

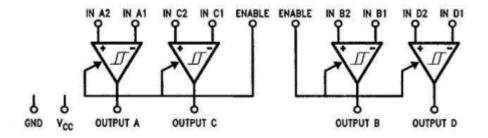
MAX3093 Quad CMOS Differential Line Receiver

Features

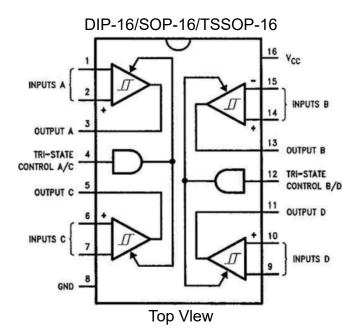
- \bullet Low power CMOS design $\pm\,0.2V$ sensitivity over the entire common mode range
- Typical propagation delays: 20 ns
- Typical input hysteresis: 50 mV
- Inputs won't load line when Vcc = 0V
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for connection to system buses

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
MAX3093N	DIP-16	MAX3093	TUBE	1000pcs/box
MAX3093M/TR	SOP-16	MAX3093	REEL	2500pcs/reel
MAX3093MT/TR	TSSOP-16	X3093	REEL	2500pcs/reel


General Description

The MAX3093 is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS.


The MAX3093 has an input sensitivity of 200 mV over the common mode input voltage range of \pm 7V. Hysteresis is provided to improve noise margin and discourage output instability for slowly changing input waveforms.

Separate enable pins allow independent control of receiver pairs. The TRI-STATE® outputs have 6 mA source and sink capability. The MAX3093 is pin compatible with the DS3486.

Logic Diagram

Connection Diagram

Absolute Maximum Ratings (Notes 1 & 2)

Condition	Min	Max	UNITS
Supply Voltage (Vcc)	-	7	V
Common Mode Range (V _{CM})	-14	+14	V
Differentlal Input Voltage (V _{DIFF})	-14	+14	V
Enable Input Voltage (V _{IN})	-	7	V
Storage Temperature Range (T _{STG})	-65	+150	°C
Lead Temperature (Soldering 10 sec)	-	260	°C
Current Per Output	-25	+25	mA
Operating Conditions			
Supply Voltage (Vcc)	4.75	5.25	V
Operating Temperature Range (T _A)	-40	+85	°C
Enable Input Rise or Fall Times	-	500	ns

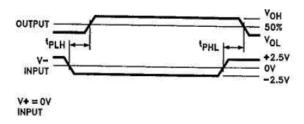
DC Electrical Characteristics

Vcc = 5V +5% (unless otherwise specified) (Note 3)

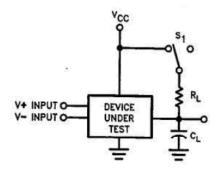
Symbor	Parameter	Parameter Conditions Min		Тур	Max	Units
V_{TH}	Minimum Differential Input Voltage	$V_{OUT} = V_{OH} \text{ or } V_{OL}$ -7V <v<sub>CM <+7V</v<sub>	-0.2		+0.2	V
R _{IN}	Input Resistance	-7V <v<sub>CM < +7V (One Input AC GND)</v<sub>		10		kΩ
l _{IN}	Input Current (Under Test)	V_{IN} = +10V, Other Input GND V_{IN} = -10V, Other Input = GND		+1.1 -1.6		mA mA
Vон	Minimum High Level Output Voltage	V _{CC} =Min,V _(DIFF) =+1V I _{OUT} =6.0mA	3.84	4.2		V
V_{OL}	Maximum Low Lever Output Voltage	V _{CC} =Max,V _(DIFF) =+1V I _{OUT} =6.0mA				V
V _{IH}	Minimum Enable High Input Level Voltage		2.0			V
V_{IL}	Maximum Enable Low Input Level Voltage				0.8	V
loz	Maximum TRI-STATE Output Leakage Current	V _{OUT} =V _{CC} or GND, TRI-STATE Control=VIL		±0.5	±5.0	μΑ
Iı	Maximum Enable Input Current	V _{IN} =V _{CC} or GND			±1.0	μΑ
Icc	Qulescent Power Supply Current	V _{CC} =Max,V _(DIFF) =+1V		12		mA
V _{HYST}	Input Hysteresis			50		mV

AC Electrical Characteristics

 V_{CC} = 5V ±5% (unless otherwise specified) (Note 3)


Symbor	Parameter	Conditions	Min	Тур	Max	Units
$T_{PLH},$	Propagation Delay	C _L =50pF		20		
t_{PHL}	Input to Output	V _{DIFF} =2.5V		20		ns
	Propagation Delay	C _L =50pF				
t _{PLZ} ,	TRI-STATE Control	R _L +1000Ω		12		ns
t _{PHZ}	to Output	V _{DIFF} =2.5v				
4	Propagation Delay	C _L =50pF				
t _{PZL} ,	TRI-STATE Control	R _L =1000Ω		14		ns
t _{PZH}	to Output	V _{DIFF} =2.5V				

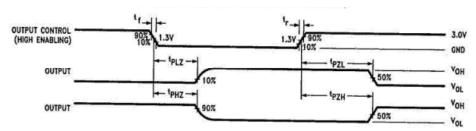
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.


Note 2: Unless otherwise specified, all voltages are referenced to ground.

Note 3: Unless otherwise specified, Min/Max limits apply across the -40° C to $+65^{\circ}$ C temperature ranger All typicals are given for Vca 5V and TA = 25° C.

Propagation Delay

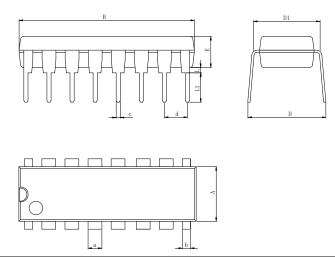
Test Circuit for TRI-STATE Output Tests

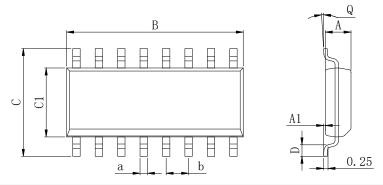


CL = Includes load and test jig capacitance.

S1 =Vcc for tpzu, and tpLz measurements.

S1 = GND for tPzH, and tpHz measurements.

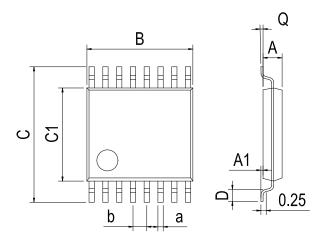

TRI-STATE Output Enable and Disable Waveforms


Physical Dimensions

DIP-16

Dimensions In Millimeters(DIP-16)											
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	р
Min:	6.10	18.94	8.10	7.42	3.10	0.50	300	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 650

SOP-16



Dimensions In Millimeters(SOP-16)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	1.21 030

Physical Dimensions

TSSOP-16

Dimensions In Millimeters(TSSOP-16)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 650

Revision History

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2014-6	New	1-8
V1.1	2019-9	Modify the package dimension diagram TSSOP-16Updated DIP-16 dimension	5、6
V1.2	2024-11	Update Lead Temperature	3

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.