PA/PB/PTRA/PTRB (per W). If R = 1 then PC += A, else PC = A. "\"
forces R = 0. 4 / 13...20

CALLPA {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PA. 4 / 13...20

CALLPB {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PB. 4 / 13...20

DJF D,{#}S Decrement D and jump to S** if result is $FFFF_FFFF. 2 or 4 / 2 or 13...20

DJNF D,{#}S Decrement D and jump to S** if result is not $FFFF_FFFF. 2 or 4 / 2 or 13...20

DJNZ D,{#}S Decrement D and jump to S** if result is not zero. 2 or 4 / 2 or 13...20

DJZ D,{#}S Decrement D and jump to S** if result is zero. 2 or 4 / 2 or 13...20

EXECF {#}D Jump to D[9:0] in cog/LUT and set SKIPF pattern to D[31:10]. PC = {10'b0, D[9:0]}. 4 / 4

IJNZ D,{#}S Increment D and jump to S** if result is not zero. 2 or 4 / 2 or 13...20

IJZ D,{#}S Increment D and jump to S** if result is zero. 2 or 4 / 2 or 13...20

JMP #{\}A Jump to A. If R = 1 then PC += A, else PC = A. "\" forces R = 0. 4 / 13...20

JMP D {WC/WZ/WCZ} Jump to D. C = D[31], Z = D[30], PC = D[19:0]. 4 / 13...20

JMPREL {#}D Jump ahead/back by D instructions. For cogex, PC += D[19:0]. For hubex, PC += D[17:0] << 2. 4 / 13...20

REP {#}D,{#}S Execute next D[8:0] instructions S times. If S = 0, repeat instructions infinitely. If D[8:0] = 0, nothing repeats. 2 / 2

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 40

RESI0 Resume from INT0. (CALLD $1FE,$1FF WCZ) 4 / 13...20

RESI1 Resume from INT1. (CALLD $1F4,$1F5 WCZ) 4 / 13...20

RESI2 Resume from INT2. (CALLD $1F2,$1F3 WCZ) 4 / 13...20

RESI3 Resume from INT3. (CALLD $1F0,$1F1 WCZ) 4 / 13...20

RET {WC/WZ/WCZ} Return by popping stack (K). C = K[31], Z = K[30], PC = K[19:0]. 4 / 13...20

RETA {WC/WZ/WCZ} Return by reading hub long (L) at --PTRA. C = L[31], Z = L[30], PC = L[19:0]. 11...18 1 / 20...40 1

RETB {WC/WZ/WCZ} Return by reading hub long (L) at --PTRB. C = L[31], Z = L[30], PC = L[19:0]. 11...18 1 / 20...40 1

RETI0 Return from INT0. (CALLD $1FF,$1FF WCZ) 4 / 13...20

RETI1 Return from INT1. (CALLD $1FF,$1F5 WCZ) 4 / 13...20

RETI2 Return from INT2. (CALLD $1FF,$1F3 WCZ) 4 / 13...20

RETI3 Return from INT3. (CALLD $1FF,$1F1 WCZ) 4 / 13...20

SKIP {#}D Skip instructions per D. Subsequent instructions 0..31 get cancelled for each '1' bit in D[0]..D[31]. 2 / 2

SKIPF {#}D Skip cog/LUT instructions fast per D. Like SKIP, but instead of cancelling instructions, the PC leaps over them. 2 / ILLEGAL

TJF D,{#}S Test D and jump to S** if D is full (D = $FFFF_FFFF). 2 or 4 / 2 or 13...20

TJNF D,{#}S Test D and jump to S** if D is not full (D != $FFFF_FFFF). 2 or 4 / 2 or 13...20

TJNS D,{#}S Test D and jump to S** if D is not signed (D[31] = 0). 2 or 4 / 2 or 13...20

TJNZ D,{#}S Test D and jump to S** if D is not zero. 2 or 4 / 2 or 13...20

TJS D,{#}S Test D and jump to S** if D is signed (D[31] = 1). 2 or 4 / 2 or 13...20

TJV D,{#}S Test D and jump to S** if D overflowed (D[31] != C, C = 'correct sign' from last addition/subtraction). 2 or 4 / 2 or 13...20

TJZ D,{#}S Test D and jump to S** if D is zero. 2 or 4 / 2 or 13...20

1 +1 if crosses hub long

Hub Control, FIFO, & RAM Instructions

Instruction Description Clocks
Cog & LUT / Hub

Hub Control
COGID {#}D {WC} If D is register and no WC, get cog ID (0 to 15) into D. If WC, check status of cog D[3:0], C = 1 if on. 2...9, +2 if result / same

COGINIT {#}D,{#}S {WC} Start cog selected by D. S[19:0] sets hub startup address and PTRB of cog. Prior SETQ sets PTRA of cog. 2...9, +2 if result / same

COGSTOP {#}D Stop cog D[3:0]. 2...9 / same

LOCKNEW D {WC} Request a LOCK. D will be written with the LOCK number (0 to 15). C = 1 if no LOCK available. 4...11 / same

LOCKREL {#}D {WC} Release LOCK D[3:0]. If D is a register and WC, get current/last cog id of LOCK owner into D and LOCK status
into C. 2...9, +2 if result / same

LOCKRET {#}D Return LOCK D[3:0] for reallocation. 2...9 / same

LOCKTRY {#}D {WC} Try to get LOCK D[3:0]. C = 1 if got LOCK. LOCKREL releases LOCK. LOCK is also released if owner cog stops or
restarts. 2...9, +2 if result / same

HUBSET {#}D Set hub configuration to D. 2...9 / same

Hub FIFO
GETPTR D Get current FIFO hub pointer into D. 2 / FIFO IN USE

FBLOCK {#}D,{#}S Set next block for when block wraps. D[13:0] = block size in 64-byte units (0 = max), S[19:0] = block start
address. 2 / FIFO IN USE

RDFAST {#}D,{#}S Begin new fast hub read via FIFO. D[31] = no wait, D[13:0] = block size in 64-byte units (0 = max), S[19:0] =
block start address.

2 or WRFAST finish +
10...17 / FIFO IN USE

WRFAST {#}D,{#}S Begin new fast hub write via FIFO. D[31] = no wait, D[13:0] = block size in 64-byte units (0 = max), S[19:0] =
block start address.

2 or WRFAST finish + 3 /
FIFO IN USE

RFBYTE D {WC/WZ/WCZ} Used after RDFAST. Read zero-extended byte from FIFO into D. C = MSB of byte. * 2 / FIFO IN USE

RFLONG D {WC/WZ/WCZ} Used after RDFAST. Read long from FIFO into D. C = MSB of long. * 2 / FIFO IN USE

RFVAR D {WC/WZ/WCZ} Used after RDFAST. Read zero-extended 1..4-byte value from FIFO into D. C = 0. * 2 / FIFO IN USE

RFVARS D {WC/WZ/WCZ} Used after RDFAST. Read sign-extended 1..4-byte value from FIFO into D. C = MSB of value. * 2 / FIFO IN USE

RFWORD D {WC/WZ/WCZ} Used after RDFAST. Read zero-extended word from FIFO into D. C = MSB of word. * 2 / FIFO IN USE

WFBYTE {#}D Used after WRFAST. Write byte in D[7:0] into FIFO. 2 / FIFO IN USE

WFLONG {#}D Used after WRFAST. Write long in D[31:0] into FIFO. 2 / FIFO IN USE

WFWORD {#}D Used after WRFAST. Write word in D[15:0] into FIFO. 2 / FIFO IN USE

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 41

Hub RAM
POPA D {WC/WZ/WCZ} Read long from hub address --PTRA into D. C = MSB of long. * 9...16 1 / 9...26 1

POPB D {WC/WZ/WCZ} Read long from hub address --PTRB into D. C = MSB of long. * 9...16 1 / 9...26 1

RDBYTE D,{#}S/P {WC/WZ/WCZ} Read zero-extended byte from hub address {#}S/PTRx into D. C = MSB of byte. * 9...16 / 9...26

RDLONG D,{#}S/P {WC/WZ/WCZ} Read long from hub address {#}S/PTRx into D. C = MSB of long. * Prior SETQ/SETQ2 invokes cog/LUT block
transfer. 9...16 1 / 9...26 1

RDWORD D,{#}S/P {WC/WZ/WCZ} Read zero-extended word from hub address {#}S/PTRx into D. C = MSB of word. * 9...16 1 / 9...26 1

PUSHA {#}D Write long in D[31:0] to hub address PTRA++. 3...10 1 / 3...20 1

PUSHB {#}D Write long in D[31:0] to hub address PTRB++. 3...10 1 / 3...20 1

WMLONG D,{#}S/P Write only non-$00 bytes in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes cog/LUT block
transfer. 3...10 1 / 3...20 1

WRBYTE {#}D,{#}S/P Write byte in D[7:0] to hub address {#}S/PTRx. 3...10 / 3...20

WRLONG {#}D,{#}S/P Write long in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes cog/LUT block transfer. 3...10 1 / 3...20 1

WRWORD {#}D,{#}S/P Write word in D[15:0] to hub address {#}S/PTRx. 3...10 1 / 3...20 1

1 +1 if crosses hub long

Event Instructions

Instruction Description Clocks
Cog & LUT / Hub

ADDCT1 D,{#}S Set CT1 event to trigger on CT = D + S. Adds S into D. 2

ADDCT2 D,{#}S Set CT2 event to trigger on CT = D + S. Adds S into D. 2

ADDCT3 D,{#}S Set CT3 event to trigger on CT = D + S. Adds S into D. 2

COGATN {#}D Strobe "attention" of all cogs whose corresponding bits are high in D[15:0]. 2

JATN {#}S Jump to S** if ATN event flag is set. 2 or 4 / 2 or 13...20

JCT1 {#}S Jump to S** if CT1 event flag is set. 2 or 4 / 2 or 13...20

JCT2 {#}S Jump to S** if CT2 event flag is set. 2 or 4 / 2 or 13...20

JCT3 {#}S Jump to S** if CT3 event flag is set. 2 or 4 / 2 or 13...20

JFBW {#}S Jump to S** if FBW event flag is set. 2 or 4 / 2 or 13...20

JINT {#}S Jump to S** if INT event flag is set. 2 or 4 / 2 or 13...20

JNATN {#}S Jump to S** if ATN event flag is clear. 2 or 4 / 2 or 13...20

JNCT1 {#}S Jump to S** if CT1 event flag is clear. 2 or 4 / 2 or 13...20

JNCT2 {#}S Jump to S** if CT2 event flag is clear. 2 or 4 / 2 or 13...20

JNCT3 {#}S Jump to S** if CT3 event flag is clear. 2 or 4 / 2 or 13...20

JNFBW {#}S Jump to S** if FBW event flag is clear. 2 or 4 / 2 or 13...20

JNINT {#}S Jump to S** if INT event flag is clear. 2 or 4 / 2 or 13...20

JNPAT {#}S Jump to S** if PAT event flag is clear. 2 or 4 / 2 or 13...20

JNQMT {#}S Jump to S** if QMT event flag is clear. 2 or 4 / 2 or 13...20

JNSE1 {#}S Jump to S** if SE1 event flag is clear. 2 or 4 / 2 or 13...20

JNSE2 {#}S Jump to S** if SE2 event flag is clear. 2 or 4 / 2 or 13...20

JNSE3 {#}S Jump to S** if SE3 event flag is clear. 2 or 4 / 2 or 13...20

JNSE4 {#}S Jump to S** if SE4 event flag is clear. 2 or 4 / 2 or 13...20

JNXFI {#}S Jump to S** if XFI event flag is clear. 2 or 4 / 2 or 13...20

JNXMT {#}S Jump to S** if XMT event flag is clear. 2 or 4 / 2 or 13...20

JNXRL {#}S Jump to S** if XRL event flag is clear. 2 or 4 / 2 or 13...20

JNXRO {#}S Jump to S** if XRO event flag is clear. 2 or 4 / 2 or 13...20

JPAT {#}S Jump to S** if PAT event flag is set. 2 or 4 / 2 or 13...20

JQMT {#}S Jump to S** if QMT event flag is set. 2 or 4 / 2 or 13...20

JSE1 {#}S Jump to S** if SE1 event flag is set. 2 or 4 / 2 or 13...20

JSE2 {#}S Jump to S** if SE2 event flag is set. 2 or 4 / 2 or 13...20

JSE3 {#}S Jump to S** if SE3 event flag is set. 2 or 4 / 2 or 13...20

JSE4 {#}S Jump to S** if SE4 event flag is set. 2 or 4 / 2 or 13...20

JXFI {#}S Jump to S** if XFI event flag is set. 2 or 4 / 2 or 13...20

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 42

JXMT {#}S Jump to S** if XMT event flag is set. 2 or 4 / 2 or 13...20

JXRL {#}S Jump to S** if XRL event flag is set. 2 or 4 / 2 or 13...20

JXRO {#}S Jump to S** if XRO event flag is set. 2 or 4 / 2 or 13...20

POLLATN {WC/WZ/WCZ} Get ATN event flag into C/Z, then clear it. 2

POLLCT1 {WC/WZ/WCZ} Get CT1 event flag into C/Z, then clear it. 2

POLLCT2 {WC/WZ/WCZ} Get CT2 event flag into C/Z, then clear it. 2

POLLCT3 {WC/WZ/WCZ} Get CT3 event flag into C/Z, then clear it. 2

POLLFBW {WC/WZ/WCZ} Get FBW event flag into C/Z, then clear it. 2

POLLINT {WC/WZ/WCZ} Get INT event flag into C/Z, then clear it. 2

POLLPAT {WC/WZ/WCZ} Get PAT event flag into C/Z, then clear it. 2

POLLQMT {WC/WZ/WCZ} Get QMT event flag into C/Z, then clear it. 2

POLLSE1 {WC/WZ/WCZ} Get SE1 event flag into C/Z, then clear it. 2

POLLSE2 {WC/WZ/WCZ} Get SE2 event flag into C/Z, then clear it. 2

POLLSE3 {WC/WZ/WCZ} Get SE3 event flag into C/Z, then clear it. 2

POLLSE4 {WC/WZ/WCZ} Get SE4 event flag into C/Z, then clear it. 2

POLLXFI {WC/WZ/WCZ} Get XFI event flag into C/Z, then clear it. 2

POLLXMT {WC/WZ/WCZ} Get XMT event flag into C/Z, then clear it. 2

POLLXRL {WC/WZ/WCZ} Get XRL event flag into C/Z, then clear it. 2

POLLXRO {WC/WZ/WCZ} Get XRO event flag into C/Z, then clear it. 2

SETPAT {#}D,{#}S Set pin pattern for PAT event. C selects INA/INB, Z selects =/!=, D provides mask value, S provides match value. 2

SETSE1 {#}D Set SE1 event configuration to D[8:0]. 2

SETSE2 {#}D Set SE2 event configuration to D[8:0]. 2

SETSE3 {#}D Set SE3 event configuration to D[8:0]. 2

SETSE4 {#}D Set SE4 event configuration to D[8:0]. 2

WAITATN {WC/WZ/WCZ} Wait for ATN event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITCT1 {WC/WZ/WCZ} Wait for CT1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITCT2 {WC/WZ/WCZ} Wait for CT2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITCT3 {WC/WZ/WCZ} Wait for CT3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITFBW {WC/WZ/WCZ} Wait for FBW event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITINT {WC/WZ/WCZ} Wait for INT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITPAT {WC/WZ/WCZ} Wait for PAT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE1 {WC/WZ/WCZ} Wait for SE1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE2 {WC/WZ/WCZ} Wait for SE2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE3 {WC/WZ/WCZ} Wait for SE3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE4 {WC/WZ/WCZ} Wait for SE4 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXFI {WC/WZ/WCZ} Wait for XFI event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXMT {WC/WZ/WCZ} Wait for XMT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXRL {WC/WZ/WCZ} Wait for XRL event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXRO {WC/WZ/WCZ} Wait for XRO event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

Interrupt Instructions

Instruction Description Clocks
Cog, LUT & Hub

ALLOWI Allow interrupts (default). 2

BRK {#}D If in debug ISR, set next break condition to D. Else, set BRK code to D[7:0] and unconditionally trigger BRK
interrupt, if enabled. 2

COGBRK {#}D If in debug ISR, trigger asynchronous breakpoint in cog D[3:0]. Cog D[3:0] must have asynchronous breakpoint
enabled. 2

GETBRK D WC/WZ/WCZ Get breakpoint/cog status into D according to WC/WZ/WCZ. See documentation for details. 2

NIXINT1 Cancel INT1. 2

NIXINT2 Cancel INT2. 2

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 43

NIXINT3 Cancel INT3. 2

SETINT1 {#}D Set INT1 source to D[3:0]. 2

SETINT2 {#}D Set INT2 source to D[3:0]. 2

SETINT3 {#}D Set INT3 source to D[3:0]. 2

STALLI Stall Interrupts. 2

TRGINT1 Trigger INT1, regardless of STALLI mode. 2

TRGINT2 Trigger INT2, regardless of STALLI mode. 2

TRGINT3 Trigger INT3, regardless of STALLI mode. 2

Register Indirection Instructions

Instruction Description Clocks
Cog & LUT / Hub

ALTB D,{#}S Alter D field of next instruction to D[13:5]. 2

ALTB D,{#}S Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-extended S[17:9]. 2

ALTD D Alter D field of next instruction to D[8:0]. 2

ALTD D,{#}S Alter D field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9]. 2

ALTGB D Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field = D[1:0]. 2

ALTGB D,{#}S Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) & $1FF, N field = D[1:0]. D +=
sign-extended S[17:9]. 2

ALTGN D Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field = D[2:0]. 2

ALTGN D,{#}S Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9]. 2

ALTGW D Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0]. 2

ALTGW D,{#}S Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D +=
sign-extended S[17:9]. 2

ALTI D Execute D in place of next instruction. D stays same. 2

ALTI D,{#}S Substitute next instruction's I/R/D/S fields with fields from D, per S. Modify D per S. 2

ALTR D Alter result register address (normally D field) of next instruction to D[8:0]. 2

ALTR D,{#}S Alter result register address (normally D field) of next instruction to (D + S) & $1FF. D += sign-extended S[17:9]. 2

ALTS D Alter S field of next instruction to D[8:0]. 2

ALTS D,{#}S Alter S field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9]. 2

ALTSB D Alter subsequent SETBYTE instruction. Next D field = D[10:2], N field = D[1:0]. 2

ALTSB D,{#}S Alter subsequent SETBYTE instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0]. D += sign-extended
S[17:9]. 2

ALTSN D Alter subsequent SETNIB instruction. Next D field = D[11:3], N field = D[2:0]. 2

ALTSN D,{#}S Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0]. D += sign-extended
S[17:9]. 2

ALTSW D Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0]. 2

ALTSW D,{#}S Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N field = D[0]. D += sign-extended
S[17:9]. 2

CORDIC Solver Instructions

Instruction Description Clocks
Cog, LUT & Hub

GETQX D {WC/WZ/WCZ} Retrieve CORDIC result X into D. Waits, in case result not ready. C = X[31]. 1 2...58

GETQY D {WC/WZ/WCZ} Retrieve CORDIC result Y into D. Waits, in case result not ready. C = Y[31]. 1 2...58

QDIV {#}D,{#}S Begin CORDIC unsigned division of {SETQ value or 32'b0, D} / S. GETQX/GETQY retrieves quotient/remainder. 2...9

QEXP {#}D Begin CORDIC logarithm-to-number conversion of D. GETQX retrieves number. 2...9

QFRAC {#}D,{#}S Begin CORDIC unsigned division of {D, SETQ value or 32'b0} / S. GETQX/GETQY retrieves quotient/remainder. 2...9

QLOG {#}D Begin CORDIC number-to-logarithm conversion of D. GETQX retrieves log {5'whole_exponent,
27'fractional_exponent}. 2...9

QMUL {#}D,{#}S Begin CORDIC unsigned multiplication of D * S. GETQX/GETQY retrieves lower/upper product. 2...9

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 44

QROTATE {#}D,{#}S Begin CORDIC rotation of point (D, SETQ value or 32'b0) by angle S. GETQX/GETQY retrieves X/Y. 2...9

QSQRT {#}D,{#}S Begin CORDIC square root of {S, D}. GETQX retrieves root. 2...9

QVECTOR {#}D,{#}S Begin CORDIC vectoring of point (D, S). GETQX/GETQY retrieves length/angle. 2...9

1 Z = (result == 0)

Color Space Converter and Pixel Mixer Instructions

Instruction Description Clocks
Cog, LUT & Hub

Color Space Converter
SETCFRQ {#}D Set the colorspace converter "CFRQ" parameter to D[31:0]. 2

SETCI {#}D Set the colorspace converter "CI" parameter to D[31:0]. 2

SETCMOD {#}D Set the colorspace converter "CMOD" parameter to D[8:0]. 2

SETCQ {#}D Set the colorspace converter "CQ" parameter to D[31:0]. 2

SETCY {#}D Set the colorspace converter "CY" parameter to D[31:0]. 2

Pixel Mixer
ADDPIX D,{#}S Add bytes of S into bytes of D, with $FF saturation. 7

BLNPIX D,{#}S Alpha-blend bytes of S into bytes of D, using SETPIV value. 7

MIXPIX D,{#}S Mix bytes of S into bytes of D, using SETPIX and SETPIV values. 7

MULPIX D,{#}S Multiply bytes of S into bytes of D, where $FF = 1.0 and $00 = 0.0. 7

SETPIV {#}D Set BLNPIX/MIXPIX blend factor to D[7:0]. 2

SETPIX {#}D Set MIXPIX mode to D[5:0]. 2

Lookup Table, Streamer, and Misc Instructions

Instruction Description Clocks
Cog & LUT / Hub

Lookup Table
RDLUT D,{#}S/P {WC/WZ/WCZ} Read data from LUT address {#}S/PTRx into D. C = MSB of data. * 3

SETLUTS {#}D If D[0] = 1 then enable LUT sharing, where LUT writes within the adjacent odd/even companion cog are copied
to this cog's LUT. 2

WRLUT {#}D,{#}S/P Write D to LUT address {#}S/PTRx. 2

Streamer

GETXACC D Get the streamer's Goertzel X accumulator into D and the Y accumulator into the next instruction's S, clear
accumulators. 2

SETXFRQ {#}D Set streamer NCO frequency to D. 2

XCONT {#}D,{#}S Bu�er new streamer command to be issued on final NCO rollover of current command, continuing phase. 2+

XINIT {#}D,{#}S Issue streamer command immediately, zeroing phase. 2

XSTOP Stop streamer immediately. 2

XZERO {#}D,{#}S Bu�er new streamer command to be issued on final NCO rollover of current command, zeroing phase. 2+

Miscellaneous

AUGD #n Queue #n to be used as upper 23 bits for next #D occurrence, so that the next 9-bit #D will be augmented to 32
bits. 2

AUGS #n Queue #n to be used as upper 23 bits for next #S occurrence, so that the next 9-bit #S will be augmented to 32
bits. 2

GETCT D {WC} Get CT[31:0] or CT[63:32] if WC into D. GETCT WC + GETCT gets full CT. CT=0 on reset, CT++ on every clock. C =
same. 2

GETRND WC/WZ/WCZ Get RND into C/Z. C = RND[31], Z = RND[30], unique per cog. 2

GETRND D {WC/WZ/WCZ} Get RND into D/C/Z. RND is the PRNG that updates on every clock. D = RND[31:0], C = RND[31], Z = RND[30],
unique per cog. 2

NOP No operation. 2

POP D {WC/WZ/WCZ} Pop stack (K). D = K. C = K[31]. * 2

PUSH {#}D Push D onto stack. 2

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 45

SETQ {#}D Set Q to D. Use before RDLONG/WRLONG/WMLONG to set block transfer. Also used before
MUXQ/COGINIT/QDIV/QFRAC/QROTATE/WAITxxx. 2

SETQ2 {#}D Set Q to D. Use before RDLONG/WRLONG/WMLONG to set LUT block transfer. 2

WAITX {#}D {WC/WZ/WCZ} Wait 2 + D clocks if no WC/WZ/WCZ. If WC/WZ/WCZ, wait 2 + (D & RND) clocks. C/Z = 0. 2 + D

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 46

SYSTEM CHARACTERISTICS

Absolute Maximum Electrical Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are
absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in
excess of those given. Exposure to absolute maximum ratings for extended periods can adversely affect device
reliability.

Absolute Maximum Ratings

Ambient temperature under bias -40 °C to +125 °C

Storage temperature -40 °C to +150 °C

Voltage on VDD with respect to GND -0.3 V to +2.2 V

Voltage on Vxxyy with respect to GND -0.3 V to +4.0 V

Voltage on all other pins with respect to GND1 -0.3 V to (Vxxyy + 0.3 V)

Total power dissipation 2.5 W

Max. current out of GND 4 A

Max. current into VDD pins 120 mA per pin

Max. current into Vxxyy pins 120 mA per pin

Max DC current into an input pin with internal protection diode forward biased ±10 mA

Max. allowable current per I/O pin ±30 mA

ESD Human Body Model (JS-001) 4 kV

ESD Charged Device Model (JS-002) 1 kV
1 Note: I/O pin voltages in respect to GND may be exceeded if the internal protection diode forward bias current is
not exceeded.

DC Characteristics
Operating temperature range: -40 °C to +105 °C unless otherwise noted.

DC Characteristics

Symbol Parameter Conditions Min Typ1 Max Units

Vdd Core Supply Voltage 1.7 1.8 1.9 V

Vxxyy VIO Supply Voltage 3.15 3.3 3.45 V

Vih Input Logic Threshold Vxxyy * 0.3 Vxxyy * 0.5 Vxxyy * 0.7 V

Iil Input Leakage Current IO pin Vin = GND or Vio ±0.1 ±10 μA

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 47

Vol Output Low Voltage
(relative to GND)

VDD=3.3V, sinking 1mA
VDD=3.3V, sinking 10mA
VDD=3.3V, sinking 30mA

15
160
510

mV

Voh Output High Voltage
(relative to Vxxyy)

VDD=3.3V, sourcing 1mA
VDD=3.3V, sourcing 10mA
VDD=3.3V, sourcing 30mA

-6
-170
-580

mV

Iq Vdd VDD Quiescent
Current

RESn = TEST = P0..P64 = 0V,
Vxxyy = 3.3V, VDD = 1.8V

40 μA

Iq Vxxyy Vxxyy Quiescent
Current

RESn = TEST = P0..P64 = 0V,
Vxxyy = 3.3V, VDD = 1.8V

0.5 μA

1 Note: Data in the Typical “Typ” column is T = 25 °C unless otherwise stated.

AC Characteristics
Operating temperature range: -40 °C to +105 °C unless otherwise noted.

AC Characteristics

Symbol Parameter Conditions Min Typ 1 Max Units

Freq Oscillator Frequency RCSLOW (internal)
RCFAST (internal)
Direct drive (into XI)
Crystal (between XI and XO)
PLL (fed by direct drive or crystal)

12
20
DC
1

3.33

20
24
-
-

180 2

30
30

200
50

320

kHz
MHz
MHz
MHz
MHz

Cin XI and XO pin
Capacitance

Mode 0 : Disabled (1MΩ feedback resistor off)
Mode 1 : Direct drive
Mode 2 : Crystal ≥ 16MHz
Mode 3 : Crystal < 16MHz

2
2

15
30

pF
pF
pF
pF

1 Data in the Typical “Typ” column is T = 25 °C unless otherwise stated.
2 Nominal PLL frequency (system clock speed) is 180 MHz at up to 105 °C.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 48

PACKAGING

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 49

CHANGE LOG
Date Notes

2021-05-05 First public release.

2021-05-27 Added Cog RAM, Locks, CORDIC Solver, and Smart I/O Pins sections. Updated all Hardware
Connections diagrams. Corrected Hub RAM size type and clarified address type in Propeller 2
(P2X8C4M64P) RAM Memory Configuration table.

2021-07-09 Changed "Additional Documentation and Resources" to "Preface" and described this document's
intention. Added Cog Attention section. In the Smart I/O Pins section, revised descriptions,
included direction and state, pin registers and special instructions, added an I/O Pin Timing
section, replaced the Pin Mode table with an enhanced version, and enhanced all I/O pin circuits
to improve clarity. Clarified CORDIC Solver pipeline stream and throughput capability. Added
Host Communication, P2 Monitor, TAQOZ, and Rebooting sections.

2022-11-01 Replaced I/O Pin Timing diagrams and enhanced related descriptions. Updated Internal fast
oscillator speed from ~20 MHz to 20+ MHz. Amended Cog RAM diagram with note about
debug interrupt call/return address. Clarified 20-bit address "don't care" bits statement. Fixed
VCO's max frequency in first System Clock table. Fixed typo in Lock Usage. Enhanced naming
of CORDIC Solver functions. Corrected and enhanced description of the special microSD boot
file.

PARALLAX INCORPORATED
Parallax Inc.
599 Menlo Drive, Suite 100
Rocklin, CA 95765
USA

Office: +1 916-624-8333
Toll Free US: 888-512-1024

sales@parallax.com
support@parallax.com

www.parallax.com/p2
forums.parallax.com

Purchase of the P2X8C4M64P does not include any license to emulate any other device nor to communicate
via any specific proprietary protocol; P2X8C4M64P connectivity objects and code examples provided or
referenced by Parallax, Inc. are NOT licensed and are provided for research and development purposes only;
end users must seek permission to use licensed protocols for their applications and products from the protocol
license holders.

Parallax, Inc. makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc. assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages even if Parallax, Inc. has been advised of the possibility of such damages.

Copyright © 2022 Parallax, Inc. All rights are reserved. Parallax, the Parallax logo, the P2 logo, and Propeller
are trademarks of Parallax, Inc.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Datasheet ▪ Page 50

https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.qslnduy1lji4
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.qslnduy1lji4
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.ei7pvoxv6zcz
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.ei7pvoxv6zcz
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.klhvzlro6ntc
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.itm1tqc74rzq
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.5nr9wvj5jnhs
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.m2vzt2j9piio
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.drp9s9vw79ai
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.3dvmcrhuyvau
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.ihh0p7cihx2l
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.fxalv64vr3g8
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.ahde1qb9oo0g
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.u49kce4ejfy1
https://docs.google.com/document/d/12wyP2QZUxywYQDU0PlFdbwsCfDqfeZtM1I7HoiCQqQU/edit#heading=h.ft3r97r9g0sv
mailto:sales@parallax.com
mailto:support@parallax.com
http://www.parallax.com/p2
https://forums.parallax.com

