

Precision Micro power Shunt Voltage Reference

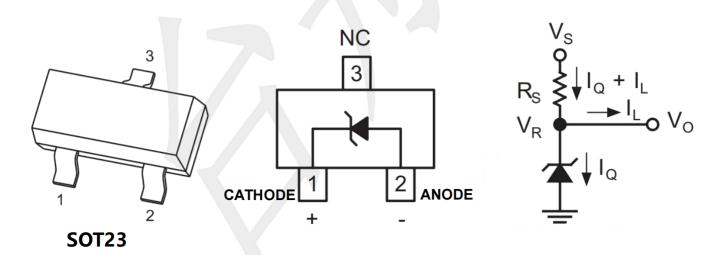
WWW.TECHPUBLIC.COM

Features

- Low Output Noise
- No Output Capacitor Required
- Tolerates Capacitive Loads
- Low Temperature Deviation: 10mV(typ)
- Low Temperature Coefficient of 100 ppm/°C (max)
- Fixed Reverse-Breakdown Voltages 2.5V
- Output Voltage Tolerance (C,±0.5%)
- Package appearance SOT23

Applications

- Battery-Powered Equipment
- Data Acquisition Systems
- Precision Audio Components
- Instrumentation
- Process Control
- Energy Management
- Product Testing


General Description

This is a parallel voltage reference with diverse functions, easy to use, and suitable for Various applications. The pin fixed output device does not require external capacitors Operable and stable when working with all capacitive loads. Here Moreover, this benchmark has low dynamic impedance, low noise, and low temperature coefficient, which can Ensure stable output voltage within a wide range of operating currents and temperatures.

This is packaged in SOT23, which saves space,

The minimum current is 45 μ A (typical value), making it suitable for portable applications The ideal choice. Its rated operating temperature range is - 40 $^{\circ}$ C to+125 $^{\circ}$ C.

Circuit diagram and pin information

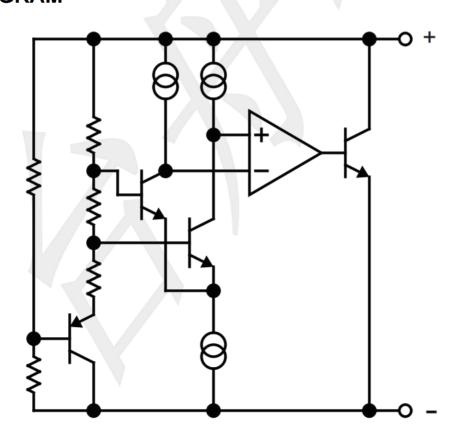
Note: Pin NC is attached to substrate and must be connected to ANODE or open.

Precision Micro power Shunt Voltage Reference

WWW.TECHPUBLIC.COM

Absolute Maximum Ratings

Within the range of TA=25 ℃ (unless otherwise specified)


Parameter		Value	UNIT	
Рм	Power Rating	0.25	W	
Rc	Reverse Current	20	mA	
Fc	Forward Current	10	mA	
Тоа	Operating Ambient Temperature Range	-40 ~ +125	C	
TJ	Operating virtual junction temperature	+150	°C	
Tstg	Storage temperature range	-55 ~ +150	°C	
ESD	Human Body Model	6	KV	
ESD	Machine Model	0.4	KV	

⁽¹⁾ Exceeding the absolute maximum rated pressure listed may result in permanent damage to the equipment. These are only rated stresses and do not imply any of them or any of them

The functional operation of the equipment under his conditions (beyond the conditions indicated under the 'recommended working conditions'). Long term exposure to absolute maximum rated conditions can It can affect the reliability of the equipment.

(2) Unless otherwise specified, all voltage values are related to the anode.

BLOCK DIAGRAM

Precision Micro power Shunt Voltage Reference

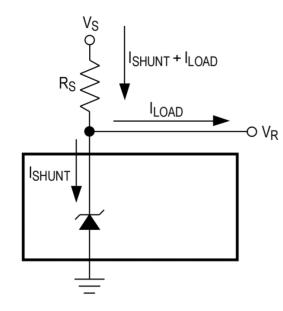
WWW.TECHPUBLIC.COM

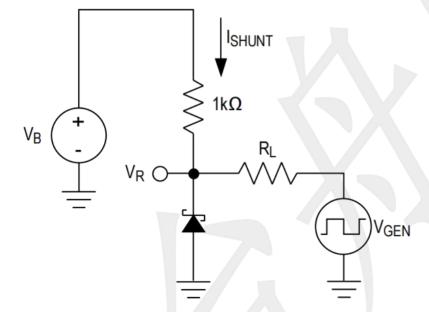
Electrical Characteristics

(IR = 100μ A, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = $+25^{\circ}$ C.)(Note 1)

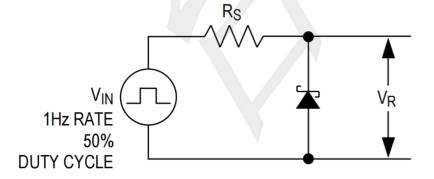
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	VR	T _A = +25°C	C (±0.5%)	2.4875	2.5000	2.5125	V
Reverse Breakdown Voltage Tolerance (Note 2)	VR				±10	±29	mV
Minimum Operating Current	IRMIN				45	65	μΑ
Average Reverse Voltage		I _R = 10mA		±20			
Temperature Coefficient	ΔV _R /ΔT	IR = 1mA		-	±15	±100	ppm/°C
(Notes 2 and 3)		I _R = 100μA		±15			
Reverse Breakdown		I _{RMIN} ≤ I _R ≤	≤ 1mA	1mA		1.0	mV
Voltage Change with Operating Current Change		1mA≤ I _R ≤ 15mA			2.5	8.0	
Reverse Dynamic Impedance (Note 3)	ZR	I _R = 1mA, f = 120Hz, I _{AC} = 0.1I _R			0.3	0.9	Ω
Wide band Noise	eN	I _R = 100μA, 10Hz ≤ f ≤ 10kHz		35			μVRMS
Reverse Breakdown Voltage Long-Term Stability			120			ppm	

Note 1: All devices are 100% production tested at TA = +25°C and are guaranteed by design for TA = TMIN to TMAX, as specified.


Note 2: The over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room-temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta VR/\Delta T)(max\Delta T)(VR)]$, where $\Delta VR/\Delta T$ is the VR temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of $\pm 25^{\circ}$ C to TMIN or TMAX, and VR is the reverse breakdown voltage. Note 3: Guaranteed by design.

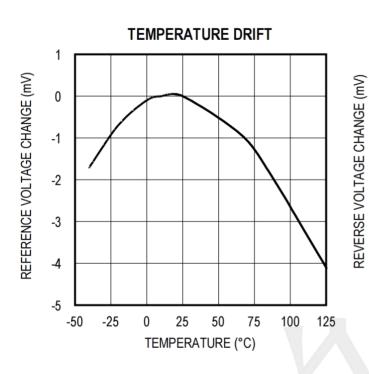

Precision Micro power Shunt Voltage Reference

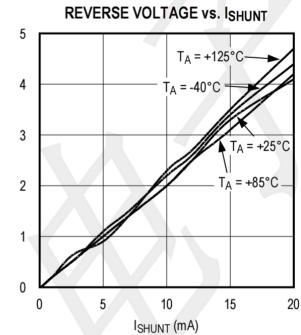
WWW.TECHPUBLIC.COM


Typical Application Circuits

Typical Operating Circuit

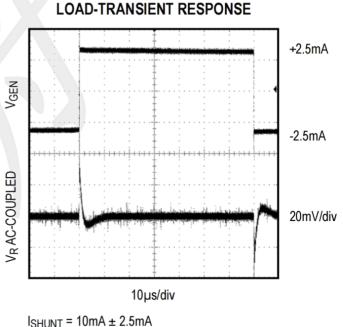
Load-Transient Test Circuit


Startup Characteristics Test Circuit



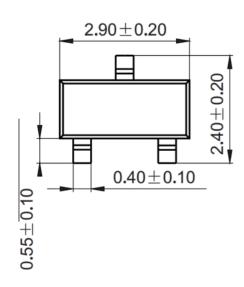
Precision Micro power Shunt Voltage Reference

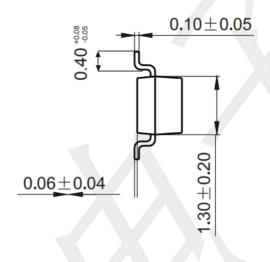
WWW.TECHPUBLIC.COM

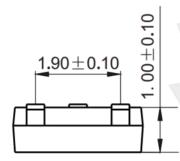

Typical Operating Characteristics

LOAD-TRANSIENT RESPONSE +250μA -250μA 10mV/div I_{SHUNT} = 1mA ± 250μA

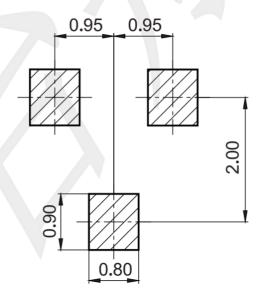
 $R_L = 10k\Omega$, SEE FIGURE 1


 $R_L = 1k\Omega$, SEE FIGURE 1




Precision Micro power Shunt Voltage Reference

WWW.TECHPUBLIC.COM


Package Outline Dimensions (unit: mm) SOT23

Mounting Pad Layout (unit: mm)

