

XENSIV™ digital PDM MEMS microphone

Features

- Signal to noise ratio of 70dB(A) SNR
- Acoustic overload point at 122dBSPL
- Flat frequency response with a low frequency roll-off at 30Hz
- Dynamic range of 98dB
- Component level IP57 water and dust resistant
- · Bottom port
- Package dimensions: 3.5mm x 2.65mm x 0.98mm

Potential applications

- · High quality audio capturing
 - Laptops and tablets
 - Conference systems
 - Cameras and camcorders
- Active Noise Cancellation (ANC) headphones and earphones
- Devices with Voice User Interface (VUI)
 - Smart speakers
 - Home automation
 - IOT devices
- Smartphones and mobile devices
- Industrial or home monitoring with audio pattern detection

Product validation

Technology qualified for industrial applications.

Ready for validation in industrial applications according to the relevant tests of IEC 60747 and 60749 or alternatively JEDEC47/20/22.

Description

The IM70D122V01 is a high performance digital PDM MEMS microphone designed to meet a very high signal-to-noise ratio of 70dB(A).

Especially thanks to its high sensitivity and high SNR the IM70D122V01 is perfectly tailored for advanced audio capturing which can uplift the audio experience for laptops, tablets, cameras and conference systems.

This microphone is based on Infineon's Sealed Dual Membrane MEMS technology which delivers high ingress protection (IP57) at a microphone level.

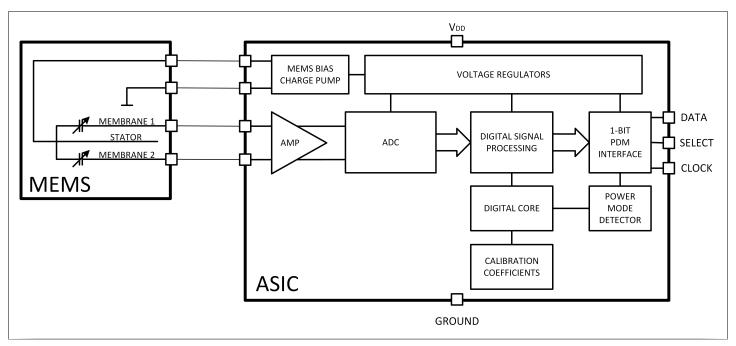
Туре	Package	Marking
IM70D122V01	PG-TLGA-5-2	I70D22

RoHS

Green

Halogen-free

Datasheet

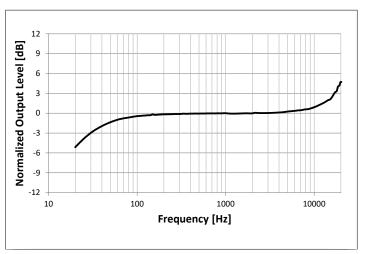

Table of contents

	Features
	Potential applications
	Product validation
	Description
	Table of contents
1	Block diagram
2	Typical performance characteristics
3	Acoustic characteristics
3.1	Free field frequency response
4	Electrical characteristics and parameters
4.1	Absolute maximum ratings
4.2	Electrical parameters
4.3	Electrical characteristics
4.4	Audio DC offset
4.5	Stereo PDM configuration
5	Package information
6	Footprint and stencil recommendation
7	Packing information
8	Reflow soldering and board assembly
9	Reliability specifications
9.1	Environmental robustness
	Revision history
	Disclaimer

1 Block diagram

1 Block diagram

3


Figure 1 Block diagram

2 Typical performance characteristics

Test conditions: V_{DD} = 1.8V, f_{CLK} = 3.072MHz, T_A = 25°C, unless otherwise specified.

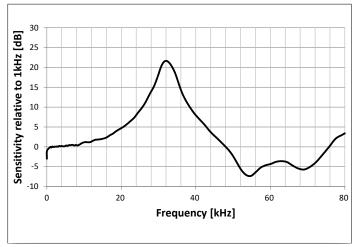


Figure 2 Typical amplitude response

90 75 60 45 98 45 98 15 15 90 100 1000 10000 Frequency [Hz]

Figure 3 Typical ultrasonic response

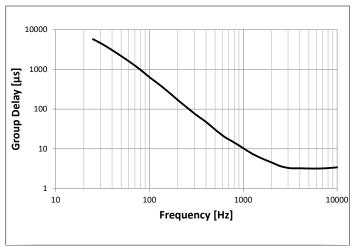


Figure 4 Typical phase response

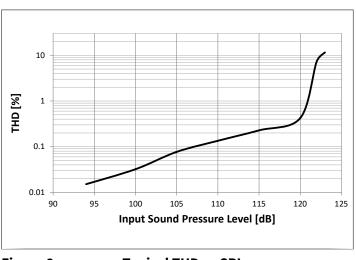
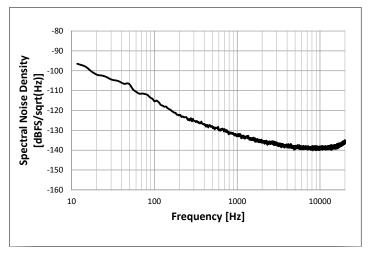


Figure 5 Typical group delay

Figure 6 Typical THD vs SPL


Figure 7 Typical THD vs frequency

4

Datasheet

2 Typical performance characteristics

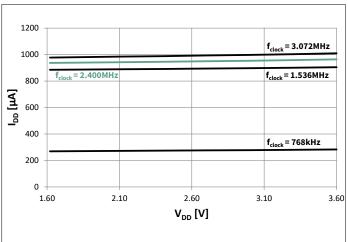


Figure 8 Typical noise floor (unweighted)

Figure 9 Typical I_{DD} vs V_{DD}

Datasheet

3 Acoustic characteristics

3 Acoustic characteristics

Test conditions (unless otherwise specified in the table): V_{DD} = 1.8V, f_{CLK} = 3.072MHz, OSR=64, T_A = 25°C, 55% R.H., audio bandwidth 20Hz to 20kHz, select pin grounded, no load on DATA, T_{edge} = 9ns

Table 1Acoustic specifications

Parameter		Symbol		Values		Unit	Note or Test Condition
			Min.	Тур.	Max.		
Sensitivity		S	-27	-26	-25	dBFS	1kHz, 94 dBSPL, all operating modes
Low Frequency F	Roll-off	LFRO		30		Hz	-3dB relative to 1kHz
Resonant Freque	ency Peak			31		kHz	
Signal to Noise Ratio	F _{clock} = 768kHz	SNR		67			20Hz to 8kHz bandwidth, OSR: 48, A-Weighted
	F _{clock} = 1.536MHz			69		dB(A)	20Hz to 12kHz bandwidth, A- Weighted
	F _{clock} = 2.4MHz			69			20Hz to 20kHz bandwidth, A-
	$F_{clock} = 3.072MHz$			70			Weighted
Total Harmonic	94dBSPL	THD			0.2		Measuring 2nd to 5th
Distortion	120dBSPL			1.0		%	harmonics; 1kHz. S=typ, all operating modes
Acoustic Overload Point	10% THD	AOP		122		dBSPL	Measuring 2nd to 5th harmonics; 1kHz. S=typ, all operating modes
Group Delay	250Hz			120			
	600Hz			25			
	1kHz			10		μs	
	4kHz			3			
Phase	75Hz			25			
Response 1	1kHz			1		0	
	4kHz			-4			
Directivity			On	nnidirectio	onal		
Polarity			Positive pressure increases density of 1' negative pressure decreases density of 1's data output				

3 Acoustic characteristics

3.1 Free field frequency response

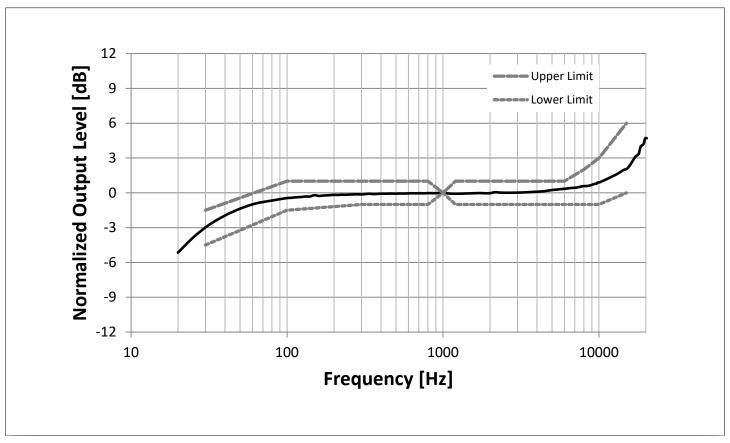


Figure 10 IM70D122V01 free field frequency response

Table 2 IM70D122V01 free field frequency response, normalized to 1kHz sensitivity value

Frequency [Hz]	Upper limit [dB]	Lower limit [dB]
30	-1.5	-4.5
100	1	-1.5
300	1	-1
1000	0	0
6000	1	-1
8000	2	-1
10000	3	-1
15000	6	0

Datasheet

4 Electrical characteristics and parameters

4 Electrical characteristics and parameters

4.1 Absolute maximum ratings

Stresses exceeding the listed maximum ratings may affect device reliability or cause permanent device damage. Functional device operation at these conditions is not guaranteed.

Table 3 Absolute maximum ratings

Parameter	Symbol Values		ues	Unit	Note / Test Condition
		Min. Max.	Max.		
Voltage on any Pin	V _{max}		3.6	V	
Storage Temperature	T _S	-40	125	°C	
Ambient Temperature	T _A	-40	85	°C	

4.2 Electrical parameters

Table 4 Electrical parameters and digital interface input

Parameter		Symbol		Values		Unit	Note / Test Condition
			Min.	Тур.	Max.		
Supply Volta	ge	V_{DD}	1.62	1.8	3.6	V	1)
Clock	Standby Mode	f _{clock}			350	kHz	2)
Frequency Range	Low Power Mode		450	768	850	kHz	
Nunge	Normal Mode		1.2	3.072	3.3	MHz	
V _{DD} Ramp-up	Time				50	ms	Time until V _{DD} ≥ V _{DD_min}
Input Logic L	ow Level	V _{IL}			0.3xV _{DD}	V	
Input Logic H	High Level	V _{IH}	0.7xV _{DD}			V	
Clock Rise/Fa	all Time				13	ns	10% to 90%
Clock Duty Cycle			40		60	%	f _{clock} ≤3MHz
			48		52	%	f _{clock} >3MHz
Output Load DATA	Capacitance on	C _{load}			100	pF	

A $1\mu F$ bypass capacitor shall be placed close to the microphone V_{DD} pad to ensure best SNR performance.

Data pad is high impedance in standby mode.

Datasheet

4.3 Electrical characteristics

Test conditions (unless otherwise specified in the table): $V_{DD} = 1.8V$, $T_A = 25$ °C, 55% R.H.

Table 5 General electrical characteristics

clock Off Mode standby Mode c _{clock} = 768kHz c _{clock} = 1.536MHz	I _{clock_off}	Min.	Тур.	Мах.		
standby Mode c _{clock} = 768kHz						
c _{lock} = 768kHz	I _{standby}		1		μΑ	CLOCK pulled low
			25	50		No load on DATA
c _{lock} = 1.536MHz	I _{DD}		280	330		<5pF load on DATA
			880			
c _{lock} = 2.4MHz			930			
$t_{clock} = 3.072MHz$			980	1200		
rent		1		20	mA	Grounded DATA pin
jection	PSR _{1k_NM}		-80		dBFS	100mV _{pp} sine wave on V _{DD} swept from 200Hz to 20kHz.
	PSR _{217_NM}		-86		dBFS(A)	100mV _{rms} , 217Hz square wave on V _{DD} . A-weighted
0.5dB sensitivity occuracy				20	ms	Time to start up in any operating modes after V _{DD_min} and CLOCK have been applied. ³⁾
0.2dB sensitivity occuracy				50		
0.5dB sensitivity occuracy				20	ms	Time to switch between operating modes. V _{DD}
0.2dB sensitivity occuracy				50		remains on during the mode switch. ³⁾
v Level	V _{OL}			0.2xV _{DD}	V	
h Level	V _{OH}	0.8xV _{DD}				
ATA Driven	t _{DD}	40		80	ns	Delay time from CLOCK edge (0.5xV _{DD}) to DATA driven.
ATA High-Z ⁴⁾	t _{HZ}	5		30	ns	Delay time from CLOCK edge (0.5xV _{DD}) to DATA high impedance state
ATA Valid ⁵⁾	t _{DV}			100	ns	Delay time from CLOCK edge (0.5xV _{DD}) to DATA valid (<0.3xV _{DD} or >0.7xV _{DD})
j	0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 1.2dB sensitivity	PSR _{1k_NM} 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 1 Level V _{OL} 1 Level V _{OH} 1 TA Driven t _{DD} TA High-Z ⁴ TA Valid ⁵ Ta Valid ⁵ The valid tone is called a valid micro	PSR _{1k_NM} PSR _{217_NM} 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.2dB sensitivity ccuracy 1 Level 1 Level 1 Level 1 Level 1 TA Driven TA High-Z ⁴ TA Valid ⁵ Ta Valid ⁵ Ta Valid ⁵ Ta Valid microphone sig	ection PSR_{1k_NM} -80 PSR_{217_NM} -86 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.2dB sensitivity ccuracy 1 Level V_{0L} V_{0H} V_{0L} V	PSR _{1k_NM} -80 PSR _{217_NM} -86 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.5dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.2dB sensitivity ccuracy 0.1dB sensitivity ccuracy 1 Level V _{OL} 0.2xV _{DD} 1 Level V _{OH} 0.8xV _{DD} 1 TA Driven t _{DD} 40 80 TA High-Z ⁴ t _{HZ} 5 30 TA Valid ⁵ t _{DV} 100 Idle tone is output over PDM within 3ms of a court over PDM within	PSR _{1k_NM}

³ Verified at typical PDM clock frequencies for each power mode.

 t_{hold} is dependent on C_{load}

Load on data: C_{load} =100pF, R_{load} =100kΩ

4 Electrical characteristics and parameters

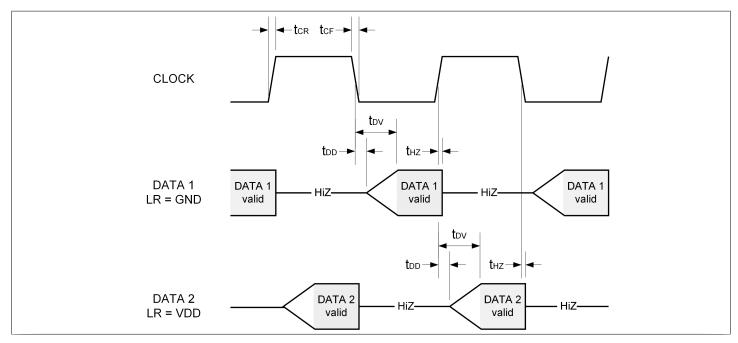


Figure 11 Timing diagram

4.4 Audio DC offset

The DC output level encoded in the DC bit stream is determined by the L/R state on startup. In each case the DC output level is stable over time and does not vary with input signal level.

Table 6 DC output level using L/R pin

LR state	DC output level (typical)	Unit
LR = GND	-80	dBFS
LR = VDD	-40	dBFS

4 Electrical characteristics and parameters

4.5 Stereo PDM configuration

The IM70D122V01 is designed to function in circuits with one or two microphones on the PDM bus. When two microphones are connected, data is transmitted alternately according to the L/R pin status of each microphone. When two microphones are connected to a shared PDM bus, the power modes of both microphones will be the same as both are controlled by the same PDM clock. The performance is unchanged relative to a single microphone per bus configuration.

Table 7 PDM channel configuration using L/R pin.

Channel	Data driven	Data high-Z	L/R connection
DATA1	Falling clock edge	Rising clock edge	GND
DATA2	Rising clock edge	Falling clock edge	V_{DD}

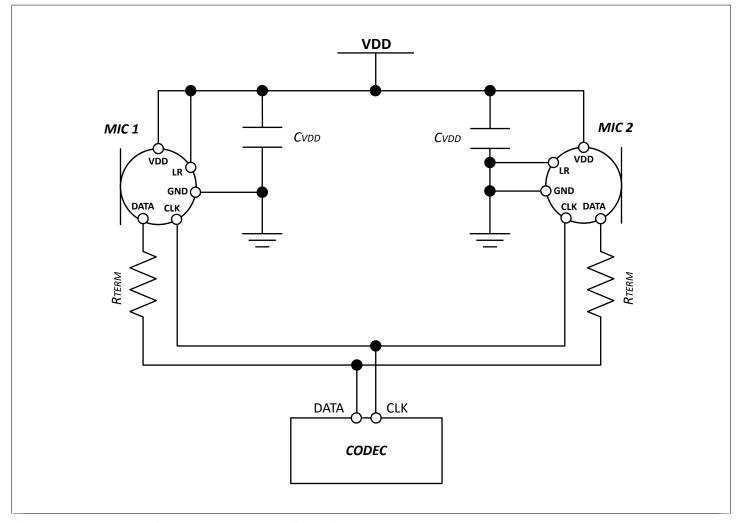


Figure 12 Typical stereo mode configuration

Note:

For best performance it is strongly recommended to place a 100nF ($C_{VDD_typical}$) capacitor between V_{DD} and ground. The capacitor should be placed as close to V_{DD} as possible. A termination resistor (R_{TERM}) of about 100 Ω may be added to reduce the ringing and overshoot on the output signal.

5 Package information

5 Package information

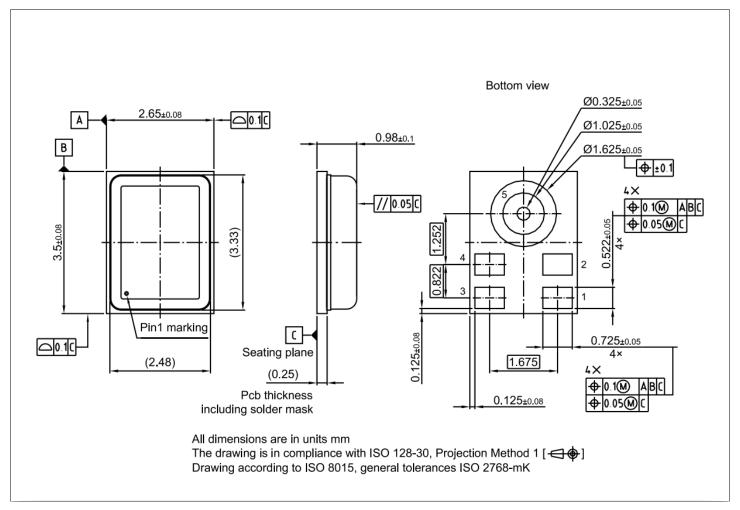
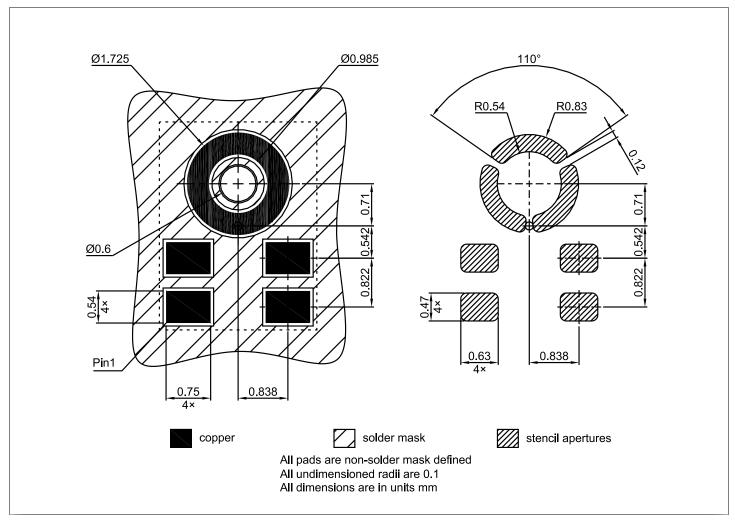


Figure 13 IM70D122V01 package drawing

Table 8 IM70D122V01 pin configuration

Pin Number	Name	Description
1	V _{DD}	Power supply
2	CLOCK	PDM clock input
3	DATA	PDM data output
4	LR select	PDM left/right select
5	GND	Ground

Datasheet


6 Footprint and stencil recommendation

6 Footprint and stencil recommendation

The acoustic port hole diameter in the PCB should be larger than the acoustic port hole diameter of the MEMS microphone to ensure optimal performance. A PCB sound port size of diameter 0.6 mm is recommended.

The board pad and stencil aperture recommendations shown in Figure 14 are based on Solder Mask Defined (SMD) pads. The specific design rules of the board manufacturer should be considered for individual design optimizations or adaptations.

13

Figure 14 Footprint and stencil recommendation

Datasheet

7 Packing information

7 Packing information

For shipping and assembly the Infineon microphones are packed in product specific tape-and-reel carriers. A detailed drawing of the carrier can be seen in Figure 15

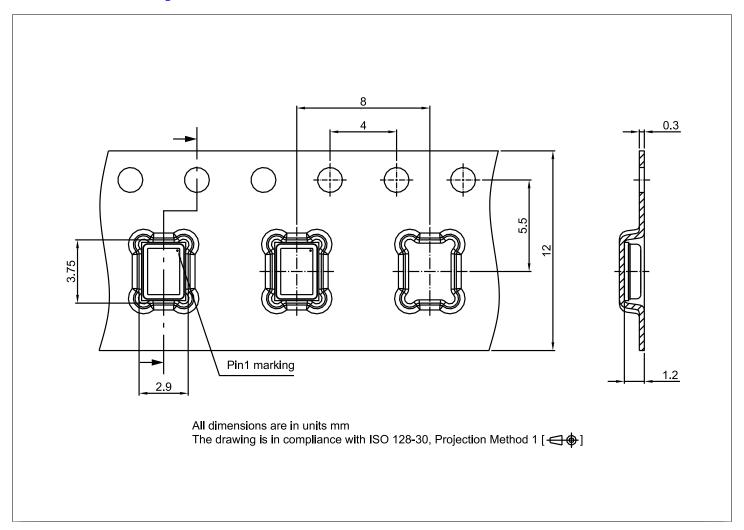


Figure 15 IM70D122V01 tape and reel packing information

Table 9 IM70D122V01 packaging information

Product	Type code	Reel diameter	Quantity per reel
IM70D122V01	I70D22	13"	5000

8 Reflow soldering and board assembly

Reflow soldering and board assembly 8

Infineon MEMS microphones are qualified in accordance with the IPC/JEDEC J-STD-020D-01. The moisture sensitivity level of MEMS microphones is rated as MSL1. For PCB assembly of the MEMS microphone the widely used reflow soldering using a forced convection oven is recommended.

The soldering profile should be in accordance with the recommendations of the solder paste manufacturer to reach an optimal solder joint quality. The reflow profile shown in Figure 16 is recommended for board manufacturing with Infineon MEMS microphones.

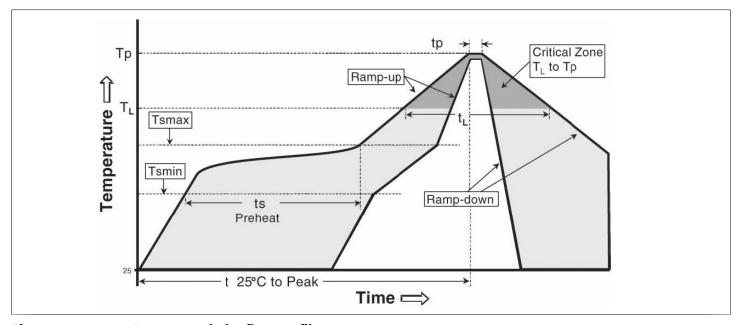


Figure 16 Recommended reflow profile

Reflow profile limits Table 10

Profile feature	Pb-Free assembly	Sn-Pb Eutectic assembly	
Temperature Min (T _{smin})	150 °C	100 °C	
Temperature Max (T _{smax})	200 °C	150 °C	
Time (T _{smin} to T _{smax}) (t _s)	60-120 seconds	60-120 seconds	
Ramp-up rate (T _L to T _P)	3 °C/second max.	3 °C/second max.	
Liquidous temperature (T _L)	217 °C	183 °C	
Time (t _L) maintained above T _L	60-150 seconds	60-150 seconds	
Peak Temperature (T _p)	260°C +0°C/-5°C	235°C +0°C/-5°C	
Time within 5°C of actual peak temperature (tp) ⁶⁾	20-40 seconds	10-30 seconds	
Ramp-down rate	6 °C/second max.	6 °C/second max.	
Time 25°C to peak temperature	8 minutes max.	6 minutes max.	

Note: For further information please consult the 'General recommendation for assembly of Infineon packages' document which is available on the Infineon Technologies web page

Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum

Datasheet

8 Reflow soldering and board assembly

The MEMS microphones can be handled using industry standard pick and place equipment. Care should be taken to avoid damage to the microphone structure as follows:

- Do not pick the microphone with vacuum tools which make contact with the microphone acoustic port hole.
- The microphone acoustic port hole should not be exposed to vacuum, this can destroy or damage the MEMS.
- Do not blow air into the microphone acoustic port hole. If an air blow cleaning process is used, the port hole must be sealed to prevent particle contamination.
- It is recommended to perform the PCB assembly in a clean room environment in order to avoid microphone contamination.
- Air blow and ultrasonic cleaning procedures shall not be applied to MEMS Microphones. A no-clean paste is
 recommended for the assembly to avoid subsequent cleaning steps. The microphone MEMS can be severely
 damaged by cleaning substances.
- To prevent the blocking or partial blocking of the sound port during PCB assembly, it is recommended to cover the sound port with protective tape during PCB sawing or system assembly.
- Do not use excessive force to place the microphone on the PCB. The use of industry standard pick and place tools is recommended in order to limit the mechanical force exerted on the package.

Datasheet

9 Reliability specifications

9 Reliability specifications

The microphone sensitivity after stress must deviate by no more than 3dB from the initial value.

Table 11 Reliability specification

Test	Abbreviation	Test Condition	Standard
Low Temperature Operating Life	LTOL	T _a =-40°C, VDD=3.6V, 1000 hours	JESD22-A108
Low Temperature Storage Life	LTSL	T _a =-40°C, 1000 hours	JESD22-A119
High Temperature Operation Life	HTOL	T _a =+125°C, VDD=3.6V, 1000 hours	JESD22-A108
High Temperature Storage Life	HTSL	T _a =+125°C, 1000 hours	JESD22-A103
Temperature Cycling	PC + TC	Pre conditioning MSL-1	JESD22-A113
		1000 cycles, -40°C to +125°C, 30 minutes per cycle	JESD22-A104
Temperature Humidity Bias	PC + THB	Pre conditioning MSL-1	JESD22-A113
		T _a =+85°C, R.H = 85%, VDD=3.6V, 1000 hours	JESD22-A101
Vibration Test	VVF	20Hz to 2000Hz with a peak acceleration of 20g in X, Y, and Z for 4 minutes each, total 4 -cycles	IEC 60068-2-6
Mechanical Shock	MS	10000g/0.1msec direction ±x,y,z, 5 shocks in each direction, 5 shocks in total	IEC 60068-2-27
Reflow Solder ⁷⁾	RS	3 reflow cycles, peak temperature = +260°C	IPC-JEDEC J-STD-020D-01
Electrostatic Discharge -System Level Test	ESD - SLT	3 discharges of ±8kV direct contact to lid while V _{dd} is supplied according to the operational modes; (V _{dd} ground is separated from earth ground)	IEC-61000-4-2
Electrostatic Discharge - Human Body Model	ESD - HBM	1 pulse of ±2kV between all I/O pin combinations	JEDEC-JS001
Electrostatic Discharge - Charged Device Model	ESD - CDM	3 discharges of ±500V direct contact to I/O pins.	JEDEC JS-002

The microphone sensitivity must deviate by no more than 1dB from the initial value after 3 reflow cycles.

Datasheet

9 Reliability specifications

9.1 Environmental robustness

Infineon's latest Sealed Dual Membrane MEMS technology delivers high ingress protection (IP57) at a microphone level. The sealed MEMS design prevents water or dust from entering between membrane and backplate, preventing mechanical blockage or electric leakage issues commonly observed in MEMS microphones. Microphones built with the Sealed Dual Membrane technology can be used to create IP68 devices, requiring only minimal mesh protection.

Table 12 Environmental robustness

Test Standard	Test Condition	
IP5x dust resistance ⁸⁾	Arizona dust A4 coarse, vertical orientation, sound hole upwards, 10 cycles (15 minutes sedimentation, 6 sec blowing)	
IPx7 water immersion ⁹⁾	Temporary immersion of 1 meters for 30 minutes. Microphone teste hours after removal	

The number "5" stands for the dust ingress rating or the capacity to withstand the effects of fine, abrasive dust particles.

The "7" specifies the higher water immersion rating.

Datasheet

Revision history

Revision history

Document version	Date of release	Description of changes	
V1.00	2022-12-27	Initial datasheet Release	
v1.01	2023-01-18	Corrected package information	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-01-18 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-lyj1649834259261

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.