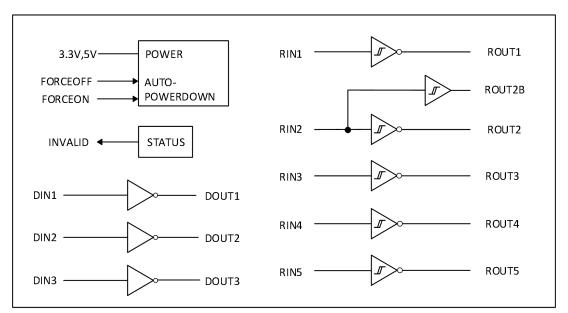


1 FEATURES


- True RS-232 Operation from Vcc = +3.0V to +5.5V
- 1μA Supply Current Achieved with AutoShutdown
- Guaranteed 250kbps Data Rate
- Auto Power-Off Feature to Disable Driver Outputs when No Valid RS-232 Signal is Sensed
- Accept 5V logic input and 3.3V power supply
- Interoperable with EIA / TIA-232 and adheres to EIA /TIA-562 down to a +2.7V power source
- Enhanced ESD specifications:
 ±15kV Human Body Model
 ±15kV IEC61000-4-2 Air Discharge
 ±8kV IEC61000-4-2 Contact Discharge

2 APPLICATIONS

- Notebook, Subnotebook, and Palmtop Computers
- Cellular Phones
- Battery-Powered Equipment
- Handheld Equipment
- Peripherals
- Printers

3 DESCRIPTION

The GM3243E is 3V/5.5V powered communications interfaces with automatic shutdown/wake up features, high data rate capabilities, and enhanced electrostatic discharge (ESD) protection. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air Gap Discharge, to ±8kV using IEC 1000-4-2 Contact Discharge, and to ±15kV using the Human Body Model.It saves power without changes to the existing BIOS or operating system by entering low-power shutdown mode when the RS-232 cable is disconnected. or when the transmitters of the connected peripherals are off. The transceivers have a proprietary low-dropout transmitter output stage, delivering true RS-232 performance from a +3.0V to +5.5V supply with a dual charge pump. The charge pump requires only four small 0.1µF capacitors for operation from a +3.3V supply. Each device is guaranteed to run at data rates of 250kbps while maintaining RS-232 output levels.

Simplified Circuit Diagram

4 Pin Configuration and Functions

		SO	P/SSOP/TSS	SOP		
			(Top View)		,	
C2+	Ш	1	O	28	Ш	C1+
C2-	П	2		27	ш	V+
V-	П	3		26	ш	V_{CC}
RIN1	ш	4		25	Ь	GND
RIN2	ш	5		24	Ь	C1-
RIN3	Ш	6		23	Ь	FORCEON
RIN4	Ш	7	GM3243E	22	Ь	FORCEOFF
RIN5	Ш	8	G1V13243E	21	Н	INVALLD
DOUT1	. Ш	9		20	ь	ROUT2B
DOUT2		10		19	ь	ROUT1
DOUTS	Ш	11		18	Н	ROUT2
DIN3	Ш	12		17	Н	ROUT3
DIN2	Ш	13		16	Ь	ROUT4
DIN1	Щ	14		15	田	ROUT5

Pin		_	5		
Name	No.	Туре	Description		
C2+	1	-	Positive terminal of the voltage-doubler charge-pump capacitor		
C2-	2	-	Negative terminal of the voltage-doubler charge-pump capacitor		
V-	3		Negative charge pump output voltage		
RIN1	4	1	RS-232 receiver input		
RIN2	5	1	RS-232 receiver input		
RIN3	6	1	RS-232 receiver input		
RIN4	7	ı	RS-232 receiver input		
RIN5	8	ı	RS-232 receiver input		
DOUT1	9	0	RS-232 driver output		
DOUT2	10	0	RS-232 driver output		
DOUT3	11	0	RS-232 driver output		
DIN3	12	ı	TTL/CMOS driver input		
DIN2	13	ı	TTL/CMOS driver input		
DIN1	14	ı	TTL/CMOS driver input		
ROUT5	15	0	TTL/CMOS Receiver Output		
ROUT4	16	0	TTL/CMOS Receiver Output		
ROUT3	17	0	TTL/CMOS Receiver Output		
ROUT2	18	0	TTL/CMOS Receiver Output		
ROUT1	19	0	TTL/CMOS Receiver Output		
ROUT2B	20	0	Always-active noninverting receiver output		
INVALLD	21	0	INVALLD Output Pin		
FORCEOFF	22	I	Auto Powerdown Control input (Refer to Truth Table)		
FORCEON	23	ı	Auto Powerdown Control input (Refer to Truth Table)		
C1-	24	-	Negative terminal of the voltage-doubler charge-pump capacitor		
GND	25	-	Ground		
Vcc	26	-	3V to 5.5V supply voltage		
V+	27	-	Positive terminal of the voltage-doubler charge-pump capacitor		
C1+	28	-	Negative terminal of the voltage-doubler charge-pump capacitor		

5 Specifications

5.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)(1)

Parameter	D	Description			UNIT	
Vcc	Supply Voltage range ⁽²⁾		-0.3	6	V	
V+	Positive output supply vol	tage range ⁽²⁾	-0.3	7	V	
V-	Negative output supply vo	Negative output supply voltage range ⁽²⁾		-7	V	
V+ - V-	Output supply voltage dif	Output supply voltage difference ⁽²⁾			V	
	land the same as	Driver (FORCEOFF, FORCEON)	-0.3	6	V	
Vı	input voitage range	Input voltage range Receiver				
	Outout valtage rese	Driver	-13.2	13.2	.,	
V_0	Output voltage range Receiver (INVALLD)		-0.3	Vcc+0.3	V	
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

Parameter	Limit	Unit
HBM (Human Body Model), Driver Outputs and Receiver Inputs	±15	
IEC61000-4-2 Air Discharge, Driver Outputs and Receiver Inputs	±15	KV
IEC61000-4-2 Contact Discharge, Driver Outputs and Receiver Inputs	±8	

5.3 Recommended Operating Conditions

See Figure 6 (1)

Parameter	Description	Description				MAX	UNIT
Vcc	Supply Voltage range		Vcc=3.3V	3	3.3	3.6	V
VCC	Supply voltage range	Vcc=5V	4.5	5	5.5	V	
	Driver and control high-level input	D _{IN} ,	Vcc=3.3V	2		5.5	
V _{IH}	V _{IH} voltage		Vcc=5V	2.4		5.5	V
V _{IL}	Driver and control low-level input voltage	D _{IN} , FORCEOFI	, FORCEON			0.8	٧
Vı	Driver and control input voltage D _{IN} , FORCEOFF, FORCEON			0		5.5	٧
Vı	Receiver input voltage			-25		25	٧
T _A	Operating free-air temperature			-40		85	°C

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

- 3 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

⁽²⁾ All voltages are with respect to network GND.

5.4 Thermal Information

Parameter	THERMAL METRIC	SSOP	SOIC	TSSOP	LINIT
Parameter	THERIVIAL IVIETRIC	28 PINS	28 PINS	28 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	76.1	59.0	70.3	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	35.8	28.8	21.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	37.4	30.3	29.2	°C/W
ψл	Junction-to-top characterization parameter	7.4	7.8	1.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	37.0	30.0	28.8	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W

5.5 Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 6)

	Parameter		TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μΑ
		Auto-powerdown disabled	No load, FORCEOFF and FORCEON at Vcc		0.3	1.2	mA
Icc	Supply current	Powered off	No load, FORCEOFF at GND		1	10	μΑ
100	(T _A = 25°C)	Auto-powerdown enabled	No load, FORCEOFF at Vcc, FORCEON at GND,All R _{IN} are open or grounded,All D _{IN} are grounded		1	10	μΑ

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

5.6 Driver Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 6)

	Parameter	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All D_{OUT} at RL = $3k\Omega$ to GND	5	5.4		V
V _{OL}	Low-level output voltage	All D_{OUT} at RL = $3k\Omega$ to GND		-5.4	-5	V
Vo	Output voltage	D_{IN1} = D_{IN2} = GND, D_{IN3} = Vcc, $3k\Omega$ to GND at D_{OUT3} , D_{OUT1} = D_{OUT2} = 2.5mA	±5			V
I _{IH}	High-level input current	V _I = Vcc		±0.01	±1	μΑ
IIL	Low-level input current	V _I at GND		±0.01	±1	μΑ
V_{hys}	Input hysteresis			0.5	±1	V
	Short-circuit output	Vcc = 3.6 V, V ₀ = 0 V		±30	±60	mA
los	current ⁽³⁾	Vcc = 5.5 V, V ₀ = 0 V		±30	±60	IIIA
ro	Output resistance	Vcc, V+, and V $-$ = 0 V, V $_{0}$ = ±2 V	300	10M		Ω
l _{off}	Output leakage current	$\overline{\text{FORCEOFF}} = \text{GND}, V_0 = \pm 12 \text{ V}, \text{Vcc} = 0 \text{ to } 5.5 \text{ V}$		0.2	±25	μΑ

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

- 4 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

⁽²⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

⁽²⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

⁽³⁾ Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

5.7 Receiver Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 6)

	Parameter	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1mA	Vcc - 0.6	Vcc - 0.1		٧
V _{OL}	Low-level output voltage	I _{OH} = 1.6mA		0.1	0.4	٧
V _{IT+}	, Positive-going input	Vcc = 3.3 V		1.4	2.4	V
V _{IT+}	threshold voltage	Vcc = 5 V		1.7	2.4	V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Negative-going input	Vcc = 3.3 V	0.6	1.1		V
V _{IT}	threshold voltage	Vcc = 5 V	0.8	1.3		V
V _{hys}	Input hysteresis (V _{IT+} – V _{IT-})			0.4		V
I _{off}	Output leakage current (except ROUT2B)	FORCEOFF = 0V		±0.03	±10	μΑ
ri	Input resistance	V _I = ±3 V or ±25V	3	6	8	ΚΩ

⁽¹⁾ Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.

5.8 Auto-Powerdown Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 6)

	Parameter	TEST CONDITIONS	MIN	MAX	UNIT
.,	Receiver input threshold	FORCEON = GND,		2.7	V
V _{IT+(valid)}	for INVALLD high-level output voltage	FORCEOFF = Vcc		2.7	V
V	Receiver input threshold	FORCEON = GND,	-2.7		V
V _{IT-(valid)}	for INVALLD high-level output voltage	FORCEOFF = Vcc	-2.7		V
V	Receiver input threshold	FORCEON = GND,	-0.3	0.3	V
V _{T(invalid)}	for INVALLD low-level output voltage	FORCEOFF = Vcc	-0.5	0.5	V
Vau	 INVALLD high-level output voltage	I_{OH} = -1mA, FORCEON = GND,	Vcc-0.6		V
V _{OH}		FORCEOFF = Vcc	VCC-0.0		V
Vo	 INVALLD low-level output voltage	$I_{OL} = 1.6$ mA, FORCEON = GND,		0.4	V
V _{OL}	IMAMITING IOM-level output voltage	FORCEOFF = Vcc		0.4	V

5.9 Driver Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 6)

Parameter		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$C_L = 1000$ pF,One D_{OUT} switching, $R_L = 3$ k Ω .See <u>Figure 1</u>		125	250		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C_L = 150pF to 2500pF, RL = 3k Ω to 7k Ω ,See Figure 2			100		ns
CD	Slew rate, transition region	$Vcc = 3.3 \text{ V,R}_L = 3k\Omega \text{ to}$	C _L = 150pF to 1000pF	6		30	V/µs
SR _(tr)	(see <u>Figure 1</u>)	7kΩ, PRR = 250kbit/s	C _L = 150pF to 2500pF	4		30	ν/μδ

⁽¹⁾ Test conditions are C1–C4 = 0.1μ F at Vcc = 3.3 V + 0.3 V; C1 = 0.047μ F, C2–C4 = 0.33μ F at Vcc = 5 V \pm 0.5 V.

⁽²⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

⁽²⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

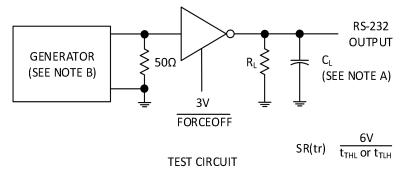
⁽³⁾ Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

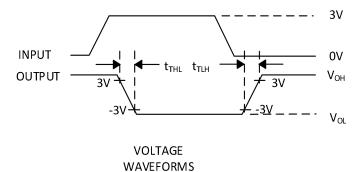
5.10 Receiver Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 6)

	Parameter	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low to high level output	C _L = 150pF, See <u>Figure 3</u>	30	ns
t _{PHL}	Propagation delay time, high to low level output		30	ns
t _{en}	Output enable time	$C_L = 150$ pF, RL = 3k Ω , See Figure 4	200	ns
t _{dis}	Output disable time		200	ns
t _{sk(p)}	Puse skew ⁽³⁾	t _{sk(p)} Puse skew ⁽³⁾ See <u>Figure 3</u>	10	ns

- (1) Test conditions are C1–C4 = $0.1\mu F$ at Vcc = $3.3 \text{ V} \pm 0.3 \text{ V}$; C1 = $0.047\mu F$, C2–C4 = $0.33\mu F$ at Vcc = $5 \text{ V} \pm 0.5 \text{ V}$.
- (2) All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.
- (3) Pulse skew is defined as $|t_{PLH} t_{PHL}|$ of each channel of the same device.

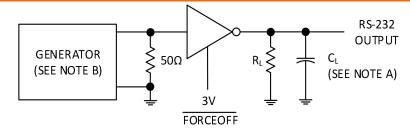

5.11 Auto-Powerdown Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5)

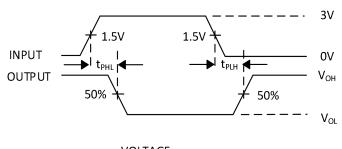
	Parameter	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	Vcc = 5 V	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	Vcc = 5 V	30	μs
t _{en}	Supply enable time	Vcc = 5 V	100	μs

⁽¹⁾ All typical values are at Vcc = 3.3 V or Vcc = 5 V, and $T_A = 25 ^{\circ}\text{C}$.

6 Parameter Measurement Information

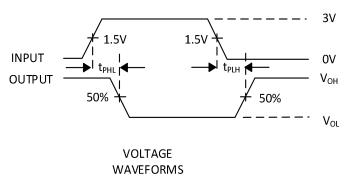

A. CL includes probe and jig capacitance

B. The pulse generator has the following characteristics: PRR = 5kbit/s, $Z_0 = 50 \Omega$, 50 % duty cycle, $tr \le 10$ ns, $tf \le 10$ ns.


Figure 1. Driver Slew Rate

- 6 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

TEST CIRCUIT

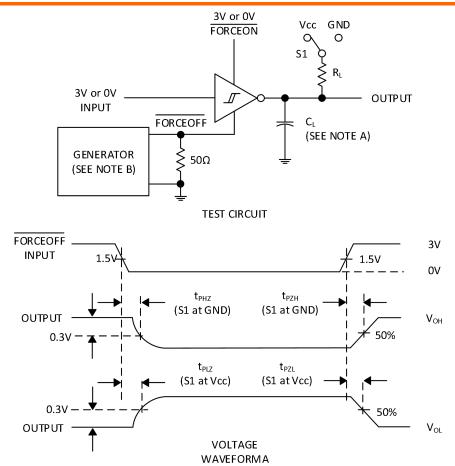

VOLTAGE WAVEFORMS

- A. CL includes probe and jig capacitance
- B. The pulse generator has the following characteristics: PRR = 5kbit/s, $Z_0 = 50 \Omega$, 50 % duty cycle, $tr \le 10ns$, $tf \le 10ns$.

3V or 0V **FORCEON** OUTPUT **GENERATOR** 50Ω (SEE NOTE B) (SEE NOTE A) 3V FORCEOFF

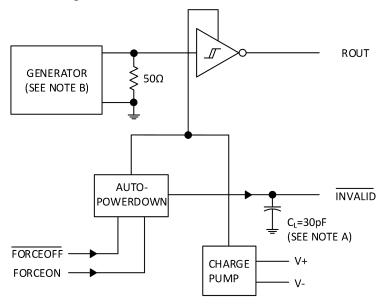
Figure 2. Driver Pulse Skew

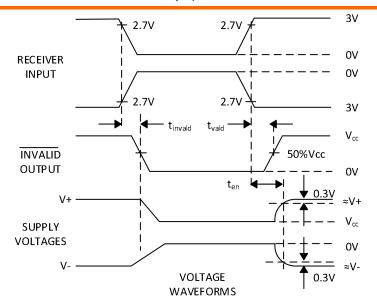
TEST CIRCUIT



- A. CL includes probe and jig capacitance
- B. The pulse generator has the following characteristics: PRR = 5kbit/s, $ZO = 50 \Omega$, 50 % duty cycle, $tr \le 10ns$, $tf \le 10ns$.

Figure 3. Receiver Propagation Delay Times


- 7 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com Copyright © GATEMODE Corp.



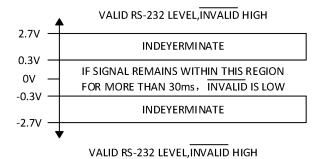
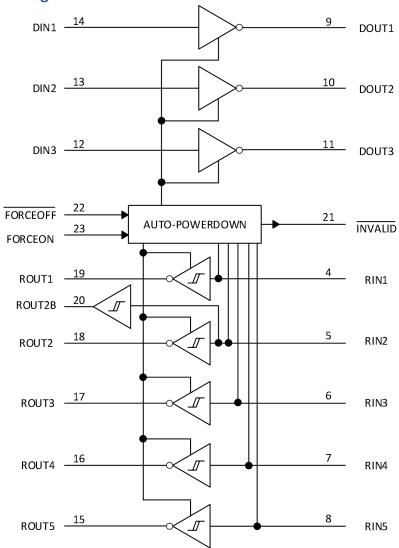

- A. CL includes probe and jig capacitance
- B. The pulse generator has the following characteristics: PRR = 5kbit/s, $ZO = 50 \Omega$, 50 % duty cycle, $tr \le 10$ ns, $tf \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as $t_{\text{dis}}.$
- D. t_{PZL} and t_{PZH} are the same as ten.

Figure 4. Receiver Enable and Disable Times

- A. CL includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 5kbit/s, $ZO = 50 \Omega$, 50 % duty cycle, $tr \le 10$ ns, $tf \le 10$ ns.

Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

7 Detailed Description


7.1 Overview

The GM3243E device consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8kV ESD (IEC61000-4-2, Contact Discharge) protection on serial-port connection pins. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector.

The charge pump and four small external capacitors allow operation from a single 3V to 5.5V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 250kbit/s and a maximum of 30V/µs driver output slew rate.

7.2 Functional Block Diagram

7.3 Feature Description

Flexible control options for power management are available when the serial port is inactive. The auto powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1μA. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALLD output is used to notify the user if an RS-232 signal is present at any receiver input. NVALLD is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30μs. INVALLD is low (INVALLD data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30μs. Refer to Figure 5 for receiver input levels.

7.4 Device Functional Modes

Table 1 through 3 show the device functional modes.

Table 1.Each Driver

		INPUTS ⁽¹⁾	OUTPUT	DDIVED CTATUS	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Χ	X	L	X	Z	Powered off
L	Н	Н	X	Н	Normal operation with
Н	Н	Н	X	L	auto-powerdown disabled
L	L	Н	Υ	Н	Normal operation with
Н	L	Н	Υ	L	auto-powerdown enabled
Х	L	Н	N	Z	Powered off by auto-powerdown feature

Table 2.Each Receiver

	INPUTS ⁽¹⁾		OUTPUT	RECEIVER STATUS	
RIN	FORCEON	FORCEOFF	ROUT	RECEIVER STATOS	
Х	X	L	Z	Powered off	
L	X	Н	Н		
Н	X	Н	L	Normal operation with auto-powerdown disabled/enabled	
OPEN	Х	Н	Н	uisabled/ellabled	

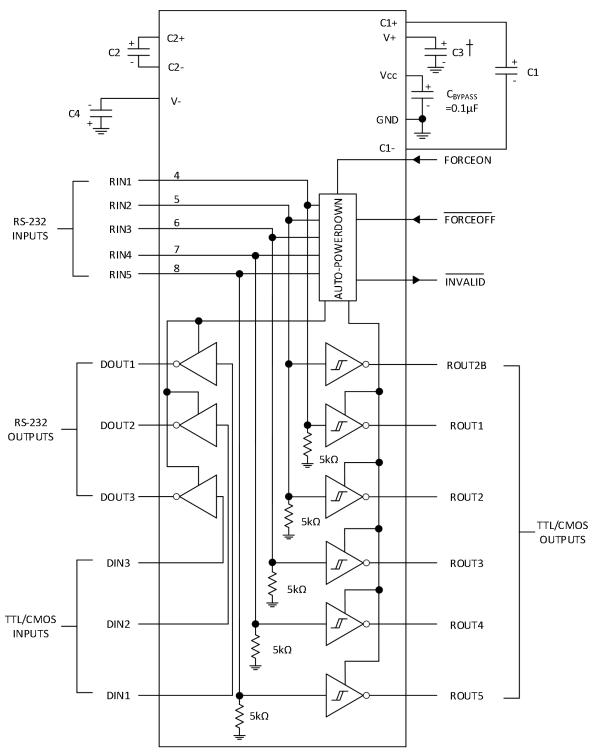
Table 3.Outputs ROUT2B and INVALID

		INPUTS ⁽¹)	OUTPUTS		OUTPUT STATUS		
RIN2	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	INVALID ROUT2B		OUTFOI SIAIOS		
L	Х	Х	Υ	Н	L			
Н	Х	Х	Υ	Н	Н	Always active		
OPEN	Х	Х	Υ	Н	L	Always active		
OPEN	Х	Х	N	L	L			

⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

8 Applications Information

8.1 Application Information


For proper operation, add capacitors as shown in Figure 6. Pins 12 through 23 connect to UART or general purpose logic lines. RS-232 lines on Pins 4 through 11 connect to a connector or cable.

- 11 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

8.2 Typical Application

Three driver and five receiver channels are supported for full duplex transmission with hardware flow control. The five $5k\Omega$ resistors are internal to the GM3243E.

- †: C3 can be connected to Vcc or GND
- A. Resistor values shown are nominal.
- B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 6. Typical Operating Circuit and Capacitor Values

8.2.1 Design Requirements

For this design example, use the values in Table 4.

- Vcc minimum is 3V and maximum is 5.5V.
- Maximum recommended bit rate is 250kbps.

Table 4.Vcc vs Capacitor Values

Vcc	C1	C2,C3,and C4
3.3V ± 0.3V	0.1μF	0.1μF
5V ± 0.5V	0.047μF	0.33μF
3V to 5.5V	0.1μF	0.47μF

8.2.2 Detailed Design Procedure

GM3243E has integrated charge-pump that generates positive and negative rails needed for RS-232 signal levels. Main design requirement is that charge-pump capacitor terminals must be connected with recommended capacitor values. Charge-pump rail voltages and device supply pin must be properly bypassed with ceramic capacitors.

8.2.2.1 ESD PROTECTION

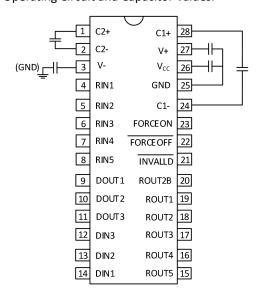
GM3243E devices have standard ESD protection structures incorporated on the pins to protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures were designed to successfully protect these bus pins against ESD discharge of ±15kV in all states: normal operation, shutdown, and powered down. The GM3243E devices are designed to continue functioning properly after an ESD occurrence without any latchup. The GM3243E devices have three specified ESD limits on the driver outputs and receiver inputs, with respect to GND:

±15kV Human Body Model (HBM)

±15kV IEC61000-4-2, Air-Gap Discharge (formerly IEC1000-4-2)

±8kV IEC61000-4-2, Contact Discharge

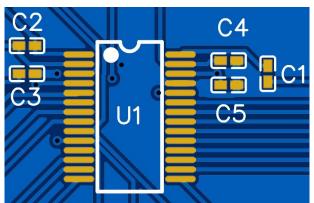
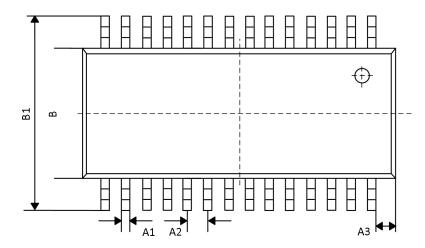
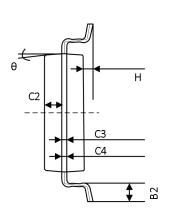
9 Power Supply Recommendations

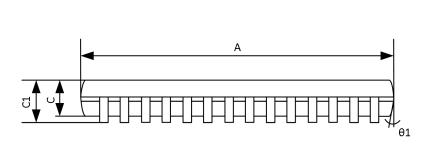

The Vcc voltage must be connected to the same power source used for logic device connected to DIN and ROUT pins. Vcc must be between 3V and 5.5V.

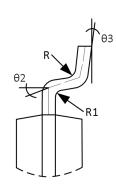
- 13 www.gmmicro.com Tel: (+86) 13135660803 Email: sales@gmmicro.com

10 Layout

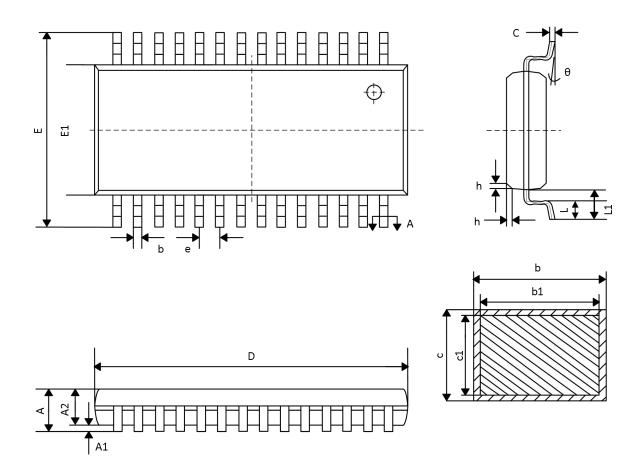
As shown in Layout Example, charge-pump and supply voltage capacitors must be located very close to device pins. Non-polarized ceramic capacitors are recommended. If polarized tantalum or electrolytic capacitors are used, they should be connected as per Typical Operating Circuit and Capacitor Values.


Figure 11. Example Layout

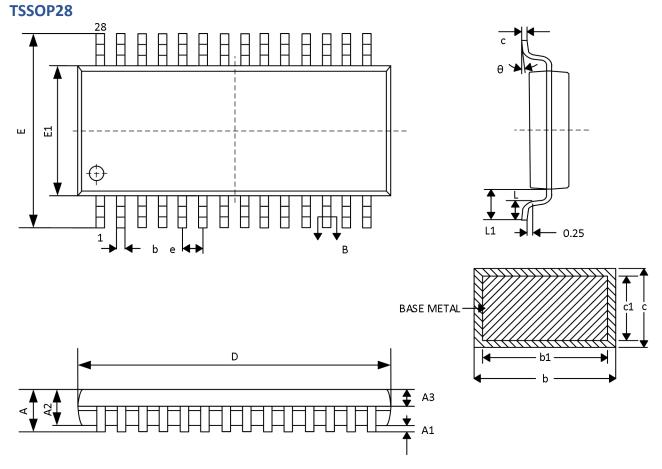


PACKAGE DIMENSION SSOP28



DIMENSION	MIN (mm)	MAX (mm)	DIMENSION SYMBOLS	MIN (mm)	MAX (mm)	
Α	10.15	10.25	C3	0	0.152	
A1	0.30)TYP	C4	0.172		
A2	0.65 TYP		Н	0.05	0.15	
A3	0.725TYP		θ	12° TYP4		
В	5.25 5.35		θ1	12° TYP4		
B1	7.65 7.95		θ2	10° TYP4		
B2 0.60		0.80	θ3	0'	° ~ 8°	
C 1.65		1.85	R	0.20 TYP		
C1	1.75 1.95		R1	0.15 TYP		
C2	0.799					

PACKAGE DIMENSION SOP28



DIMENSION		MILLIMETER	
SYMBOLS	MIN	NOM	MAX
A	-	-	2.65
A1	0.10	-	0.30
A2	2.13	2.23	2.33
b	0.38	-	0.48
b1	0.36	0.41	0.46
С	0.24	-	0.30
c1	0.24	0.25	0.27
D	17.90	18.00	18.10
E	10.10	10.30	10.50
E1	7.40	7.50	7.60
e	1.27BSC		
h	0.25	-	0.75
L	0.60	0.80	1.00
L1		1.40REF	
θ	0°	-	8°

- 16 -

PACKAGE DIMENSION

DIMENSION		MILLIMETER	
SYMBOLS	MIN	NOM	MAX
А	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
А3	0.39	0.44	0.49
b	0.20	-	0.28
b1	0.19	0.22	0.25
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	9.60	9.70	9.80
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е		0.65BSC	
L	0.45	0.60	0.75
L1	1.00REF		
θ	0	-	8°

- 17 -

±15kV ESD-Protected, 1µA, 3.0V to 5.5V, 250kbps,RS-232 Transceivers with AutoShutdown

Order Information

Order number	umber Package	Marking	Operation Temperature	MSL Grade	Ship, Quantity	Green
Order Humber		information	Range	IVISE Grade		
GM3243ESA	SOP28	GM3243ESA	-40 to 85°C	3	T&R,1000	Rohs
GM3243ETA	TSSOP28	GM3243ETA	-40 to 85°C	3	T&R,2000	Rohs
GM3243EBA	SSOP28	GM3243EBA	-40 to 85°C	3	T&R,2000	Rohs